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ABSTRACT 21 

The molecules that make up the bacterial cell wall should be seen not only as passive structural 22 

components of the murein sacculus that protect and enclose the inner membrane containing the 23 

bacterial cytoplasm. They are also active bioactive molecules released during bacterial replication, 24 

especially after cell lysis, leading to a deconstructive process. These molecules vary in structure 25 

from simple acetylated monosaccharides or amino acids, such as D-amino acids, to more complex 26 

muropeptides and cross-linking peptides. They can be classified as Cell Wall Bioactive Molecules 27 

(CWBAMs), which have signaling and effector roles that affect bacterial physiology, including 28 

biofilm formation, sporulation, and antibiotic resistance. CWBAMs also participate in interactions 29 

with other bacteria, the microbiota, and immune cells from human and animal organs, including 30 

the central nervous system. The effects of CWBAMs released during cell wall breakdown remain 31 

largely unknown, especially since they can translocate from mucosal surfaces colonized by 32 

microbiota into the bloodstream. CWBAMs are not necessarily toxins and should be distinguished 33 

from endotoxins. Their role in bacterial-host interactions is a promising area for future research. 34 

 35 

 36 

 37 
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INTRODUCTION 41 

The bacterial cell is an organism containing functional organ-like structures that ensure its health 42 

and resilience to changes.1 Similar to higher forms of life, the functions provided by these 43 

structures are highly integrated to maintain homeostasis in changing environments. The 44 

organization of this integration requires signals and effectors. Signals are generated in response to 45 

detecting intracellular or extracellular changes, ultimately altering bacterial physiology and 46 

behavior. Effectors are often responsive to signals or are self-regulated, leading to adaptive 47 

responses to the detected changes. 48 

One of the essential organs found in nearly all bacteria is the cell wall, primarily made up of a 49 

continuous and elastic layer of peptidoglycan. It is often decorated with other associated 50 

biomolecules, including various peptides, proteins, teichoic acids, and lipoproteins, and is 51 

anchored to the outer cell membrane in Gram-negative bacteria. For decades, the cell wall was 52 

regarded as merely a static sacculus that maintains the cohesion and physical interaction of all 53 

bacterial organelles within the cytoplasm. It also preserves the size, shape, osmotic protection, 54 

integrity, and individuality of the bacterial cell, as well as cellular differentiation. Although this 55 

view remains valid today, the role of the cell wall in bacterial cell biology has broadened to be 56 

understood from a more dynamic perspective.2 This perspective highlights the constant structural 57 

changes of this macromolecular structure, which are remodeled during bacterial growth and 58 

adaptive homeostasis activities. These activities result in the continuous release of short, mostly 59 

soluble fragments, including cell wall bioactive molecules (CWBAMs), mainly, but not 60 

exclusively, dimeric or trimeric muropeptides. These fragments can act as signals and effectors 61 

that influence the bacteria’s own metabolism, differentiation, and interactions with other bacteria 62 

and host organisms. They are also involved in pathogenesis in animals and plants3. Additionally, 63 
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CWBAMs can be monomeric components of peptidoglycan, such as N-acetyl-glucosamine, the 64 

pentapeptide bridges linking peptidoglycan strands, or single amino acids, including non-canonical 65 

D-amino acids, which can be released into the extracellular environment.  66 

At least one-third of the murein lipoprotein Lpp, Braun's lipoprotein, with a trimeric helical 67 

structure, and one of the most abundant proteins in Escherichia coli, with about 200,000 copies 68 

per cell, is covalently attached to murein peptide. This attachment ensures a physical-mechanical 69 

connection with the outer membrane.4-6 LdtF, a murein endopeptidase, cleaves the linkage between 70 

peptidoglycan and the Lpp lipoprotein7, and therefore Lpp can be released from the sacculus, 71 

allowing it to act as a potential CWBAM.8  Finally, we cannot discard as CWBAM soluble 72 

components of other secondary cell wall polymers, covalently linked to peptidoglycan, as teichoic 73 

acids (polyol-phosphate polymers) or fragments of capsular polysaccharides.9   74 

THE ORIGIN AND RELEASE OF CELL WALL BIOACTIVE BIOMOLECULES 75 

The fragmentation of the peptidoglycan into soluble fragments should be compatible with the 76 

maintenance of the cell wall macromolecule's recycling and continuity. This is ensured by the 77 

patched and often tridimensional lattice structure of the cell wall, composed of multiple cross-78 

linked layers. The CWBAMs result from the action of amidases, which cleave the first amide bond 79 

of the stem peptide linking the N-acetylmuramic acid in the glycan strand, thereby preventing 80 

subsequent cross-linking with other glycan strands. Peptidases can attack the bonds between amino 81 

acids of these cross-linking peptides. Finally, glycan strands can also be cleaved by glycosidases 82 

(N-acetylmuramidases, N-acetylglucosaminidases).10  The physiological reason for such local 83 

deconstruction of peptidoglycan is essentially cell wall turnover, which creates open sites where 84 

recently synthesized muropeptides can be inserted, resulting in the elongation of the cell wall 85 

required for replication. This process probably influences the shaping of the cell, thereby 86 
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contributing to the production of both curvatures and filaments. It can be inferred that the newly 87 

constructed muropeptides may act as CWBAMs. The lipid-linked NAG-NAM-pentapeptide 88 

precursor (lipid II) is produced in the inner leaflet of the cytoplasmic membrane and translocated 89 

to the periplasm by flippases (as MurJ). Flippases probably works in combination with 90 

multienzyme complexes involving also polyprenyl-diphosphate phosphatase. Bacitracin growth 91 

inhibition is due to its involvement in this process.  About 5,000 lipid II molecules should be 92 

flipped per second in accordance with the needs of peptidoglycan polymerization. However, it is 93 

rapidly captured by the peptidoglycan building block, polymerized by lipid II polymerases of the 94 

SEDS family, as FtsW (in the divisome) and RodA (in the elongasome), and cross-linked by 95 

complex multiprotein machines involving glycosyltransferases and transpeptidases.11 The 96 

production, regulation, dynamics, recycling effects and cell release of a multiplicity of non-PBP 97 

enzymes associated to the cell wall is an open field of research.12 98 

The release of cell wall fragments from growing cells in the environment was indicated a long 99 

time ago.13 Therefore, the release of CWBAMs should peak during active cell growth, antibiotic 100 

exposure, and/or stressful environments. In a single cell duplication round in E. coli, about one-101 

half of the peptidoglycan is excised from the cell wall as anhydromuropeptides, most of them being 102 

reused, suggesting a robust turnover of the cell wall.14 Reaching the duplication end, most 103 

CWBAMs are captured in the cell wall mesh, become less soluble and less mobile to act as efficient 104 

signaling agents. In any case, the rate of cell wall recycling differs among bacterial species3 and 105 

defective recycling, as occurs in pathogenic Neisseria, which results in a larger CWBAM release. 106 

In a significant part, peptidoglycan and other CWAS are released in microvesicles, as outer 107 

membrane vesicles in Gram negatives. 108 
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The release of CWBAMs is certainly triggered by bacterial autolytic processes. Autolysins, which 109 

provide cell wall lytic functions, include endopeptidases, amidases, carboxypeptidases, phospho-110 

glycosidases, muramidases, or lytic glycosidases such as phospho-transglycosidases (phospho-111 

muramidases), which may eventually act within the same protein.15-16 Regulation of autolysin 112 

expression is a complex field, as it involves both external and internal factors, including post-113 

translational regulatory mechanisms of these enzymes, as seen in the case of murein hydrolase.17 114 

CWBAMs are recycled by living bacteria to facilitate new peptidoglycan (PG) formation, through 115 

a process called PG recycling, where bacteria consume their own exoskeletons.18 This activity 116 

varies in intensity across different growth phases among bacterial species, and these changes in 117 

pericellular CWBAM levels can influence signaling, host communication, immune stimulation, 118 

and adaptive responses.19 E. coli recycling transporters include AmpG and Opp. An important 119 

ecological aspect is whether cell wall fragments from other bacteria in the nearby microbiota can 120 

contribute to peptidoglycan recycling in a specific species. Opp is an ATP-binding cassette 121 

transporter paired with a PG-specific periplasmic binding protein, Mpp, which imports cell wall 122 

fragments from other bacteria19. The adaptive and evolutionary implications of this type of “cell 123 

wall recombination” are certainly topics of interest. Different survival dynamics observed in 124 

experiments involving multiple punctures of the cell wall20 may be related to this recycling 125 

process. 126 

 The physical disruption of the cell is the ultimate result of the bactericidal action of antibiotics21. 127 

Exposure to beta-lactam antibiotics triggers an autolytic breakdown of the cell wall, and many 128 

other antibiotics contribute to cell dis-structuration or apoptotic processes, leading to the release 129 

of CWBAMs. The same should happen with lytic phages, toxin-antitoxin systems, large 130 

bacteriocins, lantibiotics, and microcins, as well as in cases of bacterial fratricide and cannibalism 131 
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or cellular penetration by predatory bacteria such as Bdellovibrio. Additionally, cell wall 132 

breakdown results from the innate immune response, from lysis in phagolysosomes to the action 133 

of antimicrobial peptides like host defensins. Finally, bacterial digestion by intestinal molecules 134 

capable of destroying bacteria22 should be considered. An area that remains insufficiently explored 135 

is the dynamics of self-cell wall degradation after bacterial death, and the functioning of the 136 

enzymes involved23. A schema illustrating the nature and CWBAMs interactive network is 137 

presented in Figure 1. 138 

 139 

 140 

 141 

Figure 1. Cell wall bioactive molecules (CWBAMs). The left side features a schematic diagram 142 

illustrating various CWBAMs released from leaky (during replication) or dead bacterial cells. Blue and red 143 

hexagons represent N-acetyl glucosamine and N-acetyl-muramic acid in different linking conformations. 144 

Small rectangles depict amino acids and their cross-linking chains. Blue and green colors indicate D-amino 145 
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acids, while grey denotes glycine residues, which are attached or unattached to larger molecules. On the 146 

center-right, a bacterial cell with a dark red cell wall may release CWBAMs, mainly originating from lysed 147 

cells. These molecules then influence other bacteria or the microbiota, are detected and modulate immune 148 

cell activity, and also impact human organs, including the central nervous system. 149 

 150 

EFFECTS ON BACTERIAL PHYSIOLOGY  151 

Effects on the determination of cellular shape 152 

Form serves as both function and sign. The shape of a bacterial cell—whether spherical, ovoid, 153 

ellipsoid, lemon-shaped, bean-shaped, cylindrical (rod, filament, bifurcated cylinder), crescent, or 154 

spire—is determined by the structure of its cell wall. These shapes can change into one another 155 

based on the microorganism's physiological or adaptive needs. Each form requires a specific three-156 

dimensional arrangement of peptidoglycan molecules and their precursors, as well as a particular 157 

topology of CWBAMs.24  This results from the trade-off between conflicting biosynthetic protein 158 

complexes, the elongasome and the divisome, which probably share a common evolutionary origin 159 

.25 The conflict is evident because cell wall elongation—the extension of the lateral wall—only 160 

occurs when a division septum is not forming, and vice versa. Modulating this conflict depends on 161 

murein recycling genes (mre genes), which produce membrane-associated proteins, some 162 

resembling actin, that signal the spatial direction of peptidoglycan biosynthesis. This regulation 163 

influences the activity of transglycosidases and transpeptidases (PBP proteins). However, the 164 

precise interactions between Mre proteins and PBPs are not yet fully understood, and studying this 165 

remains challenging. These complexes can quickly associate and dissociate during the cell growth 166 

cycle, as well as in response to environmental changes, leading to the formation of specific shapes 167 

.24,26. An important factor in regulating rod and sphere shapes in different environmental conditions 168 
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is the surface area to volume ratio.27-28  Shape is determined by the size of cell wall building blocks 169 

and regulated by penicillin-binding proteins (PBPs), which work in coordination with SEDS 170 

(shape, elongation, division, and sporulation) transmembrane glycosyl transferases, hydrolases, 171 

and other enzymes associated with the cell envelope. There is likely a specific migration and 172 

localization of CWBAM clusters at particular cell sites. These are finally assembled by penicillin-173 

binding proteins16,29, which decrease their solubility, mobility, and most likely their signaling roles. 174 

Additionally, the mechanical properties of bacterial shape are modulated by the lipoprotein Lpp in 175 

Gram-negative microorganisms.6,30 Note that cell shape and volume may have physiological 176 

consequences, as they influence the molecular and organelle intracellular density within 177 

subcellular compartments, leading to structural epistatic interactions and the emergence of new 178 

phenotypes, including antibiotic resistance.31  179 

Effects on central bacterial metabolism 180 

Although the question was raised long ago, there is very little information about how cell wall 181 

biomolecules influence bacterial overall metabolism. It was reasonably assumed that cell wall 182 

biosynthesis and ongoing rearrangements during growth phases consume a significant portion of 183 

bacterial energy, which requires a regulated allocation of resources from central metabolism.32 184 

Peptidoglycan synthesis involves redirecting the glycolytic intermediate fructose-6-phosphate into 185 

amino sugar biosynthesis, facilitated by the branchpoint enzyme GlmS. MurA directs the 186 

downstream product, UDP-GlcNAc. Amino acids are used for structural purposes, such as forming 187 

peptidoglycan cross-bridges. Cell envelope synthesis also requires the isoprenoid carrier lipid 188 

undecaprenyl phosphate.33 For example, the Braun Lpp lipoprotein, essential for bacterial 189 

elongation and maintaining bacterial shape, is among the most abundant bacterial proteins. This 190 

requires a high translational demand, stemming from the need for ribosomal synthesis and transfer 191 
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RNAs. Conversely, the Lpp biomolecules should be exported by dedicated export proteins such as 192 

SecY, SecD, and the specific Lol system. Generally, the conflicting trade-off between the energy 193 

needed for cell wall elongation and the expression of other vital genes to sustain bacterial fitness 194 

may be regulated by codon choice; using dissimilar codon usage to allocate transfer RNA resources 195 

can adjust the balance of expression levels, thereby preventing a catastrophic cellular burden on 196 

the host.34-35 The effects of synthesizing non-canonical amino acids, which could harm bacterial 197 

metabolism, are mitigated through the excretion of these biomolecules. In dense bacterial 198 

populations, bacteria's need for cell wall construction may benefit from scavenging metabolites, 199 

including CWBAMs, released by neighboring cells, and eventually resources obtained from the 200 

host during symbiotic colonization or infection. Lastly, the cell wall stress response, regulated by 201 

cell wall stress stimuli36-38, helps bacteria survive cell wall damage. In some cases, such damage, 202 

often caused by antibiotics, results in the release of CWBAMs, which may trigger adaptive 203 

mechanisms mediated by small RNAs that directly enhance sugar metabolism, leading to more 204 

efficient energy acquisition for cell wall repair.39  205 

Effects on sporulation and germination 206 

It has been proposed that the release of muropeptide fragments into the extracellular environment 207 

is a potent germinant of dormant Bacillus subtilis spores.40 However, it appears that the regulation 208 

of sporulation may involve CWBAMs associated with muropeptides, such as L-alanine, which 209 

acts as a germinant, and D-alanine, the product of alanine racemase (Alr), which functions as a 210 

sporulation inhibitor. Interestingly, Alr is a key external component of the spore— or pre-spore- 211 

coat. Alanine racemase may control the unnecessary but energetically costly sporulation process. 212 

Conversely, alanine dehydrogenase (Ald), which allows growth in the presence of L-alanine, 213 

promotes both sporulation and nutrition of the developing cell. Blocking alanine dehydrogenase 214 
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activity, which breaks down L-alanine, can cause endospores to undergo premature and 215 

unproductive germination.40  Therefore, a balanced equilibrium between L-ala and D-ala is crucial 216 

for a healthy and efficient sporulation process, weighing the costs and benefits of sporulation. 217 

Additionally, B. subtilis produces spores in vivo; peptidoglycan fragments, as well as NAG (or 218 

associated CWBAMs), may stimulate eukaryotic-like kinase signals, influencing spores to exit 219 

dormancy.41,42 220 

 221 

Effects on biofilm formation 222 

N-acetylglucosamine influences biofilm formation.43 CWBAMs, as D-amino acids, release 223 

planktonic cells from biofilms (see below). The breakdown of peptidoglycan by AmpC releases 224 

muropeptides. The ampC gene encodes a Class C beta-lactamase, which is related to DD-225 

carboxypeptidases and affects the availability of pentapeptide substrates for cross-linking by DD-226 

transpeptidases (PBPs). AmpC expression is controlled at the transcriptional level by AmpR, a 227 

LysR-type multigene regulator involved in about 500 other bacterial genes, including repression 228 

of biofilm formation. A complex interaction exists between changes in peptidoglycan composition 229 

and biofilm development.44 It has been observed that, in the hospital environment, members of the 230 

Serratia marcescens complex, which carry the entire AmpR regulatory cluster, markedly decrease 231 

the inducible expression of AmpC. This likely results in reduced muropeptide release and may 232 

promote persistent biofilm formation in basin sinks, leading to unexpected susceptibility to beta-233 

lactam agents.45 In Gram-positive bacteria, abundant wall teichoic acids serve a similar role in 234 

surface attachment as lipopolysaccharides do in Gram-negative bacteria.46   235 

 236 
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Effects of cross-linking peptides and non-canonical D-amino acids on bacterial interactions 237 

The production of non-canonical D-amino acids (NCDAA), such as D-Alanine, by epimerases and 238 

racemases to form peptidic bridges in peptidoglycan, can negatively impact bacterial cell 239 

metabolism. As a result, the excess D-Alanine is expelled outside the cell via a secretion system. 240 

47 The released D-Alanine may have both toxic and potentially beneficial regulatory effects on the 241 

cell wall synthesis of neighboring bacteria within microbial communities. Generally, D-amino 242 

acids influence microbial growth48 and have been considered among non-peptidic microcins.49  D-243 

Amino acids also aid in biofilm disassembly, supporting the hypothesis that reduced muropeptide 244 

release promotes biofilm formation.50-52. However, the activity of racemases can be inhibited by 245 

peptidoglycan peptides, indicating a negative regulatory mechanism to prevent excessive NCDAA 246 

production.53 The reason for their presence in the cell wall stem peptides may be that D-Amino 247 

acids help protect bacteria from extracellular proteases, which typically cleave between two L-248 

isomers54, or they may contribute to resistance against certain antimicrobial agents targeting the 249 

stem peptide (see below). Additionally, D-Amino acids might serve regulatory roles among 250 

members of the intestinal and respiratory microbiota.55-56 Finally, D-homoserine-lactones could be 251 

involved in interbacterial quorum sensing.57 252 

Antimicrobial resistance, effects on bacterial fitness, and antibiosis 253 

Antibiotics contribute, either directly or indirectly, to the destruction of the cell wall. For example, 254 

beta-lactams bind to PBPs (glycosyltransferases, transpeptidases, and DD-carboxypeptidases), 255 

blocking these enzymes involved in the polymerization of glycan strands and the cross-linking of 256 

peptide stems. This results in an accumulation of muropeptides and causes changes in bacterial 257 

shape, ultimately leading to partial or complete destructuration of the cell wall and cell lysis.  258 
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The cell wall stress stimulon (CWSS) is a multi-gene inducible response to the inhibition of cell 259 

wall synthesis. CWSS induction is regulated by the VraSR two-component system, which detects 260 

an unknown signal, most likely CWBAMs, since the CWSS response is not specific to different 261 

cell wall-altering antibiotics.58-59 VraS histidine kinase, part of the VraSR two-component system 262 

in S. aureus, detects signals that upregulate gene expression for cell wall synthesis. Mutations may 263 

develop that increase the efficiency of VraS kinase activity, leading to changes that favor bacterial 264 

survival.60  265 

Another survival mechanism, separate from CWSS but also driven by CWBAMs, addresses the 266 

need for peptidoglycan recycling processes. These processes influence the induction of 267 

endopeptidase enzymes, such as the protein AmpC or AmpH60-62, which help maintain bacterial 268 

shape. It has been stated that the regulation of AmpC is finely tuned to detect defects in cell wall 269 

synthesis caused by beta-lactam drugs, likely by creating space in the wall matrix for the Insertion 270 

of new material during cell growth.63-64 However, the physiological role of AmpC is a critical area 271 

that remains scarcely explored. AmpC is more commonly known as a serine beta-lactamase, which 272 

detoxifies beta-lactam agents by acting as a beta-lactam ring peptidase. AmpC was, in fact, the 273 

first enzyme reported to have a beta-lactamase function in Escherichia coli, as early as 1940.65 In 274 

a group of Gamma-Proteobacteria, including pathogens such as Enterobacter, Serratia, 275 

Citrobacter, and Pseudomonas, AmpR activates beta-lactamase production by sensing high levels 276 

of intracellular muropeptides in the presence of a broad range of beta-lactam agents, including 277 

penicillins, oxyiminocephalosporins, monobactams, and, to a lesser extent, carbapenems.66 The 278 

rate of induction and beta-lactamase production varies among different bacterial species and 279 

antibiotics. Some genera, such as Salmonella or Proteus, lack AmpC, or AmpC is not induced, as 280 

with E. coli. Mutations leading to constitutive AmpC hyperproduction frequently occur in the 281 
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ampD genes, which encode an N-acetyl-anhydromuramyl-L-alanine amidase, influencing the 282 

levels of ampC-activating muropeptides. However, inactivating mutations in ampD amidases—283 

and consequently AmpC derepression—might reduce fitness, negatively affecting growth, 284 

motility, and cytotoxicity.67 In Pseudomonas, signals derived from peptidoglycan, such as 285 

CWBAM, resulting from cefoxitin exposure, are elusive, probably because, despite being a good 286 

inducer, cefoxitin exhibits poor activity on Pseudomonas aeruginosa AmpC-activating potency 287 

for CWBAM 1,6-anhydro-N-acetylmuramyl-pentapeptide. This is likely influenced by various 288 

pathways resulting from signaling trade-offs between AmpC inducers and repressors, such as 289 

UDP-N-acetylmuramyl-pentapeptide.68 In Salmonella, experimental hyperproduction of AmpC 290 

(where the ampC gene was introduced along with ampR via transformation) results in reduced 291 

growth rates, changes in cellular and colony morphology, and a decreased ability to invade 292 

eukaryotic cells. In this case, AmpC may reduce levels of L-D dimers, lipoprotein-bound 293 

muropeptides, and anhydrous muropeptides.69 Therefore, antibiotic resistance may decrease the 294 

release of CWBAMs. There is a possible antagonistic relationship between antibiotic resistance 295 

and virulence mediated by CWBAMs70, but we cannot dismiss the evolution of a dangerous 296 

balance between these traits in a highly antibiotic-polluted world.71-72 Fosfomycin blocks de 297 

novo UDP-MurNAc biosynthesis by inhibiting UDP-N-acetylglucosamine enol 298 

pyruvyl transferase (MurA). In several bacterial organisms, NAM exposure, which increases the 299 

cellular pool of UDP-NAM, triggers a salvage pathway, conferring resistance to fosfomycin.73-74  300 

D-amino acids in the stem peptides linking peptidoglycan chains may help bacteria resist 301 

antibiotics, as seen with the dipeptide D-alanyl-D-serine or D-alanyl-D-lactate, which blocks the 302 

activity of glycopeptide antibiotics like vancomycin. On the other hand, some D-amino acids make 303 

avian E. coli more vulnerable to tetracycline and aminoglycosides, likely due to increased 304 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transferase
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expression of outer membrane proteins75. DD-carboxypeptidases such as PBP6b from E. coli76 are 305 

targets for certain antibiotics.77 However, little is known about how beta-lactams interact with 306 

modified stem peptides, though a synergistic effect of D-amino acids and glycine with β-lactams 307 

has been suggested, based on inhibition of carboxypeptidase.78-79 In Staphylococcus, D-amino 308 

acids contribute to resistance against daptomycin, a lipopeptide antibiotic that forms a tripartite 309 

complex with lipid II and phosphatidylglycerol, especially when combined with teichoic acid 310 

overproduction.80  311 

Finally, the presence of D-amino acids is generally a hallmark of peptides biosynthesized via non-312 

ribosomal peptide synthetases (NRPSs), and D-amino acids are incorporated into novel 313 

antimicrobial peptide structures with enhanced activity.81 The occurrence of D-amino acids is rare 314 

in microcins and, in general, in ribosomally synthesized post-translationally modified peptides 315 

(RiPPs).82  However, some lassopeptides contain a D-amino acid at the C-terminus83 . Other RiPPs, 316 

which are common in Gram-positive bacteria, such as lanthionine-containing antimicrobial 317 

peptides (lanthipeptides), may also include D-amino acids.84  318 

The development of lipoprotein biosynthesis inhibitors, such as LpsA signal peptidase, suggests 319 

that increased lipoprotein levels may confer a heteroresistance phenotype affecting antibiotic 320 

action.85-86 321 

Revisiting the effect of antibiotics as signaling agents 322 

Two decades ago, we suggested that at low concentrations of antibiotics in the environment, which 323 

result from local antibiotic producers, these substances should not be viewed solely as bacterial 324 

weapons for competing. Instead, they might serve as signaling molecules that help regulate the 325 

homeostasis of microbial communities, affecting traits such as biofilm formation, motility, and 326 
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even eukaryotic cytotoxicity.87 However, we can now reinterpret these signaling effects by 327 

attributing them to CWBAMs released by the action of antibiotics on bacterial cells, rather than to 328 

antibiotics themselves. Very low concentrations of beta-lactam antibiotics can influence cell 329 

morphology and biofilm formation, eventually leading to bacterial lysis with DNA release.88 330 

EFFECTS ON HOST INNATE BACTERIAL IMMUNITY AND DISEASE 331 

PATHOGENESIS 332 

The host recognition of cell wall active biomolecules 333 

More than 30 years ago, Alexander Tomasz contributed to the discovery that the membrane 334 

glycoprotein CD14 serves as a receptor used by mammalian cells to recognize and signal responses 335 

to a wide range of bacterial components. This was a key finding in developing the concept of innate 336 

immune response, ultimately leading to serious outcomes such as septic shock.89 Hosts have 337 

evolved mechanisms to recognize alien signals released by bacteria, generally called “microbial-338 

associated molecular patterns” (MAPS or Pathogen-AMPS). Typically, CWBAMs are unique 339 

structures targeted by the host pattern recognition receptors (PRRs).  340 

PRRs include oligomerization domain proteins like NOD-1, the primary peptidoglycan receptor, 341 

and NOD-2, both containing a C-terminal leucine-rich repeat, a central nucleotide-binding site 342 

(NBD/NOD), and an N-terminal caspase activation and recruitment domain. Among PRRs, there 343 

are bactericidal agents targeting the bacterial cell wall, such as peptidoglycan recognition proteins 344 

(PGRP1, PGRP2, PGRP3, PGRP4), which can kill invading microbes in human tissues and 345 

cellular phagosomes. All PGRPs have a carboxy-terminal type 2 amidase domain used for 346 

recognizing peptidoglycan. Typically, PGRP-2 is an N-acetylmuramyl-L-alanine amidase that 347 

cleaves the lactyl bond between NAM and the stem amino acid peptide. Another group of PRRs is 348 
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the C-type lectin receptors (CLRs), which recognize bacterial glycan backbones. CLRs capable of 349 

recognizing bacterial cell wall components include dectins, dendritic cell-specific intercellular 350 

adhesion molecule-3-grabbing non-integrin (DC-SIGN), and the Gram-positive bactericidal 351 

Regenerating gene family protein 3A (REGIII3A). Mannose-binding lectin (MBL) binds to 352 

peptidoglycan and inhibits the formation of proinflammatory cytokines. Toll-like receptors (TLRs) 353 

detect bacterial peptidoglycan, lipoteichoic acid (LTA), and lipoproteins (LPP). Additionally, 354 

lysozymes are small proteins that recognize and cleave the glycosidic bond between NAG and 355 

NAM, resulting in bacterial lysis. Overall, the role of PRRs detecting CWBAMs is to activate the 356 

innate immune response, which serves as the first line of defense against invading bacteria. For 357 

comprehensive reviews, see Sukhithasri et al90, Irazoki et al3, and Juan et al.12 . Wall teichoic acids 358 

exposed or released by Gram-positive bacteria are recognized by various human immune 359 

receptors, including surface-expressed receptors on immune cells such as langerin and macrophage 360 

galactose-type lectin, scavenger receptors (SREC-1), and soluble serum receptors like specific 361 

antibodies and mannose-binding lectin.91 Bacterial resistance to the host defense mechanisms 362 

sensing or acting on CWBAMs has evolved along with historical bacterial-host interactions. In 363 

essence, the mechanisms of resistance include modifications of peptidoglycan glycan chain, as 364 

acetylation of the C-6 position of NAM, for instance, involving peptidoglycan O-acetyltransferase 365 

A (PatA) and peptidoglycan O-acetyltransferase B (PatB), in Gram-negatives. The N-deacetylation 366 

of peptidoglycan (PgdA), as well as the O-acetyl transferase-A (OatA), or the N-glycosylated 367 

modification of C-2 position of NAM (NamH) results in resistance to lysozyme. Additionally, 368 

bacteria can modify the stem pentapeptide by amidating amino acid residues, contributing to 369 

resistance to PRR recognition.89 Apparently, the undecaprenyl-phosphate involved in the 370 

translocation of cell wall components has poor or no biological effects in the host.92  371 
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Effects of the peptidoglycan fragments and their basic bricks N-acetyl-glucosamine (NAG) 372 

and N-acetyl-muramic acid (NAM) 373 

In Gram-positive bacteria, fragments of thick peptidoglycan trigger cytokine release via CD14. 374 

However, the Gram-positive peptidoglycan is about 1000 times less active than LPS in promoting 375 

inflammation on a weight-for-weight basis, suggesting that only part of it may be proinflammatory. 376 

Long, soluble peptidoglycan chains (around 125 kDa) are poorly active. Hydrolyzing these chains 377 

to their minimal units (two sugars and a stem peptide) completely eliminates inflammation93.  In 378 

fact, NAM exhibits anti-inflammatory properties.94 Apparently, the optimal constraint for 379 

activation might involve three cross-linked stem peptides. The composition of these peptides 380 

appears important: replacing the first L-alanine in the stem peptide with D-alanine completely 381 

abolished inflammation in experimental meningitis.93 NAG may play a significant biological role 382 

in mammals, including humans. For example, it has been linked to neurodegenerative diseases 383 

such as multiple sclerosis, acting as a modulator of inflammation, myelination, and 384 

neurodegeneration, thereby improving patient health.95 Among bioactive muropeptides resulting 385 

from cell wall degradation, the NAG-NAM-tetrapeptide fragment of peptidoglycan functions as a 386 

toxin (tracheal toxin), causing death of tracheal (Bordetella) or vaginal (Neisseria) ciliated 387 

epithelial cells, and seemingly inducing slow-wave sleep; muramyl-dipeptides influence host 388 

immune response activation.96  In Staphylococcus aureus, a specific endopeptidase degrades the 389 

pentaglycine bridge linking peptides.97 However, the non-degraded portion remains antigenic98, 390 

but its effect on cell viability is poorly understood. 391 

 392 

 393 
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Effects of cross-linking peptides and non-canonical D-amino acids 394 

In principle, D-amino acids, mostly CWBAMs, originated in bacteria and are toxic to life on Earth; 395 

however, bacteria themselves counteract this toxicity by converting D-amino acids into their 396 

normal enantiomers, the L-amino acids, using racemases. In a previous section, we examined the 397 

effects of non-canonical D-amino acids (NCDAA) produced by racemases on bacterial cell 398 

metabolism and biofilm structure, as well as the regulation of their production and excretion. 399 

Because of this, the cumulative excess of D-alanine is expelled outside the cell by a secretion 400 

system and may influence bacterial-host interactions. D-alanine acts as an inhibitor of 401 

proinflammatory processes, suppressing interleukin production by macrophages.100 Altering the 402 

D-alanine decorations of lipoteichoic acids with L-alanine or removing them from their 403 

diacylglycerol lipid anchor also reduces inflammatory responses.93 However, several D-amino 404 

acid-containing peptides (DAACPs) have been isolated from patients with cataracts, Alzheimer’s, 405 

and other diseases, mainly in elderly individuals.53,101 D-amino acids, often acquired with 406 

bacterial-contaminated foods or absorbed from the microbiota but not exclusively produced by 407 

microorganisms, are recognized as toxins by most humans and other mammals. Detoxification is 408 

carried out by transport and degradation systems, often involving flavoproteins such as D-409 

amino acid oxidases and D-amino acid dehydrogenases, which are responsible for oxidizing 410 

neutral and acidic D-amino acids, respectively.82  However, it cannot be rejected the hypothesis 411 

that these CWBAMs, interacting with glutamate-gated Ca2+ channels, might have signaling 412 

functions in most organs, especially the kidney, brain, and the intestine.102  As mentioned before, 413 

they seem to have a signaling role influencing the gut microbiota and its relationship with intestinal 414 

mucosa defence.54 An extensive account of the possible signaling effects of D-aminoacids in 415 
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biological systems can be found in the review from Aliashkevich et al.103 In the next section, the 416 

role of D-aminoacids in the pathogenicity of wall teichoic acids is briefly mentioned.  417 

Effects of teichoic acids 418 

Wall teichoic acids are polyribitol- or polyglycerol phosphate anionic polymers cross-linked 419 

to NAM residues of the peptidoglycan, eventually modified with D-alanine and NAG residues 420 

Typically present in Gram positive bacteria, they can represent up to 50% of the dry weight of 421 

staphylococcal walls.104 Teichoic acids also facilitate the adhesion of Gram-positive bacteria to 422 

surfaces and the formation of biofilms, which also applies to colonization of mucosal surfaces of 423 

the respiratory tract.91  In addition, cell wall teichoic acids create in the bacterial envelope a 424 

gradient of electrostatic charge, allowing the extracellular release of several staphylococci 425 

cytolytic toxins for eukaryotic cells, including hemolysins and leukocidins.105 The D-Ala 426 

decoration of wall teichoic acids and lipoteichoic acids (associated with the cell membrane) is 427 

primarily thought to be a virulence factor, as it facilitates colonisation, invasion, immune response 428 

activation, inflammation, and abscess.106  429 

Effects of Lpp, the Braun’s lipoprotein 430 

Lpp, probably the most abundant protein in E. coli, appears to be a crucial factor in pathogenicity. 431 

Deletion mutants producing less Lpp tend to show decreased pathogenicity.107 The reason might 432 

be that Lpp inhibits ROS production in neutrophils, thereby preventing bacterial killing.108  433 

Purified Lpp synergizes with lipopolysaccharide (LPS), eventually leading to septic shock, by 434 

increasing the production of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6).109 In 435 

addition, Lpp and L-D-transpeptidases regulate the master virulence regulator AggR in 436 

https://www.sciencedirect.com/topics/immunology-and-microbiology/peptidoglycan
https://www.sciencedirect.com/topics/immunology-and-microbiology/dry-weight
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enteroaggregative E. coli.110 However, Lpp is a main target of antimicrobial peptides, which 437 

partially offsets its pathogenic role.111  438 

The antibiotic release of endotoxins: a reappraisal from an old concept  439 

The term "endotoxin" was introduced by German scientist Richard Pfeiffer (1858-1945) in 1892. 440 

112 His work was built upon the scientific foundation laid by Robert Koch (1843-1910), who 441 

provided the key definition of the term, describing endotoxins as “the toxins linked to the bacterial 442 

cell substance,” not the classic excreted toxins known as exotoxins. Since Pfeiffer was studying 443 

the pathogenesis of Vibrio cholerae, he used the term to distinguish a heat-stable, toxic substance 444 

derived from the cell walls of gram-negative bacteria from actively secreted, traditional exotoxins. 445 

113 As a result, during the following century, the term “cell wall endotoxin” was mainly associated 446 

with the lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria, which 447 

is typically released after bacterial death. Between the 1980s and 2000s, there was a surge in 448 

research highlighting the potential dangers of antibiotics, which could induce endotoxin release. 449 

114 In some cases, the “endotoxic effect” was linked to molecules other than LPS, with Alexander 450 

Tomasz noting the pro-inflammatory role of peptidoglycan fragments.115-116 In recent years, this 451 

perspective has largely faded. However, it may now be time to reevaluate the role of the array of 452 

biomolecules covalently attached to the bacterial cell wall (peptidoglycan) as signals and effectors 453 

involved in bacterial physiology, ecology, infectious diseases, and even in human and animal 454 

health.22.Particularly, peptidoglycans translocated into the bloodstream from the gut microbiota 455 

may serve as signaling molecules. molecules influencing general immunological responses and 456 

even brain functions.117-119 In summary, we are exposed not only to bacterial organisms but also to 457 

their individual molecular constituents, which are not necessarily toxins but just biological signals, 458 

active microbiomolecules. They can be named bacterial endopraxins (from the Greek πράξη, práxi, 459 
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to act), as those reviewed in this work in relation to cell wall bioactive molecules. Endotoxins are 460 

only a part of endopraxins, those that produce harmful effects. 461 
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