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Abstract

Movement data are valuable for the conservation of Old World vultures, as these move across

large distances and  experience a wide range of threats. As vultures rely on soaring flight, the

interplay of solar radiation, as well as wind direction and strength, is crucial for both short-

and  long-range  movements.  However,  no  study  explored  the  extent  to  which  weather

conditions  can  predict  long-range  nonroutine  movements,  such  as  those  associated  with

forays, prospecting or dispersal.

We fitted Generalized Additive Mixed Models to predict  the probability Griffon Vultures

(Gyps  fulvus,  n.individuals  =  20,  n.  GPS locations  =  168,202)  living  in  Sardinia  (Italy)

engaged  in  short-range,  medium-  and  long-range  movements  under  different  weather

conditions, in terms of solar radiation, wind direction and wind strength.

Under very weak wind conditions, Griffon Vultures restricted their movements in the areas

around the colony, as exploring areas at the borders of their home range is more demanding.

Conversely,  under  very  strong  winds,  extra-home  range  movements  were  uncommon  as

Griffon Vultures could be less prone to venture outside well-known areas.

Extra-home range movements were more common for northwestern and southeastern winds

of intermediate strength, in conditions of good solar radiation. However, the duration of long-

range movements decreased with solar radiation. This might indicate that wind sometimes

displaces Griffon Vultures and scarce solar radiation then prevents them from returning to the

colonies, forcing them to engage in long journeys across unfamiliar landscapes.

Our findings indicates that some types of nonroutine movements in vultures are not entirely

intentional  and weather  conditions  can play a crucial  role in triggering them. Combining

high-resolution movement and weather data could allow researchers to them in advance and

adaptively increase improve data acquisition from GPS tags, to study vulture behavior during

nonroutine movements and improve conservation actions.

Keywords: foraging; scavengers; forays; vultures; biologging; soaring birds
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Introduction

Movement data are increasingly used to attain a sounder understanding of animal ecology

(Nathan et al., 2022) and inform conservation policies (Allen and Singh, 2016). Information

derived from movement data are particularly valuable for the conservation of taxa such as

Old World vultures (Ogada et al., 2012), which can move across large distances and therefore

experience a wide range of threats.

Satellite telemetry (Alarcón and Lambertucci, 2018) shed light on the bioenergetics of flight

in vultures (Duriez et al., 2014), as well as on the role played by social and heterospecific

cues (Oliva-Vidal et  al.,  2024; Sassi  et  al.,  2024).  This technology also allowed to study

routine movements (Newton, 2008) of several species of vultures, such as those associated

with residency and seasonal migration (Arkumarev et al., 2019; Buechley et al., 2018; Kang

et  al.,  2019;  Martínez  et  al.,  2024).  Moreover,  some  studies  also  used  telemetry  and

biologging to study long-range nonroutine  movements (hereinafter referred as “nonroutine”

movements), such as those associated with dispersal (García-Macía et al., 2023; Martínez et

al.,  2025; Tréhin et  al.,  2024; Tobajas et  al.,  2024). This knowledge in turn revealed the

behavioral consequences of captive breeding (Jobson et al., 2021; Margalida et al., 2013) and

release methods (Cerri et al., 2024a; Fozzi et al., 2023; Rousteau, 2022), predicted exposure

to potential threats (Cervantes et al., 2023; Morant et al., 2024) and informed the design of

protection areas (Kane et al., 2022) and ecotourism (Fozzi et al., 2025).  

A frontier in research about the movement ecology of vultures is the integration between

high-resolution environmental data and movement data, to assess the role played by weather

conditions on the motion capacity of these species (Nathan et al., 2008).  Soaring birds like

vultures are strongly dependent on uplifts, which arise from the interplay of air temperature,
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terrain  morphology  and  wind  conditions  (Scacco  et  al.,  2019,  2023).  However,  the  few

existing studies studying the link between weather conditions and vulture movements focused

on the influence of solar radiation (Rivers et al., 2014; Poessel et al., 2017), with significant

gaps still surrounding the role played by wind, such as the interplay between wind direction

and strength. Addressing this gap would be particularly valuable both from a scientific and an

applied perspective. 

For  short-range  routine  movements,  such  as  foraging  around  colonies,  considering  that

flapped flight is energetically  costly for vultures (Duriez et al.,  2014), they should prefer

flying under optimal wind conditions for short-range routine movements (Alerstam et al.,

2019). However, no study tested the extent to which vultures can fly under optimal conditions

in terms of wind direction but suboptimal wind strength, and vice-versa. Moreover, vultures

are prone to collide with wind turbines while foraging, due to their visual field and flight

maneuverability  (Martin  et  al.  2012).  While  the  selective  stopping  of  turbines  reduces

collisions (Ferrer et al., 2022), its implementation can be expensive. By knowing under which

weather  conditions  vultures  engage  in  short-range  routine  movements  it  is  possible  to

improve the cost-effectiveness of selective stopping by intensifying its field monitoring at the

most critical times.

For nonroutine movements, such as those associated with prospecting (Chaubet et al., 2025)

or forays (Conradt et al., 2003), the informed dispersal theory (Reed et al., 1999) ignores the

role of weather conditions. However, evidence from other large soaring raptors (e.g., Aquila

chrysaetos,  Poessel  et  al.,  2022)  indicates  that  optimal  wind  and  radiation  facilitate

prospecting   and empirical  evidence indicates  that  at  least  on one occasion strong winds

promoted the dispersal and colonization of an island by Griffon Vultures (Tavecchia and
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Cortés-Avizanda, 2021). Therefore there is a need to address the systematic effect of weather

conditions as a proximate driver of nonroutine movements in vultures.

Considering that long-range movements are usually risky for individuals (Bonte et al., 2012),

anticipating  the occurrence  of nonroutine movements  can allow researchers  to  adaptively

increase the acquisition frequency of GPS tags to better understand habitat selection (Orgeret

et al., 2023) and assess the height at which vultures fly, two pieces of information that will

improve the estimation of collision risk with human infrastructures (Schaub et al., 2024).

In this study we explored how different wind conditions affected the probability that Griffon

Vultures  (Gyps  fulvus)  engaged  in  short-range  and  long-range  movements.  Our  findings

indicate  that  weather  conditions  are  consistently  associated  with  different  types  of

movements in Griffon Vultures and it is reasonable to hypothesize that some  long-range

movements  occur  because  individuals  are  first  displaced  by  strong  winds  and  then  face

unsuitable weather conditions, preventing them from returning to the colony.

Methods

Study area

The study area includes the westernmost part of Sardinia (Italy), the second largest island of

the Mediterranean sea (Fig. 1). Due to its  Mediterranean climate,  rainfalls  are scarce and

concentrated between November and December (Fratianni and Acquadotta, 2017). The most

common winds are the Mistral, which comes from northwest, and the Sirocco, which comes

from southeast (Furberg et al., 2002).

Sardinia hosts a population of 424-470 (86 breeding pairs) Griffon Vultures (Gyps fulvus,

Berlinguer et al., 2024). Griffon Vultures roost and nest at two main colonies in the northwest

of the island, near the municipalities of Bosa and in Porto Conte Regional Park (Fig. 1, Cerri
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et al., 2023). Griffon Vultures forage around the two colonies (Fozzi et al., 2025) and have

smaller  home-ranges  than  their  conspecifics  in  mainland  Europe  (Cerri  et  al.,  2023).

Although long-range movements between Sardinia and Corsica have been recorded (Cerri et

al., 2024), contrarily to what happens for Griffon Vultures from the Iberian peninsula or the

Balkans (Arkumarev et al., 2019; Martínez et al., 2024), migration to sub-saharan Africa has

never been observed in individuals from the Sardinian population.

Data collection

Between 2016 and 2022, 79 Griffon Vultures were released in a conservation translocation

program within the Life Under Griffon Wings project (LIFE14 NAT/IT/000484), to enhance

the viability of the Sardinian population (Aresu et al., 2022). Released individuals had been

recovered from the wild in the Iberian peninsula, or had been bred under different captivity

breeding programs (LIFE14 NAT/IT/000484).  Before being released  in  the  wild,  Griffon

Vultures  were  tested  for  pathogens  and  lead  poisoning  and  then  kept  at  acclimatization

aviaries, so that they could familiarize with the release site (Fozzi et al., 2023). They were

also fitted with engraved metal rings from ISPRA (Istituto Superiore per la Protezione e la

Ricerca Ambientale), placed on one tarsus, and with a plastic colored ring on the other tarsus

to facilitate their identification. Before being released 45 individuals were also equipped with

solar powered GPS/GSM transmitters, attached with a Teflon leg-loop harness comprised of

3  assembled  strings  (round silicone  cord  2-mm + tubular  Teflon  ribbon 0.25  and  0.44),

following  Hegglin  et  al.  (2004).  GPS  tags  were  programmed  to  collect  the  location  of

released griffons from dawn (approx. 6 a.m.) to dusk (approx. 6 p.m.) every 158.3 ± 620.8

minutes (mean ± sd). In this study we used locations from 20 individuals (n.  GPS fix =

168,202). A complete overview of individuals from our sample is available in Table 1, while
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extensive explanation about the release method and acclimatization is available in Fozzi et al.

(2023).

Quantification of extra-home range movements

We quantified nonroutine movement as extra home range movements.  These consisted of

movement trajectories where a certain Griffon Vulture exited its home-range for a certain

amount of time (Fig. 2). The home range of each individual was quantified from the 95%

isopleth of its range distribution (Alston et al., 2022), obtained through Autocorrelated Kernel

Density  Estimation  (AKDE,  Fleming  et  al.,  2015;  Fleming  and  Calabrese,  2016)  using

continuous-time movement models with a perturbative Hybrid REML (pHREML) estimator

(Silva et al., 2021). We generally preferred weighted AKDE (wAKDE Silva et al., 2021) due

to the irregular  acquisition  of GPS locations  by solar-powered tags and the lack of GPS

location at night. Only for two individuals (Artis 4 and Artis 5) we used AKDE as wAKDE

did  not  converge.  Before  estimating  home  ranges  we  screened  the  data  and  removed

implausible GPS locations, falling more than 5 km away from the coast.

Whenever a Griffon Vulture exited its home range, we isolated its movement track until the

moment when the individual re-entered its home range. Then, for each track we calculated: i)

the median step length, ii) the median direction, expressed as degrees from the North, iii) the

maximum distance, expressed as the Euclidean distance between the most distant point of the

track and the home range, iv) its temporal duration, in hours and v) the straightness index,

expressed as  the ratio  between maximum distance  and the  total  length  of  the track.  The

straightness index ranges from 0 to 1, with 1 corresponding to a straight line (Benhamou et

al., 2004). We believe these five metrics are useful to distinguish between long-range and
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short-range movements of Griffon Vultures outside of their home range, which we found to

differ in their duration, tortuosity and directionality.

Then we used Partitioning Around Medoids (PAM, Kassambara, 2017) cluster analysis to

categorize individual movement trajectories outside the home-range, into different groups.

The combined analysis of the average silhouette methods, elboy method and gap statistics

method (Kassambara, 2017) identified 4 groups of extra-HR movements (Fig. S1). However,

three groups were medium-range nonroutine movements (hereinafter MRM), characterized

by short median step lengths, a short distance from the home range, intermediate to high

values of the straightness index and differing in their mean orientation. In MRMs Griffon

Vultures briefly exited their home range and then came back after a short period of time (Fig.

1).  However,  cluster analysis  also revealed a group of long-range nonroutine movements

(hereinafter  LRM)  with  a  significantly  longer  duration,  higher  tortuosity  and  very  high

distances from the borders of the home range (Fig. S2). Although this last group was partially

similar to one of the group that we classified as MRM, we preferred to keep it separated, to

focus on the most extreme long-range movements only and reduce the categories used in the

generalized additive mixed model.

Therefore, through cluster analysis we classified GPS locations as short-range movements

(SRM) when falling inside the home range ,  as medium-range movements  (MRM) when

falling at a short distance outside the home range and having a short duration and as long

range movements (LRM) when falling at a high  distance outside the home range and having

a long duration. We did not use other methods for behavioral classification (Gurarie et al.,

2016), such Hidden Markov Models (Langrock et al., 2012) or Mixture Membership Models

(Cullen et al., 2021), due to the high number of observations and the irregular collection of
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GPS locations  by  our  solar-powered  tags,  which  did  not  collect  locations  at  night  or  in

conditions with low solar radiation.

Finally, for each GPS location, we extracted hourly values of solar radiation, as well as wind

direction  and  strength,  at  a  10  km  scale,  from  the  ERA5  climate  reanalysis  dataset

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?

tab=overview).  Solar  radiation  was quantified  as the mean surface  downward short-wave

radiation flux, representing the amount of solar radiation, both direct and diffuse, that reaches

the  ground.  Downward  short-wave  radiation  also  accounts  for  partial  reflection,  and

absorption,  by  clouds  and  aerosols,  and  corresponds  to  what  would  be  measured  by  a

pyranometer on the ground. Wind direction and speed were calculated from the eastward and

northward component (ms-1) of wind, at a height of 100 metres above the surface of the

Earth. Wind direction was expressed as degrees north, whereas wind speed in ms-1. While

some studies quantified the tailwind and crosswind component (Cecere et al., 2020), we did

not  use these measurements,  as we deemed them to be potentially  misleading,  given the

relatively coarse resolution of our data, that were collected approx. every 60 minutes. We

also did not use different altitudinal layers, as our GPS tags did not provide the height of a

certain GPS location. 
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Fig. 1. Map of the study area with 95% isopleths of individual home ranges (HR, in red) and

the three types of movement obtained from cluster analysis: short-range movements (left),

medium-range movements (center) and long-range movements (right). The two colonies are

represented as triangles.

Statistical analyses

We used Generalized Additive Mixed Modeling (GAMM) to predict the probability that GPS

locations belonged to SRMs, MRM or LRMs. We treated our three types of observations

(SRM, MRM, LRM) as an ordered response, which was modeled through a linear predictor

providing the expected value of a latent variable following a logistic distribution. Predictors

included different weather variables and individual attributes that we deemed to potentially

influence nonroutine movements by Griffon Vultures.

We included wind direction, as it can influence different types of movements of griffons in

the study area. In northwest Sardinia colonies are on the west coast and foraging ground in
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inner areas (Fozzi et al., 2025). Therefore, we hypothesized that griffons could be more active

in  case  of  western  winds,  that  would  allow  to  reach  foraging  grounds,  but  which  can

subsequently  drift  them  away  (Tavecchia  and  Cortés-Avizanda,  2021),  increasing  the

likelihood of MRMs and LRMs. In turn we also included wind strength, because Griffons

might be reluctant to fly around colonies with strong winds, as they can limit their aerial

maneuverability around roosts (Shepard, 2019) or displace them on the open sea (Bildstein et

al., 2009). We also accounted for solar radiation, as it is crucial for the generation of updrafts

(Scacco et al., 2019) and therefore facilitates soaring flight in vultures (Fluhr et al., 2021;

Poessel et al., 2017; Rivers et al., 2014), promoting MRMs and LRMs. 

We also controlled for the release group of each individual, which was found to influence

movement cohesion (Cerri et al., 2024) and therefore was believed to potentially influence

their capacity to move across the landscape (Sassi et al., 2024). We also controlled for the age

of each individual, as this variable could have potentially increased the probability of MRMs

and LRMs due to the conjoint effect of increased flight experience, which makes vultures

better at moving across the landscape (Efrat et al., 2023; Harel et al., 2016) and changes in

the  life  stage  of  individuals  (Acácio  et  al.,  2023),  which  could  increase  long-range

movements (e.g., related to prospecting, Chaubet et al., 2025). We also controlled for the sex

of Griffon Vultures, as this variable was found to influence movement in individuals from

populations of mainland Europe (Morant et al., 2023), and for the day of the year to capture

long-range movements caused by unmeasured seasonal variations in the environment (e.g.

food, Arrondo et al., 2023; Spiegel et al., 2013). Finally, we added a random intercept for

each individual, to account for inter-individual differences in the probability of MRMs and

LRMs due to unobserved attributes (e.g. personality, Nilsson et al., 2014).
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We modeled wind direction, the effect of the day of the year and the effect of elapsed time

since  release,  by  means  of  cyclic  cubic  splines,  which  are  highly  effective  at  capturing

periodic patterns. We rather used thin-plate splines to model the effect of solar radiation and

wind strength. We used a tensor product to model the interactive effect of wind strength and

direction  (Wood,  2017).  A  complete  script  explaining  model  selection  in  GAMMs  is

provided in the Supplementary Information.

We used  a combination of likelihood ratio test,  AIC and generalized cross validation to

select predictors and the numbers of basis in each spline. Namely, we selected the lowest

number of basis after which we did not detect any improvement in model fitness to the data.

Statistical  analyses were carried out with the statistical  software R (R Core Team, 2025).

Namely,  GAMMs  were  fitted  with  the  mgcv package  (Wood,  2017)  and  home  ranges

estimated with the ctmm package (Calabrese et al., 2016).
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Fig. 2. Workflow  of data processing: identification of the three types of movements from

GPS telemetry data (top square) and integration of weather data to predict different types of

movements (bottom square).

Results

We identified 4,007 trajectories associated with MRMs and 593 trajectories associated with

LRMs.  Therefore,  although  most  of  our  GPS  fix  (93.8%)  belonged  to  SRMs,  we  also

classified 4.4% and 1.8% of GPS locations as belonging to MRMs and LRMs, respectively.

Although our final  candidate  model  had a  low overall  accuracy at  predicting  these three

movements  (Table  1),  model  selection  clearly  identified  a  set  of  covariates  which  were

systematically associated with them and which progressively improved the goodness-of-fit of

a certain model to the data (Table 2).
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Griffon Vultures in our study area were more prone to engage in MRMs and LRMs when

wind came from northwest (Mistral) and southeast (Sirocco). However, the effect of wind

direction  varied  considerably  according  to  wind  strength.  When  wind  was  very  weak,

vultures had a higher probability of engaging in MRMs and LRMs only withnorthwestern

winds. Then the bimodal pattern of northwest and southeast winds became stronger up to

intermediate values of wind strength: under moderately strong winds, wind direction had the

most  marked  effect.  Finally,  under  strong  wind  conditions,  the  effect  of  wind  direction

diminished (Fig. 3). The probability that Griffon Vultures engaged in MRMs and LRMs also

increased markedly with solar radiation (Fig.  4) and in late summer (Fig. 5). The age of

released individuals also influenced this probability, although without any clear pattern nor

any clear difference between male and female Griffon Vultures (Fig. S3). 

Discussion

To  the  best  of  our  knowledge  this  is  the  first  study  assessing  weather  conditions  as  a

proximate driver of long-range nonroutine movements in an Old-World vulture. Our findings

corroborate those from studies about other large soaring raptors (Aquila adalbertii, Ferrer,

1993; e.g. A. chrysaetos, Chaubet et al., 2025; Poessel et al., 2022; Buteo buteo, Walls et al.,

2005; Vultur gryphus, Poessel et al., 2018 and Rivers et al., 2014) but highlight a potentially

hierarchical  effect  of  wind conditions  and radiation  over  the  decision making of  moving

vultures, which in turn can generate nonroutine movements.
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Fig.  3.  Marginal  effect  plot,  showing  the  interactive  effect  of  wind  strength  and  wind

direction,  over  the probability  that  GPS fix belonged to short-range (left),  medium-range

(middle) and long-range movements (right). Estimated probabilities are on the left column

and standard errors on the right column.
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Our  findings  indicate  that  Griffon  Vultures  modulate  their  short-term  and  long-range

movements  according  to  wind conditions,  both  in  terms  of  wind  direction  and strength.

Namely,  extra-home  range  movements  (MRMs  and  LRMs)  are  more  common  for

northwestern and southeastern winds of intermediate strength, while Griffon Vultures reduce

long-range movements under both very weak and very strong winds. Under very weak wind

conditions, they restrict their movements in the areas around the colony (Cerri et al., 2023)

and foraging grounds (Fozzi et al.,  2025), as exploring areas at the borders of their home

range  is  more  demanding.  Conversely,  under  very  strong  winds,  extra-home  range

movements  are  also  less  common,  compared  to  winds  of  intermediate  strength.  Griffon

Vultures might be less prone to move under potentially dangerous wind conditions, similarly

to many other large soaring birds (Naveda-Rodríguez et al., 2023; Wilkinson et al., 2019),

especially outside well-known areas where they cannot use conspecifics to detect updrafts

(Sassi et al., 2024) and orientate (see Eisaguirre et al., 2020 for A. chrysaetos). We believe

that future studies combining high-resolution telemetry with accelerometers will ultimately

provide more accurate  insights on the different  flight  strategies used by Griffon Vultures

under  different  combinations  of  wind strength  and  direction.  Particularly  for  short-range

routine movement such as those related to foraging (Hernández-Pliego et al., 2014, 2017;

Cecere et al. 2020).

We also found that Griffon Vultures  engage in  extra-home range movements  when solar

radiation is stronger. This effect, although not really surprising due to the strong correlation

between solar radiation and updrafts (Scacco et al., 2019, 2022), is particularly interesting

when considered in synergy with that of wind. In our model, the marginal effects of wind
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direction,  wind strength  and radiation  were almost  identical  for  MRMs and LRMs,  with

Griffon Vultures engaging in these two movements under the same environmental conditions.

Fig. 4. Marginal effect plot, showing the effect of the day of the year and solar radiation on

the probability that Griffon Vultures engaged in short-range (left), medium-range (middle)

and long-range movements (right).

 This might indicate that, under some specific weather conditions, Griffon Vultures venture

outside the home range to explore new areas and locate resources (e.g., forays, Conradt et al.,

2003). Being central place foragers, they would ideally limit the duration of extra-home range

movements and return to the colony. However, on some occasions, they might fail to do so
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because of scarce radiation (e.g., due to rain and cloud cover) and the lack of updrafts: at that

point they would  “go by the wind”, being thus displaced and forced to engage in long-range

movements while attempting to re-orientate and return. We tested this hypothesis by fitting a

Generalized  Linear  Mixed Model  (see  the  script  in  the  Supplementary  Information)  and

finding that the duration of LRMs has a strong negative association with solar radiation, with

prolonged journeys around Sardinia occurring when radiation was minimal (Fig. 5).

Fig.  5.  Marginal  plot,  for  the  GLMM  showing  the  effect  of  median  solar  radiation

experienced during a long-range movement over its duration.

According to this explanation,  long-range nonroutine movements would therefore arise, at

least partially, as the wind displaces individuals. Although wind displacement by wind has
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been proved  for  several  bird  species  during  migration  (Newton,  2008)  or  foraging (e.g.,

seabirds, Hass et al., 2012; Weimerskirch and Prudor, 2019), to the best of our knowledge no

study suggested it as a mechanism driving long-range nonroutine movements in large soaring

birds. The only empirical evidence was the displacement of Griffon Vultures from mainland

Spain  to  Mallorca  in  2008 (Tavecchia  and Cortés-Avizanda,  2021).  Our  findings  should

encourage  new  studies  about   weather  as  a  proximate  cause  of  long-range  nonroutine

movements  in  vultures,  which  can  also  address  some limitations  of  our  case  study.  For

example, our birds were tracked before they reached sexual maturity, while Griffon Vulture

movements change throughout their whole lifetime (Acacio et al., 2023) and dispersal and

prospecting movements in large birds also varies with age (Chaubet et al., 2025). Moreover,

in our study area only two interconnected colonies of Griffon Vultures exist and individuals

cannot move westward due to the presence of the sea. It would be important to replicate our

findings  in  areas  of  mainland  Europe,  where  colonies  are  more  scattered  across  the

landscapes  and  Griffon  Vultures  can  move  isotropically  across  larger  areas  (Delgado-

González et al., 2022; Morant et al., 2023), benefitting from a higher number of social cues

(Sassi et al., 2024). For gregarious vultures, such as the Griffon Vulture (van Overveld et al.,

2020), future studies adopting high-frequency GPS telemetry should also explore the joint

spatial behavior of multiple individuals (Kaur et al., 2024), to test for potential  differences

between individual and collective nonroutine movements.

Our findings are also potentially useful from a conservation viewpoint. As the availability of

high-resolution weather data is increasing rapidly, we believe that in a few years it will be

possible to integrate them with high-resolution telemetry (Carrard et al., 2025) and predict

movements in advance. By knowing when vultures increase their movements, researchers can

activate geofencing (Sheppard et al., 2014) to reduce collisions with wind turbines and the
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number of field observers for selective stopping (Ferrer et al., 2022) can be increased. At the

same time researchers, by knowing in advance when vultures are more likely to engage in

long-range movements, can increase the acquisition rate of GPS tags to generate collision risk

models  based  on  fly  height  (Schaub  et  al.,  2024)  and  to  better  understand  where

supplementary feeding stations should be built, to sustain moving vultures.

Conclusions

Our findings indicate that the decision-making of Griffon Vultures, while engaging in short

and long-range movements across the landscape, accounts for wind direction and strength, as

well as for solar radiation.  However, the most extreme long-range nonroutine movements

occur when wind displaces Griffon Vultures and scarce solar radiation prevent them from

returning to  the colonies.  At that  point  individuals  might  engage in long journeys across

unfamiliar  landscapes,  while  attempting  to re-orientate.  This  indicates  that  some types  of

nonroutine movements are not entirely intentional and weather conditions can play a crucial

role in triggering them. In the future combining high-resolution movement and weather data

could allow researchers to predict short and long-range movements in advance and improve

data  acquisition  from GPS  tags  adaptively,  to  study  vulture  behavior  during  nonroutine

movements and improve conservation actions.

Data availability statement

Reproducible  data  and  software  code  are  available  on  GitHub  at:

https://github.com/JacopoCerri7/Nonroutine-long-range-movements-in-Griffon-Vultures and

on Open Science Framework at: https://osf.io/qb5jr/
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Supplementary figures

Fig. S1. Overview of the average silhouette method, the elbow method and the gap statistics

method,  to  identify  the optimal  number  of  cluster  for PAM cluster  analysis.  A complete

description of the three methods is available in Kassambara (2017).
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Fig. S2. Comparison between the four groups of extra-home range movement trajectories,

identified by PAM cluster analysis. The four groups are compared in terms of  their duration,

the tortuosity, the maximum distance, the median step length and their mean step direction.
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Fig.  S3.  Marginal  effect  plot,  showing the  effect  of  the  age  of  each individual  over  the

probability that male and female Griffon Vultures engaged in short-range (left),  medium-

range (middle) and long-range movements (right).
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Tables

Individual GPS
locations

Sex GPS model Date of
birth

Date of release Cohort Locations
from MRMs

Locations
from LRMs

Artis 1 5,485 M Ecotone Crex Around
2017-04-01

2018-04-14 1 291 56

Artis 2 2,810 F Ecotone Crex Around
2017-04-01

2018-04-14 1 153 43

Artis 3 19,278 F Ornitela 
3G_50G

Around
2018-04-01

2019-06-24 2 666 64

Artis 4 9,309 M Ornitela 
3G_50G

Around
2018-04-01

2019-06-24 2 156 227

Artis 5 2,384 M Ecotone Crex Around
2018-04-01

2019-06-24 2 91 44

Barca 15,784 F Ecotone 
Skua

Around
2015-04-01

2018-04-14 1 1227 358

Bulga 4,618 F Ecotone Crex Around
2015-04-01

2018-04-14 1 164 74

Calmedia 2,816 F Ecotone Crex Around
2018-04-01

2019-10-17 3 175 84

Caniga 8,960 F Ecotone Crex Around
2018-04-01

2019-10-17 3 290 214

Corte 4,890 M Ecotone Crex Around
2018-04-01

2019-10-17 3 209 135

Cristallo 13,505 M Ecotone Crex Around
2015-04-01

2018-04-14 1 487 426

Doglia 18,090 F Ornitela 
3G_50G

Around
2018-04-01

2019-10-17 3 468 274

Fenuggiu 10,255 M Ecotone Crex Around
2015-04-01

2018-04-14 1 486 94

Macomer 8,012 F Ecotone 
Saker

Around
2018-04-01

2019-06-24 2 488 72

Meilogu 2,484 M Ecotone Crex Around
2018-04-01

2019-10-17 3 103 3

Pabelanasa 10,526 F Ecotone 
cDuck

Around
2016-04-01

2018-12-12 4 614 251

Pituabile 6,231 M Ecotone Crex Around
2016-04-01

2018-12-12 4 222 73

Pozzomaggiore 6,574 M Ecotone Crex Around
2018-04-01

2019-06-24 2 680 108

Timidone 8,451 M Ecotone Crex Around
2015-04-01

2018-04-14 1 279 121
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Tottubella 7,740 F Ecotone Crex Around
2018-04-01

2019-10-17 3 159 303

Table 1. Overview of the data used in this study, for all the 20 Griffon Vultures. Further

information  on the  same individuals  are  available  in  Fozzi  et  al.  (2023) and Cerri  et  al.

(2024).

Behavior SRM (predicted) MRM (predicted) LRM (predicted)

SRM (observed) 157,754 16 0

MRM (observed) 7,397 11 0

LRM (observed) 3,021 3 0

Table 2. Confusion matrix comparing observations classified as short-range (SRM), medium-

range (MRM) and long-range movements (LRM), with predicted values from the GAMM.
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