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Abstract 9 

Plant-pollinator interactions have become a major research area due to their impact on 10 

important ecosystem services that are driven by the outcomes of these mutualistic interactions. 11 

One pollinator behaviour of particular importance is flower constancy, i.e. the tendency of 12 

pollinators to temporarily specialise on one flower species during a foraging trip, thereby 13 

promoting cross-pollination. The costs and benefits of flower constancy for both plants and 14 

pollinators are varied, complex and far from understood. This review aims to synthesise and 15 

interpret studies spanning the last decades, from both plant and pollinator perspectives. Flower 16 

constancy is often viewed as an epiphenomenon of pollinator cognition, but there is increasing 17 

recognition that pollinators show remarkable behavioural flexibility in their flower choice, 18 

often in response to ecological and social factors. Plants usually benefit from flower constancy, 19 

which reduces pollen loss and interspecific pollen transfer. However, in some situations, 20 

pollinator inconstancy can be advantageous due to increased visits from pollinators shared with 21 

co-flowering plants. The fitness consequences of pollinator behaviour for rare or invasive 22 

plants is not well understood, which is blind spot for plant conservation. Rather than seeing 23 

flower constancy as a strategy imposed on pollinators by cognitive constraints, this review 24 
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emphasises that plants and pollinators pursue varied agendas depending on their ecological 25 

context and lifestyle. 26 
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1. Introduction 29 

Most flowering plants depend on animal pollinators for sexual reproduction [1]. The 30 

effectiveness of pollinators for this role depends on a range of morphological and behavioural 31 

traits. One behaviour of particular importance is flower constancy, the tendency of a pollinator 32 

to visit flowers of the same plant species during a foraging trip, sometimes for days [2,3], while 33 

bypassing rewarding alternative flowers [2,4–7]. While flower constancy has been observed 34 

and studied predominantly in bees (e.g. [2,5,8–11]), it has also been reported in butterflies [12–35 

14], hover flies [15], beetles [16] and birds [17]. Flower constancy ensures that flowers receive 36 

pollen from the same species, facilitating cross-pollination. From a pollinator perspective, 37 

flower constancy is often viewed as a suboptimal strategy and the result of pollinators 38 

attempting to mitigate the limitations of their nervous system [2,5–7]. And yet, a growing 39 

number of studies highlight that pollinators are flexible and differ in their flower choice 40 

behaviour, e.g. in response to ecological or social factors. This review brings together 41 

traditional views and recent insights into the causes and consequences of flower constancy 42 

from both pollinator and plant perspectives with the aim to better understand the varied 43 

interests that shape interactions among plant and their pollinators.  44 

At first glance flower constancy is a deceptively simple behaviour, a choice of a flower 45 

of one type over another type, and yet a closer look reveals a perplexing complexity that spans 46 

biological levels, from neurons to species communities, shapes plant-pollinator communities 47 

and raises a number of intertwined mechanistic and evolutionary questions. Here, flower 48 



constancy refers to the tendency of pollinators to move between flowers of the same species 49 

when other rewarding flower types are available. Flower constancy is based on associative 50 

learning – e.g. between colour, odour or shape an floral rewards [6] – and is different from the 51 

innate dietary preferences found in specialist (oligolectic) pollinators [5,20; note that bees can 52 

be specialists when collecting pollen, but generalists when collecting nectar [18]). This 53 

definition of flower constancy is descriptive and agnostic regarding the causes and adaptive 54 

value of flower constancy (similar to Takagi & Ohashi [19], but different from Waser [5] who 55 

considered flower constancy a non-optimal foraging strategy caused by cognitive limitations).  56 

Researchers have used two main approaches to quantify flower constancy: first, by 57 

observing movements between natural or artificial flowers, sometimes with the aim to calculate 58 

a flower constancy index (e.g. [2,5,20–23], see [5,20,24] for discussion of different indices). 59 

Second, by analysing pollen load purity of foraging bees, which reflects the sum of its foraging 60 

choices during a foraging trip (e.g. [25,26]). While the study of natural flower movements 61 

provides information about flower choice, the diversity and frequency of available options, it 62 

is often not feasible in natural habitats due to habitat and interaction network complexity or 63 

inaccessibility (e.g. the forest canopy). Analysing pollen load purity can be a convenient 64 

shortcut but findings can be misleading as pollen purity could be the result of local abundance 65 

and clustering of flowers. Pollinators could also be visiting different flower types while 66 

collecting pollen only from one [5,6]. Artificial flower setups solve many of these challenges 67 

(e.g. [8,19,22,27]), but they are feasible only for a small number of pollinators and artificial 68 

setups work best with sugar solution as a reward. Pollinators are likely of modify their 69 

strategies depending on whether they collect pollen or nectar, e.g. by being more specialised, 70 

when collecting pollen [9,18]. 71 

 72 



2. The plant perspective 73 

Animal-mediated pollination involves the transfer of pollen from the male parts of the flower, 74 

the anthers, to the female parts, the stigma, with the help of a pollinator. Darwin [4] noted that 75 

flower constancy is of “great significance to the plant, as it favours cross fertilization of distinct 76 

individuals of the same species”. Flower constancy and inconstancy differentially shape 77 

competition between plant species by affecting both the quantity and quality of plant-pollinator 78 

interactions (Fig. 1) [14,28–39].  79 

 80 

(a) Interspecific pollen transfer (IPT) 81 

Inconstant pollinators will frequently transfer pollen from one species to the stigmas of a 82 

different species. This interspecific pollen transfer (IPT) is ubiquitous [33–35,40–43] and can 83 

reduce plant fitness through a variety of mechanisms [31,35,43–46]. If a pollinator switches 84 

plant species, much of the original pollen is lost on the heterospecific flowers or it is groomed 85 

off in the process, which can reduce the seed set of conspecifics that receive less pollen as a 86 

result [29,31,35,37,47,48]. Pollen misplacement can also lower outcrossing rate, thereby 87 

reducing not only offspring quantity but also quality [48].  88 

 89 



 90 

Figure 1. Pollinator behaviour affects interactions between plants. If plants from different 91 

species share the same pollinator, then this will likely affect the fitness of plants through different 92 

mechanisms, depending on whether pollinators are flower constant or not. While sharing 93 

pollinators will often have a negative impact on flowers through competition, there may be 94 

circumstances when the sharing of inconstant pollinators benefits plants through facilitation 95 

[32,34–37,49,50]. Plants visited by inconstant pollinators may still pay some costs due to 96 

interspecific pollen transfer, but these costs are outweighed by the benefits of increased 97 

visitation. 98 

 99 

For the plant receiving heterospecific pollen, the deposition of this pollen can impair seed set 100 

[29,31,37], for example, through stigma clogging, which is the reduction of the receptive 101 

stigma surface area for conspecific pollen, stigma closure, which reduces the receptivity for 102 

conspecific pollen or active inhibition of germination and hybridisation (see [31] for review). 103 

IPT could be especially costly for rare plants co-flowering with more common species as they 104 

are likely to receive relatively more heterospecific pollen [28,31,37,46,51,52], which could 105 

increase the risk of extinction of rare plants [31,53]. Interspecific pollen transfer from invasive 106 



to native plants has the potential to reduce the reproductive success of native plants ([31,43]; 107 

but see [40,41,54]). Flower constancy affects the strength of this effect, for example, the 108 

solitary bee Rhodanthidium septemdentatum switched more often from an invasive to native 109 

plants and carried more pollen between species than the highly flower constant honey bee Apis 110 

mellifera, with negative impacts on seed production in one of three native plant species visited 111 

by the solitary bees [55]. This highlights how different types of pollinators create different 112 

interaction pollen transfer networks (see also [56]). More flower constant pollinators reduce 113 

the risk of ITP and facilitate cross-pollination [57], but they may also increase repeat visits to 114 

flowers of the same plant, thereby increasing self-pollination (geitonogamy), which can impair 115 

plant fitness [58]. 116 

The costs of these interspecies pollen transactions can select for greater divergence in 117 

floral traits, e.g. different habitat choice, flowering times or floral morphology (e.g. 118 

morphology, colour or scent; see Section 4) and self-pollination [14,28–31,33,35,44,59]. A 119 

striking example are the closely related plants Phlox drummondii and P. cuspidate, which share 120 

the butterfly Battus philenor as their primary pollinator. Butterflies show little constancy when 121 

the two plants appear in their ancestral colours, leading to pollen loss and hybridisation [14]. 122 

Where the two species are sympatric, however, selection on an allele affecting flower pigment 123 

intensity causes flowers to have more distinctive colours, which increases flower constancy of 124 

their pollinator and promotes reproductive isolation in the plants [14]. This example highlights 125 

how flower constancy can drive evolutionary divergence in closely related sympatric lineages 126 

(see also [60,61]).  127 

 128 



(b) Facilitation 129 

Not all studies, however, find that pollinator sharing has negative effects on plant fitness. Floral 130 

infidelity can be neutral or even beneficial for co-flowering plant species through facilitation 131 

(Fig. 1) [34,36,49,50,62], i.e. an increase in visitation rate due to the presence of co-flowering 132 

plants, for example through a “magnet effect”. For example, nonrewarding orchids benefit from 133 

[63] or provide benefits to [64] co-flowering rewarding plants (see also [65,66]). In high-134 

altitude plant communities where pollinators are scarce, this facilitation could be common [34]. 135 

More generally, when plant abundance is low and pollination services are limited, sharing 136 

inconstant pollinators with co-flowering plants species could increase visitation rates due to a 137 

“mass effect”, i.e. the attraction of pollinators to the area (or the survival of pollinators in an 138 

area) [34,37,50,67]. Similarly, in environments experiencing widespread pollinator decline, 139 

inconstant pollinators may be of increasing value to plants. 140 

Another potential benefit of gene flow driven by pollinator inconstancy is increased 141 

genetic variation or an exchange of adaptive traits (adaptive introgression) between non-fully 142 

reproductively isolated plant species, which may have been an important evolutionary force in 143 

many plant clades [35]. In sum, the effects of floral inconstancy on plant fitness are varied and 144 

a variation in the degree of flower constancy among pollinators, both at species and individual 145 

level, may benefit plant biodiversity (see also [68,69]).  146 

 147 

3. The pollinator perspective 148 

Pollinators are expected to maximise energy intake – either in terms of rate [70] or efficiency 149 

[71] – while making sure they also collect all required nutrients for a healthy diet [72,73]. The 150 

first requirement is primarily achieved by collecting nectar, the second is achieved by 151 

collecting different types of pollen. Flower constancy appears to be at odds with both of these 152 



requirements: bypassing rewarding flowers risks reducing energy intake [74] due to time 153 

(increased foraging trip duration) and opportunity (missed rewards) costs [74], sub-optimal 154 

flower choice [5,75] and increased flight distances [76]. Accordingly, computer simulations of 155 

flower constant and inconstant bee colonies suggest that strict flower constancy is usually less 156 

successful in terms of net energy intake than foraging indiscriminately [74]. In addition, 157 

focusing on a particular plant species risks missing out on important nutrients [77].  158 

So why would a pollinator be flower constant? One common view is that cognitive 159 

limitations imposed by the processing, storage and retrieval of information favour flower 160 

constancy. Extracting a reward efficiently requires pollinators to learn a wealth of information 161 

about floral colours, odours, shapes, textures and motor skills, involving a range of cognitive 162 

tools [6]. Due to limitations of these cognitive tools, pollinators switching between plants 163 

would be less efficient at extracting rewards [5–7,78,79]. An alternative view is that flower 164 

constancy is the economically most successful foraging strategy given the limited information 165 

a pollinator has about its environment [7,20].  166 

 167 

(a) Cognitive limitations 168 

Darwin [4] and von Frisch [80]  suggested that flower constancy is favoured due to the benefits 169 

of learning: a bee that has learned how to extract nectar from, for example, linden (Tilia) 170 

blossoms is a more efficient forager than a bee unfamiliar with this flower [2,14] (an idea 171 

sometimes misleadingly been called “Darwin’s interference hypothesis” [81,82]). The flipside 172 

of this argument is that learning has costs and a pollinator switching to a new flower type would 173 

need time and energy to learn how to extract rewards efficiently [5,83–85]. However, research 174 

on the learning efficiency of pollinators suggests that pollinators learn fast: cabbage white 175 

butterflies (Pieris rapae) need only a couple of flower visits to learn how to efficiently reach 176 

the nectar in two different flower types [12] and naïve Bombus impatiens bees collecting pollen 177 



from four plant reached a plateau in pollen collection efficiency within the first 20 visits [85]. 178 

On the other hand, B. terrestris collecting pollen from poppy flowers (Papaver rhoeas) 179 

improved their foraging efficiency over several foraging trips that included visiting hundred 180 

flower visits [84], showing that learning to exploit flowers sometimes does take time. Whether 181 

and how plant fitness is affected by pollinator learning is not well understood, but a recent 182 

study found that pollination success did not change as a result of learning how to handle flowers 183 

by Bombus impatiens foragers [85]. Overall, observations suggests that bees and butterflies 184 

quickly learn how to handle a range of flower types, which challenges Darwin’s idea that the 185 

benefits of knowing how to exploit a flower species are sufficient to favour bypassing 186 

rewarding alternatives.  187 

Limitations in working- and long-term memory may also favour flower constancy 188 

because they cause time costs if pollinators are inconstant. Long-term memories, while robust 189 

and durable, may be costly or slow to retrieve [5,6,19]. Working memory, on the other hand, 190 

is prone to rapid decay and interference from competing information, such as new floral traits 191 

[6,12,86,87]. Inter-flower flights of inconstant bumblebees tended to be longer (~1-3 seconds) 192 

than flights between flowers of the same species [21,88]. These delays in inconstant flights 193 

could be due to a transient working memory that is stable for only a few seconds or they could 194 

indicate that inconstant bees need time to access long-term memory about an alternative, in 195 

case the forager has already experience with the second flower type. These time delays in inter-196 

floral flights and learning how to extract nectar are likely to accelerate flower visitation rate 197 

due to flower constancy while also facilitating information consolidation from working- to 198 

long-term memory [21]. Overall, however, time costs due to inconstancy appear to be low. 199 

Laverty [89], for instance, found that Bombus fervidus experienced no time costs when 200 

switching between two types of flower with simple morphologies and only a ~1sec delay when 201 

switching between flower types with more complex morphologies, similar to the small 202 



increases in handling time found by Raine & Chittka [21] and Goulson et al. [13]. Importantly, 203 

even small time gains during flights between conspecific flowers can add up to a substantial 204 

amount of time saved as pollinators visit hundreds or even thousands of flowers per day. 205 

However, pollinators also accumulate time, opportunity and energy costs every time they fly 206 

past a rewarding flower. Computer simulations suggest that time costs of flower inconstancy 207 

need to be considerable (>30sec with each visit in the simulations) to make flower constancy 208 

more successful than inconstancy due to the costs of inconstancy [74]. I am not aware of any 209 

empirical studies comparing the time costs of switching flower type – due to learning and/or 210 

memory processes – to the costs of ignoring flowers of a different type. Such studies are most 211 

likely absent because they are exceedingly difficult to perform. 212 

The “search image” hypothesis proposes that flower constancy is the result of 213 

pollinators establishing a search image of a specific flower type in a complex visual 214 

environment [82]. Search images are thought to be useful when looking for cryptic targets, i.e. 215 

those that are difficult to find [90,91]. In contrast, flower constancy tends to be stronger when 216 

flowers become easier to detect or flower species become easier to differentiate (see Section 217 

4a). Convincing evidence that “search images” cause of flower constancy is currently missing, 218 

but more research into visual background effects on flower constancy and attention priming 219 

[90,91] is needed to assess the roles of search “search images” in plant-pollinator interactions. 220 

While research suggests that multiple, non-mutually exclusive cognitive processes may 221 

contribute to the strength of flower constancy in some pollinator species, the idea that cognitive 222 

constraints predispose pollinators to flower constancy is at odds with evidence that pollinators 223 

are (i) able to process impressive amounts of information efficiently and (ii) are varied and 224 

flexible in their behaviour, often in response to ecological circumstances and their social 225 

lifestyle (Section 4). This suggests that ecological and social interactions shape the cognitive 226 

tools and behavioural strategies pollinators follow. 227 



 228 

(b) Informational limitations 229 

The costly information hypothesis [6,7] posits that flower constancy is the best strategy in an 230 

uncertain environment given that acquiring information about better plant species would cost 231 

time and energy. Assessing the profitability of alternative flower species may require sampling 232 

a large number of flowers given that different flowers of the same plant species offer variable 233 

rewards [92]. Flower constancy might then be the best option if the rewards currently 234 

experienced by a pollinator are above a threshold. Honey bees are indeed almost fully flower 235 

constant when the rewards they receive are above a reward threshold [22,93]. As the number 236 

of plant species in an environment increases, so do the sampling costs to obtain reliable 237 

information, thus favouring flower constancy [6,7]. While I have found this hypothesis 238 

intuitively appealing in the past [7], computer simulations have since convinced me that flower 239 

constancy becomes more costly as plant species diversity increases [74]. This is because the 240 

time and opportunity costs of bypassing flowers also increase when alternative options are 241 

more numerous. Pollinators should be less flower constant in a habitat with more flower 242 

species. The simulation findings highlight an important point often missed in discussions about 243 

flower constancy: even if pollinators visit the most profitable flower species, flower constancy 244 

may not be the best strategy, especially when alternative options become more abundant [74]. 245 

Empirical evidence is mixed, however. While Gervais et al. [94] and Martínez-Bauer et al. [95] 246 

found that increasing plant diversity was indeed associated with lower flower constancy in 247 

bumble bees, Austin et al. [96] found that bumble bees became more flower constant when 248 

there are more options available. The first two studies were performed under natural conditions, 249 

whereas Austin et al. [20] used artificial flower arrays and lab conditions. More research is 250 

needed to understand how increasing plant diversity affects flower constancy in different 251 

pollinators.  252 



 253 

4. Behavioural flexibility and species variation 254 

If the discussion so far has given the impression that strict flower constancy is the rule among 255 

pollinators then this would be misleading. We know little about the degree of flower constancy 256 

for the vast majority of pollinators, but numerous studies and the widespread phenomenon of 257 

heterospecific pollen transfer (see Section 2) suggest that pragmatism and flexibility guide 258 

flower choice in the pollinator world. We would expect an optimal pollinator with multiple 259 

options to divide her time between exploiting familiar flowers and sampling alternative ones 260 

[97,98]. The impression that bees are commonly flower constant may have resulted from the 261 

focus on the honey bee Apis mellifera, a highly flower constant species [3,75,99], but even 262 

honey bees show flexibility in their floral choices in response to reward characteristics [7]. 263 

These two findings – variation between species and flexibility within species – suggest that 264 

there is ample scope for natural selection to drive flower choice strategies [7]. Below I discuss 265 

three types of drivers of that may be key to understanding behavioural flexibility: floral 266 

features, ecological factors and sociality. 267 

 268 

(a) Floral features 269 

A key determinant of the strength of flower constancy is the value of the reward offered by 270 

flowers, which depends on the quality (e.g. sugar concentration) and quantity (amount or 271 

production rate) of the offered rewards [88,100–105]. Bumble bees preferentially foraged on 272 

more complex flowers only if it offered sucrose solution of higher concentration than simple 273 

flowers in experimental setups [102,103]. Bumble bees foraging naturally on different shrubs 274 

preferred the species with higher daily sucrose production per flower [106]. The small skipper 275 

butterfly was twice as likely to switch plant species after receiving a below-average reward 276 



quantity [13]. Even the highly flower constant honey bee Apis mellifera adjusted the degree of 277 

flower constancy within seconds following a flower visit, with bees becoming less flower 278 

constant when reward quality, quantity and number were reduced [22].  279 

The response to rewards also interacts with other floral features and flower constancy 280 

often increases as options become more dissimilar, either in a specific trait, such as flower 281 

colour and morphology or in the number of traits [5,19,27,45,79,88,99,101,107–109].  The link 282 

between flower constancy and pollinator perception is likely due to pollinators being able to 283 

learn to differentiate more efficiently among flowers with divergent traits, which, in turn, can 284 

drive evolutionary divergence among similar plant morphs (see Section 2). Bees also increase 285 

flower constancy as flower size and floral display size (i.e. larger number of inflorescences per 286 

plant) increase [110,111]. Since flower and display size have been shown to correlate positively 287 

with reward size [112], pollinators may use flower and display size as proxies of relative 288 

profitability of a flower species, and become less inclined to switch away from large flowers.  289 

Reward value and extraction costs also depend on flower morphology, since the way 290 

flowers are built affects how fast pollinators can learn to extract rewards as well as the 291 

subsequent handling time costs and foraging rate [85,105,108,113,114]. For example, while 292 

bumble bees needed only a few minutes to learn how to efficiently extract nectar from flowers 293 

with simple morphologies, they needed up to an hour to become competent foragers on flowers 294 

with complex morphologies [83] (see also Section 3). In addition, visiting complex flowers is 295 

associated with longer handling times (up to 25 seconds vs. a few seconds for simple flowers) 296 

[85,113,114]. One might, therefore, predict that pollinators prefer simple flowers. Evidence, 297 

however, is mixed: while Bombus impatiens preferred the simpler of two artificial flower types 298 

[102], naïve Bombus terrestris foraging on natural flowers preferred complex types [113]. 299 

Similarly, Bumbus fervidus were only flower constant when visiting plants with complex 300 

morphologies [89]. What could explain these counterintuitive observations? First, bees might 301 



be discouraged to switch to an alternative type due to their experience that becoming an expert 302 

forager is costly. Second, morphological complexity might discourage or exclude some 303 

pollinators while providing rewards for the expert forager [115,116]. Visiting a complex 304 

flowers could be beneficial for pollinators experiencing intense competition, while plants might 305 

benefit if flower morphology filters out ineffective pollinators [116]. 306 

 307 

(b) Ecological factors: spatial distribution of flowers 308 

Recent studies have highlighted the importance of the spatial arrangement of flowers in 309 

influencing how pollinators balance floral fidelity versus behavioural flexibility [19,23]. Cape 310 

Sugarbirds (Promerops cafer), a rare example of a flower constant bird, adjust the degree of 311 

flower constancy in relation to the relative abundance of flower species [17]. Abundance and 312 

degree of clustering of co-flowering plants determine the distances pollinators need to fly 313 

between flowers. As distances increase, both honey bees and bumble bees become less flower 314 

constant and switching to the nearest flower type becomes more common [19,23,27,88,117–315 

119]. Pollinators could gauge these distances based on travel costs [5] or based on floral visual 316 

angles [111]. Computer simulations similarly found that flower constancy reduces energy 317 

intake when flower density is low [74] as energy, time and opportunity costs of bypassing 318 

flowers increase when flower abundance is low. Thus, flower constancy is predicted to increase 319 

with flower abundance based on both energetics and cognitive limitations (working memory 320 

instability) arguments [6,119]. Working memory instability could be the underlying 321 

mechanism that allows bees to adjust flower constancy adaptively in relation to food source 322 

abundance.  323 

 The effects of inter-floral distances also explain why flower constancy is often higher 324 

when food sources are arranged in clusters rather than when evenly mixed (Fig. 2) [19,120]. 325 



For plants, on the other hand, the more frequent switching in more evenly mixed situations 326 

could be costly due to increased IPT.  327 

 328 

 329 

Figure 2. Factors affecting behavioural flexibility and the strength of flower constancy. Flower 330 

constancy depends on floral features like reward size [22], ecological factors like the 331 

arrangement of flowers in space (e.g. [19,23,120]), flower diversity [94,95] or social factors like 332 

social information [74,121]. Plus and minus symbols indicate whether a particular factor is 333 

expected to increase or decrease flower constancy. 334 

 335 

(c) Interspecies variation and the effects of sociality 336 

Different observers have noticed that pollinator species can vary considerably in how flower 337 

constant they are [2,5,7,39,77,122]. Bateman [123] and Waser [5], observing bees moving 338 

between flowers, found that honey bees were more flower constant than bumble bees. 339 

Furthermore, honey bees returning to their hive have mostly pure pollen loads [3], whereas 340 

those of bumble bees are commonly mixed (Fig. 3) [124]. In controlled laboratory experiments, 341 



Bombus impatiens foragers were also quicker to switch from a deteriorating sugar solution to 342 

an alternative one than Apis mellifera [125]. Even within bumble bees (Bombus) there appear 343 

to be considerable interspecific differences: in the South American B. atratus and B. bellicosus, 344 

80% and 84% of pollen foragers visited just one plant during a foraging trip [9], whereas only 345 

23% of pollen foragers showed flower constancy in the European B. terrestris [126]. Whether 346 

these differences indeed reflect innate interspecific differences or differences in ecological or 347 

floral factors remains to be studied. Overall, however, evidence supports the view that 348 

pollinator groups vary in the degree of flower constancy.  349 

One factor that has been linked to flower constancy is sociality and social lifestyle. 350 

Solitary pollinators, including bees, butterflies and flies, are often less flower constant than 351 

highly social bees [42,55,123,127]. In a comparative study of pollen loads of 56 bee species in 352 

a temperate bee community, Smith et al. [122] found that social bees were more flower constant 353 

than solitary bees. Three explanations for this sociality effect have been proposed: the resource-354 

partitioning hypothesis [6,7,100], the communication hypothesis [6,74,121] and the diet 355 

breadth hypothesis [77,128]. The resource partitioning hypothesis argues that flower constancy 356 

in social bees is a form of task partitioning that helps foragers reduce competition with 357 

nestmates by specialising on different flower species [6,100,126]. However, if a subset of 358 

nestmates specialises on a subset of flowers then they still compete within their group, while 359 

now also paying the energy, time and opportunity costs of flower constancy.  360 



 361 

Fig. 3. A bumblebee forager collecting pollen on meadowsweet (Filipendula ulmaria). Her pollen 362 

package has two colours, showing the bee has visited two types of flowers during the same 363 

foraging trip (Rubus before switching to meadowsweet, photo: CG). 364 

 365 

Sociality could favour flower constancy in bees due because many social bees 366 

communicate about food sources [74,121]. Since social bees share information selectively 367 

about high quality food sources, nestmates using social information are likely to discover more 368 

profitable food sources [129–133]. For example, honey bees use the waggle dance and some 369 

stingless bees lay pheromone trails to food sources [129,131,133–136]. Most social bees 370 

perform excitatory behaviours, such as jostling runs and trophallaxis (food sharing) inside the 371 

nest after finding particularly good food sources, which facilitate the learning of floral odours 372 

and stimulate the search for flowers with these odours [130–132,135,137,138]. This selective 373 

information sharing lowers the risk of specialising on flowers offering low-quality rewards 374 

and, therefore, reduces the benefits of sampling alternative types. Virtual bee colonies with 375 

communication and flower constancy indeed collected more energy than those without 376 

communication because selective information sharing allowed colonies to specialise on the 377 

most profitable flower species in their environment [74]. In environments with abundant food 378 



sources and large rewards, flower constancy in combination with communication was the best 379 

strategy overall when plant diversity was low [74]. As plant diversity increased, inconstancy 380 

became the best strategy (see Section 3b). Thus, while communication about profitable flower 381 

types reduces one cost of flower constancy, specialising on sub-optimal flower species, it does 382 

not affect the time, energy and opportunity costs of flower constancy. 383 

Finally, sociality could affect flower constancy through indirect effects on diet 384 

diversity. Pollinators require a range of nutrients for a healthy diet [72,73,139]. Nectar is the 385 

main source of carbohydrates, while pollen provides most of the proteins, lipids and 386 

micronutrients [72,139]. As pollen from different plant species differ in their nutrient 387 

composition [72], collecting a small number of pollen types risks nutritional imbalances 388 

[140,141], with potentially negative fitness consequences [142–144]. In social bees, nectar and 389 

different types of pollen are often collected by different colony members as a form of division 390 

of labour [145–147]. A solitary bee, on the other hand, needs to collect both nectar and pollen 391 

by herself. Williams & Tepedino [128] found that the need to collect both nectar and pollen 392 

most likely explained why the solitary mason bee Osmia lignaria switched between plant 393 

species during foraging trips.  394 

Since different colony members exploit different flower species in social species, 395 

flower constancy might not lower diet breadth [74,126,128]. Pollen analysis confirms that 396 

colonies of highly flower constant species exploit many plant species simultaneously [148–397 

150]. However, only a small number of pollen types, usually <5, is collected in significant 398 

quantities. Thus, social bees may still face the risk nutritional deficiencies due to flower 399 

constancy, especially in environments with low plant diversity. Accordingly, simulated flower 400 

constant colonies with less than 50 foragers often exploited less than half of the plant species 401 

exploited by inconstant colonies [77]. A larger colony size increased the number of flower 402 

types visited even if colonies were flower constant, which could help explain why bumble bees, 403 



which have small colony sizes than honey bees and most stingless bees [77] are less flower 404 

constant than the latter two groups [151]. 405 

 406 

5. A bouquet of agendas 407 

Plants and pollinators have different agendas, i.e. fitness interests, and these agendas are often 408 

viewed as contrasting, with plants favouring flower constancy and pollinators favouring 409 

behavioural flexibility. However, plant and pollinator interests are varied, for instance, 410 

common and rare plants may experience different outcomes when their pollinators are flower 411 

constant. Likewise, social and solitary pollinators are likely to experience different costs and 412 

benefits due to flower constancy. As a result, interests of plants and pollinators may align in 413 

some situations, yet contrast in others (Fig. 4): for example, when a plant is abundant, flower 414 

visitation  and flower constancy increase [17,152,153], which is likely to favour both plants 415 

and pollinators in terms of seed set for the former [153] and energy intake rate for the latter 416 

[74] (Scenario 1). Deceptive unrewarding plants and rare plants co-flowering with abundant 417 

flower species, on the other hand, may experience reduced visitation rates due to flower 418 

constancy (Scenario 2). These costs could outweigh the benefits of reduced interspecific pollen 419 

transfer due to flower constancy under some circumstances (Fig. 1). In plant species-rich 420 

habitats with a relatively even abundance and distribution, interspecific pollen transfer due to 421 

inconstancy is likely to be common, and flowers are likely to benefit from flower constancy. 422 

Flower constant pollinators, on the other hand, pay considerable opportunity costs in such 423 

biodiverse habitats as most of the flowers they encounter will not be their preferred type 424 

(Scenario 3) [6,74]. Finally, when plants and pollinators are scarce, flower constancy could 425 

reduce pollinator visits to plants and reward rates for pollinators, thus negatively impacting the 426 

fitness of both plants and pollinators (Scenario 4).   427 



 428 

 429 

Fig 4. Interests of both plants and their pollinators when pollinators are flower constant. 430 

Four Scenarios (1-4) are suggested that reflect different situations. 431 

 432 

While some empirical and theoretical support for these scenarios exists, the interests of 433 

plants and pollinators remain far from understood. Our knowledge gaps, especially when 434 

considering rare plants, are a blind spot for plant conservation: it has been suggested that rare 435 

plants experience higher costs due to IPT [28,31,52,53], but whether and when these costs 436 

outweigh the benefits of facilitation [34,37,50] is poorly understood. Rare plants might even 437 

encourage pollinator inconstancy by offering particularly valuable nutrients [39]. Other 438 

important gaps remain, for example, we know little about the dietary requirements and foraging 439 

strategies, including flower constancy, of the vast majority of pollinators, especially in small-440 

bodied pollinators and those in the tropics [18,35,39]. Research in both controlled 441 

environments and natural communities is needed to better understand how different 442 

behavioural strategies impact pollen transfer networks, and how changes in species 443 



composition impact interactions among plants and their pollinators. Such an understanding is 444 

essential for linking mutualistic interactions to ecosystem functioning. 445 

 446 
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