Masting ontogeny: the largest masting benefits accrue to the largest trees

This is a Preprint and has not been peer reviewed. This is version 1 of this Preprint.

Add a Comment

You must log in to post a comment.


Comments

There are no comments or no comments have been made public for this article.

Downloads

Download Preprint

Authors

Jakub Szymkowiak, Andrew Hacket-Pain, Dave Kelly, Jessie Foest, Katarzyna Kondrat, Peter A Thomas, Jonathan Lageard, Georg Gratzer, Mario Pesendorfer, Michał Bogdziewicz

Abstract

Background and Aims. Both plants and animals display considerable variation in their phenotypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation. Masting represents a population-level phenomenon generated from individual plant behaviors. While the developmental trajectory of individual plants influences their masting behavior, the translation of such changes into benefits derived from masting remains unexplored.

Methods and Key Results. We used 43 years of seed production monitoring in European beech (Fagus sylvatica) to address that gap. The largest improvements in reproductive efficiency from masting happen in the largest trees. Masting leads to a 48-fold reduction in seed predation in large, compared to 28-fold in small trees. Masting yields an 6-fold increase in pollination efficiency in large, compared to 2.5-fold in small trees. Paradoxically, although the largest trees show the biggest reproductive efficiency benefits from masting, large trees mast less strongly than small trees.

Conclusions. That apparently suboptimal allocation of effort across years by large plants may be a consequence of anatomical constraints or bet-hedging. Ontogenetic shifts in individual masting behavior and associated variable benefits have implications for the reproductive potential of plant populations as their age distribution changes, with applications in plant conservation and management.\\

DOI

https://doi.org/10.32942/X23G8D

Subjects

Ecology and Evolutionary Biology, Life Sciences

Keywords

Dates

Published: 2024-09-12 20:12

License

CC BY Attribution 4.0 International

Additional Metadata

Language:
English

Data and Code Availability Statement:
The data supporting the results are archived and accessible at \href{https://osf.io/z6e8m/?view_only=9b5b7c8487a645ae93e459c764e96bfd} {OSF}