Light wavelength and pulsing frequency affect avoidance responses of Canada geese

This is a Preprint and has not been peer reviewed. The published version of this Preprint is available: This is version 1 of this Preprint.

Add a Comment

You must log in to post a comment.


There are no comments or no comments have been made public for this article.


Download Preprint

Supplementary Files

RYAN B LUNN, Patrice Baumhardt, Bradley Blackwell, Jean-Paul Freyssinier, Esteban Fernández-Juricic


Collisions between birds and aircraft cause bird mortality, economic damage, and aviation safety hazards. One proposed solution to increasing the distance at which birds detect and move away from an approaching aircraft, ultimately mitigating the probability of collision, is through onboard lighting systems. Lights in vehicles have been shown to lead to earlier reactions in some bird species but they could also generate attraction, potentially increasing the probability of collision. Using information on the visual system of the Canada goose (Branta canadensis), we developed light stimuli of high chromatic contrast to their eyes. We then conducted a controlled behavioral experiment (i.e., single-choice test) to assess the avoidance or attraction responses of Canada geese to LED lights of different wavelengths (blue, 483 nm; red, 631nm) and pulsing frequencies (steady, pulsing at 2 Hz). Overall, Canada geese tended to avoid the blue light and move towards the red light treatment; however, these responses depended heavily on light exposure order. At the beginning of the experiment, geese tended to avoid the red light. However, after further exposure the birds developed an attraction to the red light, consistent with the mere exposure effect. The response to the blue light generally followed a U-shape relationship (avoidance, attraction, avoidance) with increasing number of exposures, again consistent with the mere exposure effect, but followed by the satiation effect. Lights pulsing at 2 Hz enhanced avoidance responses under high ambient light conditions, whereas steady lights enhanced avoidance responses under dim, ambient light conditions. Our results have implications for the design of lighting systems aimed at mitigating collisions between birds and human objects. LED lights in the blue portion of the spectrum are good candidates for deterrents and lights in the red portion of the spectrum may be counterproductive given the attraction effects with increasing exposure, and consideration should be given to systems that automatically modify pulsing of the light depending on ambient light intensity to enhance avoidance.



Social and Behavioral Sciences


Animal-aircraft collisions, animal-vehicle collisions, Visual modeling, Avoidance Behavior, Choice test, LED lights, Avian Deterrent, Light Deterrent


Published: 2023-05-25 05:23

Last Updated: 2023-05-25 09:23


No Creative Commons license

Additional Metadata


Conflict of interest statement:
The authors declare that they have no competing interests

Data and Code Availability Statement:
The data and code for this study can be found at and