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Different levels of coarse-graining are of paramount importance to understand how conclusions
drawn from local studies can be made general and extrapolated to larger regions. We here investi-
gate how consist metapopulation model are when considering different resolutions of the landscape
matrix, i.e. different levels of coarse-graining. A formulation of the metapopulation model, tak-
ing into consideration a dispersal volume depending on the grid-cell area is proposed. This first
derivation from the classical model is then extended in order to account for intra-cellular colo-
nization (called self-colonization), which permits an aggregation of cells, as typically done with
coarse-graining. The consistency of the proposed model formulations is then investigated, first,
in a flat homogeneous domain, where the results are independent of the landscape structure. In
a second step, a complex landscape structure is introduced in the form of an elevation field, the
Gran Paradiso National Park. The results suggest that the proposed formulations of the model
are independent of coarse-graining in the flat domain. This appears to be the case in the park as
well, up to a certain level of coarse-graining, where loss of information on the landscape matrix
becomes too severe. In all considered levels of coarse-graining the proposed formulation of the
model outperforms the previously proposed models in terms of convergence of the results.

1 Introduction

Spatially-explicit ecological models, such as species distribution and metapopulation models, are
nowadays frequently adopted to investigate the relationship between habitat properties and species
diversity and richness (Giezendanner, 2020). In fact, the recently increased availability of high-
resolution remote sensing maps is allowing to characterize in detail the habitat features that might
determine the suitability of a species to a certain environment. The grain-size at which a species
is meant to be modeled has to be carefully chosen, as the resulting species distribution may vary
greatly (Kirchheimer et al., 2016). This is especially true for models calibrated at a certain grain
and extrapolated to different grain sizes and extends (Keil et al., 2013).

Issues on how one should theoretically address the problem have long been considered. For
example, whenever assessments of risk to biodiversity need to rely on spatial distributions of species
and ecosystems, range-size metrics, quite sensitive to measurement scale, must be used extensively
(Keith et al., 2018). One of the key measures in these assessments is the area of occupancy (AOO).
Scale issues emerge therefore, prompting proposals to measure them at different scales based on
the shape of the distribution or ecological characteristics of the biota. Despite their dominant role
in the description of endangered species, decades, appropriate spatial scales of AOO for predicting
risks of species’ extinction or ecosystem collapse remain an active subject of research (Keith et al.,
2018). By using stochastic simulation models to explore risks to ecosystems and species in complex
landscapes, Keith et al. (2018) showed that area of occupancy proves an accurate predictor of risk
in most cases only when measured with grid cells 0.1-1.0 times the largest plausible area threatened



by an event. Estimates of AOO at relatively coarse scales thus prove better predictors of risk than
finer-scale estimates. Because the optimal scale for modeling the relevant dynamics depend on the
spatial scales of threats more than the shape or size of biotic distributions, appreciable potential for
grid-measurement errors exist (Keith et al., 2018). Neutralizing geometric uncertainty embedding
effective scaling procedures for assessing risks posed by landscape-scale threats to species and
ecosystems is thus definitely relevant.

Hanski’s metapopulation model (Hanski and Gilpin, 1991) lends itself to the study of the
above issue. It is based on the interplay between colonization and extinction processes, where the
colonization of an empty patch depends on the occupancy probability and distance of surrounding
patches. Such a model has been used in literature to simulate the distribution of different species,
from butterflies to birds (e.g., Schnell et al. (2012)). The connectivity among patches is the
main driver of the model and the landscape structure thus plays a fundamental role. Due to
computational limitations, it is not always feasible to calibrate the model, say by comparing with
data on habitat gathered by a digital terrain model over large-scales Giezendanner et al. (2019), at
the finest possible grid resolution. It is therefore important to understand how modeling results,
such as species presence, vary depending on grain and, in particular, if these results are due to
numerical errors introduced by the model or to the loss of information due to the upscale of the
landscape structure.

While with different levels of coarse-graining certain quantities, such as the mean elevation,
are preserved, Rodriguez-Iturbe and Rinaldo (2001) demonstrate that the connectivity properties
of a landscape may drastically change under progressive coarse-graining. In particular, drainage
directions (i.e. the directions of topographic gradients) change dramatically with the level of coars-
ening, even if the mean elevation is preserved (Rodriguez-Iturbe and Rinaldo, 2001). This has to
be considered because gravity effects affect decisively species dispersal, potentially creating barriers
and/or limitations (Colwell and Hurtt, 1994; Colwell and Lees, 2000). Additionally, Palmer and
White (1994) showed that “species-richness patterns were neither self-similar nor hierarchical”.
In simpler terms, different regions might be connected or disconnected with different grid approxi-
mations of a given underlying landscape. Only scale-free distributions, epitomized by power laws,
tare invariant under coarse-graining (i.e. p(bx) = g(b)p(x) where b is a scale factor), and it cannot
be postulated that such characters are universal in species distributions — on the contrary, they
almost never are. Patches with previously non-existing connections might be averaged into one
larger region, allowing for interactions between populations that were not possible at a different
scale. Small patches of habitat suitable for a focus species might simply vanish with scaling. Over-
all, connections between patches might be neglected, rendering population migration harder, and
therefor changing the outcome of the simulation.

Here, we study how different levels of coarse-graining influence the spatial occupancy of a set
of virtual species invading the Gran Paradiso National Park region when simulated by a gridded
metapopulation model (Hanski, 1998; Fahrig and Nuttle, 2005; Fahrig, 2007; Purves et al., 2007;
Rybicki and Hanski, 2013; Giezendanner et al., 2020). In particular, we propose a formulation
of the metapopulation model where the numerical errors resulting from coarse-graining are to
most parts limited to the spatial discretization of the dispersal process. This guarantees that the
differences in the results are mostly due to the information on the landscape structure lost because
of the coarse-graining, even though these are brought to a minimum as well.

Rybicki and Hanski (2013) and Giezendanner et al. (2019, 2021) have suggested that the land-
scape properties can be considered within the metapopulation model through a suitable fitness
function, which re-scales the colonization and extinction parameters on the basis of how suitable
a patch is for a given species. In this study, the elevation field is considered as the sole landscape
feature relevant to highlight the scaling properties of the metapopulation model. This is also justi-
fied by the recent works of Bertuzzo et al. (2016), which show how terrain topology and elevation
constitutes fundamental indicators of habitat suitability that can be considered as a proxy of other
habitat properties. In fact, topology and elevation have an important contribution in shaping the
habitat-connectivity and, thus, the population dynamics. By subdividing the landscape into cells,
Bertuzzo et al. (2016) show that cells with low connectivity to cells with similar altitude - or avail-
able in a suitable range for given species - tend to be less populated, hence display a low species
diversity. Connectivity is, in this case, defined as a function of the path between cells, specifically
focusing on elevation gradients and distance. Peaks, as well as valleys, seem to prevent population



movement, as species most suited to inhabit these regions would have to cross through unfavor-
able terrain to propagate. Connectivity, as defined here, is strongly dependent on the underlying
terrain, which needs to be sampled from the environment. In a raster-like approach, the size of
the cells is thus a crucial variable to capture these connectivities (Palmer and White, 1994).

2 DMaterials and Methods

2.1 Metapopulation model

The model considered in this study is based on Hanski’s metapopulation model (Hanski and Gyl-
lenberg, 1997), adapted to a raster-like spatial structure (Purves et al., 2007) ideal to incorporate
Earth Observation (EO) data (Pasetto et al., 2018; Zaoli et al., 2019; Giezendanner et al., 2020).
In the metapopulation model, given an initial spatial distribution of probabilities of occupancy p; o
(i =1,...,n, with n number of cells), the variations in the occupancy are governed by the following
system of ordinary differential equations (ODEs):

@0 = Cy(t) (1 - pi(t) — Eupi(t)
pi(0) = pi,o

(1)

where E; and C;(t) are the extinction and colonization affecting the cell . The colonization pressure
of a species from cell j to cell i is expressed by the product of four quantities: i) the colonization
rate ¢ [T7!]; ii) the probability of presence in cell j, p;(¢); iii) a term representing the dispersal
kernel, K;;; iv) and a term representing the quality of cell j, ¢§ [-]. The colonization term C;(t) in
1 is thus obtained by the sum of the colonization contributions from all cells:

Cilt) = ¢y Kija5p;(t) (2)
7

Similarly to the approach in Rybicki and Hanski (2013), the dispersal kernel is described using an
exponential function:

K(d) = r exp <_g) (3)

where D [L] is the species dispersion, d [L] is the distance between two points, and r [L?] is a
normalization factor, typically computed imposing that the integral of the dispersal kernel is 1 on
an infinite domain:

K(d) =1 (4)
]R2

which results in 7 = 5> (Rybicki and Hanski, 2013).

There exist several ways to discretize the dispersal kernel on the given domain (see, e.g., Keith
et al. (2018)). Given two cells ¢ and j and a distance d;;, a straightforward approach consists
in assigning K;; = K(d;;). In this way, however, the sum of K;; on the domain cells changes
with the grid resolution, thus implying a different evaluation of the colonization pressure in each
cell (because C; in equation 2 depends upon the sum of K;;). A different approach descends by
imposing that the sum of the discretized kernel values approximate the integral of the kernel,
thus satisfying the property in equation 4. A simple numerical approximation consists in setting
K;; = A;K(d;;). In the metapopulation model this means that the single contributions of cell j
to the colonization of cell ¢ depends on the area of the source cell j. Section 2.3 analyses more in
detail the advantages of this choice.

The extinction term in equation 1 is represented by an extinction rate e [T~!] scaled over a

term ¢f [-] representing the quality of cell i: E; = q% In the original metapopulation model by

Hanski (1998), ¢¢ and ¢¢ depend on the area A; [L?] of patch i:

@ =Ar 5 qf = Afe, (5)



where . > 0 and a. > 0. In more complex formulations (see e.g., Rybicki and Hanski (2013);
Bertuzzo et al. (2015, 2016); Giezendanner et al. (2019)) ¢f and ¢f are obtained through a fitness
function f(z) describing the suitability of the landscape features for the species: ¢f = ¢f = fi,
with f; being an approximation of the fitness on cell 7. For example, considering only the impact
of elevation as a proxy of temperature (Giezendanner et al., 2019), one may have:

oo (25 ()

where z; is the elevation of cell ¢ (obtained, for example, from a DEM), and z,,; and o are species-
dependent parameters that represent the optimal elevation for the species and the niche width
around the optimal elevation.

2.2 Graining problem

The described metapopulation model was designed to represent the species dynamics on an ensem-
ble of disjointed patches of different sizes, representing the focus species’ suitable areas. Changes
in the model domain mainly consisted in different number of patches and in different spatial con-
figurations.

The application of the metapopulation model on a regular grid is advantageous to well represent
the landscape features in all the domain and to approximate the space-continuity of the dispersal
process of the offsprings. In this framework, it is important to identify the suitable grain size
at which modeling the extinction, colonization and dispersal processes of the species of interest.
Intuitively, results obtained on more refined grid (i.e. the grains) should yield a higher level of
accuracy than those on coarse grids, because the dispersion process and the landscape features are
better described when using finer discretization. However, this approach has two main limitations:
i) the computational cost associated with the numerical solution of the model equation rapidly
increases with the cell numbers, and ii) the data available to describe the landscape features
have a fixed resolution (e.g., the resolution of remote sensing products), and using a finer grid
in the metapopulation model without improving the resolution of the inputs might not add any
improvement in the accuracy of the solution. For these reasons, coarser grains are frequently
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Figure 1: Example of coarse-graining a landscape. In the coarse-graining problem, we are
interested to assess the changes in the solution of the metapopulation model when
changing the grain size in the domain, as depicted, for example, in this figure.

adopted in applications, seeking for a compromise between computational complexity and solution
accuracy.

However, it is fundamental to quantify the error in the metapopulation solution introduced by
the process of coarse-graining. Here, we distinguish two type of errors introduced by coarse-graining
(see Fig. 1):

1. numerical errors due to the discretization of the dispersal process on coarser grids;

2. numerical errors due to the loss of information in the input data, in particular in those used
for the characterization of the landscape (e.g., the DEM in the fitness function 6, as depicted
in figure 2).
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Figure 2: Loss in information in landscape structure with coarse-graining: example
on the GPNP. Changes in the metapopulation model solution after changing the
grain size might be introduced by numerical errors and/or by the upscaling of the
data describing the landscape features, as depicted in this example for the DEM of the
GPNP passing from a grain size of 90 m to 1440 m.
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Figure 3: Behavior of the hypsographic curves with coarse-graining. Hypsographic curve
of three rescaled resolution and compared to the finest resolution (dx = 90 m). Note
that the frequency of the quantity of area available at each elevation changes with
coarse-graining, and that the average remains the same.

2.3 A metapopulation model consistent with coarse-graining

Before quantifying the impact of coarse-graining on the accuracy of the numerical solution, it is
important to understand the properties of the model solution that should be preserved when using
two different grain sizes.

For simplicity, we consider here the rectangular domain depicted in Fig. 4. We want to use
the metapopulation model to describe the probabilities of occupancy in the finer cells, termed p;,
i=1,...,8, and those in the coarser cells, termed pp, and pp,. Intuitively, at every computational
time the probabilities at the coarser grains, should correspond to the average of the probabilities
at the finer grains:

pa ) =3 n0) v =Y 0. g

It is natural to question whether this property is satisfied by the solution of two metapopulation
models that correspond to the two grain sizes.
Adapting equation 1 to the finer grid we have:

. 8
‘Zj; _ C;Kij(Al)qC(Al)pj(t) (1—pilt) -

qe(Al)pl(t) , 1=1,...,8 (8)
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Figure 4: Close up on coarse-graining. Example of a domain having eight squared cells
(called cells 1, ..., 8) having area Ay, upscaled to the two wider cells called By, Ba, of
area Ay, = 4A;.

where we explicitly represented the possible dependence of ¢¢, ¢°, and K;; by the area. In an
analogous way, adapting equation 1 to the coarser grid yields:

{d” — (K, 5, (A2)a* ()i, (1) + K, 5 (A2)*(A2)p, (1) (1 = pis, (1)) — ez pi (1)
w220 — (cKp, b, (A2)g°(A2)ps, (1) + K 5,5, (A2)q*(A2)pi, (1)) (1 = pB, (1)) = 7eizyPBs (1)
(9)

Note that the parameters defining the species, i.e. the rates of extinction e, colonization c
and the dispersal D have the same values in equations 8 and 9, since they do not depend on the
particular grain size at which we discretize the problem. The same property holds true for the
parameters in the fitness, such as z,,; and o in equation 6.

In the following it is shown that, under these hypotheses, the terms ¢¢ and ¢° should be inde-
pendent of the area of the cells in order to satisfy the scaling property in equation 7. Considering
a species that persists in this domain (which exists for suitable parameters e, ¢ and D), the sta-
tionary solution has a homogeneous probability of occupancy in each cell, due to the homogeneous
area of the cells. We call p this probability of occupancy at steady state, p # 0, and, for (7), we
have p=pas =pp=p;,t=1,...,8.

We consider equation 8 at the stationary condition, which is constant in time, and thus the
temporal derivatives in (8) are null. The sum of the first four equations results in:

4 4 4 8
, _ e

cq®(A1) ZZKij(A1)+ZZKij(A1) (1-p) :4m7 (10)

i=1j=1 i=1j=5 ARCES!

which is strictly connected to the stationary condition of the first equation in 9:

_ e
cq(A2) (KB,B,(A2) + KB,B,(A2)) (1 = p) = ———- (11)
q°(A2)

In particular the following equation must be verified:

S Y Ki(AD) + X 3 Kii(Ay)
4

q°(A1)q“ (A1) = ¢°(A2)q°(A2) (K, B, (A2) + KB, B,(A2)) .
(12)

The term % Z?zl Z?Zl K;;(Aq) provides the mean dispersion within cells in B;, and thus should

be an approximation of the term Kp, g, (42). Similarly, the term % Zle 2?25 K;;(As) represents

the dispersion from cells in B; to cells in By, and should be an approximation of Kpg, g, (42). Note

that these properties descend directly when considering K;;(A;) = A1 K(d;;) and Kp, ,(A2) =

As K(dp, B,)-

Under this assumption we have that

q°(A1)q (A1) = ¢°(A2)q°(A2)



which, under representation in equation 5, yields:
ATeATe = (4A1)% (4A1)%, = (4)%(4)% =1.

Since a, > 0 and «, > 0, this is possible only if ¢¢ and ¢ are area-independent (a. = o, = 0).

Note that in this example a self-colonization term is considered in the model equations, i.e.,
cK;;(A1)q¢ in equation 8 and cK g, g, (A2)q° in equation 9. The approach proposed here shows that
this self-colonization term must be considered in metapopulation models when dealing with coarse-
graining problems. In fact, this feature is essential because the intra-cellular dispersal mimics the
dispersal between the corresponding internal cells at finer resolutions. The model obtained is thus
made consistent. i.e. invariant under coarse-graining. Note that including the self-colonization
term in the equation was proposed by some authors (e.g. Schnell et al. (2012)), but the role of
area when changing the grain size was not considered.

The final model formulation thus reads:

D~ o) (- nl) - BOmilo), (13)
Ci(t) = CZKijq§pj(t), (14)
Kij = %exp (%) 5 (15)
Ei(t) = e/dq5, (16)

with the dispersal volume thus dependent on the area of the source pixel, the colonization of the
focus pixel including self-colonization, and the extinction independent of the area.

2.4 Model comparison

In the following we want to highlight the importance of considering a model consistent with coarse-
graining through numerical simulations. To achieve this goal, we compare the following three
models:

e Model MO. This model corresponds to the original Hanski’s model presented in equation 1,
where we set:

— the quality-properties of the cells equal to the area times a fitness function, ¢f = ¢f =
Ai fi;

— the coefficients of the kernel discretization are set to be area-independent, K;; = K(d;;);
— the self-colonization terms are not considered (i # j in equation 2).

e Model M1. This model is a variation of the model presented in equation 13, where self-

colonization is not considered. We set:

— the quality-properties of the cells area-independent, ¢f = ¢f = fi;
— the coefficients of the kernel discretization are set to be area-dependent, K;; = A;K(d;;);
— the self-colonization terms are not considered (i # j in equation 2).

e Model M2. This corresponds to the model in equation 13. Differently from M1, self-
colonization is considered.

2.5 Simulations

To test the consistency of the model under coarse-graining, we simulate the occupancy dynamics
of an invading species within an area of about 70x43 km? in two landscapes (Figs. 1 and 2):

e Landscape L1. A flat domain meant to investigate the consistency of the model with graining
when not affected by the heterogeneous landscape matrix (f; = 1). In this landscape we
compare results for the three considered models: MO0, M1, and M2.



e Landscape L2. A domain consisting of a rectangular area surrounding the Gran Paradiso
National Park. In this case the quality of the cell expressed in terms of the cell-elevation
(used as a proxy of temperature), i.e. f; is computed using equation 6. Elevation is based
on a digital elevation model (DEM) extracted from the Copernicus EU-DEM v1.1 (25 m
resolution). In this landscape we compare results for models M1, and M2.

Both landscapes are considered with grain-sizes of 90 m, 180 m, 360 m, 720 m, 1440 m and 2880.

In landscape L2, the original DEM of 90 m resolution is upscaled to the coarser grains by
bilinear interpolation, which preserves the mean elevations (Fig. 3). Fig. 2 shows the DEMs
at resolutions of 90 m and 1440 m. We can see that the main landscape features are preserved
in the coarser grid, however, the available surface at elevations between 1800-2300 m is slightly
overestimated (Fig. 3).

The model comparison in the homogeneous domain (landscape L1) is meant to investigate the
consistency of the dispersal approach with coarse-graining.

In landscape L2, the complex GPNP domain, we investigate how the added heterogeneity
influences the consistency of the model with scaling. In this case, the process of coarse-graining
causes loss of information in the habitat of the virtual species (the quality), which is set dependent
on the elevation. This deterioration in the input data, might be more or less relevant in the model
results depending on the particular properties characterizing the species, e.g. the dispersion D and
the niche width o.

Table 1: Metapopulation parameters of the species considered in the study

Species | Sl ‘ S2 ‘ S3 ‘ S4 ‘ S5 ‘ S6
cly] 1

ey Y 0.1

Zopt M) 150

o [m] 150 300

D [m] | 100 | 500 | 1000 | 100 | 500 | 1000

The invasion of six virtual species (called S1, ..., S6) is simulated in both landscapes for a period
of 100 years. The species are characterized by different values of the five parameters (c, e, D, z,pt, o)
described in Table 1 (note that ¢ has no influence of the species in the flat landscape which means
only three species are considered there).

3 Results

3.1 Homogeneous landscape (L1)

Fig. 5 depicts the average occupancy over time for three invading species characterized by different
values of dispersal. Occupancy results are computed using the three variations of the model and
for the six different grain sizes, thus highlighting the different impacts of coarse-graining in the
solutions. Differences in the occupancy results are also represented by relative errors with respect
the reference solution (dz =90 m). The occupancy results depicted in Fig. 5 highlight that,
for the three species considered in this landscape, the original formulation of the model (model
MO) converges to different steady states depending on the grain size. Instead, the proposed new
formulation but without self-colonization (model M1) leads to results more stable with coarse-
graining, especially for species with large dispersal (species S2 and S3) and small differences in
grains.

The self-colonization term considered in model M2 has a strong positive impact when dealing
with large grains. In fact, when dz =1440 m or 2880 m, M1 is not able to obtain the same
occupancy value that is reached with finer grains. This problem, instead, is not present in the
results from M2, thanks to the added colonization pressure provided by the self-colonization term.
This claim is corroborated by the lower relative error associate to M2 results

M2 results for species S1 also show that very fine grains are necessary to well simulate the
dynamics of the colonization process when dealing with species having short dispersal values. In
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Figure 5: Behavior of the different model formulations under coarse-graining in a flat
domain. Landscape L1, homogeneous domain. Temporal evolution of the probability
of occupancy (averaged over the entire domain) and relative root mean squared error
between an occupancy map and the corresponding reference solution obtained at the
finest grain size (dz =90 m, dark blue line). Results are depicted for the three different
dispersal distances of the species and the six grain sizes. The three columns show the
results for the three different models (c.f. section 2.4): (Left) model MO; (Center)
model M1; (Right) model M2.

fact, only for this species, M1 occupancies associated to different grains show different patterns
when the colonization process become faster (e.g. due to a larger part of the domain occupied).
The relative errors between the occupancy maps also increase during this phase of fast occupancy
of the domain.

These results suggest that, in a homogeneous landscape, the proposed metapopulation model
M2 is the most consistent with respect coarse-graining. However, there might still be numerical
errors arising for species having short dispersal values (e.g., species S1), For these short dispersal
values, fine graining is necessary in order to correctly approximate the transient states. The main
reason for the presence of these errors is related to the technique used for the discretization of the
dispersal kernel. When the dispersal length is significantly smaller than the cell size, the discrete
kernel used in any simulation does not adequately approximate the dispersal process and more
accurate discretization techniques should be employed, as discussed for example by Keith et al.
(2018).

3.2 Complex GPNP landscape (L2)

Fig. 6 shows the time evolution of occupancy (and its associated error) of model M1 and M2
for the six invading species (c.f. table 1) in the GPNP region (landscape L2). The difference
between M1 and M2 clearly shows the effect of considering self-colonization. Considering for
instance species S1 or S4, without self-colonization (M1), only the most detailed landscape (dx
= 90 m) converges to the intended steady state, whereas almost all grain sizes converge to the
same steady state for model M2. Model M1 still struggles to reach the same average occupancy
for very coarse grains (orange line in Fig. 6, M2, S1), but the error is not comparable to what is
experienced in model M1.

To a certain extent, the observed differences in occupancy in model M2 can still be related
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Figure 6: Behavior of the different model formulations under coarse-graining in a

the GPNP domain. Landscape L2, GPNP domain. Temporal evolution of the
probability of occupancy (averaged over the entire domain) and relative root mean
squared error between an occupancy map and the corresponding reference solution
obtained at the finest grain size (dr =90 m, dark blue line). Results are depicted for
the six species and the six grain sizes considered. The two columns show the results
for model M1 (left), and model M2 (right) (c.f. section 2.4).
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to the errors observed above in the flat landscape (error in discretizing the dispersal kernel), but
another part is explained by the loss of information on the landscape when coarse-graining it. This
is especially visible when comparing species with the same dispersal but different niche width.
Considering for instance species S3 and S6: although the dispersal distance is the same for both
species, S6 converges to the same value for all considered grains. The difference between the two
species is that S6 has a larger niche than S3, and loss in complexity with graining affects it less.
Indeed, given the larger niche, species S6 is less sensitive to small losses in suitable area induced by
the rescaling, i.e. the averaging of the cell. As such, the impact of graining is highest for species S1,
where both dispersal distance and niche width are small, inducing the largest errors in numerical
approximation of the dispersal volume and habitat suitability.

Fig. 7 shows an example of the occupancy of an invading species in space and time, and the
associated difference.
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Figure 7: Spatial comparison of probability of occupancy in time. Probability of occu-
pancy for the invading species S2 at three times (2 y, 50 y, 80 y) and for two grains (180
m and 1440 m). The last row shows the error computed when upscaling the occupancy
from the 180 m resolution to the coarser resolution.

It is interesting to see that the errors in occupancy all seem to stem from overly complex areas,
and mostly from an overestimation of the occupancy of the coarser grid, which is not always the
case (c.f. Fig. 6 S4 for instance, where the coarser grid underestimates the occupancy). This
overestimation could be due to the fact that the heterogeneous cells are averaged to a value closer
to the optimal elevation of the focus species, and the inverse effect could mean that the averaging
removes favorable area, although the underestimation of the coarse grid observed in species S1 and
S4 could also be linked to the small dispersal value.

4 Discussion

In this work we propose an innovative formulation of the continuous metapopulation model for the
simulation of the probability of presence of a focus species in a landscape represented by a regular
raster of cells. The proposed model (indicated with M2 differs from the traditional metapopulation
formulation (indicated with MO) in three points:

1. The extinction and colonization rates of the species on a cell are independent from the area
of the cell, but might depend on the habitat quality of the cell (e.g. elevation).
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2. The coefficients of the discretized dispersal kernel are proportional to the cell areas, in order
to preserve the integral of the kernel on the domain.

3. A term of self-colonization is introduced in the model equations in order to consider the
dispersal processes that occur within the cell.

We showed that these properties naturally descend by asking that the model is consistent with
coarse-granining, i.e. that the probability of occupancy of a coarse cell is equal to the average of
the probabilities computed on the finer-level cells occupying the same surface.

Additionally, the model corresponding to M2, but without self-colonization was indicated as
M1.

To show the benefits of the new metapopulation formulation when dealing with coarse-graining,
Models MO and M2 have been compared using numerical simulations on two landscapes, one
depicting a flat domain and one depicting the DEM of the Gran Paradiso National Park.

The results described here show that:

e The proposed model M2 strongly mitigates the numerical errors introduced in metapopula-
tion models MO and M1 when considering different grain sizes.

e Also when using model M2, there exists a threshold on the grid resolution which should not
be exceeded. In fact, the discretization of the dispersal kernel on large cells might alter the
colonization pressure thus affecting the simulation outcome. This is especially relevant for
species having a short dispersal, as observed in Fig. 5 for species S1.

e Self-colonization appears to be an essential tool in reducing the loss in information occurring
from coarse-graining, as evidently shown when comparing models M1 and M2 in Fig. 6.

e When using coarse grains (dz =1440 or dz = 2880) in heterogeneous landscapes, the loss of
information in the data describing the cell quality introduces an additional source of error
for the metapopulation solution. This error, added to the poor numerical approximation
of the colonization pressure, is particularly relevant when species are characterized by short
dispersals and small niche widths (see 6, species S1, and S2).

5 Conclusion

Depending on the species of interest, metapopulation models have been applied in the literature
at different scales, considering both local and regional domains. However, when dealing with
large domain sizes, only a coarse resolution might be adopted for computational limitations, which
might corrupt the model results due to the loss of information on the landscape structure and
the introduction of numerical errors. This study shows that, by using a metapopulation model
with a graining-consistent formulation, it is possible to identify the grain sizes at which the loss
on information becomes critical when simulating the species occupancy.
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