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Abstract
Phenotypic plasticity allows organisms to express different traits in response to different environ-
mental or genetic conditions. Understanding the evolution of conditional phenotypes is challenging
because they are not expressed by all members of a population, which allows for the accumulation
of deleterious variation due to drift. Theory suggests pleiotropic effects help prevent the decay of
conditional phenotypes by exposing the variation accrued neutrally in one context to the effects
of purifying selection in an alternative context. However, existing frameworks for describing the
evolutionary dynamics of conditional phenotypes are limited in their ability to flexibly model the
complex pleiotropic architectures that often underlie conditional phenotypes. To help improve our
understanding of the evolutionary stability of conditional phenotypes, here we describe a geometric
model that allows for explicit modeling of different fitness optima for conditional and alternative
phenotypes, as well as their underlying pleiotropic associations. Using stochastic simulations and
mathematical analyses, we show that this model recapitulates and elaborates on existing predic-
tions regarding the role of pleiotropy in maintaining conditional phenotypes. Specifically, we found
that more pleiotropic conditional phenotypes experience decreased rates of decay in fitness over
periods of inexpression, the effects of which are comparable for phenotypes that are spatially and
temporally conditional. Furthermore, the functional form of the relationship between conditional
phenotype expression pattern and decay rate is mediated by pleiotropic effect, which provides
more explicit hypotheses of when pleiotropic constraint is expected to play a significant role in
the evolutionary maintenance of conditional phenotypes. Finally, we found that when pleiotropic
architectures evolve over periods of conditional phenotype inexpression, decoupling from other
phenotypes readily evolves and facilitates decay in fitness.
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Introduction
Most organisms possess some capacity to express different phenotypes in response to different en-
vironmental or genetic contexts. This plasticity confers many notable ecological and evolutionary
benefits, including a greater ability to invade different niches and a decreased extinction risk due to
said increased niche breadth (Chevin, Lande, and Mace 2010, Matesanz, Horgan-Kobelski, and So-
nia E. Sultan 2012, Forsman 2015). Furthermore, many taxa constitutively express traits that exist
as conditionally-expressed alternatives in closely related lineages, suggesting an important role of
plasticity in shaping patterns of macroevolutionary diversification (Moczek et al. 2011). Although
the importance of plasticity in facilitating the ecological success and evolutionary diversification
of lineages has been well described, explaining the evolutionary maintenance of conditional phe-
notypes has been more challenging (DeWitt, Sih, and Wilson 1998; Snell-Rood et al. 2010).

The challenge in explaining the evolutionary dynamics of conditional phenotypes lies in their
frequent inexpression. Since the individuals that express a conditional phenotype often constitute
only a portion of the population, relaxed purifying selection can allow conditional phenotypes to
neutrally accrue more functional variation (Snell-Rood et al. 2010, Van Dyken and Michael J Wade
2010). For example, selection would be less effective at removing variation that is only deleterious
when expressed in males because its deleterious effects are not realized when expressed in the
other sex (Brisson and Nuzhdin 2008). Given the right environment, this increase in variation
conferred by relaxed selective constraints could in theory facilitate rapid adaptation via positive
selection (though empirical evidence is limited) (Moczek et al. 2011). However, the general and
expected outcome is that variation acquired neutrally during inexpression erodes the functionality
and fitness associated with conditional phenotypes (DeWitt, Sih, and Wilson 1998, Snell-Rood
et al. 2010, Van Dyken and Michael J Wade 2010, Moczek et al. 2011).

Models describing the evolutionary dynamics of conditionally expressed phenotypes typically
focus on the proportion of a population that expresses said phenotype over space and time (Van
Dyken and Michael J Wade 2010, Snell-Rood et al. 2010). Such frameworks implicitly consider
loci as either ”on” when expressed or ”off” when not, which is a simplifying feature that helps
make models more tractable. However, advancements in genetic sequencing and expression pro-
filing have shown that pleiotropic effects — when a locus contributes to phenotypic production in
multiple contexts — can shape evolutionary trajectories by mediating the relative importance of
different evolutionary processes (J. A. Hill and Sarah P Otto 2007, Mank et al. 2008, Dean and
Mank 2016, Fraı̈sse, Puixeu Sala, and Vicoso 2019, Williams et al. 2023). Therefore, frameworks
that explicitly consider how pleiotropic architecture influences the balance between purifying se-
lection and drift may improve our understanding of the evolutionary dynamics (particularly main-
tenance) of conditional phenotypes (Snell-Rood et al. 2010, Moczek et al. 2011, Forsman 2015).

Existing frameworks that consider the role of pleiotropic effects in governing the evolution of
conditional phenotypes typically do so by defining the selective relevance of a given variation in al-
ternative environments (Kawecki, Barton, and Fry 1997, Sarah P. Otto 2004). In this, pleiotropy is
represented from more of a ”top-down” perspective, where it is considered as a selective outcome.
Such approaches have been useful for studying the interplay between dispersal and antagonistic
pleiotropy in constraining adaptation in alternative environments. However, pleiotropy can also
be considered as an organismal property, and it has been well articulated that adopting this more
”bottom-up” perspective may be more useful for describing and exploring how different pleiotropic
architectures shape the evolutionary trajectories of conditional phenotypes (Forsman 2015).

2



To facilitate this exploration, here we describe a geometric model that considers different fit-
ness optima associated with conditional and alternative phenotypes, which are produced through
differential investments in various latent traits (Fisher 1930). This allows for explicit and flexi-
ble modeling of the pleiotropic architectures underlying conditional phenotypes at an organismal
level, as well as evolving pleiotropic architectures and various patterns of expression frequency.
To impart greater tractability, we also analytically derive closed-form expressions that describe the
decay in fitness of conditional phenotypes as a function of pleiotropic effect and expression fre-
quency. In general, we found that this model recapitulates key predictions regarding the interplay
between pleiotropic architecture and the evolutionary dynamics of conditional phenotypes. How-
ever, the functional form of this interplay changes with different patterns of expression frequency,
thus lending more explicit hypotheses regarding the conditions in which pleiotropy is expected to
be important for maintaining a conditional phenotype and when it is likely less important. Finally,
pleiotropic architectures readily evolve decoupling between conditional and alternative phenotypes
over periods of conditional inexpression, which facilitates decay in conditional fitness.

Model Description
The various phenotypes expressed by an organism are achieved through differential investment in
various latent traits (implicitly via differential gene expression). Let z = (z1, z2, . . . , zn) represent
the values of these various traits. The expression of each latent trait needed to produce phenotype
Pm is given by xm = (xm

1 , x
m
2 , . . . , x

m
n ), where m ∈ (1, 2, . . . ,M) indexes various distinct phe-

notypes and M is the number of phenotypes in consideration. These expression vectors then form
the columns of an expression matrix X ∈ Rn×m:

X =


x1
1 x2

1 . . . xm
1

x1
2 x2

2 . . . xm
2

...
... . . . ...

x1
n x2

n . . . xm
n

 (1)

It is worth noting that this expression matrix can be thought of as analogous to what is obtained
via high-throughput RNA/protein profiling. Therefore, a given phenotype Pm is constructed by
element-wise multiplication of latent traits and expression values:

Pm = xm ◦ z. (2)

The overall objective of this framework is to consider the role of pleiotropy in maintaining the
traits that compose a conditional phenotype, hereafter denoted as PC , via their phenotypic effects
in an alternative phenotype, hereafter denoted as PA. Let the expression vector that constructs
PC be xC , and the expression vector that constructs PA be xA. Note that the expression values
in xA do not necessarily have to represent those from a single alternative phenotype. Rather,
they may represent expression values from various phenotypes. Since this is fundamentally a
model of stabilizing selection, it is most useful to consider the alternative contexts in which the
strongest purifying selection is exerted. This can be readily inferred via expression levels, as
there is an inverse relationship between expression level and evolutionary rate (Drummond et al.
2005, Dasmeh, Girard, and A. W. R. Serohijos 2017, Subramanian and Kumar 2004, Cherry 2010,
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Trucchi et al. 2024). Therefore, xA can be considered as the phenotype in which it is maximally
expressed:

xA =
M

max
m=1
m ̸=C

xm (3)

where the expression of each trait in the alternative context is xA
n = maxm̸=C xm

n . Given these
expression vectors, the degree of pleiotropy between PC and PA for trait zn can be evaluated as
its relative expression in PC :

rn =
xC
n

xA
n + xC

n

(4)

Therefore, the breadth of pleiotropic influence of each trait is then r = (r1, r2, . . . , rn) ∈ [0, 1],
where

rn = 1 : trait only contributes to PC ,

rn = 0 : trait only contributes to PA,

rn = 0.5 : trait contributes equally to PC and PA

Since r maintains the relative differences between PC and PA, each phenotype can be defined in
terms of r, where PC is

PC = r ◦ z (5)

and PA is
PA = (1− r) ◦ z (6)

To provide a more intuitive sense of how r influences PC and PA, Figure 1 depicts the evolution
of each phenotype with varying degrees of r. While this approach removes the magnitude of
investment in each trait, it conserves the general property where more context-specific traits tend
to contribute proportionally less to other contexts, an assumption that is empirically supported and
commonly made (Guillaume and Sarah P Otto 2012). Furthermore, it conserves the behavior of
mutational perturbation, and provides a continuous modulator of pleiotropic association between
phenotypes.

The fitness associated with PC and PA depends on the optimal values for each phenotype,
which are described by the vectors oC = (oC1 , o

C
2 , . . . , o

C
n ) and oA = (oA1 , o

A
2 , . . . , o

A
n ), respectively.

Note that the optimal value for each trait is determined by both z and r:

oCn = ron · zon and oAn = (1− ron) · zon (7)

where ron represents the optimal investment in trait zon for PC relative to PA, as previously de-
scribed. Therefore, the fitness associated with PC is

WC = exp(−σs∥PC − oC∥2) (8)

and the fitness associated with PA is

WA = exp(−σs∥PA − oA∥2) (9)
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Figure 1: The influence of r on how mutations perturb conditional and alternative phenotypes.
Each panel depicts the changes in each mean phenotype when evolved under high mutational af-
fect and weak stabilizing selection (for clearer depiction). In each panel, the x and y axes represent
the trait values for traits z1 and z2, respectively, where their corresponding r values are in the upper
left. Each point represents the mean trait value for the population, and lines connecting points
depict their evolutionary trajectories. The larger circles at the center of each temporal phenotype
distribution represents the location of the corresponding phenotypic optimum. In the leftmost
panel, both r values are small (< 0.5), indicating that the traits are mostly expressed in PA. There-
fore, mutation significantly impacts PA and has notably less impact on PC . In the middle panel,
the r values for each trait are close to 0.5, indicating they are expressed to similar extents in PC

and PA. Therefore, mutation impacts both phenotypes to similar extents. In the rightmost panel,
both r values are large (> 0.5), indicating that the traits are mostly expressed in PC . Therefore,
mutation significantly impacts PC and has notably less effect on PA.

where ∥PG − oG∥2 and ∥PC − oC∥2 are the Euclidean distances between each phenotype and its
corresponding optimum, and σs is the strength of stabilizing selection. The total fitness W T is then
determined by the fitness associated with each phenotype and the relative frequency at which each
phenotype is expressed in the population:

W T = WC · fC +WA · fA (10)

where fC and fA are the relative frequencies at which the conditional and alternative phenotypes
are expressed in the population, respectively.

Mutations occur that are drawn from a normal distribution to make small random changes to
the trait vector z, which affects the phenotype in an additive fashion. Let σm be the standard
deviation in mutational effects. The mutational effect vector is then ∆z = (δ1, δ2, . . . , δn) where
δi ∼ N (0, σm). Therefore, the trait vector for a mutated individual is z′ = z +∆z, which has the
potential to influence PC and PA because they both depend on z. r can be mutated in a similar
fashion. Let σr be the standard deviation in mutational effects on r. The r mutation effect vector is
then ∆r = (ρ1, ρ2, . . . , ρn), where ρn ∼ N (0, σr). Therefore, the r vector for a mutated individual
is r′ = clip(r + ∆r, 0, 1), where the clip function ensures r′ ∈ [0, 1]. Mutant phenotypes for PC

and PA can then be described as:

PC′
= r′ ◦ z′ and PA′

= (1− r′) ◦ z′ (11)
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respectively. It is worth noting that this approach is not sensitive to the value of a trait nor to
the direction of mutational perturbation. The only factor considered in determining fitness is the
distance of the trait from its optimum. This flexibility accommodates biological systems well, as
decreasing the value of a trait may be what defines adaptive relevance or an alternative phenotype.

Methods
Definition of pleiotropic architectures
The distribution of r describes the overall pleiotropic architecture of a conditional phenotype,
which can be flexibly represented using a β-distribution, such that rn ∼ Beta(α, β). The β-
distribution is a desirable choice because it is naturally bound between 0 and 1, and the magnitude
of α and β determine how concentrated the distribution is around the mean, which is µ = α

α+β
.

Therefore, if α = β, greater values of both parameters represent more pleiotropic architectures
because traits tend to be concentrated around the mean of r = 0.5.

Evolutionary simulations
For simplicity, we considered a haploid asexual population and performed evolutionary simula-
tions using a standard Wright-Fisher approach. That is, let N be the population size. To create
each new generation, N parental phenotypes are first selected with replacement, where selection
probabilities are proportional to relative fitness. Selected parental phenotypes are then mutated as
previously described to create the phenotypes of individuals in the next generation. Simulations
presented in this study were conducted with the following parameters: µ = 0, σm = 0.1, σs = 1,
Ne = 1000, n = 20, and z0 = (1, 1, . . . , 1). Specification of other parameter values are given in
the simulation description.

Closed-form expressions describing conditional fitness decay rate
Although the probabilistic nature of the the previously described model may represent more real-
istic uncertainty, it suffers from intractability. Therefore, to better discern the interplay between
pleiotropic effect and expression frequency in mediating the decay of conditional phenotypes, we
used the previously described framework to derive a closed-form expression of this relationship.
Since our primary objective was to describe the evolutionary stability of a conditional phenotype
as a function of its pleiotropic links to a constitutively expressed alternative phenotype, we assume
fA = 1 (see Supplement section 1.1 for a more general description). Therefore, we approximate
W T by a single Gaussian weight exp[−S x2], where

S = σs
fC r2 + (1− r)2

1 + fC
(12)

This ansatz follows from the second-order Taylor expansion of lnW T (x) around (x = 0), and is
exact up to quadratic order in x. From there, we assume that after mutation in generation t, the
population-level trait distribution is z ∼ N

(
z0, Vt

)
, a normal distribution with optimum z0 and

variance Vt. We then derive an exact recursion for Vt by re-weighting the prior

pt(z) =
1√
2πVt

exp

[
−(z − z0)

2

2Vt

]
(13)
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with W T (z) ≈ exp[−S (z − z0)
2]. This gives the unnormalized posterior

p′t(z) ∝ exp

[
−
(
S +

1

2Vt

)
(z − z0)

2

]
(14)

Therefore, exactly after selection, the variance is

V ′
t =

1

2 (S + 1/(2Vt))
=

Vt

1 + 2S Vt

(15)

Because mutation adds σ2
m to the variance, we then convolve the two Gaussian functions to the

exact difference equation of Vt

Vt+1 =
Vt

1 + 2S Vt

+ σ2
m, (16)

Given z ∼ N
(
z0, Vt

)
, conditional phenotype fitness can be considered WC(z) = exp[−σs r

2 (z − z0)
2],

whose Gaussian integral is

E
[
WC(t)

]
=

∫
e−σsr2(z−z0)2

1√
2πVt

e
− (z−z0)

2

2Vt dz =
[
1 + 2 σs r

2 Vt

]−1/2 (17)

By definition, the decay rate is λC(fC , r) = −1
t
ln
(

E[WC(t)]
WC(0)

)
. Since under the initial condition

V0 = 0 ⇒ E[WC(0)] = 1, the closed-form is

λC(fC , r) =
1

2 t
ln
[
1 + 2 σs r

2 Vt

]
(18)

This equation now allows us to run a direct numerical iteration for the exact recursion.
Similarly, we derived a deterministic expression of g, generations between expression, defining

the update maps:

FA(V ) =
V

1 + 2SA V
+ σ2

m, FC(V ) =
V

1 + 2SC V
+ σ2

m (19)

where SA = σs (1− r)2 and SC = σs r
2. By definition, the on-off cycle of g is completed starting

from V0 = 0, applying FA (g − 1) times, and FC once. The variance at steady state is described
by the fixed-point equation

V ∗ = FC

(
F

◦(g−1)
A (V ∗)

)
(20)

which is a contraction on [0,∞), and converges uniquely by iterating from V0 = 0. Knowing that
just before the on-step, the variance is V(g − 1), the fitness at the on-step is described exactly

E[WC ]burst =

∫
e−SC (x−z0)2

e−(x−z0)2/(2V (g−1))

√
2π V (g−1)

dx =
[
1 + 2SC V (g−1)

]−1/2 (21)

Distributing the single-cycle log loss evenly over g generations for interpretation free from in-cycle
fluctuation, we get

λC(r, g) = −1

g
ln
(
E[WC ]burst

)
=

1

2g
ln
[
1 + 2 σs r

2 V (g−1)
]

(22)

Because there is exactly one on-step per g generations, we have

fC =
1

g
, g =

1

fC
, fC ∈ {1, 1

2
, 1
3
, . . . } (23)

which is biologically defined only for all g > 1.
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Analysis of evolving pleiotropic architectures during periods of conditional
phenotype inexpression
To begin exploring the consequences of an evolving pleiotropic architecture on the fitness as-
sociated with conditional phenotypes, we first conducted evolutionary simulations as previously
described. However, in addition to simulations where σr = 0 (non-evolving r), we also conducted
simulations where σr = 0.01. Otherwise, all parameters were set as previously described.

When conditional phenotypes are not expressed, evolutionary dynamics (in both z and r) are
governed by the fitness landscape of alternative phenotypes. Therefore, to begin understanding
how pleiotropic architectures are expected to evolve during periods of conditional phenotype in-
expression, we analyzed how different alternative optima shape the fitness landscapes across the z
and r parameter space. First, we assume a uniform trait density on a fixed window z ∈ [zmin, zmax].
For the purposes of our analyses, [zmin, zmax] = [−3, 3]. The fitness landscape for alternative phe-
notypes for a given r is

I(r) =

∫ zmax

zmin

WA(r, z) dz (24)

Differentiating Equation 24 for I(r) with respect to r yields the marginal selection gradient:

dI

dr
(r) =

1

a

[
I(r) + zmin exp

(
−u2

min

)
− zmax exp

(
−u2

max

) ]
. (25)

Under a symmetrical window, the boundary limit r → 1 exists, where I ′(1) = 0. The full deriva-
tion can be found in the supplement.

Results
More pleiotropic genetic architectures maintain greater fitness associated with
conditional phenotypes during prolonged periods of inexpression
Although general theory suggests that pleiotropy should constrain the divergence of conditional
phenotypes, consideration of said theory primarily focuses on pleiotropic constraints on positive
selection. However, the same concept should be applicable to drift as well. To explore this con-
cept with the previously described model, we simulated the evolutionary dynamics of three condi-
tional phenotypes that were not expressed (fC = 0) for fifty generations with different underlying
pleiotropic architectures. First, we considered a ”no pleiotropy” architecture, where all traits were
either totally expressed in the conditional phenotype (r = 1) or totally expressed in the alternative
phenotype (r = 0). We then considered a ”low pleiotropy” architecture by defining the distribu-
tion of r using a Beta distribution where α = 2 and β = 2, which creates a somewhat uniform
distribution. Finally, we considered a ”high pleiotropy” architecture by defining the distribution of
r using α = 20 and β = 20, which creates a distribution where most traits are concentrated near
r = 0.5 and with few traits near r = 0 or r = 1 (Figure 2).

Consistent with expectations, the fitness associated with the non-pleiotropic conditional phe-
notype deteriorated rapidly (Figure 2). However, even a low degree of pleiotropy significantly
decreased the rate at which conditional phenotypes decayed in fitness (Figure 2). Likewise, a
high degree of pleiotropic coupling decreased this decay rate even more throughout the period of
inexpression (Figure 2).
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Figure 2: More pleiotropic architectures allow for greater maintenance of conditional phenotype
fitness when not expressed (fC = 0). Histograms in the leftmost panels show different pleiotropic
architectures (distributions of r) that may underlie a conditional phenotype. The upper panel de-
picts a non-pleiotropic architecture, the middle panel depicts a low-pleiotropic architecture, and the
bottom panel depicts a highly-pleiotropic architecture. The panel on the right shows the change in
average fitness associated with a conditional phenotype (mean WC) while the population evolves
without expressing it. Each smaller and lighter line represents the dynamics from independent
simulations, and the larger and darker lines represent the average dynamics across simulation.

The significance of pleiotropic constraint in maintaining conditional traits
is greatest when infrequently expressed and deteriorates with increasing ex-
pression frequency
To explore the relative importance of expression frequency (fC) and pleiotropy (r) in preventing
the decay in fitness associated with conditional traits (λC), we used the previously derived closed
form expression (Equation 18) to examine the rate of fitness decay across the fC – r parameter
space (for single conditional traits). Consistent with expectations, conditional traits with little
pleiotropic effect (r ≈ 1) and low expression frequency (fC ≈ 0) exhibited the highest decay rates
(Figure 3A). Conversely, increasing either expression frequency or pleiotropic effect (reducing
r → 0.5) decreases decay rate, though the extent of this decrease was shaped by their interaction
(Figure 3A). To better illustrate this pattern, we visualized the decay rate as a function of expression
frequency across different degrees of pleiotropic effect (0.5 < r ≤ 1). This showed the reduction
in decay rate associated with increasing expression frequency was most pronounced in weakly
pleiotropic traits (r ≈ 1), a pattern that diminished with increasing pleiotropic effect (r → 0.5).
In other words, the rate at which λC declined with respect to fC decreased with greater pleiotropic
effect (r → 0.5). We further confirmed that these predictions were consistent with our stochastic
model by conducting simulations based on single traits across the r and fC parameter space and
numerically estimating decay rates (Supplement section 2.1, Figure S1). Taken together, these
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Figure 3: The role of pleiotropic constraint in shaping the fitness decay of conditional traits. A) A
contour plot showing decay rate (λC) as a function of relative expression in the conditional pheno-
type (r) and expression frequency (fC). Lighter colors indicate greater decay rates, which occur
when expression frequency is lower and relative expression is higher. B) Decay rate in conditional
phenotype fitness as a function of expression frequency for traits with varying degrees of pleiotropy
(r). Lighter colors represent higher values of r and therefore, less pleiotropy. Taken together, A
and B illustrate how pleiotropic effects mediate the rate at which conditional phenotypes decay
with changing expression frequency.

findings lend support to the prediction that the importance of pleiotropic constraint in preventing
the decay of conditional traits may be significant when rarely expressed but rapidly diminishes
with increasing expression frequency.

The role of pleiotropic constraint in maintaining conditional phenotypes is
comparable between traits with spatially and temporally conditional expres-
sion
The previous analysis implicitly focused on traits that are conditionally expressed spatially, where
fC is determined by how frequently an individual within a population encounters the cuing envi-
ronment or genetic background. However, conditional expression also occurs temporally, where
all or most individuals in a population express a trait every several or many generations. To exam-
ine the interplay between pleiotropic constraint and fluctuating temporal expression frequencies,
we conducted the previously described analysis but instead specified the number of generations
(g) between expression (where fC = 1 and fA = 0 when expressed). Similar to patterns in traits
with conditional spatial expression, conditional traits that go many generations without expression
experience little pleiotropic constraint (r ⪆ 0.9) and exhibit the highest rates of fitness decay (λC)
(Figure 4A). Likewise, both reducing the number of generations between expression and increas-
ing pleiotropic effect (reducing r → 0.5) decreases the decay rate with some degree of interaction
(Figure 4A). Examining decay rate as a function of generations between expression across various
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Figure 4: The role of pleiotropic constraint in shaping the fitness decay of traits that are temporally
conditional. A) A contour plot showing variation in decay rate (λC) as a function of relative
expression in the conditional phenotype (r) and generations between expression (g). Lighter colors
indicate greater decay rates, which occur when relative expression is higher and there are more
generations between expression. B) Decay rate in conditional phenotype fitness as a function of
generations between expression for traits with varying degrees of pleiotropy (r). Lighter colors
represent higher values of r and therefore, less pleiotropy. Taken together, A and B illustrate
how pleiotropic effects mediate the rate at which conditional phenotypes decay with changing
temporal expression frequency, which is consistent with patterns of decay for spatially conditional
phenotypes.

degrees of pleiotropy (0.5 < r ≤ 1) showed that the increase in decay rate associated with more
generations between expression was most pronounced in weakly pleiotropic traits and declined
with increasing pleiotropic effect (r → 0.5) (Figure 4B). We confirmed that these predictions were
consistent with our stochastic model by conducting simulations based on single traits across the r
and g parameter space and numerically estimating decay rates (Supplement section 2.1, Figure S2).
These findings echo those of traits with spatially conditional expression, suggesting comparable
effects of pleiotropic constraint.

Patterns and consequences of directional and stabilizing selection on evolving
pleiotropic architectures over periods of conditional inexpression
Our previous analyses focus on the evolutionary dynamics of conditional phenotypes given a stable
pleiotropic architecture (r distributions). However, pleiotropic associations can evolve as well. To
begin exploring the consequences of evolving r distributions, we first conducted simulations as
previously described but allowed r to mutate and evolve along with z. This showed that an evolving
pleiotropic architecture increases the decay in fitness associated with conditional phenotypes when
not expressed (Figure 5).

To gain further insight into these fitness dynamics, we then examined how pleiotropic archi-
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tectures evolve over periods of conditional inexpression. Evolutionary dynamics, in both trait
values (z) and relative expression values (r), are governed by the fitness landscape of alternative
phenotypes when conditional phenotypes are not expressed. Therefore, to predict how pleiotropic
associations r evolve, we examined how different alternative optima oA shape fitness landscape (in-
tegrated fitness functions for a given r) of alternative phenotypes (Figure 6A and B). This revealed
three scenarios that depend on the initial deviation of trait values from oA. First, if oA ≪ zinit,
the change in fitness associated with increasing r is always positive. Therefore, r is expected to
increase (Figure 6B). Likewise, if oA ≫ zinit, the change in fitness associated with increasing r is
always negative, and r is therefore expected to decrease (Figure 6B). Finally, if oA ≈ zinit, there
exists some equilibrium fitness where r is expected to stabilize (Figure 6B). To confirm these pre-
dictions, we then conducted simulations under scenarios where alternative optima were oA < zinit
and oA ≫ zinit. Consistent with predictions, this showed that when oA < zinit, pleiotropic asso-
ciations r tended to increase (Figure 6C). Likewise, when oA ≫ zinit, r tended to decrease (Fig-
ure 6C). Taken together, these findings illustrate the conditions in which pleiotropic associations
may be maintained by stabilizing selection or pushed towards greater decoupling by directional
selection.

Figure 5: Evolving pleiotropic architectures facilitate the decay in fitness associated with condi-
tional phenotypes when not expressed. Each line represents an independent simulation, which
shows the change in conditional phenotype fitness (y-axis) over generations of evolution (x-axis).
Darker lines depict simulations where pleiotropic architecture was allowed to evolve by setting
σr = 0.01, while the lighter lines depict simulations where σr = 0 (no evolution). The darker line
depicted with each simulation type represents the average dynamics across replicate simulations.
Overall, the dynamics show that when r distributions are allowed to evolve, the conditional fitness
decays more rapidly.
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Figure 6: Fitness landscapes associated with different alternative optima predicts directional selec-
tion on pleiotropic architecture. A) The integrated alternative-phenotype fitness as a function of
varying degrees of pleiotropy (r). Different lines represent different alternative phenotype optima
oA, spanning (0, 3), where lighter colored lines represent oA values that are more distant from the
initial z value. Note that functions are symmetric around oA = zinit, as what matters is the absolute
difference between oA and zinit. B) The marginal selection gradient dI

dr
as a function of (r), where

lines correspond to those in panel A. Taken together, A and B illustrate the expected direction of
change in r, which depends on the sign of dI

dr
. Since the sign of dI

dr
is determined by the value of

oA relative to zinit, there are three scenarios for change. First, if oA ≪ zinit, dI
dr

> 0 and therefore
r increases. Second, if oA ≈ zinit, r stabilizes where dI

dr
= 0. Finally, if oA ≫ zinit, dI

dr
< 0 and

therefore r decreases. C) Evolutionary simulations are consistent with the dynamics predicted in
panels A and B. Here, the y-axis shows the mean degree of pleiotropy (r), and the x-axis represents
generations. Darker lines depict simulations where 0 < oA < zinit, a value less than initial latent
value zinit = 1. Lighter lines depict simulations where oA ≫ zinit, a value much larger than initial
latent value zinit = 1. Taken together, these predictions and simulations suggest the dynamics of
pleiotropic decoupling during periods of conditional phenotype inexpression depend on the alter-
native phenotype’s fitness landscape.

Discussion
To improve our understanding of the interplay between pleiotropy and expression pattern in shap-
ing the evolutionary stability of conditional phenotypes, here we described a geometric model
that allows for explicit specification of pleiotropic architecture and population expression dynam-
ics. Consistent with previously articulated theory, we found that greater stability (maintenance of
higher fitness over time) of conditional phenotypes was facilitated by more pleiotropic architec-
tures (Figure 2). We then analytically derived closed-form expressions describing these dynamics
for individual traits, which showed that pleiotropic effects play equivalent roles in mediating the
decay in fitness of phenotypes that are spatially and temporally conditional (Figures 3, 4). These
findings suggest this model provides a sufficient quantitative description of previously articulated
theory. We then used this model to explore how the patterns and consequences of pleiotropic
evolution, which showed that evolving pleiotropic architectures facilitate the decay of conditional
phenotypes when not expressed (Figure 5). Using analytical and simulation-based analyses, we
then described how the the fitness landscape of alternative phenotypes determines the conditions
in which selection favors pleiotropic decoupling versus pleiotropic stability (Figure 6).
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Assumptions and limitations
Our choice of a geometric framework is motivated by the argument that plasticity and pleiotropy
represent organismal properties that should be evaluated from a whole-organism perspective, rather
than a single-trait or single-allele perspective often adopted by existing population genetic and
quantitative genetic frameworks (Lande 1980, Günter P. Wagner and J. Zhang 2011, Forsman
2015, Sonia E Sultan 2021). Philosophically, a geometric framework is the most consistent with
this perspective. However, the geometric framework is not without criticism or controversy, the
most prominent of which is the common association between geometric models and the assump-
tion of universal pleiotropy, where every gene or mutation affects every trait. This is potentially
problematic in typical geometric frameworks because it is not possible to statistically quantify the
full pleiotropic extent of a mutation and therefore, the assumption of universal pleiotropy is not
empirically falsifiable (Günter P. Wagner and J. Zhang 2012, J. Zhang 2023). However, in the
formulation we have described here, mutational effects are confined to single trait dimensions and
pleiotropic effects between phenotypes are explicitly modeled. While this approach alleviates con-
cerns regarding the validity of universal pleiotropy, it also removes pleiotropic associations that
occur within conditional and alternative phenotypes independent of their associations with each
other. This assumption is not realistic, but the objective of this study was to evaluate the potential
for pleiotropic associations with alternative phenotypes to maintain conditional phenotypes, rather
than to evaluate the role of within-phenotype pleiotropy. Therefore, this abstraction helps create
a clearer description of the subject of study, but inclusion of complex gene regulatory networks
may capture more realistic complexity (Günter P. Wagner and J. Zhang 2011, Sakamoto and Innan
2024).

Several assumptions and simplifications regarding how pleiotropic architectures are defined
and how they mutate in this model warrant additional comments as well. The first of which is
the use of relative expression values to define phenotypic positions within the multi-dimensional
trait space. This simplification aids in tractability but removes expression magnitude, which may
influence the expected distribution of mutational effect sizes for different genes and traits (Drum-
mond et al. 2005, A. W. Serohijos, Rimas, and Shakhnovich 2012, Dasmeh, Girard, and A. W. R.
Serohijos 2017). However, distributions of mutational effect sizes may also vary due to many
other genetic and environmental factors, the inclusion of which would significantly reduce model
tractability (Dittmar et al. 2016). Furthermore, there are several lines of evidence that make this
assumption defensible, at least given our current understanding of mutational effect size distribu-
tions. First, there are many empirical examples of variation in quantitative traits being explained by
the cumulative effect of small effect mutations that have been defined regardless of expression level
(Yang et al. 2010, Dittmar et al. 2016, Hua and Springer 2018, Boyle, Y. I. Li, and Pritchard 2017).
While the same can of course be said for fewer large-effect mutations, this suggests the assumed
common distribution of small mutational effects is satisfied in at least some contexts. Second, there
is an empirically well-defined inverse relationship between expression level and context specificity
(L. Zhang and W.-H. Li 2004, Yanai et al. 2005, Dean and Mank 2016, Kryuchkova-Mostacci and
Robinson-Rechavi 2016). In other words, the genes or traits that differentiate a conditional pheno-
type from alternative phenotypes are expected to be lowly expressed. Therefore, even if expression
level indeed influences mutational effect size in some contexts, this model would predominately
be dealing with classes of genes or traits that are lowly expressed and would therefore have similar
expected mutational effect size distributions.
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Current empirical understanding of how patterns of gene expression mutate and evolve offers
relatively less justification for the assumed mutational effect size distribution for relative expres-
sion vectors (r distributions), as experimental and inferential studies have come to a broad range
of conclusions (Gilad, Rifkin, and Pritchard 2008). However, frequently observed distributions
of small-effect regulatory mutations suggest this assumption is satisfied in at least some empirical
contexts (Gruber et al. 2012, Vernot et al. 2012, Smith, McManus, and Fraser 2013, Murphy et al.
2023). The inferences that stand to be the most affected by assumptions of regulatory mutational
effects are those regarding the evolution of pleiotropic decoupling during periods of conditional
phenotype inexpression. However, this model suggests such decoupling is explainable by the fit-
ness landscape associated with alternative phenotypes (Figure 6). Therefore, different assumptions
of regulatory mutations may impact the rate of these dynamics, but are unlikely to impact the in-
ference as a whole.

Finally, this model does not consider population dynamics and therefore excludes potential
effects of demography, density, mutation rate, and dispersal/population structure. These features
were excluded to more clearly discern pleiotropic effects that might have a lower relative impor-
tance in governing the evolution of conditional phenotypes than population dynamics. For exam-
ple, one would expect that in a small population, even if pleiotropy could expose variation that
would erode a conditional phenotype to purifying selection via its effects on alternative pheno-
types, the efficacy of selection in general may be overridden by high susceptibility to drift. This
would effectively diminish the contribution of pleiotropy towards maintaining a conditional phe-
notype. Therefore, population dynamics are undoubtedly important to consider and account for
when empirically studying the efficacy of pleiotropic constraint and the erosion of conditional
phenotypes. However, said dynamics predictably mediate the relative importance of fundamental
evolutionary processes and were therefore not the subject of this investigation.

Situation within existing theory and frameworks
The approach we have proposed here draws inspiration from two primary types of previously
described models. First, population genetic models have been previously used to describe how
conditional gene expression shapes the frequencies and fixation probabilities of genetic variants
within a population (Van Dyken and Michael J Wade 2010, Snell-Rood et al. 2010). Such models
have provided predictions of how the frequency at which a conditional phenotype is expressed
through time and space in a population shapes patterns of genetic variation and divergence. How-
ever, incorporation of pleiotropy in this type of model has been predominately limited to consid-
ering pleiotropic effects as outcomes of selection across a heterogeneous environment, rather than
an organismal property (Kawecki, Barton, and Fry 1997, Sarah P. Otto 2004). In contrast, the
model we have described here takes more of a ”bottom-up” perspective, where pleiotropic effects
are an emergent property of differential investment in shared traits. Second, quantitative genetic
models of mutation-selection balance, particularly for multivariate traits, have well described how
pleiotropic mutational effects constrain variation via purifying selection (Lande 1980, Turelli 1985,
G. P. Wagner 1989, X.-S. Zhang, Wang, and W. G. Hill 2002). These insights are especially per-
tinent to understanding the evolutionary maintenance of conditional phenotypes. However, said
models have predominately focused on pleiotropic effects that emerge during the same organismal
state (e.g., the expression of different cell types). Therefore, the model we have proposed here can
be viewed as a marriage of these two perspectives, which allows for consideration of conditional
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phenotypes that are not constitutively expressed.

Consistencies with and elaborations on existing theory
Predictions from analytical and simulation-based analyses provide further support and more ex-
plicit functional forms to several previous theoretical articulations. First, this model suggests the
effect of pleiotropy in issuing purifying selection to conditional traits is comparable for traits that
are conditionally expressed through space (Figure 3) and time (Figure 4). This is complementary
to prior studies that suggest conditional expression through space and time has comparable effects
in reducing the efficacy of purifying selection (Van Dyken and Michael J Wade 2010, Snell-Rood
et al. 2010). While intuitive, this finding helps clarify the conditions under which pleiotropy is ex-
pected to play a prominent versus minor role in maintaining conditional phenotypes. Specifically,
pleiotropic effects are most important when expression of a conditional phenotype is rare and be-
come less important with increasing spatial or temporal expression frequency. In other words, if a
conditional phenotype is frequently expressed, this model suggests pleiotropy plays a less essential
role in preventing its decay. It is important that this prediction is recapitulated because it repre-
sents the fundamental trade-off between specialization in the conditional context and deterioration
of the conditional phenotype. For example, traits that are highly pleiotropic may experience suffi-
cient purifying selection to prevent degradation but also experience constrained positive selection,
thus limiting specialization in the conditional environment or genetic background (and vice versa)
(Sarah P. Otto 2004, Guillaume and Sarah P Otto 2012, Keith and Mitchell-Olds 2019, Fraı̈sse,
Puixeu Sala, and Vicoso 2019, Chen and J. Zhang 2020, Dapper and Michael J. Wade 2020).

This model also predicts evolutionary dynamics associated with evolving pleiotropic architec-
tures that have less prior articulation. First, our simulations suggest that an evolving pleiotropic
architecture accelerates the decay of conditional phenotypes when not expressed (Figure 5). This is
biologically intuitive, as evolving trait and expression values would increase the rate that higher fit-
ness could be achieved by alternative phenotypes (which is the governing factor when conditional
phenotypes are not expressed). Exploring the pleiotropic changes that underlie these dynamics
yielded elaborations on existing theory as well. Previous theoretical considerations have described
how selection would favor reduced pleiotropy because it allows for greater specialization and con-
sequently, greater adaptive potential via positive selection (Hansen 2003, Guillaume and Sarah P
Otto 2012). However, said considerations focus on pleiotropically linked traits that are constitu-
tively expressed. The model we have described predicts that for conditionally expressed traits,
the magnitude and direction of selection on pleiotropic associations depends on how far the initial
trait values is from the alternative phenotype optimum. Specifically, when the initial trait value
is less than the alternative optimum, decreased investment in said trait by the alternative pheno-
type (increasing r) is favored (Figure 6). This is intuitive, as alternative phenotypes that decreases
investment in traits that are neutrally accruing deleterious variation due to weakened purifying se-
lection can achieve higher fitness (Figure 6A). It is important to note that this decreased investment
is afforded by lower optimal trait values relative to the initial trait value. However, if alternative op-
timal trait values are higher (much greater than the initial trait value), increased investment in said
traits by alternative phenotypes (decreasing r) is favored (Figure 6B). This represents the trade-off
between expressing a trait enough to reach a high optimal value and over-investing in traits that
have neutrally accrued deleterious variation due to their conditional expression pattern. When the
optimal trait value is sufficiently high, the need for high expression predominates, and trait expres-
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sion become more biased towards the alternative phenotype. Finally, when initial trait values are
near the optimum, there exists an equilibrium point in which pleiotropic associations are sustained
by purifying selection (Figure 6B).

To our knowledge, the previously described predictions regarding the evolutionary dynam-
ics and consequences of pleiotropic architectures are not well described or empirically evaluated.
Therefore, future empirical evaluation would be useful for discerning their relevance. Furthermore,
to more clearly illustrate the role of pleiotropy in the evolutionary maintenance of conditional phe-
notypes (the primary interest of this study), analyses were based on assumptions of high mutation
rates and relatively strong purifying selection. Therefore, future exploration focusing on different
evolutionary contexts (e.g., weaker purifying selection, fluctuating environments, etc.) may be use-
ful for exploring the potential for evolved reductions in pleiotropy during periods of inexpression
to fuel adaptation to a new environment, which has previously been hypothesized (Moczek et al.
2011). Finally, more recent theoretical advances have been made in understanding how discrete-
ness of conditional phenotypes evolves (Sakamoto and Innan 2024). Therefore, future exploration
of these dynamics in the model we have described here may be helpful for generalizing theoretical
frameworks.

Data and code availability
All code written for running the model, output analysis, and visualization, as well as files contain-
ing the simulated data, are available on GitHub at https://github.com/gabe-dubose/
geomcp/tree/main/evaluations. We also wrote a small Python package for running
model simulations and investigating analytically derived functions, which is available at https:
//github.com/gabe-dubose/geomcp. All code and simulated data is also archived via
Zenodo at https://doi.org/10.5281/zenodo.15608125
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1 Derivations
1.1 Generalized selection coefficient (S)
To derive a closed form expression of λc(fc, r), we first approximate total fitness W T as a single
Gaussian weight W T = exp[−Sx2], where S is the strength of selection. Recall that W T =
fCW

C + fAWA. Assuming |x| is small enough that σs r
2x2 ≪ 1 and σs (1 − r)2x2 ≪ 1, so that

all Taylor expansions below are controlled to O(x4), if x = z − zo, total fitness can be defined as

W T ≈ fC(1− σsr
2x2) + fA(1− σs(1− r)2x2) (1)

= fC + fA − σsx
2[fCr

2 + fA(1− r)2] (2)

Letting A = fC + fA and B = σs[fCr
2 + fA(1− r)2],

W T ≈ A−Bx2 = A(1− B

A
x2) (3)

Since our goal is to approximate W T = exp[−Sx2] =⇒ logW T = −Sx2,

logW T = log[A(1− B

A
x2)] = logA+ log(1− B

A
x2) (4)

For small ϵ, the Taylor expansion is log(1− ϵ) ≈ −ϵ. For our purposes, ϵ = B
A
x2. Therefore,

log(1− B

A
x2) ≈ −B

A
x2 (5)

Therefore
logW T ≈ logA− B

A
x2 (6)

Since the constant logA does not effect the curvature, we take logW T ≈ −Sx2, where S = B
A

.
Therefore, substituting back in our terms of A and B gives the general selection coefficient

S =
σs[fCr

2 + fA(1− r)2]

fC + fA
(7)



Our primary objective is to define the evolutionary stability of conditional phenotypes that is con-
ferred by pleiotropic links to a constitutively expressed alternative phenotype. Therefore, we can
simplify this expression by assuming fA = 1, expressing Equation 7 in terms of only fC as

S = σs
fC r2 + (1− r)2

1 + fC
(8)

1.2 Alternative phenotype fitness landscape integral functions
To begin exploring the consequences of an evolving pleiotropic architecture on the fitness as-
sociated with conditional phenotypes, we first conducted evolutionary simulations as previously
described. However, in addition to simulations where σr = 0 (non-evolving r), we also conducted
simulations where σr = 0.01. Otherwise, all parameters were set as previously described.

When conditional phenotypes are not expressed, evolutionary dynamics (in both z and r) are
governed by the fitness landscape of alternative phenotypes. Therefore, to begin understanding
how pleiotropic architectures are expected to evolve during periods of conditional phenotype in-
expression, we analyzed how different alternative optima shape the fitness landscapes across the z
and r parameter space. First, we assume a uniform trait density on a fixed window z ∈ [zmin, zmax].
For the purposes of our analyses, [zmin, zmax] = [−3, 3]. The fitness landscape for alternative phe-
notypes for a given r is

I(r) =

∫ zmax

zmin

WA(r, z) dz (9)

Differentiating Equation 9 for I(r) with respect to r yields the marginal selection gradient:

dI

dr
(r) =

√
π

2sa2
[
erf(umax)− erf(umin)

]
+

−zmax exp(−u2
max) + zmin exp(−u2

min)

a
, (10)

Since I(r) =
√
π

2sa

[
erf(umax)− erf(umin)

]
, the first term equals I(r)/a, so

dI

dr
(r) =

1

a

[
I(r) + zmin exp

(
−u2

min

)
− zmax exp

(
−u2

max

) ]
. (11)

for the boundary limit r → 1 exists, we have

I ′(1) = lim
r→1

dI

dr
(r) = 2σs o

A e−σs(oA)2 (z2min − z2max). (12)

thus under a symmetrical window, one obtains I ′(1) = 0.

2 Supporting results
2.1 Simulations and numerical analyses of single trait decay rates over pe-

riods of conditional inexpression
To confirm the relative importance of pleiotropic effect (r) and expression frequency (fC) in main-
taining the fitness of conditional phenotypes suggested by our deterministic model, we leveraged
the exponential nature of fitness decay to numerically estimate the decay rate of conditional phe-
notype fitness. Specifically, the fitness of a conditional phenotype (WC) exponentially decays with

2



respect to the Euclidean distance from the optimum, as describe in Equation (??). As mutations ac-
cumulate, the distance between PC and oC is expected to increase linearly on average. Therefore,
the expected decay in fitness associated with a conditional phenotype can be expressed as:

E[WC
t ] ≈ (WC

0 ) · exp−λCt (13)

where λC is the decay rate. To parallel the predictions from our deterministic model, we focused
on evaluating the fitness decay of single conditional traits. This allowed for tractable simulation
of the evolutionary trajectories across a range of r and fC values, which could then be used es-
timate the decay in conditional fitness λC by fitting Equation (13) to the resulting dynamics. To
reduce the error associated with stochastic mutation and probabilistic sampling, we ran each sim-
ulation 10 times and fit Equation (13) to the average dynamics. Furthermore, we used Gaussian
smoothing to generate a smoother contour surface of changes in λC across this parameter space.
We performed all simulations using Python (available as supplemental information), and we used
the SciPy Python library for all model fitting and Gaussian smoothing (Virtanen et al. 2020). As
seen in Figure 1, these simulations and numerical analyses showed consistent results with that of
our deterministic model.

Figure 1: Numerical estimates of the role of pleiotropic constraint in shaping the fitness decay
of conditional traits. A) A contour plot showing numerically estimated variation in decay rate
(λC) as a function of relative expression in the conditional phenotype (r) and expression frequency
(fC). Lighter colors indicate greater decay rates, which occur when expression frequency is lower
and relative expression is higher. B) Decay rate in conditional phenotype fitness as a function of
expression frequency for traits with varying degrees of pleiotropy (r), as estimated from the λC

surface depicted in A. Lighter colors represent higher values of r and therefore, less pleiotropy.

We used a similar approach to confirm the predictions of our deterministic model regarding
how pleiotropy mediates the effect of temporal variation in expression frequency on conditional
phenotype fitness decay. Here, we defined expression regimes that varied in the number of gener-
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ations between expression of the conditional phenotype (g):

fC(i; g) =

{
1, if i mod g = 0

0, otherwise
(14)

where i is the generation index and fC = 1 every g generations. We then simulated evolution-
ary dynamics across the r and g parameter space and estimated conditional fitness decay (λC) as
previously described. As seen in Figure 2, these simulations and numerical analyses were again
consistent with our deterministic model.

Figure 2: Numerical estimates of the role of pleiotropic constraint in shaping the fitness decay of
traits that are temporally conditional. A) A contour plot showing variation in decay rate (λC) as a
function of relative expression in the conditional phenotype (r) and generations between expression
(g). Lighter colors indicate greater decay rates, which occur when relative expression is higher
and there are more generations between expression. B) Decay rate as a function of generations
between expression for traits with varying degrees of pleiotropy (r), as estimated from the λC

surface depicted in A. Lighter colors represent higher values of r and therefore, less pleiotropy.
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