This is a Preprint and has not been peer reviewed. The published version of this Preprint is available: https://doi.org/10.1002/eap.2307. This is version 1 of this Preprint.
Downloads
Authors
Abstract
Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users can earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human-natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model characterized by the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on revenue patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with longer-lived groundfish populations was not important because environmentally-driven changes in groundfish early life survival were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of extremely poor environmental conditions over short time scales, though not for long-term declines. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a tradeoff between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.
DOI
https://doi.org/10.32942/osf.io/u5qze
Subjects
Ecology and Evolutionary Biology, Life Sciences, Marine Biology, Population Biology
Keywords
Bioeconomic model, California Current, Economics, Fisheries, Portfolio effects, synchrony
Dates
Published: 2020-08-12 00:09
There are no comments or no comments have been made public for this article.