Harnessing Large Language Models for Coding, Teaching, and Inclusion to Empower Research in Ecology and Evolution

This is a Preprint and has not been peer reviewed. The published version of this Preprint is available: https://doi.org/10.1111/2041-210X.14325. This is version 3 of this Preprint.

Add a Comment

You must log in to post a comment.


Comments

There are no comments or no comments have been made public for this article.

Downloads

Download Preprint

Authors

Natalie Cooper, Adam T Clark , Nicolas Lecomte, Huijie Qiao, Aaron M Ellison

Abstract


  1. Large language models (LLMs) are a type of artificial intelligence (AI) that can perform various natural language processing tasks. The adoption of LLMs has become increasingly prominent in scientific writing and analyses because of the availability of free applications such as ChatGPT. This increased use of LLMs raises concerns about academic integrity, but also presents opportunities for the research community. Here we focus on the opportunities for using LLMs for coding in ecology and evolution. We discuss how LLMs can be used to generate, explain, comment, translate, debug, optimise, and test code. We also highlight the importance of writing effective prompts and carefully evaluating the outputs of LLMs. In addition, we draft a possible road map for using such models inclusively and with integrity.

  2. LLMs can accelerate the coding process, especially for unfamiliar tasks, and free up time for higher-level tasks and creative thinking while increasing efficiency and creative output. LLMs also enhance inclusion by accommodating individuals without coding skills, with limited access to education in coding, or for whom English is not their primary written or spoken language. However, code generated by LLMs is of variable quality and has issues related to mathematics, logic, non-reproducibility, and intellectual property; they can also include mistakes and approximations, especially in novel methods.

  3. We highlight the benefits of using LLMs to teach and learn coding, and advocate for guiding students in the appropriate use of AI tools for coding. Despite the ability to assign many coding tasks to LLMs, we also reaffirm the continued importance of teaching coding skills for interpreting LLM generated code and to develop critical thinking skills.

  4. As editors of MEE, we support—to a limited extent—the transparent, accountable, and acknowledged use of LLMs and other AI tools in publications. If LLMs or comparable AI tools (excluding commonly-used aids like spell-checkers, Grammarly and Writefull) are used to produce the work described in a manuscript, there must be a clear statement to that effect in its Methods section, and the corresponding or senior author must take responsibility for any code (or text) generated by the AI platform.

DOI

https://doi.org/10.32942/X2PS48

Subjects

Life Sciences

Keywords

Artificial Intelligence, ChatGPT, coding, Inclusion, Large Language Models, teaching, Teaching, Coding, Inclusion, ChatGPT, large language models

Dates

Published: 2024-02-28 21:54

Last Updated: 2024-05-04 02:33

Older Versions
License

CC BY Attribution 4.0 International

Additional Metadata

Language:
English

Conflict of interest statement:
We are all editors at British Ecological Society (BES) journals, and (excluding ATC) we are compensated by BES for our work, thus we have vested interest in the adoption of these guidelines.

Data and Code Availability Statement:
NA