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Abstract

Determining associations among different species from citizen science dat-
abases is challenging due to observer behavior and intrinsic density vari-
ations that give rise to correlations that do not imply species associa-
tions. This paper introduces a method that can efficiently analyze large
datasets to extract likely species associations. It tiles space into small
blocks chosen to be of the accuracy of the data coordinates, and reduces
observations to presence/absence per tile, in order to compute pairwise
overlaps. It compares these overlaps with a spatial Poisson process that
serves as a null model. For each species i, an expected overlap µi is es-
timated by averaging normalized overlaps over other species in the same
vicinity. This gives a z-score for significance of a species-species asso-
ciation and a correlation index for the strength of this association. This
was tested on 874, 263 iNaturalist observations spanning 15, 975 non-avian
taxa in the Santa Cruz, California region (≈ 4.68×106 tiles). The method
recovers well-known insect host-plant obligate relationships, particularly
many host-gall relationships, as well as the relationship between Yerba
Santa Beetles and California Yerba Santa. This approach efficiently finds
associations on ∼ 108 species pairs on modest hardware, filtering correla-
tions arising from heterogeneous spatial prevalence and user artifacts. It
produces a ranked shortlist of ecological interactions that can be further
pursued. Extensions to this method are possible, such as investigating the
effects of time and elevation. It could also be useful in the determination
of microhabitats and biomes.
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1 Introduction

Mapping inter-species interactions is fundamental to understanding how ecosys-
tems function [1]. Interactions have usually been studied one species pair at a
time. The aim of this paper is to demonstrate a new method for uncover-
ing inter-species interactions with large data sets. For example, iNaturalist’s
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dataset consists of more than 200 million observations [2]. Although some of
these data points are annotated with respect to species interactions, the major-
ity of iNaturalist data only contain three columns of relevant information. A
taxon name, coordinate, and time. The overwhelmingly larger amount of this
simpler information and what can be attained from it is the main subject of
this research.

Many ecological-niche modeling (ENM) techniques have been developed that
use co-occurrence and environmental factors to make predictions [3–6]. An
earlier approach, Deep Multi-Species Embedding (DMSE), used neural-network
models on eBird datasets to predict inter-species co-occurrence [7]. In addition,
the analysis of photographs from citizen science projects have been used to
extract species interactions [8]. Notably many pollinator plant interactions have
been revealed this way [9, 10]. Studies continue to fill in ecological knowledge
gaps using citizen science data from websites like iNaturalist [11, 12]. Despite
the insight that has been gained by ecological-niche modeling, even the best
ENMs can misestimate interaction potential between species [13]. One reason
for this could be the tendency to make lots of assumptions within their models.
With such a complex system, minimizing the number of assumptions made
should help improve accuracy.

Citizen science data is usually far less reliable than data taken in the course
of scientific studies and it also has a significant user bias [14, 15]. People tend
to stay on trails, upload more iconic and obvious species, and mainly observe
during daylight hours. Despite the lower quality of individual observations,
there are many orders of magnitude more of them. The aim of this work is
to come up with statistical techniques to handle data of this kind in order to
extract useful biological information.

2 Methods

The first and simplest way to quantify inter-species correlations is to check if
two species’ data points tend to be closer together than expected by chance. If
that is the case, this is an indication that there may be some correlation between
them, which may suggest a potential for an inter-species interaction.

We start by considering two species i and j. Then we take an individual
data point from species i and draw a circle around it. We ask if the number
of data points from species j in that same circle is to be expected assuming
that there is no interaction between species i and j. I discuss this approach
in the results section. However, it is much less computationally efficient than
simpler methods. The primary goal of this research is to extract information
about species associations from very large datasets, computing correlations for
millions of species-species pairs over large regions. I have focused on a more
efficient method that gives us very similar information by tiling the entire area
containing the dataset and looking at the presence or absence of each species in
each tile.

The data itself is restricted to where users typically visit (see Fig. 1). The
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Figure 1: Tiled map of the Santa Cruz Mountains. The yellow tiles contain at
least one observation. The purple tiles are empty.

clumping that is seen in the data is predominantly an artifact of the observers,
and not an intrinsic ecological property. Take a wetland trail for example: Right
in the same spot people might upload birds seen hundreds of meters away and
might also upload small beetles crossing the trail. This is because the location
data of the photos is predominantly confined to the trail. Most people will
not try to fine tune the locations of all the birds they spot. This could easily
lead to a seemingly significant but spurious relation between herons and marsh
beetles, for example. An apparent correlation due to this sort of observational
bias carries no useful ecological information. Of course they both inhabit the
same ecosystem, but the goal here is to gain deeper insight into inter-species
interactions. The primary focus of this method is determining a baseline to
check whether the population of species j in the vicinity of species i is to be
expected assuming there is no interaction between the two species.

The first step of this method is to tile the data into square areas. For this
paper I chose tile sizes of 33m as an estimate of average location data accuracy
[16, 17].

Having multiple data points for the same animal leads to problems with
the analysis: spuriously high correlations, and makes the data non-Poissonian.
Only using the presence or absence of a species within a tile mitigates both of
these issues. Therefore we employ a tiling method in which we mark present
or absent per tile for each species rather than working with the raw number of
data points.

The inter-species comparisons are then computed by going through each
species pair in the dataset (if two species share at least one tile then they are
compared). We define the overlap, which we denote as Oij , as the number of
tiles in which the two species both are present together.

Our null hypothesis is that the data for a single species is drawn from a
spatial Poisson process [18]. This would mean that correlations in the data
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that we see are due to spatial heterogeneity in observations and random noise,
rather than a real association. More specifically, we consider two species i and
j. Given the data points for i, we ask if the data points for j are well described
as a spatial Poisson process. In other words, the quantities derived from the
data, such as the overlap, Oij , between i and j, are what are expected typically
for species in geographical proximity.

In order to determine if species j has an atypically large number of tile
overlaps with species i, one needs to first determine the typical overlap number.
We can get a typical overlap number for a species i, which we will denote as µi,
by considering other species that share geographical proximity with species i.

To get an estimate of a typical overlap with a given species i, we can make
use of the fact that there are almost always many other species that overlap
with it. We can use these other species to get an estimate for a typical overlap.
To be more specific, we are considering all tiles where species i is present. For
each of these we list the other species in the same tiles. Then we will obtain an
average using these other species.

There is a problem caused by the varying tile count of species in the dataset.
The total number of tiles occupied by a species varies greatly [19]. This leads
to artifacts when performing averages that are discussed further in section 4.1.
To account for this, we normalize by the tile count of each species j. Dividing
the overlaps of i and j by the total tiles of j, which we denote as Tj , will remove
this bias. We define the overlap density of species i with j as

θij ≡
Oij

Tj
(1)

Then we can compute the average overlap density.

θi =

∑Ni

j=0 θij

Ni
(2)

If the null hypothesis is correct, we expect the overlap density for species i to
be the average overlap over all the other species that we are comparing species i
with. Therefore

µi/Ti = θi (3)

Therefore

µi = Ti

∑Ni

j=0(
Oij

Tj
)

Ni
(4)

if the data for species i was drawn from the same spatial Poisson process.
To assess whether the observed overlap Oij is to be expected typically, we

use a z-score. To get the z-score we need to get the standard deviation σ.
Assuming the data is drawn from a spatial Poisson process, the variance σ2

equals the mean µi. Therefore the z-score goes as follows
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z =
Oij − µi√

µi
(5)

This measures how far Oij is from its expected value µi in standard-deviation
units. If z is sufficiently large, we reject the null hypothesis.

Given this equation to ascertain the z value, we only need to compute µi and
Oij . But in making the comparison between species i and j, we must choose
which of the species is i and which is j, as the mathematical meaning of z is
altered if we exchange i and j. In order to choose one we make a reasonable
assumption that the rarer species inhabiting less tiles has a greater chance of
relying on the more common species with more tiles. Therefore we choose the
i species as the species with less tiles, Ti < Tj , as it should yield more accurate
results.

In addition to a z-score which indicates significance, a level of correlation
can also be quantified. In this case it is the overlap over the mean [20].

ρij =
Oij

µi
(6)

Fine tuning may be needed depending on the dataset. The subsequent re-
sults are based on a dataset where I removed species that inhabited 5 or less
tiles from the dataset. The reason being that a species with such few data points
will not be able to yield useful results and it may very well skew the means in
an unfavorable way. Another adjustment made was omitting avian observations
from the dataset. This was done because birds tend to have less obligate rela-
tions with other species. For avian species, this method is less likely to yield as
many interesting interactions as are found with invertebrate species.

3 Results

This method was run on a dataset centered around Santa Cruz California
(see Fig. 1). It was bound by the latitudes 37.2551 and 36.9209 and the lon-
gitudes −121.464 and −122.446. The study area contains 4, 684, 582 tiles, ar-
ranged 3313× 1414. This corresponds to 109.329 km (east–west) by 46.662 km
(north–south).

This dataset was downloaded in June of 2025 from iNaturalist. It includes all
recorded non-avian species and genus-level taxa from the given area that inhabit
at least six or more tiles. Observations with obscured or private locations were
omitted from this dataset as well.

The data analysis on this dataset was performed on an 8-GB MacBook Air
(M1). The quality and insight gained should increase with larger data sets and
this will be explored in future work.
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3.1 Radial distribution function

A quantitative way of understanding the correlations between different species
is to use the radial distribution function (RDF) [21]. The RDF for two species,
i and j, gives the probability per unit area that for any observation of i, an
observation of j is at a radius r from it. To compute the RDF over a max-
imum distance of R, one determines all distances between observations for i
and observations for j and bins them according to this distance, normalizing by
the total number of pairs of distance less than R and the area spanned by the
corresponding bin. This gives the probability per pair, per unit area.
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Figure 2: Normalized Radial Distribution functions for three species pairs.
Blue: California Yerba Santa × Yerba Santa Beetle
Red: Pacific Poison Oak × Yerba Santa Beetle
Green: Coast Redwood × Slender Banana Slug

Here I have highlighted three different species pairs to illustrate typical and
atypical correlations. One of the strongest associations, that will be further
discussed below, is between California Yerba Santa with the Yerba Santa Beetle,
(solid line) in Fig. 2. The other two pairs, Pacific Poison Oak with Yerba Santa
Beetle (dashed line) and Coast Redwood with Slender Banana Slug (dot dash)
have weaker correlations that are still quite substantial. These distributions
are typical of what one expects for species correlations and do not imply any
biological association. The heightened probability density seen for small radii
are due to the aforementioned factors, that species observations occur along
trails, paths, and in more biologically favorable areas.
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Table 1: The top eleven known inter-species correlations within our dataset
sorted by significance value (Sig). The results are displayed in order of highest
significance descending. The percentile column indicates the rank within the
entire output dataset.

Species (i) Overlapping Species (j) Sig. (z) Corr. (ρ) (%)

Tamalia glaucensis Big Berry Manzanita 37.52 21.24 99.98
Coyote Brush Bud
Gall Midge

Coyote Brush 30.42 9.18 99.96

Coffeeberry Midrib
Gall Moth

Coffeeberry 29.92 26.84 99.92

Coyote Brush
Stem Gall Moth

Coyote Brush 28.94 12.26 99.90

Sagebrush Woolly
Stem Gall Midge

California Sagebrush 28.64 13.65 99.88

White Sage Leaf
Gall Midge

Black Sage 28.28 44.07 99.86

Ceanothus Bud
Gall Midge

Wartleaf Ceanothus 28.28 44.07 99.84

Pumpkin Gall
Wasp

Coast Live Oak 25.25 8.98 99.75

Red Cone Gall
Wasp

Valley Oak 24.66 7.5 99.71

Yerba Santa Beetle California Yerba Santa 24.62 21.5 99.69
California Gall
Wasp

Valley Oak 24.31 5.46 99.65

3.2 Tables

Table 1 lists the top eleven known inter-species correlations within our dataset
sorted by significance value, z. The rows are ordered from highest significance
descending. It lists species i, species j, significance z, correlation ρ, and per-
centile ranking %. Significance, correlation, and percentile are rounded to two
decimal places.

The majority of the highest scoring significances are known obligate rela-
tions. In fact all but one of these from Table 1 are cecidogenous (gall producing)
species. This means whenever these are observed it is unlikely for them to be
found in a spot without the host plant.

The Yerba Santa Beetle stands out for being the one species that is not
cecidogenous. It represents many non-cecidogenous insect species that fully
rely on a single host species / genus as a part of their life cycle. The Yerba
Santa Beetle, Trirhabda eriodictyonis, relies fully on species from the genus
Eriodictyon such as Eriodictyon californicum, California Yerba Santa. It feeds
exclusively on Eriodictyon leaves as a larva and as an adult [22].

Table 2 lists the top six inter-species correlations between two species that
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Table 2: The top six inter-species correlations between two species that share
the same host plant. The results are displayed in order of highest significance
descending. The percentile column indicates the rank within the entire output
dataset.

Species (i) Overlapping Species (j) Sig. (z) Corr. (ρ) (%)

Convoluted Gall
Wasp

Red Cone Gall Wasp 30.22 15.36 99.94

Spined Turban
Gall Wasp

Red Cone Gall Wasp 27.69 9.19 99.82

Club Gall Wasp Disc Gall Wasp 26.56 17.61 99.80
Yellow Wig Gall
Wasp

Red Cone Gall Wasp 26.05 13.83 99.78

Honeydew Gall
Wasp

Red Cone Gall Wasp 25.38 13.63 99.77

Table 3: The top three inter-species correlations between two species that
do not appear to have any known inter-species interactions documented. The
results are displayed in order of highest significance descending. The percentile
column indicates the rank within the entire output dataset.

Species (i) Overlapping Species (j) Sig. (z) Corr. (ρ) (%)

Oregon Gumplant Common Yarrow 24.81 9.13 99.73
Strigamia Pacific Newts 24.55 10.77 99.67
Rockweed Ochre Sea Star 24.16 6.8 99.63

share the same Quercus host plant within our dataset sorted by significance
value, z. The rows are ordered from highest significance descending. It lists
species i, species j, significance z, and correlation ρ, and percentile %. Signifi-
cance, correlation, and percentile are rounded to two decimal places.

Some species end up correlating with other species because they have the
same host plant. This was mainly seen with various oak associated gall wasps
from the Tribe Cynipini. While strong user bias could be a reason for these
results, there is a possibility that certain individual oaks have a greater chance
of being infected by multiple cecidogenous wasp species [23].

Table 3 lists the top three inter-species correlations within our dataset be-
tween two species that do not appear to have any known inter-species interac-
tions documented, sorted by significance value, z. The rows are ordered from
highest significance descending. It lists species i, species j, significance z, and
correlation ρ. Both significance and correlation are rounded to two decimal
places.

With complex ecosystems and observational biases in the data, the reason for
some of these strong correlations is sometimes difficult to interpret. Because the
coast is such a thin span of area, the coastal data from this dataset is too small
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to yield useful results. Therefore coastal relations should be ignored from these
results. In the greater Santa Cruz area, Oregon Gumplant and Common Yarrow
both generally inhabit coastal scrub ecosystems. It is likely the Rockweed and
Ochre Sea Star association exists for a similar reason. If coastal ecosystems were
to be explored more with this method, a much larger dataset would be needed.

Strigamia, also found in Table 3, is a genus of Soil Centipedes (Order
Geophilomorpha) that can be found in damp areas. It is not clear why it
would correlate so strongly with Pacific Newts. One likely explanation is that
in the Santa Cruz Mountains, next to the Lexington Reservoir, there is the Alma
Bridge Road Newt Passage Project which has been documenting Pacific Newts
and Pacific Newt roadkill instances along Alma Bridge Road [24]. Throughout
this 5.4 km section of road, numerous unidentifiable Pacific Newt roadkill in-
stances have been documented and marked as ”Pacific Newts” on iNaturalist.
Within this same section many Strigamia roadkill have been observed as well.
Because of the large scale of this citizen science project, the quantity of roadkill
has caused a significant amount of co-occurrence for these species. It seems that
because of this data anomaly, a strong association between Strigamia and Pa-
cific Newts has shown up in the results. A larger dataset should eliminate this
artifact, unless there is a true unknown relation, which is possible but unlikely.

4 Discussion

This method is different from previous methods in the way it is able to filter
correlations that are an artifact of the data. There are two kinds of reasons for
why things appear to correlate when they do not. The first reason is user bias
[25]. The second reason is that species will be more prevalent in certain regions
rather than others, but this does not mean to say that they interact [26, 27]. In
both cases a baseline is needed for what one would typically expect. Other work
has not properly addressed this problem and will therefore yield inter-species
interactions that are not as reliable. It is for this reason that this method is an
important addition to modeling ecological data.

Additions to this method to characterize microhabitats for each species
would be interesting. While a species of beetle might not correlate very highly
with any single plant species, there is a chance it may find a particular combina-
tion of plants most habitable. That information could be revealed by the data
given the right methodology. Incorporating time, elevation, and weather into a
larger method could help yield further insight into ecosystem functionality.

There is also the potential to use this method to help in the delineation of
ecoregions alongside algorithms that involve data clustering [28].

4.1 Exploring different estimates for the mean

I have considered multiple ways of obtaining an average, µi. Because this aver-
age is a crucial part of the methodology, it is important to explain why seemingly
simpler alternatives fail. We can take a species i and average every Oij for each
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overlapping species j. Let Ni denote the number of j species we compare to

species i. The formula for the average overlap µ
(O)
i is

µ
(O)
i =

∑Ni

j=0 Oij

Ni
(7)

The reason for not using this average is because of the very broad distribution
of species abundance that is best described by a log series distribution [19].
The degree to which a species’ tiles overlap will correlate strongly with their
abundance. The very broad form of this abundance distribution will make the
average of the mean abundance much larger than other measures, such as the
median. This means that species with high abundance will dominate the mean
in Eq. 7 because of high value outliers. This leads to a greatly reduced mean
statistical power compared to the alternative definition Eq. 4 that mitigates
these outlier effects. In that formula the averaging of Oij employed a division
by Ti inside the computation of the average, which suppresses the effects of
these high abundance outliers.

5 Conclusion

This paper has introduced a highly efficient method of getting likely candidates
for strong inter-species interactions that can be extracted from citizen science
datasets. This was done by constructing a method for filtering out specious
correlations and devising a computational method that is very efficient. This
method was run on a dataset of 15, 975 species, and 874, 263 data points, which
has potentially 127, 592, 325 interactions, using only modest computer resources.
The results obtained find known interactions and some other ones that are likely
artifactual but may actually have some ecological significance.

Future work could include: looking at spatial-temporal correlations, more
comprehensive analysis of the entire database, using similar methods to better
delineate biomes, and the analysis of species microhabitat.
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