Indirect genetic effects should make group size more evolvable than expected

This is a Preprint and has not been peer reviewed. This is version 3 of this Preprint.

Add a Comment

You must log in to post a comment.


There are no comments or no comments have been made public for this article.


Download Preprint


David N Fisher 


Group size is an important trait for many ecological and evolutionary processes. However, it is not a trait possessed by individuals but by social groups, and as many genomes contribute to group size understanding its genetic underpinnings and so predicting its evolution is a conceptual challenge. Here I suggest how group size can be modelled as a joint phenotype of multiple individuals, and so how models for evolution accounting for indirect genetic effects are essential for understanding the genetic variance of group size. This approach makes it clear that 1) group size should have a larger genetic variance than initially expected as indirect genetic effects always contribute exactly as much as direct genetic effects and 2) the response to selection of group size should be faster than expected based on direct genetic variance alone as the correlation between direct and indirect effects is always at the maximum positive limit of 1. Group size should therefore show relatively rapid evolved increases and decrease, the consequences of which and evidence for I discuss.



Life Sciences


evolvability, group size, indirect genetic effects, joint phenotype


Published: 2023-09-01 11:49

Last Updated: 2024-02-29 02:19

Older Versions

CC-BY Attribution-NonCommercial 4.0 International

Additional Metadata


Data and Code Availability Statement:
No data or code in article