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Abstract 
1. There exists a long-standing disconnect between statistical and mechanistic approaches to the 

development of causal understanding. Statistical approaches, which have dominated the 
literature, have focused on the need to obtain perfectly unbiased estimates of causal effects 
often using either experimental, quasi-experimental, or other methods. Mechanistic 
approaches have instead focused on investigating how systems work by elucidating the 
structures and processes whereby variations in one system property can propagate to other 
system properties. Explicit references to “causal effects” have tended to require adherence to 
statistical methods and standards, inadvertently downplaying the suitability of mechanistic 
knowledge for that purpose. 

2. It has been recently demonstrated that both mechanistic and statistical approaches can 
contribute to the long-term goal of developing causal knowledge and understanding. 
Proponents of statistical causal inference have seldom recommended that mechanistic 
evidence be relied upon to support causal interpretations. This paper provides a clear and 
thorough example where a causal interpretation can be supported based on mechanistic 
knowledge. 

3. Arguing for a causal interpretation based on knowledge of mechanisms has typically been an 
informal process and one that has thus far infrequently led to explicit declarations of causal 
knowledge by scientists. To overcome this problem, we illustrate a recently-described 
procedure referred to as “causal knowledge analysis” to summarize explicit support for 
causal interpretations. 

4. In this paper, we first clarify the basis of the longstanding disagreement by describing the 
crux of the problem as viewed from a statistical perspective and by describing how it can be 
overcome when there is sufficient mechanistic knowledge. We then offer a proof-of-concept 
example based on robust documentation and description of the mechanisms whereby plants 
causally regulate the responses of coastal marsh elevation to changes in sea level. 

5. Synthesis – The evidential requirements for declaring a relationship to be causal have been 
obscured until very recently, leading to a long neglect of this issue by scientists. Meanwhile, 
subject matter experts have accumulated a vast body of undeclared causal knowledge that we 
now need to recognize in order to position scientists as essential players in defending causal 
interpretations.  
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1 | INTRODUCTION 
Ecologists commonly present causal interpretations based on the results obtained from 
nonexperimental investigations, though statisticians have long cautioned against this practice. 
Typically, investigators use words such as ‘effects’, ‘responses’, ‘drivers’, or ‘influences’, while 
avoiding the use of the terms ‘cause’ or ‘causal’. This practice is often reflected in the titles of 
articles through statements such as, ‘Grazing regulates temperate grassland stability by 
influencing below-ground bud density’ and ‘Light competition affects how tree growth and 
survival respond to climate’. It is generally understood that interpretations in such cases are 
supported by accumulated knowledge of conveying mechanisms, though they may also be 
supported by other evidence. Typically, subject matter experts do not expressly address the 
concerns of statisticians when making such statements, and objections to stated inferences only 
arise when other experts disagree based on their own assessments. 

Currently ecologists are being exposed to literature advertising data analysis methods for 
“causal inference” (Ferraro et al. 2019; Arif & MacNeil 2022; Dee et al. 2023; Siegel & Dee 
2025). While this phrase can be imagined to be one with broad meaning encompassing a wide 
variety of situations and scientific ambitions, there actually exists a specialized literature 
associated with this phrase that imbues it with a very specific and circumscribed meaning, as 
well as a limited range of application. Ferraro et al. (2019) provide the following definition: 
“Causal inference … exploits experimental or quasi-experimental variation in one or more 
variables to isolate causal relationships and judges success by the credibility of untestable 
assumptions.” They go on to differentiate causal inference methods from traditional methods of 
data analysis, which they refer to as “predictive inference” methods. Explaining further, these 
authors explain how mechanistic models that judge success by model-data consistency represent 
predictive inference and that such models are not considered to be causal and need not include 
any variables with causal effects.  

In order to better understand the assumptions behind the representations of causal inference 
methods provided to ecologists, it is important to consider the source material, which many trace 
back to Rubin (1974) and Holland & Rubin (1987). Here we confine our presentation to the 
information most relevant to the focus of this paper. General treatments of the subject can be 
found in Imbens & Rubin (2015) and Morgan & Winship (2015). 

Holland (1986) begins his discussion of Statistics and Causal Inference by saying, “The 
reaction of many statisticians when confronted with the possibility that their profession might 
contribute to a discussion of causation is to immediately deny that there is any such possibility.” 
Holland goes on to make it clear that the above sentiment most generally applies to non-
experimental settings. Scientists and the general public have long been made aware of the dim 
view statisticians hold for the attribution of causal interpretations based on non-experimental 
information. A consequence of this reservation has been a tendency throughout the modern era 
of science for ecologists and many others to avoid using the word “causal” when summarizing 
their interpretations, regardless of their knowledge of underlying mechanisms. We feel that the 
reasoning behind such caution has not been well explained, thereby impeding progress in this 
area. 

The practical application of statistical causal inference is most commonly based on the 
Potential Outcomes statistical model (Rubin 1974; Holland 1986). For each study unit, there are 
a pair of potential responses that represent the expected values for some variable Y at a later time 
if it turns out to be exposed or not exposed (i.e., in the control) to the active treatment. At the 
population level, the average causal effect measures the difference between groups of units that 
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are on average comparable but exposed to either one value or another of some treatment. There 
exists an extensive literature on all this. What is incompletely discussed are certain underlying 
assumptions as well as the important matter of evidential standards – the criteria by which 
methods are judged. We discuss evidential standards in the next section, but since our focus in 
this paper is on the use of mechanistic evidence, we direct attention first to what Holland & 
Rubin (1987) admit about statistical causal inference. Their specific and revealing statement is,  

Philosophical discussions of causality often emphasize the meaning of causation. 
Scientists are usually concerned with understanding causal mechanisms. Purely statistical 
discussions of causality are substantially more limited in scope, because the unique 
contribution of statistics is to measuring causal effects and not to the understanding of 
causal mechanisms. 

We do not find this disclosure commonly presented in the literature, which may potentially 
contribute to the long-standing controversy over the role of statistical causal inference in causal 
investigations (e.g., Schwartz & Prins 2025). That said, modern treatments of statistical causal 
inference describe the use of “domain knowledge” as a basis for statistical conditioning in 
calculating causal effects. Knowledge of the structures and processes (aka the machinery) that 
generate causal relationships is not incorporated into the calculation of statistical causal effects 
however.  

In what follows, we first seek to clarify the challenge facing causal interpretations of 
statistical associations. That presentation is intended to clarify both the rationale for the statistical 
causal inference paradigm and for alternative approaches. We then present an alternative 
paradigm with an expanded ambition – that of building causal knowledge and allowing for 
multiple forms of evidence to contribute to that ambition, including mechanistic knowledge. Our 
particular focus in this paper is on demonstrating convincingly that causal interpretations might 
at times be justified based on mechanistic knowledge. This possibility serves to recognize the 
essential role that scientists and their expert knowledge play in causal investigations. 

 
2 | THE CHALLENGE FACING A CAUSAL INTERPRETATION OF STATISTICAL 
ASSOCIATIONS 
Wu et al. (2016) and Schwartz & Prins (2025) refer to statistical causal inference as a paradigm 
because of its distinctive world view. Grace (2024) has recently developed a representation of 
the challenge facing the causal interpretation of statistical associations in order to demystify that 
world view and to provide a basis for scientists to understand why it is so restrictive and why 
Ferraro et al. (2019) describe it as a methodology that, “judges success by the credibility of 
untestable assumptions”. Fig. 1 seeks to explain the most common concern related to statistical 
causal inference in the upper frame. A corresponding listing of evidential standards that might 
be used to assess evidence when drawing conclusions is provided in the lower portion of the 
figure. 

Fig. 1 represents the challenge facing causal statistics. Fig. 1A reflects the situation where 
there are no common-cause confounders (defined as additional variables that influence both X 
and Y). In such cases, commonly used statistical estimation methods can recover the true causal 
effect estimate (β). Fig. 1B reflects the case where there are confounding variables (Co) that are 
observed and measured, allowing for their influences to be controlled for in analyses (for a 
discussion of control strategies, see Grace & Irvine 2020 page 8, section 3, paragraph on 
“conditioning”). In this case, it is still possible to obtain an unbiased estimate of the true causal 
effect using standard methods. Fig. 2C shows how unmeasured confounders (denoted as Cu)  
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Figure 1. Representation of the challenge of estimating from some dataset the causal effect of 
some variable X on another variable Y (modified from Grace 2024). (a) Causal diagram for the 
case where there are no confounders and no errors in measuring X. (b) Causal diagram for the 
case where observed confounders Co have been measured and are included in the model and 
thereby controlled for. Minimal measurement error in X is an additional assumption. (c) Causal 
diagram illustrating the case where there are unobserved confounders Cu omitted from the model. 
In the lower portion of the figure, three contrasting evidential standards are defined. The so-
called Causal Inference Paradigm is based on the perfection-seeking standard as a limited 
approach to approximating results from randomized experiments. 
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introduce a component of bias into the observed association (β*) by creating a “backdoor” X ← 
Cu → Y between the variables. Causal statistics is preoccupied with the task of avoiding or 
eliminating sources of parameter bias, with the benchmark method of experiments with random 
treatment assignment as the inspiration for statistical causal inference (Holland 1986). It is 
important to note that bias can emerge from other sources aside from omitted confounders, even 
in randomized experiments, as described in detail in Kimmel et al. (2021).  

As Grace (2024) has pointed out, there has been a tremendous amount of confusion resulting 
from the lack of sufficient terminology for discussing the enterprise of building causal 
knowledge. Philosophers have long warned about conceptual confusion associated with 
discussions of causation resulting from the “one word with many meanings” problem 
(Cartwright 2004). A practical approach to this problem is to create terminology that can 
represent the important distinctions. The glossary in Grace (2024 Box 1) represents a first 
attempt at that challenge. Here we provide a brief set of terms and definitions related to the 
focused intent of this paper (Box 1). 

In the lower frame of Fig. 1, we describe a variety of evidential standards, which reflect 
underlying and often undisclosed criteria used for deciding how conclusions will be reached. In 
legal proceedings, the standards of evidence are formally declared and meant to match the 
situation. Statisticians have historically relied on what we call the perfection standard, which 
requires a causal method guaranteed to yield a bias-free (perfect) causal effect estimate when 
successfully implemented. More recently “causal inference” (perhaps more accurately referred to 
as statistical causal inference) still acknowledges the perfection standard but attempts to relax the 
standard by adopting or approximating a quasi-experimental approach. Such an approach 
attempts to approximate random assignment to treatments and counterfactual (all-else-equal) 
comparisons using data purification and adjustment techniques. Accessible treatments of this 
approach can be found in Reichardt (2019) and Siegel and Dee (2025). Strictly speaking, both 
experimental and nonexperimental approaches by themselves cannot guarantee perfect estimates 
due to remaining untestable assumptions. As a consequence, Grace (2024) suggests referring to 
such methods as adopting a perfection-seeking standard. It should be noted that not all 
methodologists endorse the same techniques or adopt the same standards for approximating 
estimates of parameters (even with deviations from one study to the next).  

From a scientific viewpoint, there exists the possibility of adopting an alternative to the 
perfection and perfection-seeking standards, which is to present evidence that one has achieved a 
useful approximation (Fig. 1, the useful approximation standard). Essentially, a useful 
approximation is an estimate that is predominantly causal. In fact, this standard is very widely 
used by scientists, though without formal declaration. Convincing others that a useful 
approximation has been achieved is of course very dependent on the knowledge base of the 
individuals to be convinced and its explication. The rise in popularity of statistical causal 
inference is now presenting a new challenge for scientists – how to explain the evidence 
supporting a determination of useful approximation to a statistical methodologist not in 
possession of the non-statistical direct knowledge possessed by the relevant subject matter 
experts. 

The challenge for this approach is that the exact magnitude of bias created by unmeasured 
confounders in a statistical analysis is unknowable, thus any support for a useful approximation 
standard will come from other, non-statistical information. In the natural sciences, this 
alternative knowledge will often be an understanding of the underlying mechanisms connecting 
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X to Y, i.e., those structures and processes that constitute the actual machinery conveying effects. 
However, consideration of mechanistic evidence in causal analysis implies the need for an 
alternative to the Causal Inference Paradigm that recognizes existing causal knowledge and 
considers both its properties and how it is accumulated across studies. 
 
3 | A PARADIGM FOR BUILDING CAUSAL KNOWLEDGE 
An alternative paradigm has been recently described, referred to here as the Multi-Evidence 
Causal Investigation Paradigm (aka the Multi-Evidence Paradigm), which starts from a different 
set of premises reflective of a mechanistic view of the world (Grace 2024). These premises 
include: (1) that causal influences result from underlying mechanistic processes, (2) causal 
knowledge can be described in terms of both direct and indirect knowledge of those mechanisms 
and the manifestations they produce, and (3) a driving goal in science is the aspiration to 
understand those mechanisms. One additional premise articulated as a core presumption of the 
Multi-Evidence Paradigm is that there is no single approach to developing causal knowledge that 
will apply to all situations and circumstances. Most scientific investigations will benefit from 
considering all forms of evidence relevant to their situation. 

Grace (2024) describes the philosophical underpinnings of the Multi-Evidence Paradigm. It 
is proposed as a world view consistent with scientific investigation that recognizes the existence 
of a great variety of individual situations, which in turn must avoid adopting a narrow view of 
evidence. Fig. 2 is meant to be inclusive of statistical evidence (via association investigations), 
mechanistic evidence (the focus of this paper), but also other sources of evidence, such as from 
the study of temporal dynamics via empirical dynamic modeling and convergent cross mapping 
(Sugihara et al. 2012; Deyle et al. 2016; Runge et al. 2019). Cross-linking arrows in Fig. 2 
represent the potential within this paradigm for combining evidence types, as demonstrated by 
Benedetti-Cecchi et al. (2018).  

The Multi-Evidence Paradigm leads to a recognition of several neglected concepts, such as 
causal inquiry (seeking to establish a causal understanding), causal investigation (the pursuit of 
causal observations and causal knowledge towards the goal of causal understanding), causal 
mechanisms (collections of spatiotemporally contiguous structures and processes in the real 
world along which a signal that is propagated, aka mechanistic machinery), and causal 
knowledge (accumulated evidence of manifestations, properties of the underlying mechanistic 
machinery, and external consistency/transportability). The Multi-Evidence Paradigm additionally 
supports reliance on combinations of methods, including (1) the use of experiments of different 
types – field, greenhouse, lab, (2) statistical causal inference techniques, (3) mechanistic 
evidence grounded in direct observations and existing knowledge from physics, biology, and 
chemistry, and (4) other approaches as complementary sources of information for supporting 
causal interpretation, consistent with the National Academies Consensus Report on Causal 
Methods (NASEM 2022). 

Since the Multi-Evidence Paradigm adopts the perspective that causal knowledge is built 
across multiple studies, there is an inherent necessity for accumulating evidence representing 
causal knowledge. It has been necessary to develop a formal approach to documenting this 
characterization of evidence to counter the skeptical view from adherents to causal statistics. 
Causal Knowledge Analysis involves the evaluation of existing evidence related to potential 
underlying mechanisms for some relationship or question of interest. While a conceptually 
appealing idea, the important question is whether it can support causal interpretations in real-
world situations. 
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Figure 2. Representation of the Multi-Evidence Causal Investigation Paradigm (modified from 
Grace 2024). Two of the most important features of this paradigm that contrast it with statistical 
approaches to causal inference are: (1) its expanded focus that includes the long-term goal of 
building causal knowledge, and (2) its recognition that there are multiple forms of evidence that 
contribute to building causal knowledge, including a key role for mechanistic investigations. 
 
4 | CAUSAL KNOWLEDGE ANALYSIS 

A causal knowledge analysis can be defined as an evaluation of existing evidence relevant to 
the question of whether some relationship or model qualifies for causal interpretations. 
Following Grace (2024), “Causal knowledge can be established by (1) evidence of 
manifestations indicative of an underlying mechanism, (2) characterization of the underlying 
mechanistic elements, and (3) demonstrated external consistency or transportability with other 
samples and/or studies.” The suggestion that mechanistic knowledge be a required component of 
causal knowledge comes from numerous science philosophers (Campaner 2011; Clarke et al. 
2014; Williamson 2021, but also from a recent National Academies Consensus Report on Causal 
Methods – NASEM 2022). Because of the specific nature of mechanisms, this form of evidence 
will usually be judged by subject matter experts rather than against some universal set of criteria. 
It is not expected in the great majority of cases that the evidence provides for complete 
characterizations. Rather, the standard to be applied for a causal investigation is that progress is 
being made in evaluating and adding to current knowledge, a commonly applied standard in 
scientific investigations. The example developed in this paper is one where there has been a 
sustained effort to make incremental progress towards causal understanding over many years (as 
discussed below under “Brief history of causal investigation”). 
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4.1 | The characteristics of causal mechanisms 
Characterizations of causal mechanisms focus on the evidence that convinces us that two or more 
variables are connected through some mechanism or means such that variations in one variable 
can propagate to subsequent variations in the other. Mechanisms can be seen to be made up of 
mechanistic elements representing specific structures and processes that work in combination. A 
variety of types of evidence can be used to characterize causal mechanisms. For the example that 
follows, these include direct observations, responses to perturbations, certain types of theoretical 
analyses, and established knowledge from physics, chemistry, and biology. In this paper, we will 
distinguish the core machinery that establishes causal connections from the inputs that determine 
what is produced by that machinery. While the core machinery determines the properties of the 
underlying mechanism, the inputs play a critical role in specific manifestations. For our featured 
example, the core machinery tells us how coastal marshes may respond to future changes in sea 
level, but any projections will depend on the specific inputs of materials for a given situation, 
along with any site-specific conditional influences. 
 
4.2 | The causal knowledge diagram 
To both help define a problem and to facilitate the evaluation of existing evidence, we describe 
the use of a causal knowledge diagram. Such a diagram represents a way of referencing existing 
or hypothesized knowledge of structures and processes capable of conveying cause-to-effect 
influences and is conceptually distinct from causal diagrams that describe statistical relationships 
(described in Grace & Irvine 2020). The causal knowledge diagram is a device to aid in the 
evaluation of existing evidence for a proposed compound mechanism. One purpose of the 
diagram is to support the documentation of evidence in a way that corresponds with the proposed 
underlying mechanism. A second purpose is to strive to develop the empirical expectations one 
would observe based on a proposed underlying mechanism. It is expected that subsequent studies 
will critique, evaluate, and bring to bear additional evidence so as to refine and deepen our 
mechanistic understanding. Thus, causal knowledge diagrams and the associated documentation 
of evidence are expected to evolve over time. They do not have to be complete or perfect to be 
causal representations. The general evidential standard for causal investigations is preponderance 
of evidence. As shown in the next section, a number of questions are considered in order to 
characterize the sufficiency and reliability of mechanisms.  
 
4.3 | Interrogation of the evidence 
Grace (2024) suggests a set of questions to assess the existing knowledge relevant to a 
relationship of interest (Table 1). This is not a definite list for all situations but is meant to be 
adapted for particular problems and situations across scientific topics. The first question in Table 
1 directs our attention to think clearly about the hypothesized mechanistic driver(s) and 
response(s) of main interest. Since a causal relationship is typically thought of in terms of how 
variations in some Y could come about due to variations in some X, it is important that we pay 
attention to how variations in a proposed cause of interest can come about. The use of thought 
experiments aids in considerations of what can actually qualify as a cause. Constructing a causal 
knowledge diagram (as shown below) should make clear whether there is a describable 
mechanism connecting a proposed cause to some response. Similar thinking is needed to make 
clear what concepts can be studied as responses under a mechanistic conceptualization. For both 
causes and responses, concepts that are multi-faceted and do not behave like a single consistent 
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property (i.e., complex causes and responses) will require special consideration (see discussion 
of complex causes in Grace 2024). 
 
Table 1. Suggested questions for assessing evidence relevant to a relationship of interest 

1. What is the nature of the cause(s) of interest and the response(s) of interest? 
2. Are there observed manifestations that suggest the existence of a mechanism 

connecting causes to responses? 
3. Are there known or plausible mechanisms connecting the variables of interest?  
4. Are there plausible competing explanations? 
5. How sufficient is our knowledge of mechanisms and conditional influences that may 

affect expressions of the mechanisms? 
6. How reliable are the mechanisms and conditional influences based on available 

knowledge? 
7. How exact/repeatable are the processes and associated parameters? 
8. How transportable are the mechanisms to other cases or situations? 

 
The second question in Table 1 asks us to consider broadly the manifestations that might 

suggest a causal interpretation. These can be: (1) data relationships, such as conditional 
associations, (2) temporal dynamics, such as seen with predator-prey cycles, or (3) direct 
observations of structures and processes. The third question, which relates to whether there are 
known or plausible mechanisms will often benefit from creation of a causal knowledge diagram 
(demonstrated below), followed by documentation supporting and characterizing the described 
mechanism. The objective here is to present to others the specialized subject matter knowledge 
that leads one to suggest a causal mechanistic connection. A critically important fourth question 
asks investigators to consider whether there are alternative explanations for the manifestations 
observed. Concerns about spurious relationships are the most obvious thing to consider. Beyond 
a relationship being explained entirely by other processes than the ones proposed, it is normal for 
proposed mechanisms to be incomplete or open to improvement. 

Finally, for the last four questions in Table 1, attention is given to the expected properties of 
the various mechanistic elements and connecting process based on their actual attributes. These 
questions focus on key aspects of causal knowledge such as the sufficiency of the chain, the 
expected reliability of expression, the exactness of processes (is there a universally-held process 
or parameter), and the transportability of those underlying structures and processes. 
Characterizations of these properties represent a harvest of important. often neglected knowledge 
that can aid in understanding observed dynamics and in forecasting (Lewis et al. 2023). 
 
5 | THE EXAMPLE: CAUSAL MECHANISMS WHEREBY PLANTS REGULATE 
MARSH ELEVATION 

Saintilan et al. (2022) compiled data from coastal marsh elevation monitoring stations 
located in North America, Northern Europe, Australia, and South Africa to determine whether 
the monitored coastal marshes around the world have been able to build sufficient elevation so as 
to keep up with increasing sea-level rise rates (Fig. 3). The underlying premise is that as water 
levels increase, the plants growing in coastal marshes trap mineral sediments that settle out on 
the surface from the water column and produce abundant roots and rhizomes beneath the surface, 
thereby causing the soil elevation to build at a rate that keeps pace with rising seas. There is 
concern that in many situations the ability of marshes to build elevation may lag behind the 
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increasing rates of sea-level rise, resulting in marsh conversion to open water. Interest in coastal 
marsh persistence has stimulated the development of monitoring stations, as depicted in Fig. 4. 
Surface elevation change monitoring involves a number of measurements that provide mm-level 
precision estimates of total elevation, surface accretion of new materials, and subsurface 
elevation changes resulting from plant contributions and sediment compression or expansion. 

Monitoring sites were established by installation of surface elevation tables (Cahoon 2024), 
which are composed of a multi-segment vertical rod pounded into the substrate to the point of 
refusal (Fig. 4, left side of drawing). The base of the benchmark rod serves as a fixed reference 
point in vertical space against which marsh elevation change is measured. A portable arm is 
attached perpendicular to the benchmark rod at each visitation, and replicate pins are lowered to 
the marsh surface to record change in surface elevation. 
 

 
Figure 3. (a) Correlation obtained by Saintilan et al. (2022, Science, 377: 523-527, reconstructed) 
based on monitoring stations located at 97 sites around the world. The authors interpret this 
finding as support for the claim that marsh sediment accretion increases in response to rising sea 
levels, though where sea level is increasing faster than marsh elevation, an elevation deficit 
develops that will, if continued, lead to marsh drowning and eventual conversion to open water. 
Beta represents the slope of the relationship in mm of elevation deficit created per mm of relative 
sea-level rise per year for the sample of sites. (b) Some characteristics of the data. 
 

In addition to the elevation table and at the time of installation, replicate layers of visually 
distinctive material are deposited on the marsh surface adjacent to the vertical benchmark. These 
become the “marker horizons” for the initial surface of the marsh, and at each measurement time, 
replicate cores are extracted to determine the depth of material that has been deposited above the 
original surface over time (i.e., accretion). In addition to measuring the changing elevation of the 
marsh surface and the depth of accumulated surface accretion, a measure of shallow subsidence 
or expansion of the sediment column can be obtained as the difference between total elevation 
change and depth of surface accretion. Benchmarks are georeferenced against nearby tide 
gauges, which are in turn georeferenced to each other via satellite so as to provide a common 
reference elevation for the measurements taken at a site. 
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5.1 | Anatomy of a causal investigation  
That coastal salt marsh accretion tracks rising sea level has been recognized since the mid-19th 
century, when Dawson (1855) and Mudge (1858) studied vertical sections of salt marsh that 
preserved thick peat sequences (3-6 m) composed of salt marsh vegetation. The proposition that 
salt marsh peats increased in thickness at pace with rising sea level was further advanced by 
Knights (1934) through stratigraphic analysis of peats in Long Island Sound (New York, USA). 
Since the mid-20th century, advances in capabilities for sediment sampling, geochronology, 
elevational surveying, and analysis of paleoenvironmental and geochemical proxies have 
facilitated high-resolution studies that document varying rates of marsh accretion and 
aggradation during the last few thousand years. Using plant macrofossils and foraminifers from 
well-dated sediment cores (see Shaw & Ceman, 1999; Kemp et al., 2014; Gerlach et al., 2017; 
Selby et al., 2022), long-term changes in relative sea level have been constructed for coastal sites 
around the world, extending the period of sea-level record to times well before instrumental or 
historical records are available. Thus, we have long known there is a causal relationship between 
increases in sea level and marsh vertical accretion based on direct observation and interpretation 
of physical evidence. At the most basic level of examination, the simple fact that sediment cores 
extracted from coastal marshes are composed of marsh peat permeated with mineral sediment (as 
shown in Fig. 4) provides indirect evidence that plants make a causal contribution to changes in 
marsh elevation over time. A detailed presentation of the accumulated evidence related to causal 
mechanisms whereby plants influence marsh elevation is presented in Cahoon et al. (2021). 
 

 
Figure 4. Pictorial representation of a coastal marsh highlighting key variables of importance and 
the measurements taken at monitoring sites (from Saintilan et al. 2022, with permission from the 
American Association for the Advancement of Science, with slight modification). Inset photos – 
Illustration of an examination of coastal marsh history by coring (right upper photo, from 
https://www.usgs.gov/media/images/savannah-river-december-2012) and conspicuous 
demonstration of buried roots and rhizomes contributing to organic matter accumulation in 
sediment cores (right lower photo, from https://www.usgs.gov/media/images/peat-auger-core-
collected-back-barrier-marsh-Assateague). 
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Subsequent efforts have focused on developing a deeper understanding of mechanistic 

processes (e.g., Nienhuis et al. 2023) but also on quantifying the contributing processes and rates 
of change. While there has been an awareness by geologists that ocean levels were rising since 
the beginning of the 20th century (Marmer 1951), interest increased later in the 20th century as 
greater documentation of coastal wetland loss to open water took place, particularly in certain 
geographical areas where vast areas of wetland were disappearing (Craig et al. 1979). The 
societal and ecological consequences of this loss motivated efforts to develop more precise 
monitoring methods such as the Surface Elevation Table – Marker Horizon (SET-MH) method 
depicted in Fig. 4 (Cahoon et al. 1995). Refinements and widespread adoption of this approach 
have helped to create a global monitoring network now used to address questions on a larger 
scale. 

Nearly 30 years ago, scientists began to create mechanistic numerical models as a way of 
consolidating information and discerning knowledge gaps, thereby contributing to what has 
come to be a focused causal investigation by a community of scientists. We begin our description 
of existing causal knowledge by describing what has been learned from this persistent effort in 
mechanistic numerical modeling and associated empirical studies. 

 
5.2 | Evidential Standards for Causal Determination 
The term causal determination refers to the evaluation of evidence as to whether there is a causal 
relationship between some variables of interest. The National Academies Consensus Report on 
Causal Methods (NASEM 2022) recognizes five qualitative interpretations of evidence. It should 
be noted that this approach was specifically created to address epidemiological analyses of 
exposure-response relationships. However, the NASEM report considered not only health effects 
but also effects on ecosystems and thus reflects a broad realm of application for their approach. 
The five determination categories, which were found to be without objection in the NASEM 
report are, (1) “causal relationship”, (2) “likely to be a causal relationship”, suggestive of, but not 
sufficient to infer, a causal relationship”, “inadequate to infer the presents or absence of a causal 
relationship”, and “not likely a causal relationship”. Determinations usually involve reviews of 
all available and relevant information and research results by panels of subject matter and 
technical experts. 

Causal knowledge analysis focuses more on describing the evidence to support mechanistic 
causal understanding than it does to simply declare whether a relationship is causal or not with 
different qualitative levels of confidence. Within a broader view of science as envisioned by the 
Multi-Evidence Paradigm, we imagine that criteria for causal determination will be linked to a 
decision framework rather than a universal set of rules. In the current paper, it is our general 
assessment that the relationship in Fig. 3 meets the minimum requirements for being causal and 
our focus is on causal investigation rather than simply determination. 
 
5.3 | Mechanistic numerical modeling efforts as a crucible for building causal knowledge 
Numerical modeling efforts are used across many disciplines and can be particularly useful for 
evaluating existing causal knowledge for several reasons. One is because such studies often lead 
over time to some degree of consensus among experts on the dominant processes generating 
observable relationships of interest. The more mechanistic the thinking about how to model 
natural processes, the greater the potential for convincing causal inferences. As with causal 
knowledge diagrams, such models do not usually attempt to include every feature operating in 
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the real world, but instead, aspire to capture the most widespread and dominant controlling 
processes. They are typically accompanied by empirical evaluations that judge their abilities to 
replicate field observations (e.g., Coleman et al. 2022). Especially useful is that the development 
of numerical models promotes efforts to obtain measurements that can quantitatively 
characterize the functional forms of mechanistic elements, taking us closer to the underlying 
causal processes. 

Statistical and probabilistic modeling efforts, in contrast, frequently fail to represent the 
characteristics of the underlying machinery and provide only superficial approximations, though 
they may still represent summary properties of underlying mechanisms. These approaches were 
prominent in the literature during the early days of marsh sea-level rise vulnerability modeling 
(e.g., Browder et al. 1985; French 1993). Thus, not all models are equally mechanistic, and not 
all provide the same degree of support for causal interpretations. The development of numerical 
models that attempt to emulate how coastal marshes might respond to rising seas have been 
stimulated by concerns about the need to forecast the long-term consequences of sea-level rise. 
During the investigation of the relationship between sea-level rise and marsh elevation that has 
occurred during the past several decades, mechanistic numerical models have been created at 
several points in time, each building on the previous ones by incorporating new knowledge (e.g., 
Callaway et al. 1996; Morris et al. 2002; Swanson et al. 2014; Buffington et al. 2021). These 
models have not been exclusively interested in sea-level rise but have also sought to more fully 
understand how marsh landscapes evolve, how they respond to a variety of environmental 
changes, and how the various processes interact.  

Several studies have been able to provide calibration and validation results based on field 
data through the use of radioactive isotopes in the soil (e.g., 137Cs peaks from the 1986 
Chernobyl accident, and 1963 nuclear weapons testing, as well as 210Pb decay) and SET-MH 
networks (Brand et al. 2022). There are ongoing efforts to refine models based on comparisons 
between the paleo and contemporary records as well (Saintilan et al. 2022). There have also been 
efforts to provide site-specific models based on the incorporation of local sediment supplies and 
custom parameters for local plant species assemblages (Buffington et al. 2021). Altogether, these 
models and numerous empirical investigations provide us with a rich body of knowledge to 
consider in a causal knowledge analysis of the relationship between sea-level rise and coastal 
marsh resilience. 

Appendix S1 provides a summary of the model developed by Buffington et al. (2021) for the 
reader with detailed interest. The structure of that model is described by a set of mechanistic 
equations representing the following groups of processes: (A) Annual changes in marsh elevation 
relative to sea level are caused by contributions from mineral and organic materials, and losses 
from offsetting effects of decomposition and sea-level rise. (B) Mineral inputs result from 
sediment deposition flux, which in turn is the result of the physical processes of settling and 
erosion caused by tidal current shear stress. Mechanistic characterizations for these processes are 
presented in equations 1-5 in Appendix S1. (C) The non-linear dependence of below-ground 
biomass contributions on water depth is known to be modal for marsh plant species. The exact 
form of the response function reflects a complex but constrained set of biological processes, and 
as a result, can be modeled either as a general-form mechanism or as a more refined species-
specific relationship. (D) Decomposition of organic contributions from below-ground production 
is an important, though fairly regular process. Decomposition rates decline over time as labile 
materials are consumed leaving behind increasingly refractory materials. These fractions can 
vary over time in their bulk densities, contributing to a general soil-depth-dependency of 
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compaction. Buffington et al. (2021) additionally model how successional changes in species 
composition can vary the influences of organic matter and mineral sediment trapping on the 
dynamics of marsh elevation. 

 
5.4 | A mechanistic causal explanation of the correlation between rates of relative sea-level 
rise and elevation deficits 
The details of the causal knowledge analysis for the relationship in Fig. 3a are presented in 
Appendix S1. Here we present a brief summary of that analysis and select findings.  
 
5.4.1 | The nature of the cause and response of interest: 
The context for the study by Saintilan et al. (2022) relates to the ability of coastal marshes to 
persist over time (i.e., their resilience). As discussed in a prior section, evidence from the 
paleorecords shows that coastal marshes in many areas, but not all, have persisted during past 
periods of moderate sea-level rise (Froomer 1980). A question of current interest and importance 
is whether coastal marshes will continue to survive in place through vertical increases in 
elevation and adjustment within the tidal frame as rates of sea-level rise continue to accelerate. 
The persistence of marshes is determined by their ability to build elevation through vertical 
accretion of mineral sediment and below-surface accumulation of organic materials (e.g., roots, 
peat). One distinctive feature of this system is that marshes often have the capacity to increase 
their rate of elevation gain in response to an increase in the rate of sea-level rise, up to some 
point beyond which their capacity to respond decreases and marsh transformation occurs 
(Kirwan & Timmerman 2009; Morris et al. 2002). Resilience in the face of rising seas depends 
on their ability to build elevation rapidly enough to avoid chronic submergence leading to 
conversion to unvegetated mudflats and eventually open water (Couvillion et al. 2017; Osland et 
al. 2024).  
 
5.4.2 | Manifestations suggesting an underlying mechanism: 
The example in this paper affords us an opportunity to illustrate non-statistical evidence that 
supports a causal interpretation of nature. As described earlier, one form of evidence that a 
causal process exists connecting water levels to marsh surface elevation comes directly from 
sediment cores taken by paleontologists (Fig. 4). Cores taken in coastal marshes provide direct 
documentation of the inputs of mineral sediment and plant organic material that have built the 
column of material upon which today’s surface resides. The external validity of this 
manifestation is demonstrated by the wide range of locations around the world where columns of 
sediment are comprised of accumulated partially-decomposed peat mixed with various amounts 
of mineral materials. While much more information suggestive of various processes is routinely 
obtained from cores, the recognition that most of the organic component in the material lying 
beneath coastal marshes is made up of residual fractions of marsh plant roots and rhizomes 
confirms the conclusion that marsh ecosystems raise their elevations as water levels change. This 
increase in marsh elevation is observed to be accomplished by accumulations of mineral 
sediment (trapped by marsh plants) in addition to residual organic material (produced by plants). 
All these observations constitute direct evidence of causal processes and a characterization of the 
structures involved (depicted in Fig. 5a).  

Saintilan et al. (2022) provide a succinct description of the presumed mechanism allowing 
marsh elevation to adjust its position to water, “We conceptualize surface elevation trends as a 
function of elevation gains (through mineral and organic matter accumulation, and sediment 
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volume expansion, including root mass gain) and losses (through sediment erosion, and sediment 
volume losses associated with subsidence, auto-compaction, and decomposition of organic 
matter).” To help document the evidence suggesting that there is a sufficient causal chain or 
network behind the correlation presented in Fig. 3a, we created a causal knowledge diagram 
based on existing mechanistic knowledge, which is shown in Fig. 5b. To aid the presentation, we 
juxtapose a drawing of the vertical profile of structures and processes developed by Cahoon et al. 
(2021) in Fig. 5a. 
 

 
Figure 5. (a) Profile view of a coastal marsh showing structures and processes contributing to 
changes in marsh surface elevation (from Cahoon et al. 2021, with permission from Springer 
Nature). (b) Causal knowledge diagram for the relationship between Relative Sea-Level rise and 
Elevation Deficit. The X and Y variables in Fig. 3a are enclosed in boxes in the causal knowledge 
diagram, while the unenclosed items make up the mechanistic elements leading to their 
covariation through a nonlinear feedback set of processes. The numbers next to the arrows in (b) 
are included to cross-reference the diagram with the descriptions of evidence in Appendix S1 
where more detail is provided. 
 
5.5 | A Causal Knowledge Diagram for the correlation of interest 
The task assigned to the causal knowledge diagram is to describe a causal chain or network of 
structures and processes that can help to explain how changes in relative sea-level rise rates can 
lead to changes in marsh surface elevation. Saintilan et al. (2022) chose to reference the rate of 
marsh surface elevation increase to the rate of relative sea-level rise so as to track whether marsh 
elevation increase is keeping pace with sea level, a requirement for long-term survival of the 
marsh. This led them to plot marsh elevation deficit (Elevation Deficit) against the rate of local 
relative sea-level rise (Fig.3a), two variables highlighted in the causal knowledge diagram in Fig. 
5b by being enclosed in boxes. The other variables and linkages in the figure represent our 
knowledge of the core machinery leading to their correlated behavior. The diagram in Fig. 5b is 
labeled with 13 nodes and 13 process connections, all of which we consider in the full 
presentation in Appendix S1. 
 
5.5.1 | Overview of the evaluation: 
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We can envision that the manifestations of the system of interest will depend on: (1) the core 
machinery, which is shown in the causal knowledge diagram, (2) conditional influences, and (3) 
inputs. Our primary focus in this presentation is on the core machinery, which represents the 
structures and processes thought to be general to the system of interest. It is recognized that 
conditional influences will lead to situational variations in the general behavior, and while much 
is known about many such influences, they are not a focus of this presentation. Further, for any 
given location, inputs of materials, such as sediments and biological structures, will influence the 
elevation changes measured at individual sample sites. 
 
5.5.2 | Structures: 
The main structural components of the system of interest by volume include land, water, plant 
material, and air trapped in the sediment. Land in this case refers to the layered solid materials 
beneath the marsh surface. These intergrade from a continuously developed surface layer made 
of mineral and organic components, to a root-zone layer that is typically rich with root and 
rhizomes, to a progressively consolidating sub-root-zone layer, to firmer layers beneath (Fig. 5a). 
The resilience of coastal marshes depends on the ability of marsh plants to promote the trapping 
of sedimentary material and/or the accumulation of biological material, thereby adding to the 
height of the sediment column and raising the surface elevation of the marsh. Descriptions of 
each numbered link in Fig. 5b are presented in Appendix S1. Here we provide brief summaries 
of the detailed results.  
 
5.6 | Assessment of evidence related to the Causal Knowledge Diagram 
 
5.6.1 | Sufficiency of the core mechanism: 
An essential question to address is whether there is evidence to indicate a sufficiently continuous 
chain or network of structures and processes to connect the cause of interest to the response of 
interest. The substantial and sustained efforts contributing to our knowledge of this system gives 
us confidence that there is sufficient evidence to view Fig. 3a as a causal relationship. This is an 
easy conclusion to defend as the contributions of processes to marsh elevation reflect the 
summation of components that can be observed through physical measurements. The slope of the 
relationship observed is 0.86mm/mm. This should be viewed as a summary of the sample rather 
than a mechanistic parameter because it represents the combined influences of the causal 
network, the particular conditional influences at the locations of the samples including 
subsidence rates, and a result of the material supplies for the individual sites. That said, the slope 
of the relationship, which represents the mm of elevation deficit created per mm of RSLR for the 
sample, is an informative number implying that on average many of the marshes are not keeping 
up with accelerated rates of sea-level rise, a conclusion reached by Saintilan et al. (2022). 
Beyond the simple question of sufficiency, there are certainly places where our understanding of 
the functional forms of relationships can be improved (see Appendix S1). 
 
5.6.2 | Reliability of the core mechanism: 
In the context of causal analysis, reliability refers to the frequency with which a process operates 
in independent samples or locations. It does not, however, refer to the quantitative magnitude of 
its influence. From that perspective, when we consider the various processes in the core 
mechanism, we expect a high degree of reliability except in extreme environments. The 
processes of sedimentation, compaction, deep subsidence, and edge erosion can be expected to 
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operate reliably nearly everywhere coastal marshes occur, though certainly conditional 
influences will override their effectiveness where physical conditions are unsuitable. The 
biological processes should also be reliable to a substantial degree as evidenced by the wide-
spread distribution of coastal marshes and their persistence in the paleo record over thousands of 
years.  
 
5.6.3 | Exactness of processes: 
Exactness in this context refers to the constancy of a mechanism. For our example in this paper, 
numerical models provide us with insights into this issue. For example, some of the processes 
involved in sediment deposition (e.g., see equations 2-4 in Appendix S1) involve numerical 
constants. While these may only approximate the true process, they suggest a degree of exactness 
for the operation of certain mechanistic elements. In contrast, some biological mechanistic 
elements will show substantial quantitative variation. An obvious example is the depth 
distribution of root growth (Fig. S5). In numerical models, the distribution of plant production as 
a function of water depth is typically represented using polynomial or other equations that 
approximate the shape of the distribution but without meaningful coefficients. The exactness of 
such mechanisms is therefore low. 
 
5.6.4 | Transportability: 
One of the hallmark features of causal mechanisms is external consistency, the repeated 
operation of underlying processes in different situations. Mechanisms are transportable when 
there are structures and processes that are repeated in space in time. The global distribution of 
SET-MH stations established by different researchers around the globe provide us the 
opportunity to see if manifestations consistent with the machinery in Fig. 5b are widely 
observed. There are a number of types of conditional variations reported in different studies, 
including future evolutionary changes; nonetheless, there is strong and consistent body of 
evidence indicating widespread transportability of the core machinery. Observed major 
departures are thought to represent boundary conditions where physical factors exceed biological 
tolerances (see Chapters 4, 10-12 in Perillo et al. 2019). The case has been made repeatedly that 
coastal mangrove forests possess sufficiently similar biological features to those in coastal 
marshes that the mechanisms whereby they are able to track rising sea levels are roughly the 
same. Further, it can be anticipated that plant growth may increase due to atmospheric and 
oceanic warming and from increasing atmospheric CO2. This constitutes another level of 
transportability where mechanistic elements are common to distinctly different situations, 
resulting in recognizably similar behavior. 
 
5.6 | Overall assessment of evidence to support a causal interpretation: 
It is our assessment that existing causal knowledge supports an interpretation of the relationship 
in Fig. 3a as reflective of an underlying causal mechanistic process. We do not arrive at this 
conclusion through quantitative analysis of data, but through scientific knowledge of structures 
and processes accumulated over many studies. What repeated investigation has found is that 
plants have the capability of increasing rates of marsh vertical growth in response to increasing 
rates of water level rise, up to some point where their capacity is overwhelmed. This involves a 
nonlinear feedback such that when rates of sea-level rise are low, increases in marsh elevation 
keep pace. As annual rates of sea-level rise increase, the system has a capacity to increase its 
vertical growth rate to keep pace. Eventually the capacity of the marsh system is exceeded and 
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elevation increase falls behind, eventually leading to conversion to open water (Morris et al. 
2002). Recent results have also shown a surprising and previously underappreciated sensitivity 
of sediment compression in response to surface accretion (e.g., Keogh et al. 2021; Saintilan et al. 
2022). This finding has reconciled paleo and contemporary estimates of vertical growth rates in 
response to sea-level rise rates, deepening our understanding of the system. 
 
6 | DISCUSSION 
Schwartz & Prins (2025) argue based on decades of study of causal methodology that, 
“Researchers should take debates about causation seriously because with or without our 
awareness, and with or without our consent, these debates shape the questions we ask, the 
methods we use, [and] the narratives we construct about our study results.” Such a statement 
suggests that the subject of causal methods demands careful scrutiny, which we attempt in this 
paper. 

Numerous ecologists have argued for causal explanation as a general scientific aspiration 
(e.g., Holt 2015; Nichols and Cooch 2025; Pickett et al. 2007). Scheiner & Willig (2008) have 
proposed a general scientific framework for ecology that describes a theory as “A framework or 
system of 
concepts and propositions that provides causal explanations of phenomena within a particular 
domain.” Hone et al. (2023) provide a specific context for arguing for reliance on a 
combination of evidence types as causal criteria for wildlife management. However, the means 
for documenting the causal content of ecological studies has been obscured until recently. 

In discussing the primary example in this paper, we point out that the determination that there 
is a causal relationship between rates of increase in marsh surface elevations and rates of 
increase in sea levels can be made from observations and existing knowledge of physics, 
biology, and chemistry. The most fundamental limitation of causal statistics is that it typically 
ignores the actual machinery, which is our primary source of evidence for causal interpretations. 
The fact that some (e.g., Siegel & Dee 2025) dismiss the possibility of arriving at causal 
interpretations based on mechanistic knowledge is indicative of the need for subject matter 
experts to document and defend their causal conclusions when appropriate. As pointed out by an 
insightful peer reviewer of this work, the potential consequences of ecologists adopting the 
statistical causal inference paradigm as it has been described in the literature could be to suggest 
a wide-spread absence of evidence for causal relationship in ecology, eroding the relevance for 
ecology to solving the great environmental issues of our time. 

In addition to the example presented here, Grace (2024) and Grace et al. (2025) have 
presented other examples of correlations having clear causal interpretations. Generally, 
organismal traits are often subjects for causal interpretations due to structure-function 
relationships (e.g., Laughlin, 2023; McGill et al., 2006). Beyond the work mentioned here, the 
National Academies of Science, Engineering, and Medicine have recently completed a Synthesis 
Report on Causal Methods that fully supports the central role that mechanistic knowledge plays 
in causal determination (NASEM 2022).  

We hope that the in-depth example presented in this paper provides material proof beyond a 
reasonable doubt that it is possible to support causal interpretations when there is a sufficient 
body of knowledge about underlying mechanisms. If such a conclusion is accepted for even a 
single example, it supports the contention that a multi-evidence paradigm should be considered 
for the goal of building causal knowledge and understanding. Further, it counters resistance from 
advocates of statistical causal inference that may lead to substantial confusion in the literature 
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and that promote a pervasively skeptical view of existing causal knowledge. Accommodating 
multiple forms of evidence in causal investigations opens up much uncharted territory, which is a 
natural consequence of viewing our task as one of building causal knowledge across studies. The 
perspective promoted in this paper is one that places scientists at the center of the panel of jurors 
who evaluate evidence and determine the state of causal knowledge. 
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SUPPORTING INFORMATION 
Supporting information is provided in Appendix S1 in the online material. 
 
GLOSSARY 
Box 1. Glossary of select terms. 
Average Causal Effect/Causal Effects – the quantitative difference between treated and 
untreated groups of study subjects that are assumed to be, on average, equivalent in their 
potential responses to exposure. In theory, there can exist individual-level causal effects but 
since only performance in either treated or untreated conditions can be measured for a single 
individual, the average causal effect is the implied meaning of estimated “causal effect.”  
 
The Counterfactual Approach – Statistical causal inference procedures frequently adopt the 
focus on obtaining estimates of “What would the value for a study unit have been at time t+1 if 
that individual unit was not exposed to the active treatment at time t” for estimating causal 
effects.  
 
Causal Relationship – Situation where two variables are connected through some mechanism 
or means such that variations in one can propagate to subsequent variations in the other. 
 
Causal in the Statistical Sense – Causal statistical effect estimates are ones presumed to be 
pure and isolated counterfactual differences (usually between treated and untreated 
individuals, groups, or numeric categories). The purpose of such a strict requirement is to 
enable causal inferences to be drawn in the absence of adequate supporting knowledge. 
 
Causal in the General Scientific Sense – A causal effect estimate between two entities (say X 
and Y) might be considered to be causal in the general scientific sense if there is reason to 
think that the estimated value is at least a useful approximation of the unbiased effect estimate. 
Most commonly useful approximations are likely to be supported based on knowledge of 
causal mechanisms, though they can also be supported by mechanistic theoretical analyses and 
potentially other types of evidence. 
 
Causal Mechanism – Typically some collection of spatiotemporally contiguous structures and 
processes along which a signal can be propagated from one entity to another resulting in a 
response. 
 
Causal Statistics aka Statistical Causal Inference – Terminology, including informal 
meanings, evolve over time. As of the time of this writing, statistical approaches to estimating 
some causal quantity have evolved to include not just those methods that are true causal 
methods adhering to the perfection requirement (as defined in Fig. 1) but now include 
procedures attempting to conform to the perfection-seeking standard. 
 
Causal Inference – A vague term with disparate general and specialized meanings. We advise 
that it should be taken to refer to statistical causal inference unless otherwise qualified.  
 
Causal Knowledge Analysis – Procedures for documenting Causal Knowledge, which includes 
evidence of: (1) manifestations that are indicative of an underlying mechanism, (2) some 
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characterization of the underlying mechanism(s), and (3) demonstrated external consistency or 
transportability with other samples and/or studies. 
 
Sufficiency of a Mechanism – a judgement as to whether all the necessary mechanistic 
elements exist to convey a causal effect. Animals, for example, typically require food and 
water (at a minimum) to survive. A mechanism that provides water is not, by itself, sufficient 
to sustain life. 
 
Reliability of a Mechanism – a characterization of how often the median response is observed. 
For example, the sun rises above the horizon every day, but rain does not fall every day and 
has a less reliable influence. 
 
Exactness – a parameter that represents a faithful translation of information will be considered 
to be exact. For example, the increase in elevation of coastal marshes as sea level rises will be 
the summation of mineral and organic contributions and subtraction of decomposition, 
compaction, and erosion processes. The conversion of a kilogram of root biomass to increases 
in vertical elevation (in mm) will be less exact as the conversion coefficient will be potentially 
influenced by a number of specific factors. 
 
Transportability - The ability to extrapolate a causal interpretation to a related but different 
situation. It will be expected that this is achieved most commonly where the same or similar 
mechanistic elements or machinery occurs in different situations. 

 
Supporting Information starts on next page. 
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Supporting Information for: 
 
“Causal interpretations can be based on mechanistic knowledge” 
 
Appendix S1 
 
Note: Some material is repeated here from the main text to make this document stand-alone 
readable. 
 
AN EXAMPLE CORRELATION FOR CAUSAL ANALYSIS 
For this demonstration, we chose a recent result from a paper by Saintilan et al. (2022). Figure 
S1 presents a relationship obtained from the analyses of a global dataset described below. As 
discussed in the main text, this relationship does not qualify for causal effect estimation under 
the Statistical Causal Inference Paradigm. In this document, we repeat some basic information 
about the sample and then present the details of the Causal Knowledge Analysis summarized in 
the main text. 
 

 
Figure S1. Correlation obtained by Saintilan et al. (2022, Science, 377: 523-527; reconstructed) 
based on monitoring stations located at 97 sites around the world. The authors interpret this 
finding as support for the claim that marsh sediment accretion increases in response to rising sea 
levels, though where sea level is increasing faster than marsh elevation, an elevation deficit 
develops that will, if continued, lead to marsh drowning and eventual conversion to open water. 
Beta represents the slope of the relationship in mm of elevation deficit created per mm of relative 
sea-level rise per year for the sample of sites. (b) Some characteristics of the data.  
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Primary Measurements 
A causal knowledge analysis can be conducted either with or without a specific data relationship 
in mind. In this paper, we choose to work with a particular result as we believe it better serves 
our heuristic purposes. The correlation shown in Figure S1 serves as our starting point for the 
description of causal knowledge analysis. This figure comes from a paper by Saintilan et al. 
(2022) who compiled data from coastal marsh elevation change monitoring stations around the 
world. For this work, the authors chose data from locations that have used a common standard 
method for monitoring changes in marsh surface elevation relative to local rates of sea-level rise, 
the Surface Elevation Table–Marker Horizon (SET–MH) monitoring method (Cahoon 2024). 
Other selection criteria included a length of measurement record greater than 3 years (average 
length of 10.1 years) and avoidance of sites that have experienced hydrological or experimental 
manipulation. This resulted in data from 477 tidal marsh SET–MH stations from 97 sites from 
North America, Northern Europe, Australia, and South Africa.  
 

 
Figure S2. Pictorial representation of a coastal marsh highlighting key variables of importance 
and the measurements taken at monitoring sites (from Saintilan et al. 2022, with slight 
modification). Inset photos – Illustration of an examination of coastal marsh history by coring 
(right upper photo, from https://www.usgs.gov/media/images/savannah-river-december-2012) 
and conspicuous demonstration of buried roots and rhizomes contributing to organic matter 
accumulation in sediment cores (right lower photo, from 
https://www.usgs.gov/media/images/peat-auger-core-collected-back-barrier-marsh-Assateague). 
 

Monitoring sites were established by installation of a SET benchmark, which is composed of 
a multi-segment vertical rod pounded into the substrate to the point of refusal in firm substrate 
(Figure S2, left side). The base of the benchmark rod serves as a fixed reference point in vertical 
space against which marsh elevation change is measured. A portable SET arm is attached 
perpendicularly to the benchmark rod at each visitation and nine replicate pins are lowered to the 
marsh surface at four positions around the vertical benchmark rod. At each position, the heights 
of each pin above the portable arm are measured at each visit. As marsh surface increases over 
time relative to the base of the vertical rod (for example), pin heights above the horizontal arm 
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get higher. All 36 pin readings taken at each station at each time are averaged to get a single 
reading for that time. Rate of change in elevation is assessed by estimating the slope for the 
multiple readings over time. 

In addition to the table, at the time of installation replicate layers of visually distinctive 
material (e.g., feldspar clay) are deposited on the marsh surface adjacent to the vertical 
benchmark. These become the “marker horizons” for the initial surface of the marsh and at each 
measurement time, replicate cores are extracted to determine the depth of material that has been 
deposited above the original surface over time (i.e., accretion). In addition to measuring the 
changing elevation of the marsh surface and the depth of accumulated surface accretion, a 
measure of shallow subsidence or expansion of the sediment column can be obtained as the 
difference between total elevation change and depth of surface accretion. SET benchmarks are 
georeferenced against nearby tide gauges to provide a common reference elevation for the 
measurements taken at a site. Additional variables are measured or computed to aid in 
comparisons among sites. 
 
Lynch et al. (2015) provide much more detail regarding the sampling protocol at: 
http://dx.doi.org/10.13140/RG.2.1.5171.9761 
 
A CAUSAL KNOWLEDGE ANALYSIS FOR THE RELATIONSHIP BETWEEN 
COASTAL MARSH RESILIENCE AND RELATIVE SEA-LEVEL RISE 
Interrogation of Evidence 
Table S1. A progression of questions to consider when performing a causal knowledge analysis 
(from Grace 2024). 

1. What is the nature of the cause(s) of interest? the response(s) of interest? 
2. Are there observed manifestations that suggest the existence of a mechanism 

connecting causes to responses? 
3. Are there known or plausible mechanisms connecting the variables of interest?  
4. Are there plausible competing explanations? 
5. How sufficient is our knowledge of mechanisms and conditional influences that may 

affect expressions of the mechanisms? 
6. How reliable are the mechanisms and conditional influences based on available 

knowledge? 
7. How exact are the processes and associated parameters? 
8. How transportable are the mechanisms to other cases or situations? 

 
Question 1: The Nature of the Cause and Response of Interest 
The context for the study by Saintilan et al. (2022) relates to the ability of coastal marshes to 
persist over time, i.e., their resilience. Evidence from the paleo records shows that coastal 
marshes in many areas, but not all, have persisted during past periods of moderate changes  in 
sea level that have occurred over geologic time. A question of current interest and importance is 
whether coastal marshes will continue to survive in place through vertical increases in marsh 
elevation and adjustment within the tidal frame as rates of sea-level rise accelerate. The 
persistence of marshes is determined by their ability to build elevation through vertical accretion 
of mineral sediment and organic matter. This process is known to involve their ability to trap 
sediments from the water column and add organic matter produced by marsh plants to the 
sediment column. One distinctive feature of this system is that marshes often have the capacity to 
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increase their rate of vertical accretion in response to an increase in the rate of sea-level rise up to 
some point beyond which their capacity to respond decreases. Resilience in the face of rising 
seas depends on their ability to build elevation fast enough to avoid chronic submergence leading 
to conversion to unvegetated mudflats and eventually open water. To evaluate marshes’ current 
and future status, scientists track the rate of change in marsh elevation relative to the rate of 
change in sea level. If sea level is increasing faster than marsh elevation is increasing, then there 
is an elevation deficit that will, if continued, lead to marsh drowning and eventual conversion.  
 
Question 2: Manifestations Suggesting an Underlying Mechanism 
The example in this paper affords us an opportunity to illustrate non-statistical evidence that 
supports a causal interpretation. One form of evidence that there exists a causal process 
connecting water levels to marsh surface elevation comes directly from sediment cores taken by 
paleontologists (inset photo in Figure S2 on right side). Actually, the study of the earth’s history 
has long relied on the analysis of vertical cores of sediments that chronical the changes that have 
taken place as new surface materials have been deposited over layers of older materials over long 
periods of time. Cores taken in coastal marshes provide direct documentation of the inputs of 
mineral sediment and plant organic material that have built the column of material upon which 
today’s surface resides. The external validity of this manifestation is clearly demonstrated by the 
wide range of locations around the world where columns of sediment are comprised of 
accumulated partially-decomposed peat mixed with various amounts of mineral materials. While 
much more information suggestive of various processes is routinely obtained from cores, the 
recognition that most of the organic component in the material lying beneath coastal marshes is 
made up of residual fractions of marsh plant roots and rhizomes confirms the conclusion that 
marsh ecosystems can adjust their elevations as water levels rise. This increase in marsh 
elevation is observed to be accomplished by accumulations of mineral sediment (trapped by 
marsh plants) and residual organic material (produced by plants). All these observations 
constitute direct evidence of causal processes and a characterization of the structures involved. 
Additional studies of mechanistic processes by physical scientists, chemists, and biologists serve 
to help us understand the dynamic processes connecting structural elements. 
 
Question 3: Known Mechanisms Enabling Marsh Elevation to Adjust to Sea Levels 
Saintilan et al. (2022) provide a succinct description of the presumed mechanism allowing marsh 
elevation to adjust its position, “We conceptualize surface elevation trends as a function of 
elevation gains (through mineral and organic matter accumulation, and sediment volume 
expansion, including root mass gain) and losses (through sediment erosion, and sediment volume 
losses associated with subsidence, auto-compaction and decomposition of organic matter).” To 
consider the evidence suggesting that there is a sufficient causal chain or network behind this 
conceptualization, we employ a causal knowledge diagram (Figure S3). 
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Figure S3. Causal knowledge diagram for the relationship between Relative Sea-level Rise and 
Elevation Deficit. 
 

The task assigned to the causal knowledge diagram is to describe a causal chain or network of 
structures and processes that can help to explain how changes in RSLR can lead to changes in 
marsh surface elevation. Saintilan et al. (2022) chose to reference the rate of marsh surface 
elevation increase relative to the rate of RSLR to track whether marsh elevation increase is 
keeping pace with sea level, a requirement for long-term survival of the marsh (i.e., resilience). 
This led them to plot marsh elevation deficit (Elevation Deficit) against RSLR, two variables 
highlighted in the causal knowledge diagram in Figure S3 by being enclosed in boxes. The other 
variables and linkages in the figure represent our view of the core machinery leading to their 
correlated behavior. 

As stated above, a causal knowledge diagram is a type of diagram for which there exists 
evidence of a mechanistic basis for the links. For this type of diagram, double-line arrows are 
used instead of standard single-line arrows to distinguish them from the types of diagrams used 
in causal statistics and structural equation modeling. Note also that causal knowledge diagrams 
are not meant to be complete representations of the data generating process but instead aspire to 
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be sufficient to represent the mechanism of interest and the expected manifestations. The 
diagram in Figure S3 is labeled with 13 nodes and 13 process connections, which we consider in 
numerical order. 
 
Overview of the Evaluation: 
We can envision that the manifestations of the system of interest will depend on: (1) the core 
machinery, which is shown in the causal knowledge diagram, as well as (2) conditional 
influences, and (3) inputs. Our primary focus in this presentation is on the core machinery, which 
represents the structures and processes thought to be general to the system of interest. It is 
recognized that conditional influences will lead to situational variations in the general behavior. 
For any given location inputs of materials, such as sediments and biological structures, will 
influence the elevation changes measured at individual sample sites. 
 
Structures: 
The main structural components of the system of interest by volume include land, water, air 
trapped in the sediment, and plant material. Land in this case refers to the layered solid materials 
beneath the marsh surface, including the biological components. These intergrade from a 
continuously developed surface layer made of mineral and organic components, to a root-zone 
layer that is typically rich with root and rhizomes, to a progressively consolidating sub rootzone 
layer, to firmer layers beneath. The resilience of coastal marshes depends on the ability of marsh 
plants to promote the trapping of sedimentary material and deposition of biological material, 
thereby adding to the height of the sediment column and raising the surface elevation. The 
descriptions that follow characterize the processes that causally influence the short-term 
dynamics of the system as it relates to the association in Figure 2.  
 
The Core Machinery 
Connections 1 & 2: The Effects of Eustatic Sea-level Rise and Deep Subsidence on Relative Sea-
level Rise 
As Rovere et al. (2016) succinctly state, “Sea-level changes can be driven by either variations in 
the masses or volume of the oceans, or by changes of the land with respect to the sea surface. In 
the first case, a sea-level change is defined ‘eustatic’; otherwise, it is defined ‘relative’.” Changes 
to both the ocean volume and height of underlying land are influenced by both slow processes 
(e.g., ocean mixing and tectonic movements) but also processes leading to changes contributing 
to short-term elevation dynamics. We use the term “deep subsidence or uplift” in this context to 
refer to vertical land movements that occur beneath the base of SET benchmark rods or other 
benchmarks used to calibrate SETs. “Shallow subsidence or expansion” refers to vertical 
changes that take place above the base of the SET benchmark, which are routinely measured 
along with surface elevation changes.  

While eustatic sea-level changes are of primary interest because of their connection to 
climate change, their measurement is complex. Since 1992, satellite altimetry methods (e.g., 
https://sealevel.jpl.nasa.gov/missions/topex-poseidon/summary/; 
https://sealevel.nasa.gov/missions/jason-3) have supplemented the historical reliance on tide 
gauges. Satellite altimetry measures a distance to the ocean that is relative to the altitude of the 
satellite (the “range”). The altitude of the satellite is established with respect to an ellipsoid that 
represents an arbitrary and fixed surface approximating the shape of the Earth. The difference 
between the altitude of the satellite and the range is defined as the sea surface height (SSH). 
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Once corrected for seasonal variations due to ocean currents and other factors such as glacial 
isostatic adjustment, the global average SSH can be used to define the global mean sea-level 
change, which can be considered the eustatic, globally averaged sea-level change (Rovere et al. 
2016). 

Increases in eustatic sea level result from processes that cause changes in the volume of the 
ocean. Changes in the mass of the oceans occur either as a result of melting or accumulation of 
continental ice sheets over time (glacio-eustasy) and as a consequence of water redistribution 
between different hydrological reservoirs such as snow, surface water, sediment moisture, and 
groundwater, excluding glaciers (hydroeustasy). Changes in the volume of the ocean, however, 
are caused by variations in ocean water density due to cooling or warming of water masses 
(thermal expansion) or changes in salinity (halo-steric changes).  

Vertical land movements (VLM) combine with eustatic sea-level rise to determine relative 
RSLR around the world’s coasts (Rovere et al. 2016; Nicholls et al. 2021; Odenhen et al. 2023). 
Such movements result from both natural geological processes, but also from human activities 
such as groundwater withdrawal. Aside from its general importance, there is growing concern 
about the influence of VLM on estimates of coastal marsh elevation change. Site-specific 
measurements of marsh elevation changes using the SET-MH method typically make 
comparisons with the RSLR at long-term tide gage stations (Figure 3). Tide gages provide 
estimates of water levels relative to a local network of tidal benchmarks. However, the land to 
which the tide gages are referenced is typically undergoing VLM and as a result, estimates of 
RLSR may deviate significantly from the water levels marshes are actually exposed to (Cahoon 
and Guntenspergen 2024). 

Hensel et al. (2024) used repeated real-time kinematic global positioning system survey 
campaigns at multiple time periods to estimate rates of VLM at geodetic control points used for 
benchmarking SET-MH sites. The authors found an average downward VLM value of 6.0 ± 0.7 
mm year, which corresponded to >80% of the elevation gain measured using the SET-MH 
method. This deviation reflects a source of error in RSLR estimates that is now starting to be 
addressed more systematically. 

 
Synopsis for Connections 1 & 2: The degree of flooding of marshes is determined by both local 
tide level variations driven by the volume of water in the ocean and movements of the land 
below the bottom of the SET benchmarks (Rovere et al. 2016). The terms “deep subsidence or 
uplift” refer to vertical land movements that occur beneath the base of SET benchmarks. 
“Shallow subsidence or expansion” refers to vertical changes that take place above the base of 
the SET benchmarks, which are routinely measured along with surface elevation changes. A 
final point of importance is the recognition that the conversion of coastal marshes to open water, 
the ultimate consequence of a loss of resilience, is not instantaneous but takes place over some 
period of years (Törnqvist et al. 2021). The processes involved temporal variations in water and 
land are physical and clearly qualify as causal mechanistic processes. 
 
Connection 3: The Effect of RSLR on Marsh Elevation within the Tidal Frame 
The tidal frame is defined as the area between the mean high tide and the  mean low tide and 
encompasses the vertical range that is alternately flooded and exposed by tidal fluctuations. 
Tides determine the area available for capture and accumulation of tidally-borne mineral and 
organic matter and thus the lateral limits of coastal marshes. Changes in sea level alter the tidal 
frame. The fate of tidal marshes is determined by their ability to adjust their position vertically 
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and laterally. Whether they retain their vertical position in the tidal frame depends on their 
capacity to build elevation in step with sea-level rise rates. The term “elevation capital” refers to 
the elevation of a marsh relative to the lowest elevation at which plants can survive (Reed 2002). 
When the elevation capital is reduced, marshes are seen as increasing in risk of drowning. As 
described in the next section, a marshes position within the tidal frame can influence the critical 
processes of sedimentation and erosion, as well as rates of biological production, which is why 
Saintilan et al. (2022) and many others emphasize position in the tidal frame (aka tidal position) 
as an important functional feature for the processes influencing elevation dynamics. 
 
Synopsis for Connection 3: The tidal frame is defined as the area between mean high tide and 
mean low tide and encompasses the vertical range that is alternately flooded and exposed by tidal 
fluctuations. Tides determine the area available for capture and accumulation of tidally-borne 
mineral and organic matter and thus the lateral limits of coastal marshes. Changes in sea level 
alter the tidal frame (Ensign and Noe 2018). The fate of tidal marshes is determined by their 
ability to adjust their position vertically and laterally. Whether they retain their vertical position 
in the tidal frame depends on their capacity to build elevation in step with sea-level rise rates. 
Again, temporal changes in the tidal frame are physical and therefore causal. 
 
Connections 4, 5, 6, & 7: The Contributions of Marsh Elevation, Sediment Supply, and Marsh 
Plants on Surface Sediment Deposition 
Sediment capture is a vital process for the maintenance of marsh elevation. The elevation of the 
marsh surface in the tidal frame strongly influences sediment deposition due to its controls on the 
duration of tidal inundation and thus the amount of time during which suspended materials can 
settle out of the water column. Plants play a critical role in aiding deposition and retaining settled 
materials as well, which will be discussed below. Buffington et al. (2021) provide a mechanistic 
characterization of the process, which we summarize here. 

The mineral sediment accumulation rate (MAR) is a function of the sediment deposition flux 
Q, which in turn is determined by settling, Qds, and erosion Qe caused by tidal current shear 
stress, τ0. 
 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑒𝑒  
(1)  

 
Shear stress, τ0, is defined as 
 

 𝜏𝜏0 = 𝜆𝜆𝜆𝜆𝜆𝜆 (2)  
 
where γ is the specific density of water (9.807 kN m-3), U is the horizontal water velocity in m·s-

1 and is defined as 
 

 𝑈𝑈 = 𝑛𝑛
𝐷𝐷
𝜆𝜆

 (3)  

 
where n is the instantaneous change in the water level timeseries, D is water depth (m), and λ is a 
bottom friction coefficient, defined as 
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 𝜆𝜆 =
8

3𝜋𝜋
𝑈𝑈0
𝐾𝐾2 (4)  

 
where U0 is the maximum tidal current (assumed to be 0.2 m·s-1), and K is Chezy’s friction 
coefficient, assumed to be 10 m1/2·s-1.  

Deposition caused by settling, Qds is defined as, 
 

 
𝑄𝑄𝑑𝑑𝑑𝑑 = �

𝑤𝑤𝑠𝑠𝐶𝐶 �1−
𝜏𝜏0
𝜏𝜏𝑑𝑑
� 𝑖𝑖𝑖𝑖 𝜏𝜏0 < 𝜏𝜏𝑑𝑑

0                      𝑖𝑖𝑖𝑖 𝜏𝜏0 ≥ 𝜏𝜏𝑑𝑑
 

(5)  

 
where ws is the settling velocity (m·s-1, assumed to be a constant 1.0 x 10-4 and calibrated using 
sediment deposition data), C is the depth-averaged suspended sediment concentration, and τd is 
the shear stress limit above which sediment flocs do not settle and remain in the water column 
(0.1 N·m-2). It is important to note that in addition to mineral materials, deposition can include 
organic material derived from the decomposition of marsh plants but also other sources. 

Erosion flux, Qe is defined as, 
 

 
𝑄𝑄𝑒𝑒 = �

𝑄𝑄𝑒𝑒0 �
𝜏𝜏0
𝜏𝜏𝑑𝑑
− 1� 𝑖𝑖𝑖𝑖 𝜏𝜏0 > 𝜏𝜏𝑑𝑑

0                      𝑖𝑖𝑖𝑖 𝜏𝜏0 ≤ 𝜏𝜏𝑒𝑒
 

(6)  

 
where τe is the critical shear stress needed to break up the bed (0.4 N m-2), Qe0 is an empirical 
coefficient = 1/ρs x 3.0x10-4 m·s-1, with ρs = 2600 kg·m-3. Suspended sediment concentrations 
(SSC) were assumed constant during flood tides, but on ebb tide the instantaneous sediment 
concentration is reduced as particles settle on the surface, 
 

 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑤𝑤𝑠𝑠𝐶𝐶 + 𝐶𝐶
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 
(7)  

 
where h(t) is the water level (m, MSL) and D(t) is instantaneous water depth (m; D(t)-z). 

These equations (1-7) illustrate the point that the settling of mineral sediment on the marsh 
surface is largely a physical process. Collectively it is a complex process and one that is of vital 
importance for marsh resilience. 
 
Synopsis for Connections 4, 5, 6, & 7: Sediment capture is a vital process for the maintenance of 
marsh elevation. The elevation of the marsh surface in the tidal frame strongly influences 
sediment deposition due to the fact that it controls the duration of tidal inundation and thus the 
amount of time during which suspended materials can settle out of the water column. Plants play 
a critical role in aiding deposition and retaining settled materials as well. Buffington et al. (2021) 
provide a mechanistic characterization of the process, which is presented in the Supporting 
Information as a set of mechanistic equations. These equations illustrate the point that the 
settling of mineral sediment on the marsh surface is largely a physical process. 
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Figure S4. Diagrammatic representation of coastal marsh vertical profiles and processes 
describing (a) without plants and (b) with plants showing some of the biophysical effects of 
plants that support marsh resilience (From Cahoon et al. 2021).  
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Connections 8, 9, & 10: The Effects of Marsh Elevation on the Contributions by Marsh Plant 
Productivity to the Rate of Marsh Elevation Increase 
Coastal marshes are formed and maintained by the emergent plants, which help to regulate marsh 
elevation and position within the intertidal zone (Cahoon et al. 2021). Plants play a major role 
that is especially important when the supply of mineral sediment inputs is low. The presence of 
plants contributes in three major ways by (1) enhancing the trapping and retention of mineral 
sediments, (2) adding organic matter to the sediment column, which contributes to vertical 
expansion, and (3) helping to bind and consolidate sediment materials and thereby stabilize the 
marsh platform. Figure S4 lists on the right side some of the ways plants contribute to marsh 
resilience. The paper by Cahoon et al. (2021) provides a description of the role plant play in 
marsh formation, maintenance, and tracking changes in sea levels. 
 

The regulation of marsh elevation in the face of rising seas is influenced by the growth 
response of plants in relationship to variations in water depth (Morris et al. 2002; Kirwan and 
Guntenspergen 2012). Under favorable conditions, the vegetated area spans the tidal range. 
However, the amount of plant production and its influence can vary with water depth (Figure 7). 
While sediment trapping depends on above-ground plant material, organic contributions are 
largely determined by below-ground production. Kirwan and Guntenspergen (2012) have shown 
that the water depth responses by above- and below-ground production can be quite different, 
and, as a result, plant contributions to vertical adjustment can be expected to vary with water 
depth. Of importance, root zone processes typically dominate the response of marshes to sea-
level rise, particularly when the supply of mineral sediment is limited. Thus, rates of marsh 
elevation increase are directly related to below-ground root and rhizome production, which result 
in vertical expansion of the rootzone. 

For the majority of cases examined thus far, below-ground plant production follows a modal 
curve like those shown in Figure S5. This phenomenon has major implications for how marshes 
adjust their elevation in response to rising sea levels. When marshes occupy relatively high 
elevations within the tidal frame, water depths are shallower than those optimal for plant growth. 
In this situation, an increase in sea level will lead to an increase in organic accretion and marsh 
elevation up to some maximum value for the species present and growing conditions. In this 
zone, rates of marsh elevation growth will track increases in sea level if the latter do not exceed 
some level, reflecting a homeostatic response. However, when water depths are greater than 
those corresponding to the plant growth optimum, increasing rates of sea-level rise will lead to 
decreasing rates of plant production and organic accretion, eventually resulting in marsh 
drowning and loss. Rates of low sea-level rise tip the balance towards long-term stability, as 
evidenced by the observation that marshes having modest mineral sediment inputs have 
commonly survived for thousands of years (e.g. Redfield 1965).  
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Figure S5. Results from a marsh plant growth experiment where plants of two species were 
grown in the field at 7 different elevations (Kirwan and Guntenspergen 2012). Elevation is 
expressed relative to the North American Vertical Datum, which relies on a leveling network 
across North America to ensure consistent elevation measurements. Grey shading denotes the 
approximate elevation of the adjacent marsh platform. Above-ground (AG) biomass (in solid 
circles) and root biomass (in open circles) were separately determined for two species From 
Kirwan and Guntenspergen (2012) with permission from John Wiley and Sons. 
 
Synopsis for Connections 8, 9, & 10: Coastal marshes are formed and maintained by a non-linear 
response to flooding by the emergent plants. Plants contribute in three major ways to marsh 
elevation dynamics by (1) enhancing the trapping and retention of mineral sediments, (2) adding 
organic matter to the sediment column, which contributes to vertical expansion, and (3) helping 
to bind and consolidate sediment materials and thereby stabilize the marsh platform. When 
marshes occupy relatively high elevations within the tidal frame, water depths are shallower than 
those optimal for plant growth. In this situation, an increase in sea level will lead to an increase 
in organic accretion and marsh elevation up to some maximum value for the species present and 
growing conditions. In this zone, rates of marsh elevation growth will track increases in sea level 
if the latter do not exceed some level, reflecting a homeostatic response. However, when water 
depths are greater than those corresponding to the plant growth optimum, increasing rates of sea-
level rise will lead to decreasing rates of plant production and organic accretion, eventually 
resulting in marsh drowning and loss. Historical rates of sea-level rise along many coasts during 
the past ~7000years have been sufficiently low that  marshes have persisted via vertical gains in 
elevation (e.g. Redfield 1965; Saintilan et al. 2023). This part of the diagram reflects biological 
mechanisms that are variable and conditional, but sufficiently reliable to have a widespread 
causal influence on marsh elevation deficits. 
 
Connections 11 & 12: The Effects of Decomposition and Sediment Compaction on the Height of 
the Sediment Column and Marsh Elevation 
Rates of decomposition vary greatly with location within the vertical profile (Megonigal and 
Neubauer 2019). The supply of oxygen, which has a major influence on rates of decomposition, 
is largely supplied by diffusion from the overlying water column (though oxygen supplied by the 
roots of wetland plants can aerate the rhizosphere). Because an oxygen deficit develops very 
rapidly beneath the surface of marsh sediments, the depth of the water column is expected to 
have little influence on the decay of organic matter in wetland sediments. Kirwan et al. (2013) 
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investigated the expectation that organic decomposition rates will be insensitive to sea-level rise 
in a field experiment that exposed decomposition bags to a variety of water depths. This study 
found that inundation depth generally had no major influence on rates of organic decomposition 
beneath the sediment surface and concluded that increased rates of sea-level rise are not expected 
alter marsh elevation rates through influences on decomposition rates. At larger scales, rates of 
decomposition and peat formation are sensitive to major differences in climate (Perillo et al. 
2019; Martini et al. 2019).  

Rates of shallow compaction/expansion are now routinely estimated because of the 
widespread use of the SET-MH method. Procedurally, shallow compaction or expansion is 
measured as the component of total marsh elevation change attributed to changes occurring 
below the marker horizon (Figure S2). The component of change above the marker horizon is 
described as surface accretion. Interestingly, the naïve expectation that the elevation of the 
marker horizon above the base of the SET benchmark rod would be a constant is not aligned 
with empirical measurements. It has been recognized for a while that the depth of the marker 
horizon beneath the sediment surface can be very responsive to temporal dynamics in water 
levels, most noticeably seasonal variations (Cahoon et al. 2021), which must be controlled for 
when estimating year-to-year trends. 

Recent syntheses of SET-MH data (e.g., Saintilan et al. 2021) have helped to establish that 
increased depths of surface accretion layers result in increasing levels of shallow compaction of 
the sediment column. This finding represents an important advance in our ability to forecast 
future responses of coastal marshes to increases in sea level and reconciles our estimates from 
numerical models with paleo-historical observations. 
 
Synopsis for Connections 11 & 12: Organic peat accumulation in wetland soils results from 
oxygen depletion beneath the surface of the sediment surface. This biological process is nearly 
invariant and is of tremendous importance as wetlands cover only 5% of the land surface but 
contain 25% of global terrestrial carbon. At geographic scales, rates of decomposition and peat 
formation are sensitive to major differences in climate (Perillo et al. 2019). While organic 
production adds to the vertical growth of wetland soils, compaction constantly reduces that 
property. Recently it has been found that increased levels of surface mineral accretion result in 
increasing levels of shallow compaction of the sediment column. This finding represents an 
important advance in our ability to forecast future responses of coastal marshes to increases in 
sea level and reconciles our estimates from numerical models with paleo-historical observations. 
 
Connection 13: The Effect of Erosion on RSLR 
Fagherazzi et al. (2013) have pointed out that coastal marsh collapse does not necessarily require 
sea-level rise but that other factors, particularly erosion can play a role. They emphasize that 
while marshes have the ability to slowly adjust to increases in surface flooding, they are 
inherently unstable at their margins, particularly where waves and tidal energy are high. 
Generally, it is well known that erosion constitutes a situationally important process influencing 
coastal marsh resilience. SET-MH stations tend to be located at some distance from edges so as 
to avoid influences from edge erosion. Thus, we do not consider edge erosion in this treatment. 
However, there exists another form of erosive influence that does warrant consideration, which is 
marsh pond formation. Ganju et al. (2015) reported that suspended sediment concentrations and 
surface accretion rates are higher in deteriorating marshes where some areas are breaking up due 
to drowning (persistent elevation deficits). Such effects indicate that estimates of surface 
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accretion and their contributions to marsh resilience must be interpreted in the context of the 
surrounding landscape and sediment transport processes to avoid misinterpretation of the 
processes involved. 
 
Synopsis for Connection 13: Generally, it is well known that erosion constitutes a situationally 
important process influencing coastal marsh resilience. This represents a physical process that is 
reduced in importance by rooted plants. 
 
Conditional Influences on the Operation of the Core Machinery: 
For the conduct of our CKA, we give separate consideration above to what we call the core 
machinery (Figure S3) versus the conditional influences that may shift its behavior. We consider 
this separation to be important to allow a primary focus to be placed on what is known about the 
causal machinery connecting sea-level rise to marsh resilience (the question of whether the 
correlation in Figure S1 results from a causal process). Conditional influences we treat as of 
secondary importance because it is expected that the investigation of conditional influences will 
typically be an open-ended process focusing on refining out knowledge and on what we don’t 
know rather than on what we do know. In this presentation we consider conditional influences in 
only the most general terms. 

The behavior of biological components of mechanisms can be expected to be more 
conditional than physical components because of the influence of biological diversity. The 
settling of particles from the water column onto the sediment surface is ultimately determined by 
a limited set of physical forces. However, the degree of adherence of particles will depend on 
more than just physical processes, but also by any surface layer of fine roots, which can vary 
widely with the species of plants (Cahoon et al. 2021). Surface communities of algae and 
bacteria are also complex biological entities whose ability to consolidate surface deposits can 
vary widely (Möller & Christie 2019). As shown in Figure S5, plant species can vary 
significantly in both their abilities to contribute to sediment building and the depth distribution of 
their contributions (Cherry et al. 2009). Research into the species-specific contributions to marsh 
building has received increased attention as wetland-specific models have been developed and 
applied (Buffington et al. 2021). Beyond that, factors that influence the productivity of marsh 
plants can have substantial influences on their resilience, as shown by fertilization studies, 
manipulations of levels of atmospheric carbon dioxide, and temperature experiments. 
 
Inputs: 
We treat the biological contributions of organic material to marsh building as an endogenous part 
of our machinery in this treatment. Therefore, the dominant input to the system is mineral 
sediment. A large literature exists on the processes associated with mineral sediment delivery to 
coastal mudflats and marshes (e.g., Perillo et al. 2019) and won’t be expounded upon here. Most 
relevant to this presentation is the substantial dichotomy between minerogenic and biogenic 
coastal marshes. As Cahoon et al. (2021) describe, coastal wetlands occur on a gradient from 
sediment-rich estuaries to sediment-poor coasts. Plant contributions to organic accretion are 
important for the resilience of nearly all wetlands but particularly where there is little mineral 
sediment input. Where productivity is high and/or deep subsidence is low, biogenic marshes can 
persist for long periods. That said, resilience can often be increased by sediment diversions or 
additions (e.g., Elsey-Quirk et al. 2019). 
  



41 
 

Question 4: Are there plausible competing explanations? 
It is always important when presenting a case for a causal explanation for some phenomenon to 
consider whether there are plausible competing explanations. Alternative explanations can 
include completely different mechanisms but also spurious associations due to independent 
influences on the cause and response of interest. In this example, little weight is given to 
alternatives that deviate substantially from the mechanism described in Figure S3. 
 
Questions 5-8: Sufficiency, Reliability, Exactness, and Transportability 
Sufficiency of the Core Mechanism: 
An essential question to address is whether there is evidence to indicate a sufficiently continuous 
chain or network of structures and processes to connect the cause of interest to the response of 
interest. The substantial and sustained efforts contributing to our knowledge of this system gives 
us confidence that there is sufficient evidence to view Figure S1 as a causal relationship. This is 
an easy conclusion to defend as the contributions of processes to marsh elevation reflect 
arithmetic process that can be observed through physical measurements. The slope of the 
relationship observed is 0.86mm/mm. This should be viewed as a summary of the sample rather 
than a mechanistic parameter because it represents the combined influences of the causal chain, 
the particular conditional influences at the locations of the samples including subsidence rates, 
and a result of the sediment supplies for the individual sites. That said, the slope of the 
relationship, which represents the mm of elevation deficit created per mm of relative sea-level 
rise for the sample, is a plausible number implying that on average the marshes are not keeping 
up with sea-level rise, a conclusion reached by Saintilan et al. (2021). Beyond the simple 
question of sufficiency, there are certainly places where our understanding of the functional 
forms of relationships can be improved, though that goes beyond the objectives in this paper. 
 
Reliability of the Core Mechanism: 
In the context of causal analysis, reliability refers to the frequency with which a process operates 
in multiple studies or locations. It does not, however, refer to the quantitative magnitude of its 
influence. From that perspective, when we consider the various processes in the core mechanism, 
we expect a high degree of reliability except perhaps in extreme environments. The processes of 
sedimentation, compaction, deep subsidence, and edge erosion can be expected to operate 
reliability nearly everywhere coastal marshes occur, though certainly conditional influences will 
override their effectiveness where physical conditions are unsuitable. The biological processes 
should also be reliable to a substantial degree as evidenced by the wide-spread distribution of 
coastal marshes and their persistence in the paleo record.  
 
Exactness of Processes: 
Exactness in this context refers to the constancy of mechanism. For our example in this paper, 
numerical models provide us with insights into this issue. For example, some of the processes 
involved in sediment deposition (e.g., equations 2-4 above) involve numerical constants. While 
these may only approximate the true process, they suggest a degree of exactness for the operation 
of mechanistic elements. In contrast, some biological mechanistic elements will show substantial 
quantitative variation. An obvious example is the depth distribution of root growth seen in Figure 
S5. In numerical models, the distribution of plant production as a function of water depth is 
typically represented using polynomial or other equations that approximate the shape of the 
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distribution but without meaningful coefficients. The exactness of such mechanisms is therefore 
low. 
 
Transportability: 
One of the most characteristic features of causal relationships is external consistency, the 
repeated observation of similar manifestations in different situations. Repeated manifestations 
result from there being transportable mechanisms. Mechanisms are transportable when there are 
structures and processes that are repeated in space in time. The global distribution of SET-MH 
stations established by different researchers in hundreds of locations around the globe provide us 
the opportunity to see if manifestations consistent with the machinery in Figure S3 are widely 
observed. There are a number of types of conditional variations reported in different studies; 
nonetheless, there is strong and consistent body of evidence indicating widespread 
transportability. Observed major departures are thought to represent boundary conditions where 
physical factors exceed biological tolerances (see chapters 4, 10-12 in Perillo et al. 2019). The 
case has been made repeatedly that coastal mangrove forests possess sufficiently similar 
biological features to those in coastal marshes that the mechanisms whereby the are able to track 
rising sea levels are roughly the same. This constitutes another level of transportability where 
mechanistic elements are common to distinctly different situations, resulting in recognizably 
similar behavior. 
 
Overall Assessment of Mechanistic Evidence 
It is our assessment that existing mechanistic knowledge supports an interpretation of the 
relationship in Figure S1 as reflective of an underlying causal mechanistic process. We do not 
arrive at this conclusion through quantitative analysis of data, but through scientific knowledge 
accumulated over many studies. Furthermore, it has long been understood that coastal wetlands 
occupied by marsh plants can in many cases build elevation through the accumulation of mineral 
sediment and organic material driven by increases in sea levels. What persistence investigation 
has found is how plants have the capability of increasing rates of marsh vertical growth in 
response to increasing rates of water level rise, up to some point where their capacity is 
overwhelmed. This involves a nonlinear feedback such that when rates of sea level are low, 
increases in marsh elevation keep pace. As annual rates of sea-level rise, the system has a 
capacity to increase its vertical growth rate to keep pace. Eventually the capacity of the marsh 
system is exceeded and elevation increase falls behind, eventually leading to conversion to open 
water (Morris et al 2002). Recent results have also shown a surprising sensitivity of sediment 
compression in response to surface accretion. This finding has reconciled paleo and 
contemporary estimates of vertical growth rates in response to sea-level rise rates, deepening our 
understanding of the system. 
 
FURTHER COMMENTS REGARDING NUMERICAL RESULTS 
Saintilan et al. (2022) report a number of results and we have focused on just one of them, the 
relationship between rates of relative sea-level rise and rates of change in marsh elevation deficit. 
Further, we emphasize the slope and intercepts, which provide useful approximations having 
causal interpretations, such as the rate of relative sea-level rise above which marsh elevation 
deficits begin to occur. If we were to present and discuss more of their findings, we would focus 
on their characterizations of mechanistic elements that are part of the core causal network, such 
as the relationship between accretion and elevation gain, which estimates the compressibility of 
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the sediment. We would again emphasize absolute values of parameters because they potentially 
represent mechanistic knowledge that could be incorporated into a numerical model.  

Saintilan et al. (2022) do highlight in their paper certain causal implications of their findings. 
However, they also present standard statistical results, such as estimates of variance explanation, 
which do not have causal interpretations but are measures of association. Further, they conduct 
random forest and other analyses that may help to lead to hypotheses about conditional factors, 
but that do not contribute to mechanistic understanding. In the future, in causal investigations it 
will be important for researchers to explicitly note which analyses are characterizations of causal 
mechanistic elements (as done in Grace et al. 2025) and which are exploratory. 
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