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Abstract

Heterogeneity in parasite infection among hosts shapes transmission dynamics and spillover risk

to other host species but remains poorly understood in natural systems. We applied network-

based stochastic block modeling and machine learning to a uniquely rich dataset to identify and

predict protozoan infection profiles in introduced black rats (Rattus rattus) sampled along an

environmental gradient in Madagascar. Three host infection profiles emerged, differing in par-

asite richness and composition, revealing distinct host roles in transmission. Predictive models

incorporating host traits (e.g., body mass, microbiome composition) and environmental vari-

ables (e.g., population density, habitat structure) accurately classified hosts into profiles, with

host traits contributing to predictions 40% more than environmental features. Our findings

show how intrinsic and extrinsic factors jointly structure individual-level infection heterogeneity

and underscore the value of infection profiles for understanding host–parasite dynamics. Our

integrative approach offers a framework for predicting infection risk at human–animal interfaces

where zoonotic pathogens circulate.
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Introduction

Heterogeneity in infection is a defining feature of host–parasite systems, with parasite distri-

butions typically skewed: most hosts harbor few parasites, while a small subset carries heavy

burdens (1 ,2 ). This variation, driven by differences in host physiology and environmental con-

text, has major consequences for transmission dynamics, infection persistence, and spillover risk

(3–7 ). Further complexity arises from co-infections involving multiple parasite species or strains,

each with distinct natural history traits and transmission strategies (8–10 ). Understanding these

interacting sources of heterogeneity is essential for predicting and mitigating parasite spread and

impact (11 ). However, the combined influence of host traits, co-infections, and environmental

factors on patterns of parasite infection heterogeneity remains poorly understood, particularly

at the individual host level.

Bipartite networks, where parasites are linked to the hosts they infect, offer a powerful frame-

work for studying heterogeneity in host–parasite interactions (12 ). However, studies to date

have largely focused on species-level networks to explore ecological and evolutionary processes

underlying heterogeneity (13–16 ), with only a limited use of individual-level networks (17 ).

Individual-level networks can be used to identify groups of individual hosts with similar para-

site associations and, conversely, groups of parasites infecting hosts with similar characteristics.

These emergent group structures, which we term infection profiles, can provide insights into the

ecological and epidemiological roles of hosts and parasites (18 ,19 ). For example, distinguishing

generalist parasites from rare or highly specialized ones (20 ), or identifying host groups with

distinct parasite assemblages.

Detecting infection profiles involves clustering nodes with similar interaction patterns, which can

be done using stochastic block modeling (SBM) (19 ). Unlike clustering methods that empha-

size dense intra-group links (e.g., modularity), SBMs identify latent group structures based on

connection probabilities within and between blocks, allowing detection of nodes that have sim-

ilar probabilities of connecting to nodes in other groups (18 ,19 ). Despite their potential (21 ),

SBMs are rarely used in ecological analysis (22–25 ). However, such previous studies confirmed

their usefulness. For example, in the human gut microbiome, SBMs identified generalist and

specialist microbes (23 ). To date, however, SBMs have not, to our knowledge, been applied to

host–parasite networks.

Here, we identify infection profiles in individual hosts of the introduced black rat (Rattus rattus)

and their protozoan parasites in northeastern Madagascar. Protozoa commonly inhabit the

mammalian gut, yet few studies have explored their diversity in wild mammals or the factors

influencing their community structure (26 ). Detecting infection profiles is particularly important

in rural, low-income regions like Madagascar, where introduced rats, living both in the wild and

near human settlements, serve as reservoirs for zoonotic pathogens, increasing the risk of spillover

to humans (27 ,28 ). For example, in Madagascar R. rattus was previously found to have an

infection rate of ∼20–50% for protozoa of the zoonotic genera Trypanosoma, Cryptosporidium,

and Giardia, which have also been detected in humans on the island (28 ,29 ).

While infection profiles can reveal structural heterogeneity in host–parasite interactions, they

do not explain how it emerges. To gain mechanistic insight to these interactions, our second

goal is to identify the intrinsic and extrinsic factors shaping infection profiles by focusing on

the two main phases of infection: exposure (the likelihood of encountering a parasite) and sus-

ceptibility (the likelihood of infection post-exposure) (30–32 ). Intrinsic host traits such as sex,

age, body mass, immune function, and co-infections can influence both stages by affecting host
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behavior, immunity, and survival (33–35 ). The host microbiome is also a key modulator, shap-

ing susceptibility via its effects on immunity, metabolism, and overall health (36 ,37 ). Extrinsic

factors, including land-use change, habitat fragmentation, and environmental reservoirs, alter

host movement, contact rates, and exposure risk (38–41 ). For example, gut protozoa, transmit-

ted via fecal-oral routes, are particularly sensitive to environmental contamination, which varies

in different ecological contexts (42 ,43 ). These extrinsic pressures often interact with intrinsic

traits—for instance, through effects on diet, body condition, or stress. However, how such inter-

actions drive infection heterogeneity remains poorly understood, especially in wild or semi-wild

mammal populations.

We combined SBM and machine learning tools with detailed field sampling of ecological and

biological data to detect infection profiles and assess the key drivers of infection heterogeneity.

Our dataset is unusually rich and detailed, containing diverse host traits (e.g., body mass, sex,

nematode co-infection, and gut microbiome composition) and environmental factors (e.g., habi-

tat characteristics, disturbance, and community composition). This allows us to test multiple

host and environmental drivers simultaneously, an approach rarely possible in most systems. By

linking these factors to SBM-identified infection profiles, we disentangle the relative contribu-

tions of host traits and environmental conditions to emerging heterogeneity in parasite infection

patterns (Figure 1).
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Figure 1: Conceptual scheme of methods. (A) Rattus rattus individuals and their protozoan
parasites were sampled along a land-use change gradient to investigate infection heterogeneity. (B)
Host traits (e.g., mass, sex, nematode co-infection status, and microbiome composition) and envi-
ronmental features (e.g., habitat attributes, population density) were measured for each host. (C)
We used Stochastic Block Modeling (SBM) to identify host and parasite infection profiles based on
interaction patterns in the host-parasite network. Colors indicate SBM-assigned group membership
of protozoa OTUs and rat hosts. (D) We trained an XGBoost model on the host and environmen-
tal features to quantify their relative importance in predicting infection profiles. (E) (i) We used
SHAP (SHapley Additive exPlanations) values to estimate the mean absolute contribution of each
host-trait (purple circles) and environmental (green circles) feature by measuring changes in model
predictions upon feature removal (44). (ii) The relationship between features (e.g., host mass) and
SHAP values for each infection profile was assessed. Positive SHAP values indicate a feature that
supports classification into an infection profile, while negative values indicate the opposite.
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Results

Our study focused on the black rat (Rattus rattus), a species introduced to Madagascar proba-

bly during the 10th-century and the most abundant small mammal in non-forested, rural areas

on the island (45–47 ). As a large generalist omnivore with a highly adaptable diet (48 ), R.

rattus is a primary agricultural pest, a major disruptor of native ecological communities, and

a potential vector for zoonotic diseases in the area (27 ,47 ). Rats were trapped in three dif-

ferent villages and across seven habitat types, ranging from semi-intact moist evergreen forest,

secondary grasslands, zones of agroforestry and agricultural areas, to human settlements, us-

ing standardized trapping grids and pitfall lines over three seasonal replicates. We used DNA

metabarcoding to detect a range of protozoan operational taxonomic units (OTUs) in each rat,

identify nematode infections, and characterize the rat gut microbiome.

We constructed a bipartite network linking individual rats to protozoan OTUs. OTUs were

identified using 18S rDNA-based metagenomics, as species-level resolution is often unattainable

for protozoa. This approach enables exploration of the distinct functional roles and impacts

of different protozoan groups on the host (49 ). We also assigned the lowest taxonomic identi-

ties possible to OTUs to complement the functional perspective with traditional classifications.

Another novel aspect of our analysis is the inclusion of hosts without detectable protozoan in-

fections. Host-parasite network studies exclude uninfected individuals because the lack of a link

could be a false negative. Our primer set amplifies both parasitic and non-parasitic eukary-

otic DNA, allowing us to designate rats with only non-parasitic protozoa as “uninfected”. We

still acknowledge that, as in any study, very low-abundance parasite infections might escape

detection (see Materials and methods). The rat–protozoa bipartite network included 841 host

nodes—271 uninfected (singleton nodes with no links) and 570 infected—and 41 protozoan OTU

nodes. The network contained 1,557 links, with a connectance of 0.045 (i.e., 4.5% of all possible

links were realized).

Stochastic block modeling reveals structured host and protozoan profiles

We used a stochastic block model (SBM) to cluster hosts and parasites into groups with similar

interaction patterns. The bipartite SBM estimates the probability of infection between host and

parasite groups, identifying blocks of nodes with similar infection probabilities. Because SBM

is based on links, we predefined uninfected hosts as a separate group and conducted the SBM

analysis exclusively on the infected hosts.

We identified two host groups based on the SBM analysis. Together with the uninfected group,

this resulted in three host infection profiles. We also identified seven protozoan infection profiles

(Figure 2A, Figure S1). The host infection profiles varied in size, with 271 individuals

classified into the first profile, 205 into the second, and 365 into the third. Protozoan infection

profile size ranged from a single OTU to 21 OTUs. We also found variation in host node degree.

Specifically, rats from the first profile were infected by 0 protozoa OTUs (the uninfected profile),

rats from the second profile were infected by 1-7 (mean = 1.61) OTUs, and rats from the third

profile were infected by 1-10 (mean = 3.36) OTUs (Figure 2B). The protozoan infection profiles

also varied in degree, as OTUs from profiles 1, 5, and 6 (all are of the genera Tritrichomonas or

Hypotrichomonas) were more prevalent, infecting 15–36% of hosts, whereas OTUs from profiles

2–4 and 7 were rarer, infecting only 0.3–8% of hosts (Figure 2C, Figure S2).

The host infection profiles differed not only in node degree but also in connectivity patterns, as

captured by the block connectivity matrix Θ (Figure 2A). Hosts in profile 1 were uninfected

and showed no associations with any protozoan OTUs. In contrast, host infection profile 2
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was characterized by infection with the prevalent Hypotrichomonas OTU. This was indicated

by strong connectivity to protozoan profile 5, along with sporadic infections with diverse, low-

prevalence OTUs (protozoan profiles 4 and 7). Host infection profile 3 exhibited higher overall

infection levels, with particularly strong associations to the highly prevalent Tritrichomonas

OTUs (protozoan profiles 1, 2, and 6).

Heterogeneous connectivity patterns were also found for the protozoa profiles, as some main-

tained a consistent low infection rate (e.g., profile 7), while others exhibited strong preferences to

particular host infection profiles (e.g., parasite profiles 1, 5, and 6). Several protozoan profiles

consisted of specific taxa (profiles 1-3, 5, 6, and 8 were mostly Tritrichomonas and Hypotri-

chomonas), while profiles 4 and 7 contained diverse taxa.

Overall, these distinct connectivity patterns demonstrate that the SBM effectively captured

infection profiles, revealing latent groups in host-parasite interactions.
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Figure 2: Infection profiles of Rattus rattus individual hosts and protozoan OTUs. (A) The
block connectivity matrix Θ resulting from the stochastic block model (SBM) analysis of the rat-
protozoa network. Rows and columns represent protozoa and host groups, respectively (n indicates
the number of OTUs or hosts in each group). Cell color reflects the SBM-predicted link probability
between a host and an OTU that belong to certain groups. The link probability is denoted in each
cell and the total number of observed links between groups is shown in parentheses. Pie charts
depict the proportion of OTUs from each protozoan taxa (at the species/genus level) within each
protozoan infection profile. (B) Host degree distribution (protozoan OTU richness with which a host
is infected). (C) Protozoa OTU degree distribution (number of host individuals an OTU infects).
Colors indicate protozoa and host infection profiles (SBM groups).
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Host traits outweigh environmental features in predicting host infection profiles

We trained an XGBoost multi-classification model to predict host infection profile membership.

Our analysis considered class imbalance (uneven sizes of the three host infection profiles). We

predicted host infection using both host and environmental variables as features. These variables

were selected based on their known influence on host exposure to parasites and susceptibility to

infection (see Feature collection and processing in Materials and methods for details; Table 1).

Host variables included body mass, body condition, sex, and age class—traits that affect behav-

ior and immune function. We also included nematode co-infection status and gut microbiome

composition (relative abundance of four key microbial families), both of which can modulate

host immunity and infection outcomes (35 ,37 ). Environmental variables included habitat type

(derived via vegetation PCA to capture habitat structure), distance to the nearest village center

(a proxy for human disturbance), and small mammal community composition (densities of R.

rattus, native small mammals species, and other non-native species, including Suncus shrews

and house mice Mus musculus). These factors influence environmental exposure to parasites by

shaping habitat conditions, contact rates, and parasite persistence in the environment (40 ,41 ).

Together, these variables capture host-level intrinsic and extrinsic sources of variation likely to

shape infection profiles.

Our model consistently outperformed a no-skill classifier in predicting host profiles (weighted

precision = 0.53, weighted recall = 0.54, weighted F1-score = 0.53, weighted balanced accuracy

= 0.64, and Matthews correlation coefficient (MCC) = 0.28; SI notes 3 and 4). To evaluate the

model’s ability to distinguish among profiles, we further assessed one-vs-all performance across

decision thresholds. The Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

exceeded the random expectation of 0.5 for all profiles (AUC = 0.726, 0.606, 0.738, for profiles

1, 2, and 3, respectively). Similarly, the Precision-Recall Curve was above the no-skill baselines

for the three host profiles (AUC = 0.548 [no-skill of 0.322] for profile 1; AUC = 0.331 [0.244]

for profile 2; and AUC = 0.656 [0.434] for profile 3). Therefore, we can predict infection profiles

based on the features we selected.

However, not all features contribute equally to prediction. To identify the features driving

model predictions of host infection profiles, we used SHapley Additive exPlanations (SHAP)

analysis, which quantifies each feature’s contribution to classification outcomes (44 ). To assess

the relative importance of host traits versus environmental factors, we summed absolute SHAP

values within each category. While both categories of features influenced model predictions,

host traits’ features contributed 40% more than environmental features (1.24 compared to 0.88

mean absolute SHAP) (Figure 3A). This trend was consistent across all host infection profiles,

with host features consistently showing higher absolute SHAP values. However, for host profile

3, the environmental features contributed almost as much as the host traits. The pattern held

even when we considered only the top six host features to match the number of environmental

features, with host features still exhibiting higher mean absolute SHAP values (1.16 vs. 0.88).

The most influential host features included host body mass and the relative abundance of the

gut microbial families Prevotellaceae and Muribaculaceae (Figure 3B). Body mass is known to

affect infection risk, and it is often linked to body condition, age, and sex (50–54 ). However,

these later features ranked low in their importance. Salient environmental features included

rat and other non-native species densities at a site, together with the site’s vegetation structure

(PC1) (Figure 3B). Notably, the relative importance of all features varied among host infection

profiles, with some playing a crucial role in predicting certain profiles while being less relevant

for others. For example, rat density was an important feature in predicting host infection profiles
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1 and 3, whereas its contribution to the prediction of profile 2 was lower (Figure 3B).
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Figure 3: Importance of host traits and environmental variables in predicting host infection
profiles. (A) Mean absolute SHAP values for host and environmental features across all host
infection profiles, highlighting their relative contributions. (B) Feature importance, measured as the
mean absolute SHAP values across hosts for all infection profiles. Features are ranked from most
important (top) to least important (bottom). In both panels, bar colors depict host infection profiles.
Circles indicate host (purple) and environmental (green) features, with the letter inside each circle
depicting the corresponding sub-category of the feature per the legend at the bottom-left (Table 1).

Host traits and ecological gradients structure host infection profiles

To further investigate how the most important features influence the prediction of specific host

infection profiles, we used SHAP dependency plots, which visualize the relationship between

feature values and SHAP values. A positive SHAP value for a given infection profile indicates

that the model is more likely to classify hosts with those specific feature values into that profile,

whereas a negative SHAP value suggests a lower probability of classification into that profile

(44 ).

For most features, we observed clear trends between feature values and model predictions of

infection profiles (Figure 4, Figure S4). For example, rats with a body mass below 100

g were consistently classified into infection profile 1, which is associated with no infection,

whereas larger rats were more often assigned to host profile 3, characterized by higher infection

richness. Particularly interesting features were the relative abundance of the bacterial families

Prevotellaceae and Muribaculaceae. A high relative abundance of Prevotellaceae in a host was

influential in distinguishing host profile 3 (high infection). In contrast, a high relative abundance

of Muribaculaceae was associated with host profile 2 (low infection) (Figure 4). These bacterial

families have been shown to play key roles in digestion, immune regulation, and gut health
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(55–57 ).

Among the environmental features, higher non-native species and rat densities were associated

with a marked shift in predicted host infection profiles from 1 (no infection) to 3 (higher infection

richness). This pattern was also evident along the vegetation gradient: negative values of

vegetation PC1—indicative of less disturbed sites—were more associated with host profiles 1

and 2, and less so with profile 3. However, some features showed weak or no clear trends with

specific infection profiles (e.g., distance from the village center; Figure S4).
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Figure 4: Key host traits and environmental factors predict infection profiles with distinct
trends in SHAP values. SHAP dependency plots show individual hosts’ SHAP values (y-axis) as a
function of feature values (x-axis). For clarity, we visualized only the LOESS-derived trend line and
its associated confidence interval for the 841 host samples, rather than displaying all individual host
data points. Line colors indicate host infection profiles. The dashed gray line marks a SHAP value
of zero (i.e., no predictive value). LOESS line above and below 0 indicates that the classification
of a profile is more or less likely, respectively. The top and bottom rows present the three most
important host and environmental features, respectively ([B] = Biological; [M] = Microbiome; [C]
= Community density; [V] = Vegetation).
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Discussion

Understanding what drives infection heterogeneity is key to predicting parasite transmission and

spillover risk. However, identifying patterns in infection heterogeneity and its underlying factors

remains challenging. By combining stochastic block modeling (SBM) and machine learning with

detailed field data on the introduced Rattus rattus in Madagascar, we identified three distinct

host infection profiles—ranging from low infection and weak protozoan associations to high

infection. Host traits were 40% more important than environmental factors in shaping these

profiles, with body mass, gut microbiome composition, and small mammal community density

being the strongest predictors.

Our approach offers new insights into the processes underlying host–parasite interactions by

identifying infection profiles that capture meso-scale network structure: groupings of hosts based

on the composition and connectivity of their parasite assemblages. Unlike host-parasite pairwise

analysis, infection profile detection accounts for co-infection patterns and variation in parasite

generalism, which are ubiquitous in nature (58 ,59 ). For instance, hosts in profiles 2 and 3

differed not only in parasite richness but also in parasite composition, with a shift from highly

prevalent Tritrichomonas OTUs in profile 3 to less prevalent Hypotrichomonas and other rare

taxa in profile 2. These infection profiles also offer predictive insights into host heterogeneity,

revealing epidemiologically relevant differences. For example, Hosts in profile 3 were associated

with generalist parasites and may act as superspreaders, while those in profile 2 had lower

infection rates but harbored a greater diversity of parasite taxa. These contrasting patterns

suggest distinct roles in infection dynamics and spillover risk. Supporting this, profile 3 was

more strongly linked to Tritrichomonas, whereas profile 2 was associated with Blastocystis and

Eimeria. Those three protozoan taxa were detected in local human populations (unpublished

data; (60 )). Thus, the relevance of each profile to potential spillover events may differ.

Body mass was the dominant predictor of infection heterogeneity. Body mass is a well-established

correlate of infection risk, often serving as a proxy for body condition, which can influence im-

mune function and physiological resilience to parasites (50 ). It also correlates with age and

sex, since younger and female rats tend to be smaller. Age influences infection patterns because

younger individuals have had less time to accumulate parasites but may be more susceptible

to initial infections (52 ), whereas male behavioral traits—greater movement, territoriality, and

aggression—can increase exposure and infection rates (54 ). Because body mass correlates with

age, sex, and body condition, it likely integrates multiple underlying physiological processes

(e.g., immune maturity, energy reserves) that drive parasite susceptibility. None of those traits

emerged as top predictors on their own—possibly because their signal was outweighed by mass

in the model. Future work that disentangles how age, sex, and body condition independently

influence parasitism will help clarify which specific processes underlie the emergence of infection

profiles.

Gut microbiome composition was also an important feature. While the microbiome is closely

tied to host health, the direction of causality remains unclear: dysbiosis (an imbalance in mi-

crobial communities) may increase susceptibility, or alternatively, parasite infection itself can

disrupt the microbiome and trigger dysbiosis (61 ,62 ). Moreover, microbiome composition shifts

along environmental gradients such as land-use change, potentially influencing host–parasite

dynamics (36 ,63 ). Therefore, regardless of causality, our findings highlight the importance of

jointly considering microbiome and environmental factors, and suggest that the microbiome may

serve as a useful indicator of infection heterogeneity in wild populations. Notably, unlike the

microbiome, nematode co-infection did not emerge as an important predictor, although it is
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known to modulate host immunity and alter susceptibility to other parasites (64 ,65 ). More

detailed research into how nematodes and protozoa jointly shape infection profiles is needed,

particularly because their transmission pathways are similar.

Among the environmental variables, the most influential features were small mammal popu-

lation densities. These community-level factors played a key role in shaping infection profiles,

particularly in the transition from no infection (host profile 1) in more natural habitats to higher

infection rates (host profile 3), which were more common in disturbed environments (e.g., vil-

lages, rice fields, and agroforests). Higher densities of rats and other non-native species were

associated with these disturbed sites (Figure S7), suggesting that increased host abundance

and altered community composition facilitate parasite transmission. One mechanism by which

small mammal density can affect infection dynamics is through density dependence. Denser pop-

ulations lead to more frequent contact events and greater environmental contamination (38 ),

especially for gut protozoa that rely on fecal-oral transmission (42 ). While vegetation and dis-

tance from the village were also included as proxies for land-use change, they were less predictive

than small mammal density (Figure S4). This suggests that the primary mechanism through

which land-use change influences infection is not habitat structure per se, but rather its impact

on the abundance and composition of the local host community (66 ).

Our study advances understanding of how host traits and environmental variation interact to

shape infection heterogeneity. Nevertheless, several limitations highlight directions for future

research. First, we were unable to disentangle the relative contribution of host susceptibility

(likelihood of infection after exposure) from exposure (likelihood of encountering parasites) (32 ).

Many predictors, such as gut microbiome composition, likely reflect both processes: the micro-

biome can influence immune function and infection risk (67 ,68 ), but could also reflect shifts with

diet and environment, serving as a proxy for exposure (63 ,69 ). Disentangling these processes

will require experimental or longitudinal designs. Second, our model showed limited predictive

performance, particularly for the low-infection host profile 2. This is likely in part due to class

imbalance, as profile 2 comprised the smallest proportion of hosts (24.3%). Additionally, our

model does not explicitly capture stochasticity in infection dynamics (70 ). However, among

the deterministic factors considered, we were able to distinguish those with greater predictive

importance. Improving model performance and biological interpretability may require increased

sampling effort and the inclusion of higher-resolution data—such as parasite load, behavioral

metrics, and immunological markers—which can also clarify underlying mechanisms.

In summary, our study demonstrates that infection profiles provide a powerful framework for

uncovering structured heterogeneity in host-parasite interactions at the individual level. By inte-

grating network-based approaches with machine learning and rich ecological and biological data,

we quantified the relative contributions of intrinsic host traits and extrinsic factors in shaping

protozoan infection patterns of rat hosts along a land-use gradient. This approach moves beyond

traditional analyses, capturing complex co-infection dynamics and highlighting the functional

roles of different host groups in parasite transmission. As anthropogenic disturbance continues

to reshape host communities and hence parasite dynamics and spillover risk, such integrative

frameworks will be critical for advancing predictive models of infection and informing strategies

for surveillance and intervention.

11



Materials and Methods

Study site and sampling

Rattus rattus were collected in the vicinity of three villages (Mandena, Sarahandrano, Andat-

sakala) in the SAVA Region of northeastern Madagascar, in the area surrounding Marojejy

National Park (SI note 1). The park consists of natural moist evergreen forests spanning a

wide elevation range, from lowland areas to mountain peaks exceeding 2000 m. At each of

the three villages, small mammals were sampled across seven habitat types (sites) representing

a degradation gradient: (1) semi-intact natural forest inside the national park, (2) secondary

forest, (3) savoka (brushy regrowth), (4) agroforest (vanilla plantation), (5) mixed agriculture

(sugarcane/coffee plantation), (6) flooded rice fields, and (7) the village itself. Sites in each

village setting were located approximately 500 m apart. At each site, a grid of 121 live traps

(arranged in an 11×11 configuration with 10 m spacing) was deployed, supplemented by two

pitfall trap lines outside the grid, each containing 11 buckets. During the study period, each site

was sampled for six consecutive nights during three different seasons. Sampling was conducted

at Mandena between October 2019 and September 2020, at Sarahandrano between November

2020 and September 2021, and at Andatsakala between October 2021 and August 2022.

Protozoa DNA extraction and lab work

We used DNA metabarcoding to detect a range of protozoa in rats, identify nematode infections,

and characterize the rat microbiome. Approximately 1g of feces was preserved in either nucleic

acid preservation (NAP) buffer (71 ) or Zymo DNA/RNA Shield (Zymo Research, Irvine, Cali-

fornia). Two different storage solutions were used due to complications with lab supplies during

the COVID-19 pandemic. Mean sequencing read abundance did not differ between the two

sample types. DNA was extracted from fecal samples using Zymo MiniPrep Fecal kits (Zymo

Research, Irvine, California) according to manufacturer directions.

We performed PCR with the G4 primer set (72 ,73 ) to amplify 18S ribosomal DNA from a

wide range of eukaryotes in the rat fecal DNA extracts. Forward and reverse primers contained

8-nucleotide barcodes with a Hamming distance of at least 4. PCR reactions were carried out in

15µL volumes consisting of: 3 µL of each forward and reverse primer (2 µM stock concentration);

7 µL from a Mastermix comprised of 0.7 µL of Amplitaq Gold polymerase, 150 µL MgCl2,

150 µL Amplitaq Gold buffer, 12 µL BSA, 6 µL DMSO, and 344 µL water; and up to 2 µL

template DNA (1–100 ng total). Cycling conditions were: 10-minute hot-start activation, 35x

cycles of 15 s at 95°C, 30 s at 57°C, 40 s at 72°C, and a final 5-min extension at 72°C. DNA

concentrations were then measured, pooled, normalized, and purified using MinElute columns

prior to multiplexing with additional libraries. The final library for each village was sequenced

three times on an Illumina MiSeq (v3 2 × 300 bp, 25 M reads) at the UC Davis Genome Center.

Sequences were demultiplexed using cutadapt (v.3.4) with zero error tolerance (74 ). We used

the dada2 bioinformatics pipeline (75 ) to filter and trim amplicons (minimum length = 100,

15% PhiX removed), remove errors, dereplicate, infer amplicon sequence variants (ASVs) using

the pseudo-pooling method, merge pairs, remove chimeras, and combine the three ASV read

tables from the different villages into one table.

Bioinformatics and protozoa OTU processing

We calculated the relative read abundance of each ASV and excluded reads that accounted for

less than 1% of a sample’s relative read abundance to avoid potential sequencing errors or tag

jumps. We excluded any sample with fewer than 500 total reads due to potential amplification
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or sequencing failure (n=38). Due to less certainty in protozoal identifications, we then used a

consensus approach to assign taxonomy to ASVs: we used both the ’assignTaxonomy’ function

in dada2 (minimum bootstraps = 50) and the ’IdTaxa’ function in the DECIPHER package in

R (76 ) to generate two identifications for each ASV using the SILVA non-redundant database

clustered at 99% similarity (v.132). For any ASV with a mismatching identification, we queried

the sequence in the NCBI GenBank database to assign a final ‘consensus’ ID.

Next, we clustered phylogenetically similar ASVs into OTUs at 97% similarity using the ‘Clus-

terized’ function from the DECIPHER package. Taxonomy was assigned to each OTU based

on its most common ASV. Because the G4 primer set amplifies both parasitic and non-parasitic

eukaryotic DNA, we then manually filtered all OTUs to those that are known or suspected

parasites of mammals. Consequently, our protozoan community represents OTUs with small

genetic variations that may influence their pathogenic traits. In total, our dataset includes 841

individual rat hosts and 41 protozoan OTUs spanning 10 genera and 4 phyla (Figure S2).

Network construction and detection of infection profiles

We constructed a bipartite network representing individual rat hosts and protozoa OTUs, where

an edge is present (1) if an OTU infects a host and absent (0) otherwise (Figure 1C). Then, we

identified infection profiles using an SBM (77 ). In the bipartite version of the SBM, hosts are

assigned to Q(1) groups and protozoa parasites to Q(2) groups. The interactions between these

groups are governed by a block connectivity matrix Θ, which encodes the probability of infection

between each pair of host and parasite blocks (77 ). Consequently, the probability that a link

exists between a host i and a parasite j, which belong to groups cx and cy respectively, is Pij =

Θcxcy. This structure implies that nodes within the same block are “stochastically equivalent”

and thus have similar probabilities of being infected by parasites from a given parasite block.

We implemented SBM using a commonly used Variational Expectation-Maximization (VEM)

algorithm, which iteratively estimates latent memberships and model parameters (77 ). The

algorithm partitions the network into groups and calculates the likelihood of such clustering,

considering the membership of nodes in groups. The algorithm consists of two main steps: (1)

updating the posterior probabilities of host and parasite assignments to latent blocks and (2)

optimizing model parameters—including the block connectivity probabilities Θ—to maximize

the likelihood of the observed data. To determine the optimal number of host and parasite

blocks, we used the Integrated Completed Likelihood (ICL) criterion, which balances model

fit and complexity by penalizing model size. This approach ensures robust and interpretable

clustering (77 ).

Feature collection and processing

To investigate the determinants of parasite infection patterns, we measured a set of host traits

and environmental variables for each host (Figure 1B, Table 1, and see SI note 2 for detailed

explanations). These variables might influence infection patterns by affecting both host exposure

and susceptibility to infection. We assessed six host variables: (1) body mass, (2) body condition,

calculated by Body Condition Index (BCI), (3) sex, (4) age, categorized as sub-adult and adult,

(5) nematode co-infection, measured as presence/absence of nematodes, and (6) gut microbiome

composition, measured as the relative abundance of four microbial families that were significantly

correlated with the first two principal coordinates in a PCoA (Figure S9). Host mass, body

condition, sex, and age can influence behavior (e.g., home range and social interactions) as well as

physiological traits (50 ,54 ,78 ). Co-infection with macroparasites can further influence infection

with microparasites. Specifically, nematodes are known to modulate the host immune system,
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potentially altering susceptibility to co-infection by other parasites (35 ,79 ). The gut microbiome

plays a critical role in host metabolism and immune function, serving as an indicator of overall

health (37 ,80 ). Variation in microbial composition and relative abundance has previously been

linked to several diseases and may reflect either an increased vulnerability of the host or a

response to the disease itself (61 ,67 ).

We measured three environmental variables: (1) habitat structure (obtained via a vegetation

PCA that distinguishes between tree-dominated and herbaceous-dominated sites; Figure S6),

(2) distance to the village center (a proxy for habitat disturbance), and (3) small mammal com-

munity composition (population densities of rats, native species, and other non-native species

including shrews and house mice). Population densities were calculated as the average number

of individuals captured per sampling trap for every site and season. Vegetation type and prox-

imity to the village are covariates that can influence the composition and survival of parasites

in the environment, thus altering exposure risk to rats (41 ,81 ). Additionally, small mammal

population density can impact infection patterns, as higher contact rates in denser populations

may facilitate parasite transmission within and between host species (38 ,40 ). Thus, differences

in species densities across sites may lead to distinct parasite transmission patterns among rat

populations. The correlation between pairs of features ranged between -0.71 and 0.67 with

average absolute value of 0.13 (Figure S3).
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Table 1: Summary of features used in the XGBoost model. See SI note 2 for detailed explanations on sampling and measurement methods.

Category Sub-category Feature Type Scale Explanation References

Host traits

Biological

Body mass Continuous Individual Rat body mass [gram] (50 ,51 )
Body condition Continuous Individual Body Condition Index value by age and sex
Sex Binary Individual Male / female (54 ,82 )
Age Binary Individual Sub-adult / adult (52 ,78 ,83 )

Nematode co-infection Nematode co-infection Binary Individual Infection by any nematode species [0/1] (35 ,65 ,79 )

Microbiome

Lachnospiraceae Continuous Individual Family relative abundance [0-1]
Lactobacillaceae Continuous Individual Family relative abundance [0-1] (36 ,61 ,67 ,84 )
Muribaculaceae Continuous Individual Family relative abundance [0-1]
Prevotellaceae Continuous Individual Family relative abundance [0-1]

Environmental

Vegetation
Vegetation PC1 Continuous Site Habitat attributes PC1
Vegetation PC2 Continuous Site Habitat attributes PC2 (41 ,81 ,85 )

Distance Village distance Continuous Individual Distance in [m] from the nearest village center

Community density
Rat density Continuous Site Density of rat population at the site
Non-native density Continuous Site Density of non-native (shrews and house mice)

at the site
(38 ,40 ,86 ,87 )

Native density Continuous Site Density of native sp. populations at the site
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Training a classification model to predict infection profiles

Using both host traits and environmental variables as suites of features, we trained an XG-

Boost (eXtreme Gradient Boosting) multi-classification model to predict host infection profile

membership (SBM-identified groups)(Figure 1D). XGBoost is a distributed decision tree ma-

chine learning algorithm based on gradient boosting that efficiently handles structured data and

captures complex patterns through ensemble learning (88 ). Machine learning methods, like XG-

Boost, effectively capture complex non-linear relationships between variables, which traditional

linear models cannot represent (89 ,90 ).

To ensure that all data points were tested at least once while mitigating overfitting and im-

proving the robustness of the analysis, we implemented a stratified nested cross-validation (CV)

approach, maintaining class distributions across splits. The outer loop used a 3-fold cross-

validation, where the dataset was split into three equal parts, and each subset was used once

as a test set while the remaining two served as the training set. Within the inner loop, we con-

ducted a 5-fold CV for hyperparameter tuning. Hence, within each training set, the data were

further divided into five subsets, with four used for training and one for validation. This process

was repeated for each fold, optimizing hyperparameters across different partitions of the data.

To address data imbalance (uneven sizes of the three host infection profiles) and prevent the

model from being biased toward the majority profile, we applied host profile weights inversely

proportional to profile frequencies, assigning higher weights to minority profile samples during

model training.

For hyperparameter tuning, we performed a grid search over key parameters, including maxi-

mum tree depth, learning rate (eta), column and row subsampling rates, L1/L2 regularization

parameters (alpha, lambda), and minimum child weight (Table S1). The selected parameter

search space aimed to minimize model complexity, thereby reducing the probability of overfitting.

For each configuration, we trained the model using 300 boosting rounds, with early stopping

based on validation loss to prevent overfitting. In each outer loop iteration, the best-performing

hyperparameters (selected based on multi-class log-loss) were used to train a model, which was

then evaluated on the outer test dataset. This process produced three models, corresponding to

the three outer loops, each predicting a different fold of the dataset. The output of each model

was a probability distribution over possible infection profiles, constrained to sum to one. The

predicted profile was determined as the one with the highest probability.

To evaluate performance, we used a range of metrics designed to capture different aspects of

predictive ability (91 ,92 ) (SI note 3). Since we had three infection profiles (see Results), we

used metrics for multi-class classification. The evaluation was based on a 3×3 confusion matrix,

which recorded the number of true positives and false positives for each infection profile. We used

common evaluation metrics such as accuracy, weighted precision, weighted recall, weighted F1-

score, weighted balanced accuracy, and Matthews correlation coefficient (MCC). To benchmark

model performance against chance, we analytically derived expected metric values for a random

classifier using proportional guessing based on profile prevalence. In addition, for each infection

profile, we assessed one-vs-all performance across decision thresholds using Area Under the

Receiver Operating Characteristic Curve (AUC-ROC) and Area Under the Precision-Recall

Curve (PR-AUC). This allowed us to evaluate the model’s ability to distinguish among profiles

and capture precision–recall tradeoffs, especially in the context of class imbalance. See SI note

3 for detailed explanations.
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Feature importance analysis

To interpret the contribution of each host or environmental variable to the classification task,

we employed both XGBoost’s gain metric and SHapley Additive exPlanations (SHAP) values

(Figure 1E). SHAP explains machine learning model predictions by quantifying the contribu-

tion of each input feature. Specifically, SHAP values measure how much each feature increases

or decreases the model’s prediction compared to the average prediction (44 ). To determine these

values, SHAP evaluates the model’s output across different subsets of features and calculates

the difference in predictions when a feature is included versus when it is omitted, then averaging

these differences across all possible feature combinations. This ensures that the contribution of

each feature is measured while accounting for interactions with other features. The magnitude

of a SHAP value represents the strength of a feature’s influence on the prediction, with larger

absolute values indicating a greater impact.

We assessed global feature importance by averaging absolute SHAP values across all hosts in

the test subset of the three-fold models (totaling 841 samples), and then summing these mean

values across all infection profiles. Additionally, we aggregated feature importance by category

(host traits versus environmental) by summing SHAP values within each category, enabling a

comparative assessment of their relative influence on classification. We then used the SHAP

values themselves to create dependence plots capturing how each feature’s effect varied across

its observed range (e.g., the range of host masses), illustrating potential relationships with the

profiles. Positive SHAP values indicate that a feature increases the prediction compared to

the baseline model output, “pushing” the model towards a specific infection profile. In contrast,

negative SHAP values decrease the prediction compared to the baseline, moving the model away

from predicting that infection profile.

Code and data

All analyses were conducted in R (v4.2.1) (93 ). We used the R package blockmodels (v1.1.5)

(77 ) for the SBM analysis, the package XGBoost (88 ) for model training, with the package caret

(94 ) for cross-validation and performance evaluation. ROC and PR curves were created using

the pROC (95 ) and PRROC (96 ) packages. SHAP values were computed with the package

shapviz (97 ).
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Supplementary information

Table S1: Hyperparameter grid search settings for the XGBoost model.

Hyperparameter Values Description

max depth 1, 2, 3 Maximum depth of a tree; controls model complexity.
eta 0.002, 0.01, 0.1 Learning rate; scales the contribution of each tree.
colsample bytree 0.4, 0.6 Fraction of features sampled per tree.
min child weight 6, 8 Minimum sum of instance weight needed in a child.
subsample 0.5, 0.7 Fraction of training data sampled per tree.
lambda 5, 10 L2 regularization term on weights; reduces overfitting.
alpha 2, 5 L1 regularization term on weights; encourages sparsity.
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Figure S1: Visualization of the rat-protozoa bipartite network. Nodes represent individual rat
Rattus rattus hosts and protozoa OTUs, with edges indicating infections. Blue-shaded nodes denote
host infection profiles, while yellow-to-red shaded nodes represent protozoa infection profiles.
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the lowest taxonomic classification (genus or species) of each OTU.
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indicates negative relationships.
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Figure S4: SHAP dependency plots for all features. SHAP dependency plots show individual
hosts’ SHAP values as a function of feature values. For clarity, we visualized only the LOESS-derived
trendline and its associated confidence interval for the 841 host samples, rather than displaying all
individual host data points. Line colors represent different host infection profiles, while the dashed
gray line marks a SHAP value of zero. Y-axis values were rounded to two decimal places.
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SI note 1: Study site and small mammal sampling

Small mammals were collected in the vicinity of three villages in the SAVA Region of northeast

Madagascar, in the surroundings of Marojejy National Park. The village of Mandena (14.477049°
S, 49.8147° E) was sampled between October 2019 and September 2020. A second village, Sara-

handrano (14.607567° S, 49.647759° E), was sampled between November 2020 and September

2021, while a third village, Andatsakala (14.397276° S, 49.8820° E), was sampled between Oc-

tober 2021 and August 2022. In the vicinity of each village, seven sites were sampled along

a degradation gradient: (1) semi-intact natural forest inside the national park, (2) secondary

forest, (3) savoka (brushy regrowth), (4) agroforest (vanilla plantation), (5) mixed agriculture

(sugarcane/coffee plantation), (6) flooded rice, and (7) the village itself. Sites near each village

were located ∼500 m apart.

For sampling small mammals, a 100 m X 100 m grid of 121 live traps (11x11) was established,

including 97 Sherman (H. B. Sherman Traps, Inc., Tallahassee, Florida, model LFA and XLK),

and 24 Tomahawk (Tomahawk Live Trap, Hazelhurst, Wisconsin, model 201), placed 10 m apart

and baited with peanut butter. Additionally, two pitfall lines were installed between 20-50 m

outside of the grid, running in parallel to the grid edge. Each pitfall line was 100 m in length,

with 11 buckets dug into the ground and placed every 10 m, and an 80 cm high vertically

oriented plastic fencing bisecting each bucket, stapled to vertical stakes, and a flange touching

the ground covered with soil and leaf litter to block the passage of small mammals and guide

them to a bucket. Each plot was sampled for six consecutive nights and during three different

sampling periods (before the wet season, after the wet season, and during the dry season).
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Marojejy NP
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Figure S5: Study site and sampling scheme. (a) Sampling was conducted in northeastern
Madagascar, in three different zones associated with three villages near Marojejy National Park.
(b) In each village, seven distinct land-use types were sampled. The map illustrates the village of
Mandena as an example. The images depict typical landscapes from top to bottom: semi-intact
forest, savoka, flooded rice fields, and village plots. (c) In each plot, an 11×11 trapping grid
consisting of Sherman and Tomahawk traps was installed, along with two pitfall lines. A total of 841
individual Rattus rattus were captured.
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SI note 2: Measuring host traits and environmental features

To explore determinants of parasite infection patterns, we measured three environmental vari-

ables (vegetation, small mammal community, and distance to the village center) and six host

variables (mass, body condition index, sex, age, nematode co-infection, and gut microbiome

composition) (Table 1). The host variables and distance to the village are specific to each

individual rat, while the environmental variables are specific to a site and common to all the

rats captured at a specific site in a specific season.

Habitat attributes

We measured two environmental gradients across sites: vegetation and the distance from the

village center. These variables collectively capture much of the natural and anthropogenic

variation across the landscape and are related to the environmental reservoir of parasites. The

distance to the nearest village was measured using a GPS logger as the shortest distance from

the village center to the trap location where the rat was captured.

In addition, with the help of a specialist botanist, we measured habitat attributes in 16 plots (5m

× 5m) within the sampling grid at each site, conducting measurements three times (seasons)

during the sampling period. At each plot, we assessed eight habitat characteristics: (1) number

of trees, (2) number of dead logs, (3) tree diameter at breast height, (4) tree height, (5) percent

canopy cover, (6) number of lianas, (7) herbaceous vegetation height, and (8) percent herbaceous

vegetation cover. We averaged the measurements across all plots to calculate mean values for

each site per season. To explore habitat variation between sites, we conducted a principal

component analysis (PCA). Prior to analysis, all variables were centered at 0 and rescaled to

have unit variance. The first two principal components explained 80.71% of the variation across

sites (PC1: 59.51%, PC2: 21.2%) (Figure S6). Vegetation PC1 divides the more natural

sites (semi-intact forest and secondary forest) from the more disturbed sites. PC2 is positively

correlated with herbaceous vegetation cover and height.
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Figure S6: Vegetation PCA across land-use types. The first two principal components (PC1 and
PC2) from the PCA of vegetation attributes. Each point represents a site in one season, with shape
denoting the village and color representing the land-use type. Arrow length and direction indicate
the contribution of each vegetation variable to the first two PCs.

Small mammal community

Population density can influence infection patterns, as higher contact rates in denser populations

may increase parasite transmission within and between host species. Therefore, for each site and

season, we measured small mammal density for (1) the rat (Rattus rattus) population, (2) other

non-native species (including Mus musculus and Suncus spp.), and (3) native species (including

members of the family Tenrecidae and subfamily Nesomyinae). Density was calculated as the

total abundance of individuals in categories 1–3 at a given site-season, divided by the number

of traps at that site. For the rat population, pitfall traps were excluded from calculations, as

only two individuals (0.2%) were captured in them. The small mammal community significantly

differed between more natural sites (semi-intact forest and secondary forest) and more disturbed

sites (Figure S7).
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and direction indicate the contribution of each species to the first two PCs. The arrow colors indicate
native (blue) and non-native (red) species.

Body condition

To assess the physiological condition of individual rats, we calculated a Body Condition Index

(BCI) based on the residuals from a linear regression of body mass on structural body length.

Because body size and growth patterns can differ significantly between age classes and sexes,

we calculated BCI separately for each combination of age group (sub-adult/adult) and sex. For

each subgroup, we log-transformed both body mass (M) and head-body length (L) to linearize

the allometric relationship. We then fit a linear model of the form:

log(Mi) = β0 + β1 log(Li) + εi (S1)
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where Mi is the mass of individual i, Li is its head-body length, β0 and β1 are the intercept and

slope of the regression, and εi is the residual. The residuals εi from this regression represent

the BCI, with positive values indicating individuals heavier than expected for their body length

(i.e., better condition), and negative values indicating poorer condition. These residuals were

used as a continuous predictor of host condition in the subsequent statistical model.
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Figure S8: Body Condition Index (BCI) of individual rat hosts. BCI was calculated by the
residuals from a linear regression of body mass [g] on structural body length [mm] for each combi-
nation of age group (sub-adult/adult) and sex (female/male).

Gut microbiome

DNA was extracted from ∼1g feces collected from trapped small mammals using Zymo Quick-

DNA Fecal/Soil Microbe Miniprep kits (cat #D6010) using manufacturer protocols. 16S metabar-

coding was conducted using 515F–806R primers to target the V4 region of the 16S SSU rRNA

(98 ). Each primer included an Illumina adapter, barcode, primer pad, and linker. Reactions

were carried out in 25 µL volumes consisting of 10 µL of 1.25 µM forward and reverse primer,

31



2 µL of DNA, and 13 µL of Platinum Hot Start PCR mastermix (ThermoFisher Scientific, cat

#13000014). Reaction conditions were as follows: 95°C for 3min, 35x 98°C for 30secs, 58°C for

30secs, and 72°C for 30 s, followed by a final extension at 72°C for 5min. Concentrations were

measured using Promega One Quantifluor kits on a Tecan plate reader. Samples were then nor-

malized to 7 ng/µL prior to pooling. The product was cleaned using magnetic beads (bead:DNA

ratio was 0.8:1) and sequenced at UC Santa Barbara Biological Nanostructures Laboratory on

an Illumina MiSeq (v3 chemistry, 2x300 bp, 24M reads).

Sequences were demultiplexed using cutadapt (v.3.4) with zero error tolerance (74 ). We then

performed quality filtering steps using the dada2 package in R (75 ). Specifically, we filtered and

trimmed amplicons (minimum length = 100, 15% PhiX removed), inferred and removed errors,

dereplicated sequences, inferred amplicon sequencing variants (ASVs) using the pseudo-pooling

method, merged pairs, and removed chimeras. We assigned taxonomic identifications to ASVs

using the assignTaxonomy function in dada2, using the SILVA nr99 SSU reference database

(v.138.1).

We filtered out very rare ASVs with a relative abundance lower than 0.1% in a sample or those

that occur in less than 1% of all individuals. Additionally, we removed all non-bacterial ASVs

or those that were identified as ’Chloroplast’ or ’Mitochondria’. Finally, we excluded 21 samples

with fewer than 5000 total reads from our analysis. Filtering procedures resulted in 1,951 ASVs

from an original total of 10,358.

We aggregated ASVs at the family level for each individual host. ASVs with unidentified

families were excluded, resulting in the analysis of 1,770 ASVs (90.72% of all ASVs) classified

into 55 families. To examine microbiome variation among individuals, we performed a principal

coordinate analysis (PCoA). The first two principal coordinates explained 56.8% of the variation

(PCo1: 36.5%, PCo2: 20.3%) (Figure S9). For better interpretability, we selected as features

only the microbial families that exhibited a significant correlation with the first two principal

coordinates (PCos). To achieve this, we utilized the equilibrium circle (or correlation circle),

a graphical tool that helps interpret the contribution of variables to the principal coordinates.

The radius of the equilibrium circle is given by Radius ∝
(
d
p

)0.5
, where d represents the number

of retained principal coordinates (two in our case), and p denotes the total number of original

variables. A variable (microbial family) with a vector extending beyond the equilibrium circle

indicates a strong correlation with at least one principal coordinate, signifying a major role

in the ordination. Conversely, vectors within the circle reflect weaker correlations and lower

contributions to the PCoA structure. Based on this criterion, we identified four microbial families

as significant and included them as features in the final XGBoost model: (1) Lachnospiraceae,

(2) Lactobacillaceae, (3) Muribaculaceae, and (4) Prevotellaceae.
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Figure S9: PCoA of the gut microbiome across individual rat hosts. The first two principal
coordinates (PCo1 and PCo2) are shown. Each point represents an individual rat, with the circle
marking the equilibrium threshold. Arrow length and direction indicate the contribution of each
microbial family to the first two PCos, with only families whose arrows extend beyond the equilibrium
circle displayed.

Nematode co-infection

We performed metabarcoding using the NC1/NC2 primer set (99 ) to amplify ITS2 ribosomal

DNA from strongylid nematodes. Forward and reverse primers contained 8-nucleotide barcodes

with a Hamming distance of at least 4. PCR reactions were carried out in 15µL volumes

consisting of: 3 µL of each forward and reverse primer (2 µM stock concentration); 7 µL from a

Mastermix comprised of 0.7 µL of Amplitaq Gold polymerase, 150 µL MgCl2, 150 µL Amplitaq

Gold buffer, 12 µL BSA, 6 µL DMSO, and 344 µL water; and up to 2 µL template DNA (1–100

ng total). Cycling conditions were: 10-minute hot-start activation, 35x cycles of 15 s at 95°C,
30 s at 55°C, 40 s at 72°C, and a final 5-min extension at 72°C. DNA concentrations were

then measured, pooled, normalized, and purified using MinElute columns prior to multiplexing

with additional libraries. The final library for each village was sequenced three times on an

Illumina MiSeq (v3 2 × 300 bp, 25 M reads) at the UC Davis Genome Center. Sequences

were demultiplexed using cutadapt (v.3.4) with zero error tolerance (74 ). We used the dada2

bioinformatics pipeline (75 ) to filter and trim amplicons (minimum length = 100, 15% PhiX

removed), remove errors, dereplicate, infer amplicon sequence variants (ASVs) using the pseudo-

pooling method, merge pairs, remove chimeras, and combine the three ASV read tables from
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the different villages into one table. We then calculated the relative read abundance of each

ASV and excluded reads that accounted for less than 1% of a sample’s relative read abundance

to avoid potential sequencing errors or tag jumps. We excluded a small subset of samples that

failed to amplify across other primer sets, and used the assignTaxonomy function with minimum

bootstraps = 50 to identify ASV sequences using the nemabiome ITS2 reference database (v

1.6.0). Next, we clustered phylogenetically similar ASVs into OTUs at 97% similarity using

the ’Clusterized’ function from the DECIPHER package. Taxonomy was assigned to each OTU

based on its most common ASV.

To examine variation in nematode co-infection among individual hosts, we plotted the dis-

tribution of the number of nematode OTUs infecting each host (Figure S10). Because the

distribution was highly skewed, with most rats infected by only a single nematode OTU, we

included a binary variable in the final model indicating whether or not the host was infected by

any nematode species (infected: n = 626; uninfected: n = 215).
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Figure S10: Distribution of the number of nematode OTUs infecting each host.
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SI note 3: Details on model evaluation metrics

In multi-class classification models, the output is a probability distribution over the possible

classes (i.e., the probabilities of a host being classified into one of the host infection profiles).

This is achieved using a softmax function, which converts raw scores into probabilities that sum

to 1. The predicted class is the one with the highest probability.

To evaluate the performance of our three-class classification model, we used a confusion matrix,

which records the number of correctly and incorrectly classified instances for each class (92 ).

The confusion matrix is structured as follows:

Table S2: Confusion Matrix for a 3-Class Model. A-C are host infection profiles.

Actual \ Predicted Pred A Pred B Pred C

Actual A TPA FPB,A FPC,A

Actual B FPA,B TPB FPC,B

Actual C FPA,C FPB,C TPC

Each row represents the actual class, while each column represents the predicted class.

- TPX (True Positives): Correctly classified instances of class X.

- FPY,X (False Positives): Instances incorrectly classified as class Y when they actually belong

to class X.

Since our dataset is imbalanced, we used evaluation metrics that give fair importance to each

class based on the class size (i.e., fraction of hosts with the infection profile). These include

accuracy, weighted precision, weighted recall, weighted F1-score, weighted balanced accuracy,

and the Matthews Correlation Coefficient (MCC) (91 ).

Accuracy: Accuracy measures the overall correctness of the model:

Accuracy =
TPA + TPB + TPC

N
(S2)

where N is the total number of samples.

Weighted Precision: Precision for class X is the proportion of correctly predicted X instances

out of all instances predicted as X:

PX =
TPX

TPX +
∑

FPX,Y
(S3)

The weighted precision is:

Pw =
∑

X∈{A,B,C}

wXPX (S4)

where wX is the proportion of actual instances of class X.

Weighted Recall: Recall (Sensitivity) for class X measures how many actual X instances were

correctly classified:

RX =
TPX

TPX +
∑

FPY,X
(S5)

The weighted recall is:

Rw =
∑

X∈{A,B,C}

wXRX (S6)
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Weighted F1-score: F1-score is the harmonic mean of precision and recall for each class:

F1X = 2× precision× recall

precision+ recall
(S7)

The weighted F1-score is:

F1w =
∑

X∈{A,B,C}

wXF1X (S8)

Weighted Balanced Accuracy: Balanced accuracy accounts for class imbalance and is cal-

culated as the mean recall across classes:

BAX =
TPX

TPX +
∑

FPY,X
(S9)

The weighted balanced accuracy is:

WBA =
∑

X∈{A,B,C}

wXBX (S10)

Matthews Correlation Coefficient (MCC): MCC is a more comprehensive metric that

considers all values in the confusion matrix, and is, therefore, a balanced measure that can be

used even if the classes are of very different sizes:

MCC =
c× s−

∑
X∈{A,B,C} pX × tX√(

s2 −
∑

X∈{A,B,C} p
2
X

)(
s2 −

∑
X∈{A,B,C} t

2
X

) (S11)

where:

c = sum of true positives across all classes

s = total number of samples

pX = predicted counts for each class TPX + FPXY

tX = actual counts for each class TPX + FPY X

MCC values range from −1 to +1. A coefficient of +1 indicates a perfect prediction, 0 indicates

no better than a random prediction, and −1 indicates total disagreement between prediction

and observation.

To further assess model performance, we compared all metrics against a theoretical no-skill

classifier, whose expected values were analytically computed based on profile distributions using

proportional guessing. In this approach, the classifier predicts each profile according to its

prevalence in the dataset, favoring frequent profiles over rare ones. This reflects the natural

class distribution without relying on learned patterns. For this classifier, accuracy, precision,

and recall scale with profile frequencies, while balanced accuracy remains equivalent to a uniform

guessing strategy, providing a simple baseline despite class imbalance. The theoretical MCC for

an ideal random classifier is zero. This method offers a straightforward way to benchmark our

trained model’s performance against random chance, especially in datasets with imbalanced

classes.

In addition, we used evaluation metrics in a one-vs-all manner, where the predicted class is

considered positive, and the remaining classes are treated as negative. The model’s performance

was then evaluated across multiple threshold values (i.e., classifying a sample into class X only
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if its probability exceeds threshold Y) by computing the Area Under the Receiver Operating

Characteristic curve (AUC-ROC) and the Area Under the Precision-Recall Curve (PR-AUC)

for each class separately.

ROC-AUC : The area under the receiver operating characteristic curve is a graphical repre-

sentation of the actual positive rate (y-axis) versus the false positive rate (x-axis) of a model

across different decision thresholds. The ROC-AUC score ranges from 0 to 1, where a score of 1

represents a perfect classification model, while a score of 0.5 represents a one-vs-all model with

random guessing.

Although the ROC-AUC is a common measure, the number of true negatives in imbalanced data

sets is very large, so even with a substantial number of false positives, the false positive rate

might remain relatively small. This means that the ROC curve might not fully capture the cost

of misclassifying a substantial number of the minority class instances. A better way to evaluate

predictions in imbalanced data sets is by combining precision and recall metrics. Precision and

recall provide a more granular understanding of a model’s performance because their trade-off

highlights how well the model balances false positives and false negatives, offering insight into

its effectiveness in identifying true cases under different thresholds.

PR AUC : To evaluate the tradeoff between precision and recall, the area under the PR curve

provides a single number that summarizes the overall performance of a model across all possi-

ble classification thresholds. Like the ROC-AUC curve, the PR curve is calculated across all

thresholds. We calculated a PR curve for each class. The no-skill baseline PR-AUC was derived

from class prevalence, meaning that a random classifier’s expected precision equaled the fraction

of positive instances in the dataset (i.e., the fraction of hosts in the infection profile out of all

hosts).
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SI note 4: Results of model evaluation

Our XGBoost model demonstrated strong overall performance, significantly predicting infec-

tion across all host profiles (Figure S11). All evaluation metrics exceeded those of a no-skill

classifier, including accuracy (0.54), weighted precision (0.53), weighted recall (0.54), weighted

F1-score (0.53), weighted balanced accuracy (WBA) (0.64), and Matthews correlation coefficient

(MCC) (0.28) (Figure S11A).

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) was above the ran-

dom value of 0.5 for all profiles (AUC = 0.726, 0.606, 0.738, for profiles 1, 2, and 3, respectively),

indicating effective classification accuracy (Figure S11B). However, the relatively lower ROC

curve for profile 2 (reflecting a low true positive to false positive rate) suggests that the model

only weakly distinguished it from other profiles. The Precision-Recall Curve (PR-AUC) is useful

for imbalanced datasets, as it captures the tradeoff between precision and recall. The PR-AUC

was above the no-skill values (i.e., the fraction of hosts with each infection profile) for the three

host profiles: AUC = 0.548 (no-skill of 0.322) for profile 1; AUC = 0.331 (no-skill of 0.244) for

profile 2; and AUC = 0.656 (no-skill of 0.434) for profile 3 (Figure S11C). Overall, while the

model performed well, it had greater difficulty accurately predicting profile 2.
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Figure S11: Evaluation of the XGBoost predictive model. (A) Comparison between the XG-
Boost model and a no-skill classifier in different evaluation metrics. The bars and error bars indi-
cate the mean and standard deviation, respectively, of the three-fold models used for nested cross-
validation. (B) The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) for each
profile separately. Colors indicate infection profiles, while the dashed black line indicates random
model performance (AUC = 0.5). (C) Precision-Recall Curves (PR-AUC) for each profile separately.
The dashed black lines indicate a no-skill model for each profile, derived from profile prevalence (i.e.,
a random expectation equal to the fraction of hosts with the infection profile). See SI note 3 for
detailed explanations on model evaluation.
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