
1 

Associations on land and at sea? A pilot study on the utility of proximity 1 

loggers to assess inter-individual relationships in colonial seabirds 2 

 3 

Antoine Morel, Pierre-Paul Bitton * 4 

 5 

Department of Psychology, Cognitive and Behavioural Ecology, Memorial University of Newfoundland, 6 

St. John’s, NL, Canada. 7 

*Corresponding author: pbitton@mun.ca 8 

Department of Psychology, Cognitive and Behavioural Ecology 9 

Memorial University of Newfoundland and Labrador 10 

232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada 11 

 12 

Conflict of Interest 13 

The authors declare that they received a rebate from TechnoSmart for the proximity loggers to conduct 14 

this pilot study. TechnoSmart did not see a draft of the manuscript prior to submission, nor did they 15 

participate in the study or in the writing of the manuscript. The authors did not receive any 16 

compensation for using the proximity loggers.  17 

 18 

Data accessibility: Data, including analysis, are available in an open-access public repository, accessible 19 

via this link. 20 

 21 

https://osf.io/xy4az/?view_only=538a1e14c263405f8742b747e44cddc3


2 

Author Contributions 22 

Antoine Morel and Pierre-Paul Bitton together conceived the ideas and designed the methodology.  23 

Antoine Morel led the data collection, the analysis and the writing of the manuscript. Pierre-Paul 24 

significantly contributed to the analysis and editing the manuscript. All authors contributed to the drafts 25 

and gave final approval for publication. 26 

Acknowledgement 27 

We acknowledge Samuel Goguen, Jillian Taylor, Kathryn Collier, Chandler Anstey, Raul Zabala, Lily 28 

Bertolo, Jasmine Bridger, Fiona Le Taro, and Amy Wilson for their help in data collection and their 29 

assistance with banding. We also acknowledge the participation of Sittara Herat, Emma Wiseman, 30 

Jessica Vaters, Nazzin Dadashli, Hannah Stapleton, Rebecca Parsons and Amy Butler in the data entry. 31 

We acknowledge TechnoSmArt for the rebate on the devices and their time spent training us on the use 32 

of the devices and software. This work was supported by the Natural Sciences and Engineering Research 33 

Council of Canada Discovery Grant (RGPIN-2019-04984 to P-P. B.) and Discovery Launch Supplement 34 

(DGECR-2019-00029 to P-P. B.). Additional funding came from Memorial University of Newfoundland 35 

(MUN) Faculty of Science Start-up Funds, MUN School of Graduate Studies, the Canada Summer Jobs 36 

program, and Women in Science and Engineering Newfoundland and Labrador Student Summer 37 

Employment Program. 38 

  39 



3 

Abstract 40 

Accurate and extensive data collection is essential for understanding animal sociality, but collecting 41 

associations between individuals remains challenging. Animals often associate and interact outside of 42 

the range of an observer, especially in environments such as underwater or underground. However, the 43 

development of proximity loggers using Bluetooth and radio frequency to detect associations allows 44 

scientists to access behavioural information that would otherwise be impossible to collect. Here we 45 

examined the use of a logger with a proximity feature to capture associations between Atlantic puffin 46 

individuals and assessed how it could complement observations social network studies. To understand 47 

the capabilities of the logger, we tested the effect of distance on signal strength and proportion of 48 

associations detected, as well as the proportion of contacts recorded by each logger in a dyad, in lab-49 

based and field environments. Thereafter, we tested the loggers on live Atlantic puffins and compared 50 

their performance against visual observations. As expected, signal strength decreased with distance, and 51 

lab-based values were more consistent than in the field. The proportion of contacts successfully 52 

processed decreased with distance, but our experiment in the field was more reliable, probably because 53 

we used a lower logger density, limiting opportunities for interference among units. More importantly, 54 

the loggers identified more putative associations than detected by observations, including many when 55 

and where individuals were not under observation. We also demonstrate that Atlantic puffins that 56 

associate frequently on land also associate frequently at sea. Our results bring new insight into the 57 

understanding of Atlantic puffin social behaviours, particularly at times and in locations challenging to 58 

monitor. 59 

  60 

Keywords: Associations, Atlantic puffin, Dyad, Focal sampling, Social behaviour, Social network, Visual 61 

observation  62 
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Introduction 63 

Social behaviours, defined as interactions between two or more individuals, are likely to be better 64 

described in abundant and easy-to-detect species (Webber & Vander Wal, 2019). Furthermore, our 65 

understanding of inter-individual relationships is biased by when and where animals are observable, 66 

especially for those that spend much time in areas that are challenging to sample (e.g., open sea, dense 67 

forest, at night, or during migration). Therefore, it can be difficult to accurately assess social processes 68 

without methods that comprehensively sample associations (Farine & Whitehead, 2015; Hoppitt & 69 

Farine, 2018). By combining remote sensing with observational data collection, we explored the 70 

potential for proximity loggers to replace and/or complement observational data collection in the 71 

detection of on-land and at-sea associations in the Atlantic puffin. 72 

The quantification of social relationships is often used by researchers to measure sociality 73 

between individuals. However, the reliability of this measure is dependent on the accuracy of the data 74 

collection (Farine & Whitehead, 2015; Hoppitt & Farine, 2018). Focal observations, involving an observer 75 

recording associations or interactions between known individuals, are commonly used in network 76 

sampling (Webber & Vander Wal, 2019). To increase the chance of encountering individuals, scientists 77 

often target locations where certain species come back regularly, such as breeding sites (e.g., Nomano 78 

et al., 2014) or artificial feeding sites (e.g., Firth et al., 2017, Heinen et al., 2022). While free-range living 79 

animals such as birds or mammals are among the most studied taxonomic groups in social networks 80 

(Webber & Vander Wal, 2019), they are likely to be challenging to sample when away from their 81 

breeding site, and their behaviours may be influenced by human disturbance produced by the presence 82 

of the observer. The resulting observational biases can skew data collection toward specific biological 83 

mechanisms, periods, and locations (Hoppitt & Farine, 2018). A general example is one of seabird 84 

species that migrate broadly and breed on remote protected islands. Targeting individuals at their 85 

breeding site is the easiest way to collect social behaviour information. However, sampling on those 86 

https://www.zotero.org/google-docs/?broken=RpjoBl
https://www.zotero.org/google-docs/?broken=UHFrUd
https://www.zotero.org/google-docs/?broken=UHFrUd
https://www.zotero.org/google-docs/?broken=wTUKtk
https://www.zotero.org/google-docs/?broken=czVfoK
https://www.zotero.org/google-docs/?broken=XkWdSn
https://www.zotero.org/google-docs/?broken=M8m2g4
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islands is likely to generate disturbances (Brown et al., 2013) and bias sampling toward specific inland 87 

associations. To address these limitations, there is a growing need for new methods that ensure reliable 88 

data collection with limited human intervention. 89 

Remote technology is gaining popularity in the study of animal behaviour, particularly in 90 

collecting associations when and where observations are challenging or not possible (Webber & Vander 91 

Wal, 2019; Smith & Pinter-Wollman, 2021). Radiotelemetry and Global Positioning Systems (GPS) have 92 

been used in attempts to assess proximity between individuals (Ramsey et al., 2002; Atwood & Weeks, 93 

Jr., 2003; Wallace et al., 2022; Davis et al., 2018), but the detection of social relationships often require a 94 

high temporal and spatial resolution that these methods lack, particularly when changes in vegetation 95 

and topography occur (D’eon & Delparte, 2005; Frair et al., 2010). Miniaturised proximity loggers for 96 

association detection on small animals such as birds were initially introduced by Rutz et al. (2015) using 97 

radio frequency and later developed with Bluetooth (Kirkpatrick et al., 2021; Huels et al., 2025). These 98 

loggers are now often packaged with other functionality, such as GPS and accelerometer and are 99 

mounted on a collar, backpack, or leg band. They are powered by batteries, sometimes complemented 100 

with solar panels to increase battery life span. While their use remains uncommon (3.6 % of the social 101 

network studies reviewed by Webber & Vander Wal (2019) used proximity loggers), they have returned 102 

very good results on large and mid-sized mammals such as white-tailed deer (Odocoileus virginianus; 103 

Walrath et al., 2011), brushtail possums (Trichosurus vulpecula; Ji et al., 2005) and domestic cattle (Bos 104 

taurus; Swain & Bishop-Hurley, 2007). Recently, due to the advances in technology, and often at the cost 105 

of battery lifespan, miniaturised proximity loggers have been used on birds such as New Caledonian 106 

crow (Corvus moneduloides; Bettaney et al., 2015), European starlings (Sturnidae vulgaris; Kirkpatrick et 107 

al., 2021), wire-tailed manakin (Pipra filicauda; Ryder et al., 2012) and small mammals such as prairie 108 

voles (Microtus ochrogaster; Gaidica et al., 2024). However, these systems are limited to a few days in 109 

duration, which makes them inconvenient for studying animals over longer periods. Still, proximity 110 

https://www.zotero.org/google-docs/?broken=jDeQ6I
https://www.zotero.org/google-docs/?broken=jDeQ6I
https://www.zotero.org/google-docs/?broken=uOUofr
https://www.zotero.org/google-docs/?broken=uOUofr
https://www.zotero.org/google-docs/?broken=fsoBom
https://www.zotero.org/google-docs/?Rci3e8
https://www.zotero.org/google-docs/?Rci3e8
https://www.zotero.org/google-docs/?Rci3e8
https://www.zotero.org/google-docs/?ouy4Fu
https://www.zotero.org/google-docs/?broken=Ti1Blp
https://www.zotero.org/google-docs/?broken=jHlz1R
https://www.zotero.org/google-docs/?broken=duomDN
https://www.zotero.org/google-docs/?broken=x4DVS4
https://www.zotero.org/google-docs/?broken=ossTqa
https://www.zotero.org/google-docs/?broken=5GOqAE
https://www.zotero.org/google-docs/?broken=5GOqAE
https://www.zotero.org/google-docs/?broken=Yct60d
https://www.zotero.org/google-docs/?broken=ROSEEY
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loggers with battery life-saving performance and integrated solar panels present a solution for short-111 

term data collection on species that are challenging to observe, and their use on smaller species 112 

requiring technology adaptation has received little attention.  113 

This study was conducted on the Atlantic puffin, a central-place forager species that returns to 114 

the colony after foraging at sea, offering a good contrast between observable and non-visible 115 

associations. We tested the Gipsy 6© (TechnoSmArt Europe, Colleverde, Italy), a miniaturised solar-116 

powered GPS with an embedded proximity logger and evaluated its performance in the detection of 117 

associations in Atlantic puffins, at sea and on land. Specifically, we tested its performance and 118 

repeatability in lab-based and field environments and compared its detection rate with observational 119 

methods to test for detection when and where observations were not possible.   120 
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Materials and methods 121 

Study site and species 122 

We collected data on Great Island, located in the Witless Bay Ecological Reserve of Newfoundland and 123 

Labrador, Canada (47.1855N, 52.8121W). The reserve comprises the largest Atlantic puffin population in 124 

North America (~590,000 breeding individuals; Wilhelm, unpublished data, Great Island hosting around 125 

350,000; Wilhelm et al., 2015). The Atlantic puffin is a monogamous colonial seabird with a long life span 126 

(up to 45 years in the wild; Fransson et al., 2023) that forms densely populated breeding colonies (~1.6 127 

burrows/m² in Great Island; Belenguer, 2023). They display daily and seasonal colony attendance cycles 128 

with individuals generally gathering more on land in the evening (Calvert & Robertson, 2002). It has also 129 

been suggested that individuals on land prefer to be surrounded by conspecifics and will give signs of 130 

nervousness in low density (Calvert & Robertson, 2002). Atlantic puffins are highly social and associate 131 

more with close nesting conspecifics (Morel et al., 2025). At sea, they often stay in groups (i.e., rafts) 132 

that are likely to be used as information centres (Weimerskirch et al., 2010).  133 

Data collection  134 

Logger testing 135 

Logger description 136 

We used the Gipsy 6© (TechnoSmArt Europe, Colleverde; Figure S1), a remote detection device that 137 

combines GPS, accelerometer, and radio frequency to detect proximity between devices. We set the 138 

time of activity, signal strength and scanning interval frequency before deployment. The device was 139 

shaped to limit frontal surface area and drag (11 x 6 x 4 millimetres), was waterproof to 60 metres and 140 

was black to better match the mantle of the puffins. The units were powered by a lithium battery 141 

connected to a solar panel, weighed six grams, and were attached using Tesa® tape. The data were 142 

https://www.zotero.org/google-docs/?broken=88JXHf
https://www.zotero.org/google-docs/?broken=WKklG6
https://www.zotero.org/google-docs/?broken=drWTBK
https://www.zotero.org/google-docs/?broken=KQsCgy
https://www.zotero.org/google-docs/?broken=TwVVJe
https://www.zotero.org/google-docs/?broken=tcJgXu
https://www.zotero.org/google-docs/?broken=pftjib
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downloaded using a base station with a range of 500 metres and a short antenna with a range of 10 143 

metres.  144 

Lab-based environment 145 

We evaluated the performance and repeatability of the proximity loggers in optimal conditions by 146 

testing them in a lab-based environment. We deployed 12 loggers on an asphalt-shingled rooftop, as it 147 

provided a flat high ground away from physical barriers. Each logger had a unique ID and was placed 148 

along a circle 0.5 metres away from the centre (Figure S2). The distribution in a circle aimed to 149 

reproduce a high-density aggregation of individuals as observed in nature. The scanning interval 150 

frequency was set for one minute, and each trial was 20 minutes long, at the end of which loggers were 151 

moved an extra 0.5 metres away from the centre. The procedure was repeated until a maximum 152 

distance of five metres between the farthest loggers was reached (each 2.5 metres away from the 153 

centre). 154 

Field environment 155 

We evaluated the performance and repeatability of proximity loggers under field conditions by 156 

deploying them on an established study plot on Great Island, Witless Bay Ecological Reserve. We 157 

deployed the same 12 loggers on a 168 square metres (14 x 12 metres) plot. The plot had a consistent 158 

40-degree angle slope facing West. Its surface was irregularly covered by tall grass, branches, and 159 

shallow, solitary boulders. The density of burrows was estimated at 1.6 burrows/m² (Belenguer, 2023). 160 

The loggers were set at 0.5 metres intervals on a diagonal following a 45-degree angle to the bottom 161 

ledge (Figure S3). All loggers but the three farthest were programmed to send their signal once every 162 

five minutes for 350 minutes. The loggers at distances of 5.5, 5, and 4.5 metres did not implement the 163 

new schedule between trials and were scanning every minute.  164 

https://www.zotero.org/google-docs/?broken=7KZn2q
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Comparison with observational data 165 

To compare the data collected by the loggers with observational data and assess associations potentially 166 

missed by scan sampling, we attached proximity loggers to 6 individuals in 2023, as part of a long-term 167 

study that included an additional 131 colour-banded individuals (50 in 2021, 74 in 2022, and 13 in 2023). 168 

To avoid increasing risks of breeding failure by tagging both parents, we only equipped one individual of 169 

any given pair. Because breeding adult seabirds are likely to abandon their nest if disturbed early in the 170 

breeding season (Yorio & Boersma, 1994; Rodway et al., 1996; Blackmer et al., 2004), we captured 171 

adults only after their chicks had hatched. To evaluate the best capture period, we assessed burrow 172 

occupancy regularly and captured birds after 80 % of the eggs had hatched, and we sampled only the 173 

burrows in which chicks were present. To maximise the capture rate and minimise disturbance, 174 

experienced banders and their assistants operated at night when the birds were usually in the burrow. 175 

We trapped the adults in their burrows by hand grubbing before taking them to a banding station set a 176 

few metres away. Banders fitted each individual with a unique combination of three Darvic plain colour 177 

bands custom-made from Avian ID (9.53 mm ID X 7.93 mm HT, Red, White, Green, Black, Grey, Yellow, 178 

Light blue and Dark blue), and a Canadian Wildlife Service stainless steel grey band with a unique 179 

identifier. Six individuals were tagged with a proximity logger using the methods presented in Wilson 180 

and Wilson (1989), with four strips of Tesa® tape and one zip tie. The loggers were set on the lower 181 

back, just above the uropygial gland, with an expected retention of 15 days. Each bird was handled for 182 

no more than 15 minutes before being released in its original burrow.  183 

To capture associations using proximity detection, we set the loggers to scan every two minutes 184 

during periods when birds are the most visible on land (from 5:00 a.m. to 10:00 p.m.; Calvert & 185 

Robertson, 2002). To save battery, we had them turn off from 10:00 p.m. to 5:00 a.m., when individuals 186 

are often found inside their burrow (Calvert & Robertson, 2002). To assess individual presence on the 187 

plot, we set one extra logger in the centre of the study area, scanning every two minutes. Data were 188 

https://www.zotero.org/google-docs/?broken=jTPRGk
https://www.zotero.org/google-docs/?broken=lFcKKG
https://www.zotero.org/google-docs/?broken=lFcKKG
https://www.zotero.org/google-docs/?broken=anVHw5
https://www.zotero.org/google-docs/?broken=anVHw5
https://www.zotero.org/google-docs/?broken=xhWUL0
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collected using a long-range base station and, alternatively, a short-range antenna when birds with 189 

loggers were observed (Figure S1). The long-range antenna was fixed on the blind used for scan 190 

sampling, five metres away and facing the plot.  191 

To capture associations based on visual observation, we conducted 210 hours of scan sampling 192 

from June 06th to August 07th 2023, on the 137colour-banded individuals. From a blind facing the plot, 193 

we usually conducted two observation sessions of four hours each in a day, regardless of weather 194 

conditions. We started the first session at civil twilight and the second session four hours before sunset, 195 

the evening session lasting until the visibility was too low to identify colour bands correctly. Each session 196 

consisted of two observers equipped with binoculars (Swarovski EL 10x42 WB), observing the plot and 197 

the areas peripheral to the limits of the plot, searching for social associations. The observers were 198 

trained to accurately assess distance using flags and natural features. To optimise detections, we 199 

ensured that the area was scanned from top to bottom, and right to left when the slope was crowded, 200 

and we followed specific individuals when in low density. For this study, we defined an association as 201 

any known individuals (i.e., identified with colour bands) within a two-metre radius of another. 202 

Observers created an event each time a new association occurred or when the association was still 203 

ongoing after two minutes. All events were time-stamped and given unique sequential record numbers.  204 

Analyses  205 

Logger testing 206 

For all data management and analyses performed, we used R statistical Software v.4.2.3 (R core Team, 207 

2025). To evaluate the performance and repeatability of the loggers in lab-based and field 208 

environments, we assessed two metrics: the Received Signal Strength Indicator (RSSI; hereafter signal 209 

strength), within and between distances and the proportion of total contacts recorded by each logger in 210 

a dyad. Signal strength is expressed in decibel-milliwatts (dBm) and generally ranges between zero and -211 

https://www.zotero.org/google-docs/?broken=jtLPYb
https://www.zotero.org/google-docs/?broken=jtLPYb
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120 with values close to zero indicating a strong signal.  We applied a general linear mixed model to test 212 

the significance of the relationships between signal strength and distance between loggers using the 213 

glmmTMB package (Brooks et al., 2017). We used strength as the dependent variable and treatment 214 

with the logarithmic values of distance as the independent variable. We used logger ID as a random 215 

factor, and allowed slopes to vary by Treatment (i.e., Lab-based and Field-based trials as categorical 216 

variables). The assumptions were validated by evaluating the analytical plots from the DHARMa package 217 

(Hartig & Lohse, 2022), and we found that the t-family returned the best assumptions. The repeatability 218 

of the signal strength was tested using the rptR package (Stoffel et al., 2017). We calculated the 219 

repeatability estimation using the linear mixed model method by setting signal strength as the response 220 

variable and distance as the grouping variable. We obtained the repeatability estimate R, p-value and 221 

the confidence interval estimates after bootstrapping the procedure 1000 times. We tested the 222 

relationship between the proportion of detection, distance and treatment using a generalised linear 223 

mixed model. For this model, the square root of distance was used, and logger ID was included as a 224 

random factor. Using diagnostic plots, we validated our assumptions and found that the beta-family was 225 

returning a better model fit. 226 

To compare the use of loggers against traditional observations, we evaluated three metrics. We 227 

1) compared the number of associations concurrently captured by field observations and loggers, 2) 228 

assessed the proportion of associations detected by the loggers occurring outside of observation hours, 229 

and 3) assessed the proportion of associations detected by the loggers away from the plot. To compare 230 

the proportion of associations captured by both methods, we cross-referenced the associations 231 

captured during observation from the blind and the data automatically collected from the loggers. We 232 

filtered the associations automatically detected in the plot, during observational hours, and for which 233 

signal strength was more than -95dBm. The -95dBm threshold was selected as it is the minimum signal 234 

strength detected by loggers for which association within 2 metres distance was visually validated. We 235 

https://www.zotero.org/google-docs/?JKwJ0k
https://www.zotero.org/google-docs/?KOOHI3
https://www.zotero.org/google-docs/?3IZuzP
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excluded associations occurring out of the reach of the visual observation method by including only 236 

associations that were also detected by the plot logger. Because loggers can sometimes miss the signals 237 

sent every two minutes, we applied a four-minute buffer (i.e., two interval lengths duration). We 238 

assumed all individuals on the plot would be detected because they often stay for an extended period 239 

on land to rest, which would have been detected by the stationary logger's frequent screening. To select 240 

the associations automatically captured at the same time as visual observation, we kept a record of the 241 

observation period and selected associations within these time windows. By dividing the number of 242 

contacts within the plot but outside of the observation time window, we calculated the proportion of 243 

contacts missed by the observation method.  244 

To evaluate the pattern of dyadic association on the plot or not (presumably at sea), we first 245 

attributed a location to each dyadic association detected by the loggers using the time window built 246 

with the stationary logger. Then we represented the distribution of contacts by location and expressed 247 

its strength using a Pearson correlation.  248 

Ethical Note 249 

This study was performed on a protected Atlantic puffin colony within the natural reserve of Witless Bay 250 

Ecological Reserve. Animal ethics were covered by an Animal Use Permit (23-01-PB) issued by XXX 251 

University Animal Care Committee. All research activities, including trapping, banding and the 252 

construction of a non-permanent structure, were allowed under a Province of Newfoundland and 253 

Labrador scientific research permit (wepr2021-23atpucolouration), a Banding permit (10926) and a 254 

Migratory Bird Research permit (SC4061) issued by Environment and Climate Change Canada. 255 
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Results 256 

Logger function in lab-based and field environments 257 

In this study, we tested 12 loggers in lab-based and field environments to determine whether signal 258 

detection warranted deployment on live animals. When testing the effects of distance and 259 

environmental conditions on strength and proportion of contact we found that signal strength 260 

decreased with distance (χ2 = 71054.809, df = 1, p < .001; Figures 1 and 2), and decreased more in the 261 

lab-based environment than in the field setting (coefficient estimate lab-based environment = 18.1402, 262 

field setting = 16.1834; χ2 = 23.089, df = 1, p < .001). Most of the variance was explained by the logger ID 263 

(R2 conditional = 0.963, R2 marginal = 0.846). We also found that signal strength was moderately 264 

repeatable among distances (R = 0.661). Similarly, we found a significant effect of distance on the 265 

proportion of contact (χ2 (1) = 58.297, df = 1, p < .001; Figure 3), with a difference between treatments 266 

(χ2 = 228.532, df = 1, p < .001). The loggers performed better in the field environment (coefficient 267 

estimate lab-based environment = -1.5858, field setting = -0.0954). Additionally, we found a difference 268 

in the proportion of contacts recorded by each logger in a dyad (Figure 4). Particularly, for both 269 

environments, more than 50 % of the dyads did not record equal logs. (i.e., an equal number of contacts 270 

received by a logger and detected by the emitting logger).  271 

  272 
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 273 
Figure 1. Among and within logger variations in signal strength in relation to distances between units. 274 

Data were collected on 12 loggers in a (a) lab-based environment and (b) field environment. Values of 275 

signal strength (in decibel-milliwatts) closer to zero indicate a strong signal strength.  276 
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 277 

278 
Figure 2. Relationship between logger signal strength and distance for 12 loggers tested in (a, c) a lab-279 
based environment and (b, c) in a field-based environment. The trendlines represent the exponential 280 
decay equation of the line of best fit. 281 



16 

282 
Figure 3. Relationship between the proportion of expected contacts correctly processed and distance for 283 
12 loggers tested in (a) a lab-based environment and in (b) a field environment. The values are jittered on 284 
the x-axis for better representation.  285 



17 

 286 
Figure 4. Percentage of contacts recorded by loggers for each dyad formed by 12 loggers tested in (a) a 287 
lab-based environment and in (b) a field environment. The horizontal red line represents an equal 288 
proportion of contacts received within the dyad. 289 

Logger function on live animals 290 

To determine if the use of the Gipsy 6© proximity feature could be used instead of scan observations, 291 

we tested six devices on live animals and evaluated whether they were detected at the same time by 292 

visual observations and their proximity loggers. We found that all six visual occurrences of associations 293 

between logger carrying birds made by an observer were confirmed at the same time by contact 294 

detection. However, only 6.5 % of the associations captured by loggers were confirmed by visual 295 

observation. By looking at the contact detection outside of the plot and between observation periods, 296 

we found that 20.26 % of loggers' contacts occurred outside the plot (number of contacts outside the 297 
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plot = 338, number of contacts within the plot = 1330) and 19.92 % of loggers' contacts within the plot 298 

happened outside of observation hours (number of contacts outside hours = 265, number of contacts 299 

within hours = 1065 contacts). 300 

To test whether individuals associated with the same conspecific on land and at sea, we 301 

compared the count of association in and outside of the plot, for each dyad (Figure 5). We found that 302 

the counts of association on land and outside the plot (presumably at sea) were strongly correlated 303 

(r(17) = 0.93, p < 0.01). 304 

 305 
Figure 5.  Relationship between the count of contacts within and outside of the plot for 13 dyadic 306 

combinations formed by six individuals. Each dot represents a dyad, and the dashed black line represents 307 

the trend.  308 
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Discussion 309 

Remote sensing data collection has become increasingly popular to gather information when and where 310 

in-person observations are constrained. However, the use of proximity loggers for the collection of 311 

association data in small species is fairly limited. In this study, we tested Gipsy 6© loggers, a device with 312 

proximity functions, in a lab-based and field environment to evaluate their performance in contexts 313 

similar to our deployment condition, and on live animals to test their potential to replace human 314 

observers, particularly when individuals are not visible. 315 

When testing the loggers in lab-based and field environments, we found a loss in signal strength  316 

with distance. We also found that signal strength was only moderately repeatable and that the identity 317 

of the logger was responsible for most of the variance in the model. Existing literature suggests three 318 

main explanations for the loss in signal strength in these types of devices. The dilution of the signal with 319 

distance (Ripperger et al., 2016; Kirkpatrick et al., 2021; Huels et al., 2025), the technical differences 320 

between devices as well as their settings (Prange et al., 2006; Huels et al., 2025) and the natural 321 

obstacles such as tall grass or reflecting materials disturbing the signal (Rutz et al., 2015; Triguero-Ocaña 322 

et al., 2019; Kirkpatrick et al., 2021). Our results align with those statements, and as expected, we 323 

reason that signal strength was affected by all three factors. As a consequence, signal strength should be 324 

used cautiously when attempting to evaluate the distance between individuals. In the context of social 325 

network analysis, they would be best used to assess group membership in flocking/herding species, or 326 

as in this study, to evaluate if conspecifics that nest near one another also travel or forage together. 327 

Nonetheless, using arbitrary thresholds of detections with minimum signal strength could be used to 328 

approximate the distance between individuals, which could still be sufficiently precise for studies that 329 

are interested in near-contact occurrence (Hamede et al., 2009).  330 

The loss of signal strength with distance ultimately leads to a decrease in successful contacts as 331 

it becomes harder for a device to capture a weak signal. However, it is not the only reason driving 332 

https://www.zotero.org/google-docs/?GASxYT
https://www.zotero.org/google-docs/?hP17ND
https://www.zotero.org/google-docs/?XhF1kp
https://www.zotero.org/google-docs/?XhF1kp
https://www.zotero.org/google-docs/?mEO4Bd
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loggers to miss contacts. Here, we found that only 50 % of the devices accurately detected the 333 

associations from their dyad both ways, regardless of the environments tested or their distance. Missing 334 

contacts have already been observed in other loggers (Drewe et al., 2012; Kirkpatrick et al., 2021; Huels 335 

et al., 2025), alongside extended-duration contact interpreted as multiple events (Prange et al., 2006). 336 

Missing contact often comes from weak signal strength from loggers at the edge of range detection 337 

(Prange et al., 2006), when the battery has diminished power (Drewe et al., 2012) or when the collision 338 

rate increases due to a locally saturated device emission environment (Kirkpatrick et al., 2021). 339 

Collisions prevent the proper detection of emitted signals and are generated when two or more loggers 340 

advertise simultaneously (Ghamari et al., 2018). We suspect that missing contacts in our study were the 341 

result of collision, as we deployed the loggers in high density, and with a relatively high sampling rate. As 342 

noted elsewhere, relatively high collision rates are one of the main limitations to the use of proximity 343 

loggers regardless of their use of Bluetooth signals (Kirkpatrick et al., 2021) or radio frequency signals 344 

(Drewe et al., 2012). The collision risk between loggers advertising at the same time is impossible to fully 345 

eliminate. However, it can be reduced by limiting the number of devices and the emissions interval to 346 

locally reduce congestion. Adding a small interval to gradually trigger the advertisement signal can also 347 

reduce collisions (Kirkpatrick et al., 2021). Those issues express the need to carefully review the dataset 348 

and apply corrective factors based on false-negative probability if necessary. Data sets with missing 349 

observations can, for example, be calibrated using corrective factors such as a simple ratio index or half-350 

weight index (Hoppitt & Farine, 2018). However, adding statistical manipulations might limit the 351 

benefits of using proximity loggers compared to traditional methods.   352 

By testing the effect of distance with two treatments (field and laboratory), we found that signal 353 

strength was more affected by distance in the lab setting than in the field environment. However, the 354 

number of contacts in the lab setting was more consistent than in the field. We suggest that these 355 

differences are explained by the topography and the deployment setting of the different locations. The 356 
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loggers in the lab environment were deployed in a circle, only a few centimetres apart from each other, 357 

sending a signal every minute. In addition, the loggers were deployed on an asphalt-shingled rooftop 358 

with radio frequency reverberation properties different from regular soil (Omusonga et al., 2015). This 359 

configuration, in close proximity, with a high signal rate and in a reflective environment, might have 360 

increased the collision rate. In contrast, the loggers in the field environment were deployed diagonally, 361 

on a heterogeneous landscape with a 40-degree angle slope. Together with a lower frequency of signals, 362 

this configuration might have generated fewer signal collisions, but also higher variability in the number 363 

of contacts.  364 

To investigate the potential of the Gipsy 6© proximity logger in replacing visual observation 365 

methods, we tested if observational data matched logger detections. Because loggers were set to turn 366 

off at night to save battery life, we did not record nocturnal social activities. Atlantic puffins have limited 367 

activity at night, either because they are sleeping in their burrow or resting at sea. Additionally, no pairs 368 

have been tagged with loggers and between-mate activity was not recorded. Thus, if some associations 369 

may have been missed, mainly individuals rafting at sea, we do not expect those associations to change 370 

the nature of their social network. We found that all tagged individuals observed on the plot were also 371 

confirmed by a contact made by loggers, but that the loggers detected more potential associations. Only 372 

6.5 % of associations captured by loggers were confirmed by visual observation, while all visual 373 

observations of birds with loggers were remotely detected. While it is possible that observers missed a 374 

large number of associations, it is more likely that the number of associations within two meters 375 

detected by loggers was overestimated. As argued above, signal strength cannot be reliably used to 376 

estimate distance and many of the contacts identified by loggers could be the result of birds identified 377 

by the observer, but not included in an association because they were not close enough. Nonetheless, 378 

this finding suggests that, despite the unequal proportion of contacts recorded by each logger within a 379 

dyad and the decreasing signal strength with distance, the automatic detection not only matches but 380 

https://www.zotero.org/google-docs/?oe1fVw


22 

has the potential to outperform visual observation. Thorough ground truthing of the loggers in different 381 

contexts would be needed every time. Our results are similar to other studies testing observational 382 

methods and proximity logger (Drewe et al., 2012; Ripperger et al., 2016; Kirkpatrick et al., 2021; Huels 383 

et al., 2025), and can be explained by the limited number of individuals an observer can simultaneously 384 

keep track of. However, Drewe et al. (2012) detected decreasing battery and logger performance over 385 

time, an aspect that we did not cover due to the low retention time of the device on birds. While we 386 

cannot predict with certainty the consequences of low battery level on the Gipsy 6© performance, the 387 

presence of a solar panel, little battery consumption and the setting modularity of this model should 388 

limit such problems.  389 

During the trial on animals, associations were detected by the loggers outside of the observation 390 

time (19.92 % of the observations) and plot (20.26 % of the observations). Indeed, those results highlight 391 

the benefit of having automatic detection to increase the quantity of data collected, but they also reflect 392 

the important proportion of data collected using a traditional scanning method. Knowledge of an 393 

animal’s behaviour, in this case the aggregation of individuals at higher density at dawn and dusk, 394 

optimised the opportunities to observe near-contact between individuals. Of all associations, over 20 % 395 

were detected outside of the plot, which would never have been visible to observers. In themselves, 396 

these data are useful as they suggest that individuals in the study area probably raft or forage together. 397 

Furthermore, by comparing the number of contacts each dyad had on land and at sea, we found that 398 

individuals were often associated with the same social partners, suggesting that associations on land are 399 

maintained at sea. While leaving the colony (e.g., because of predation), Atlantic puffins take off in 400 

groups that circle above the ground or land on the water to form rafts. These aggregations on water are 401 

probably complemented by individuals from nearby parts of the colony, which could be expected to 402 

randomly mix. However, previous research has found that Atlantic Puffins not only associate on land 403 

with close conspecifics but can move to seek potentially familiar individuals (Morel et al., 2025). Because 404 
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tagged individuals mainly associate away from the colony with the same conspecifics as on land, we 405 

suggest that familiar individuals may also seek each other at sea.  406 

 The development of miniaturised devices encourages the use of remote sensing to replace 407 

traditional observation techniques. The overall performance of the Gipsy 6© allowed us to determine 408 

that scan observations timed with the highest density of birds on land captured a majority of true 409 

associations, but also suggested that associations were likely missed. Furthermore, we were able to 410 

confirm that associations in our study area were maintained away from the plot, probably at sea. 411 

Broader use of these devices would certain help answer questions pertaining to the social structure of 412 

high-density colonial animals such as seabirds, but only after extensive consideration of the impact of 413 

signal collision rates, and in context where the actual distance between the individuals of interest is not 414 

as important as the fact that they are near one another.  415 
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