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Glossary 
Sequence ensemble 
A population-level view of genomic sequences treated as a statistical ensemble, rather than as 
alignments. This framing enables direct measurement of diversity, structure, and novelty without 
relying on reference coordinates. 
Pangenome 
The complete collection of genes and genomic elements across all members of a species or clade, 
including both the conserved core genome and the variable accessory genome. 
Compression 
The process of representing data more efficiently by removing redundancy. In comparative 
genomics, compression highlights shared structure across genomes, enabling reference-free 
comparisons and novelty detection. 
Entropy 
A measure of uncertainty or unpredictability. In out context, entropy captures the genomic 
information content of a population, with higher entropy reflecting greater information diversity. 
Relative entropy (Kullback–Leibler divergence) 
A measure of the difference between two or more probability distributions. In genome analysis, 
relative entropy quantifies how much the distribution of sequence features from single genomes 
deviate from the pangenome. 
Information bottleneck 
A lossy compression method that reduces data while preserving the information most relevant for 
predicting a target variable. Applied to genomics, the bottleneck compresses k-mers or other 
features into coarser clusters while retaining genome origin information. The resulting clusters 
distill evolutionary signal. 



 

Abstract 1 

 Genome annotation, alignment, and phylogenetics are at the center of most work in 2 

evolutionary genomics. These techniques function best when rooted in prior work. Genes are mined 3 

from new genomes using evidence from old gene models. These genomes are aligned to well-worn 4 

references to create matrices for tree reconstruction. And trees are often populated with well 5 

characterized genomes to add context to the newly sequenced. Genome inference traces a line back 6 

to model organisms, yoking the analysis of new genomes to layers of previous knowledge. We 7 

instead highlight methods that use unannotated and unaligned sequence to understand the 8 

information diversity of sequence ensembles. Any set of genomes can comprise our sequence 9 

ensemble. In a pandemic context, a sequence ensemble might be clinically isolated strains from one 10 

day. In a systematic context, a sequence ensemble could be the pangenome available for a clade. 11 

The normal bioinformatics playbook would have us align. But we instead compress. A sequence 12 

ensemble that compresses easily contains lower information diversity. For pandemics, we can use 13 

curves of information diversity to trace genomic novelty and monitor selective sweeps in new 14 

strains. For systematics, we can calculate compressibility quickly across all known bacterial taxa, 15 

leveling the criteria for species across clades.  If we tolerate data loss, we can go one step further 16 

and capture structural evolution as we compress. Our approach sacrifices a lot. We skip many of the 17 

products of modern bioinformatics like variation anchored to known genes or genome alignment to 18 

prescribed references or pangenome graphs. But we gain speed, breadth, and the ability to respond 19 

to novelty. 20 

 21 

Introduction (The problem) 22 

Compression encodes information into reduced representations. Whether bits are 23 

eliminated through statistical redundancy (lossless compression), or shed entirely (lossy 24 

compression), compressed data always has a smaller footprint than the original. The act of 25 

compression – its difficulty or ease – communicates information about the original data source. 26 



 

Highly redundant data with many common patterns will compress easily. In contrast, novelty or 27 

surprise with little repeated context is difficult to compress. Evolution creates ensembles of 28 

sequence. These ensembles can be represented as pangenomes. Pangenomes are compressible 29 

entities, but how compressible depends on evolutionary strategy. 30 

Genomics is a retrospective field. Existing bioinformatic techniques often model new 31 

genomes on sequences annotated in the past1. Alignment to these reference genomes 32 

circumscribes our knowledge of diversity. Large swaths of the tree of life are presumably 33 

unknown2. For example, much of the sequence from environmental samples passes through 34 

annotation filters as undefined3. In a read streaming era4, we need forward looking techniques 35 

that flag genomic novelty by dispensing with references, annotation or alignment. Standard 36 

methods are ill-equipped for these volumes. New species are not easily caught in the sparse web 37 

of the known.  38 

As genomics has swept through biology, systematics has come to favor molecular 39 

character sets to help delimit species boundaries5,6. While morphology is still important, and 40 

holdouts have been more than vocal7, phylogenomics has more recently carried the day. 41 

Phylogenomics extends the handful of marker genes that were the foundation of early molecular 42 

systematics to matrices that concatenate thousands of orthologous genes8. This character 43 

explosion has been a boon to systematics, but gene annotation is still anchored to the known.  44 

These orthologous genes are rarely evenly distributed among the genomes that describe a 45 

species9. The complete set is one definition of the pangenome, and its complexity was originally 46 

defined as the rate of gene accumulation with newly sequenced genomes10. Genes found 47 

universally comprise a genomic core and are considered indispensable for basic species 48 

functions. Genes found sporadically may contribute to strain success in particular niches but may 49 

not be essential to their overall biology. The ratio of core genomes to accessory genomes informs 50 



 

genome fluidity11. Species whose genomes are mostly core have closed, less fluid pangenomes. 51 

Species with a large fraction of accessory genes are considered open and more fluid. 52 

This gene-centric view of orthologs is blind to the diversity in the non-coding genome12. 53 

Whole genome alignment to annotated, chromosomal references13,14 makes variation in non-54 

coding genome accessible but again circumscribes its characterization. If all we know is a linear 55 

reference on a single coordinate system, our understanding of the non-coding genome will be 56 

limited to what will stick.  57 

More recent pangenome methods attempt to enhance the reference by conveying it as a 58 

graph15. For example, a species graph through elements of the genomic core would collapse into 59 

a single consensus, punctuated by bubbles that code small scale variation like single nucleotide 60 

polymorphism and small insertion/deletion elements. In contrast, the accessory genome forks the 61 

pangenome graph along entirely disparate paths. Graph-based methods attempt to incorporate 62 

nuance and novelty into a more complex reference structure. But the game is still the same: new 63 

data is aligned to a set of old genomes bound together into a complex, branching network. 64 

Is there another way? Can we measure some other property of whole genomes that isn’t 65 

contingent on their alignment? Can we de-center the gene so we aren’t limited to the protein 66 

coding genome? Can we dispense with phylogenomics so we aren’t spending CPU years 67 

deciphering a bifurcating set of species relationships that convey a mere shadow of a more 68 

reticulate truth16?  69 

Here, we  propose several new information theoretic techniques that reimagine genomes 70 

as ensembles of information, containers subject to compression. This view of genomic 71 

information does not require annotation. Because we aren’t concerned with genes or the 72 

contiguous arrangements of genomic elements, we also forgo alignment. We instead describe 73 

pangenomes with summary statistics of string-based intersections.  In this article, we argue that 74 

compression can enhance existing comparative genomic strategies, highlight structural evolution 75 



 

through controlled information loss, and democratize the bacterial species question by applying a 76 

uniform mathematics across the Linnean taxonomy.  77 

 78 

The toolkit (entropy) 79 

Our approach is guided by two foundational concepts at the very root of information 80 

theory: entropy and relative entropy. Both ideas rely heavily on Claude Shannon’s seminal ideas 81 

on information introduced in “A Mathematical Theory of Communication”, the founding 82 

document of information theory17. Information is data that reduces uncertainty. Shannon’s 83 

original formulation resembled the thermodynamic construction of entropy devised for statistical 84 

mechanics18. We measure information entropy as 85 

𝐻 =	−%𝑝!𝑙𝑛	𝑝!
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 86 

where N is the set of all possible states, i, and pi is the probability of the ith state. This expression 87 

quantifies data into bits (base two logarithm) or nats (natural log). The bit is the most irreducible 88 

unit of information. A bit is gained when a binary variable is assigned either a 1 or a 0.  89 

In genomics, our data comes in sequences. We can measure the entropy of sequences by 90 

digesting into substrings of specific size. In the bioinformatics literature, substrings of biological 91 

readouts (DNA, RNA, protein) are called k-mers. In a comparative setting, we’re most interested 92 

in the entropy of a group of sequences, or sequence ensemble19,20. For genome sequence 93 

ensembles, alignment has been the tool of choice. But alignment is computationally arduous and 94 

breaks down with evolutionary distance. Fields as diverse as linguistics21, neurobiology22, and 95 

statistical mechanics23 have successfully employed entropy to quantify ensemble complexity. In 96 

each of these fields, researchers code a linear string of observations and divide into 97 

subsequences, calculating the entropy of each set across the ensemble. In Figure 1, we show how 98 



 

the entropy of genome sequence (e.g. DNA/RNA) typically increases with increasing 99 

subsequence size. This is a block entropy curve. 100 

Block entropy curves contain information about the complexity of the ensemble19. 101 

Systems with more ensemble structure – repeated elements across sequences – will peak at lower 102 

entropy. More novelty across sequences yields higher entropy. In genomics, closed pangenomes, 103 

with a large core shared across all species 104 

genomes, have low entropy. Auxiliary genes 105 

unique to subsets of genomes add entropy to 106 

the ensemble system. The uneven distribution 107 

of these elements is the hallmark of an open 108 

pangenome. But to measure complexity we 109 

don’t need the annotated and aligned genes. 110 

Signal is preserved in unaligned and 111 

unannotated k-mers. 112 

Block entropy curves asymptote at the 113 

minimum block size required to efficiently capture information diversity across the sequences. 114 

We use three quantities calculated from these curves to describe the complexity of a pangenome: 115 

source entropy, excess entropy and transient information19. The source entropy (Hmu) is the 116 

irreducible randomness that remains even as larger block sizes capture most ensemble 117 

correlations. Hmu is a direct measure of randomness. Random distributions are hard to 118 

compress. A high source entropy is associated with the accumulation of unevenly distributed 119 

accessory genes, resulting in a more complex pangenome. The excess entropy (EE) is the non-120 

random fraction of the total information in the system. It’s the information we model from 121 

redundancies across the ensemble. Alignment is anchored to these redundancies. In fact, 122 

alignment only works if enough of these redundancies are spread across the query genomes. 123 

Figure 1. Block Entropy Curve. We show that 

entropy increases with k-mer size. We use this 

curve to calculate source entropy (Hmu), Excess 

Entropy (EE) and Transient Information (TI). 

 



 

Finally, the transient information (TI) measures how much information we must invest to learn 124 

Hmu and EE. In Figure 1 we show TI as the area between the block entropy curve and the line 125 

defining Hmu. Species with closed pangenomes typically have a lower TI than those open to 126 

accumulating gene diversity. Closed pangenomes with a large core set of genes compress at 127 

lower k-mer sizes, approaching their Hmu quickly. 128 

 129 

More tools in the toolkit (the information bottleneck) 130 

 Entropy is the workhorse of lossless compression. In fact, it defines lossless 131 

compression’s limit. We cannot compress any further than the entropy of the source. In our 132 

context, the block entropy curve follows compression limits along a k-mer spectrum. Lossless 133 

compression preserves all data, but sacrifice can feature evolutionary events by isolating patterns 134 

from genomic noise. Using lossy compression, we can identify the core genome of any species 135 

without alignment or annotation. Along the way, we unlock the homologous and non-136 

homologous recombination events that violate vertical signal44.  137 

To understand how we can detect structural evolution without annotation or alignment, 138 

we leverage Shannon’s ideas on lossy compression. Shannon based his theory in communication. 139 

A sender passes a message to a receiver through a channel. The fundamental problem of 140 

communication is reconstructing that message. Communication channels suffer distortion. Data 141 

rarely reaches the receiver whole. Information entropy represents the limit on how efficiently a 142 

message can be compressed in the noise-less ideal.  143 

No channel is noise-less. Still, the distortion introduced by noisy channels does not doom 144 

message passing. A sender can compensate for noise by encoding more information into a 145 

message, or a receiver can tolerate some level of distortion while ascertaining a sender’s core 146 

meaning. Shannon formalized this concept as rate-distortion theory17. On the sender side, the rate 147 

is measured as bits of information per symbol. The sender’s message is distorted as it passes 148 



 

through the channel. The sender’s rate and the receiver’s distortion are inversely related. The 149 

function describing the two variables for any given channel informs lossy compression. How 150 

much information loss can we tolerate in reconstructing a sender’s message?  151 

This idea is central not only to information theory and lossy coding, but also to modern 152 

machine learning methods that use variational autoencoders to populate the compressive layers 153 

of a neural net24,25. The two key questions are 1. How well does a dataset compress, and 2. How 154 

much data can we afford to lose? 155 

We use these concepts to further understand pangenome complexity. Imagine the 156 

compression regime in Figure 2. A set of genomes comprising a sequence ensemble are digested 157 

into k-mers and compressed into a set number of clusters. This compression is analogous to a 158 

communication channel. The more clusters we model, the higher the rate, and the lower the 159 

distortion. 160 

With fewer 161 

clusters, we 162 

force the k-163 

mers through 164 

a narrower 165 

channel and 166 

suffer more 167 

distortion. 168 

If we hold the channel constant and model the same number of clusters across species 169 

ensembles, open pangenomes will suffer more data loss than their closed counterparts. Open 170 

pangenomes have more complex information to communicate. This is the information 171 

bottleneck26, an idea first proposed in the Natural Language Processing literature. The bottleneck 172 

modulates loss in our compression framework. Moreover, the clusters we glean comprise a 173 

Figure 2. The information bottleneck. As k-mers from our input genomes are 
compressed into a narrow channel, patterns of structural evolution emerge from the 
resulting clusters. 



 

model of structural evolution. The largest cluster usually represents the core genome. K-mers 174 

from recombination regions populate the others. For example, we have shown that we can detect 175 

the horizontal gene transfer events that fueled the evolution of pathogenicity in Staphylococcus 176 

aureus Clonal Complex 8 (CC8). We do this de novo, without knowing anything about the 177 

elements themselves. In CC8, the staphylococcal chromosomal cassette carrying the methicillin 178 

resistance gene expanded, accumulating other disease associated elements as the pathogen 179 

moved between North and South America44. The act of compression therefore learns real 180 

biological events without the need to annotate genes, align genomes, build sets of orthologs, or 181 

calculate any trees.  182 

 183 

Even more tools in the toolkit (relative entropy) 184 

Block entropy curves measure the compressibility of any sequence ensemble. The 185 

bottleneck compresses information into clusters that communicate only the most salient bits. 186 

Compressibility is directly related to pangenome composition. Some species are open to 187 

genomic input, others have narrower, closed pangenomes. But as we’ve described it here, 188 

entropy treats the entire pangenome distribution as a single entity. This allows us to measure 189 

overall complexity but doesn’t account for each genome’s departure from that distribution. 190 

Relative entropy, a measure of how one distribution (any given single genome) diverges from 191 

the overall distribution (our pangenome) adds nuance to our approach. Summed across all 192 

genomes, the relative entropy gives another, complementary angle on pangenome complexity 193 

and compression.  194 

To formalize this concept, we turn to bedrock principals in ecology. Ecology has an 195 

extensive history of incorporating ideas from information theory and compression27. The 196 

Shannon Index has long been used to combine the effects of species richness, the absolute 197 

number of unique species in an environment, and species evenness, the relative abundances of 198 



 

those species28. But for ecologists the core equation is more general than Shannon entropy. 199 

Ecological datasets span many types of environments. Comparing diversity across those 200 

environments is crucial. Hill introduced the effective number of species as an intuitive solution29. 201 

The effective number of species of order q is given as 202 

𝐷% = *%𝑝!
%
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	203 

where pi is the frequency of a particular species i, and N, the total number of unique species. 204 

Sweeping through the parameter q controls the metric’s responsiveness to rare (q = 0) or 205 

common species (q = 2 or more). At q = 0, the expression reduces to species richness, and at q = 206 

2, the expression expands into the Simpson Index. But the sweet spot is at q = 1. The limit of this 207 

equation as q approaches 1 is Shannon’s information entropy (or the Shannon Index if overheard 208 

in an ecology department). This transformation connects ideas from mathematical ecology to 209 

information theory. The exponent of Shannon entropy yields the Hill number at q = 1, or the 210 

effective number of species: 211 

𝐷$ = 	𝑒𝑥𝑝	 *−%𝑝!𝑙𝑛	𝑝!
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+	 212 

More diverse samples have higher Hill numbers. Hill numbers convey species diversity as an 213 

intuitive number. Because of its connection to information theory, Hill numbers are not the 214 

exclusive domain of ecologists. In Natural Language Processing, perplexity30 is used to measure 215 

how well a language model can predict a string of text. Perplexity is the effective number of 216 

words in a library. Perplexity and Hill numbers draw from the same mathematical toolkit. This 217 

toolkit’s simplicity allows for easy comparisons between entirely different experiments. But the 218 

expression collapses each experiment’s observations into a single distribution.  219 

We can enrich Hill numbers by extending beyond species measured as single variable 220 

distributions. To this point, we’ve defined what an ecologist would term alpha diversity31, or the 221 



 

diversity of species in any one sample. One sample usually doesn’t cut it. Ecologists sample 222 

multiple transects from their environment of interest. Sampling introduces several opportunities. 223 

First, the degree of sample overlap is a potential gauge of efficacy. Second, sample diversity 224 

yields insight into the overall, hypothetical, unapproachable diversity of the system, or the 225 

gamma diversity. If samples are highly diverse, ascertaining the diversity of the target 226 

environment may require more samples. If gamma diversity is too high, no sampling scheme 227 

may be enough. Beta diversity measures the degree of overlap between samples32,33. Grounding 228 

the concept in information theory, we extend the Hill number of species into a Hill number of 229 

samples. The following expression yields the effective number of samples: 230 

𝐷* = 𝑒𝑥𝑝	 *%𝑤+
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This equation incorporates the Kullback-Leibler divergence or relative entropy, a formulation as 232 

frequently used as entropy in the information theory literature34. The relative entropy measures 233 

the divergence of any one genome’s k-mer distribution against the k-mer distribution of the 234 

entire pangenome. Here, N is the number of unique species, M, the number of samples, psi the 235 

frequency of species i in sample s, pi the frequency of species i across all samples, and ws the 236 

weight all observations in sample s relative to all individuals collected in the experiment.  237 

The effective number of samples is another measure of compression. If species richness 238 

and evenness is the same across all samples, the effective number of samples reduces to 1. If the 239 

samples contain no species in common, or if samples have wildly different species occurrence 240 

counts, the effective number of samples approaches the number of samples taken. In the first 241 

case, we have perfect compression. In the latter, no compression at all. 242 

We take this ecological concept and adapt it to genomics. Our goal is to calculate the 243 

information diversity embedded in sequence ensembles. This requires a complete reframe. 244 

Rather than species in a community (alpha diversity), we think k-mers in a genome. Rather than 245 



 

transects in an environment (beta diversity), we think genomes in a pangenome. The shift is in 246 

the container. Employed in this way, we recast Hill numbers as the effective number of genomes 247 

or genome equivalents. We coin KHILL40, an intuitive metric that quantifies the information 248 

space of a pangenome, or the degree to which it will compress. Because KHILL is weighted, we 249 

can compare statistics across species regardless of how many genomes are available for each. 250 

This allows us to compare the information diversity of pathogens alongside less represented 251 

organisms from the rare biosphere. We calculate KHILLs in a fraction of the time it takes to 252 

annotate genomes, run alignments, and build the orthologs required to compute pangenome 253 

fluidity. 254 

 255 

The toolkit applied 256 

Biological datasets are large and growing. Other fields also contend with large datasets, 257 

and some have been grappling with them for decades longer.  For example, astronomers have big 258 

data, perhaps the biggest data in the sciences35. Processing and saving all astronomic data is 259 

impossible. Astronomers have known for years the importance of sensing data as it shines onto 260 

their mirrors. Compression normally happens at the point of collection. We are quickly reaching 261 

this point in biology. 262 

Organized, collaborative genome sequencing projects began in earnest in the 1990s. 263 

Starting then and through the first two decades of this century, genomic datasets were sacrosanct. 264 

Groups held fast to their data until every angle was exhausted. Though genomic data has always 265 

been big data, generating it back then was costly. This is no longer the case. The price of genome 266 

sequencing has seen steep decline. Storing this accumulating data has become nearly impossible. 267 

Perhaps it is time to let go. With the information bottleneck, we stream data through a channel, 268 

and encourage controlled data loss. New sequencing platforms emit data in nearly unending 269 

streams. Sensors are designed to glean information from data streams in real time. There are 270 



 

sensors that detect change in acceleration (engineers), in light (astronomers), in brain activity 271 

(doctors). Perhaps streams of biological sequence can also be processed and discarded. Can 272 

sequence become a sensor? 273 

Take for example SARS-CoV-2. Fifteen million SARS-CoV-2 genomes are now 274 

available in various repositories around the world36. The state of the art in surveilling these 275 

genomes as they accumulate in time and space is phylodynamic37,38. Phylodynamics is the study 276 

of organism spread over short time scales with molecular phylogenetics. But phylodynamics is 277 

retrospective. Investigators curate a fraction of the genomes available, compare them against an 278 

even more rarefied set of references, and embed the new alongside the old either in phylogenetic 279 

trees or networks. Alignment is the linchpin in this arrangement. Genome alignments feed tools 280 

like Nextstrain39, which employ Bayesian and likelihood phylogenetic approaches – some of the 281 

most computationally costly algorithms in bioinformatics – to extend our view of SARS-CoV-2 282 

biology slightly beyond the anointed references in a database. 283 

We find this limiting. We can use KHILL to look forward, analyzing all the sequence 284 

available to us outright40. Whether it’s 15 million clinical genomes or streams of wastewater, 285 

KHILL is capable of processing terabytes of streaming sequence and flagging the emergence of 286 

new variants without relying on the references that confine biological novelty. KHILL can also 287 

achieve rapid community analysis as exemplified in our study of the microbial shifts in the 288 

making of cheese (ref), and the microbiome perturbations caused by broad spectrum antibiotics 289 

(unpublished data). Whether it’s a life-threatening virus or the cheese you spread on crackers, we 290 

use all sequence, not just the bits that will stick to existing references. 291 

For SARS-CoV-2, we calculate one KHILL number per day along a pandemic time 292 

course. Compiling these genome equivalents yields an information diversity curve through time. 293 

KHILL increases as variants of concern ascend in a population mixing with a prior background. 294 

KHILL decreases once these variants grow dominant and sweep away all other genomic 295 



 

heterogeneity. In this way, we detect the emergence of concerning strains well before annotation 296 

clearinghouses have blessed new database entries.  297 

As a genomic measure of compression, KHILL also naturally lends itself to the analysis 298 

of pangenomes. In fact, with SARS-CoV-2, we used KHILL as a rolling measure of pangenome 299 

complexity. Because of their contracted timeline, pandemic genomes occupy a small information 300 

space. The KHILL of all the millions of sequenced SARS-CoV-2 compresses to about 1.15 301 

effective genomes. But KHILL is not restricted to any one biological scale. We can measure the 302 

complexity of strains, species, genus, and perhaps collections at even higher taxonomic levels.  303 

For example, we have used KHILL to calculate the pangenome complexity of all known 304 

bacterial species41. An analysis at this scale is impossible with current alignment-based 305 

bioinformatic techniques. But because KHILL is fast, we compute genome equivalents for every 306 

species in the RefSeq database (version 223). We couple this with metrics derived from block 307 

entropy curves (Hmu, EE and TI) to calculate the information space occupied by bacterial 308 

species. This information theoretic approach democratizes species classification, labelling each 309 

pangenome across the microbial tree of life with a single number.  310 

As we’ve defined it, KHILL species complexity mixes two separate phenomena. First, 311 

species definitions vary. The Linnaean taxonomy imposes a hierarchy on life, but this hierarchy 312 

is not uniformly applied. Species in one part of the taxonomic tree may not mean the same thing 313 

to its experts as species in another part of the tree. This is cultural. But it does influence the 314 

relative breadth of species buckets. We expect some variation in KHILL based just on these very 315 

human inconsistencies.  316 

More interesting, however, is our second observation. Pangenome fluidity11 has been 317 

shown to track with some gross aspects of bacterial phenotype42. For example, host-bound 318 

species accustomed to a uniform environment typically have less complex pangenomes. 319 

Cosmopolitan species occupying diverse niches tend towards more pangenome diversity. 320 



 

Obligate bacteria are less complex than their facultative counterparts. Non-motile organisms, 321 

less complex than those on the move. Complexity, in this case, was measured as pangenome 322 

fluidity. Pangenome fluidity is as near to measuring information-theoretic complexity as 323 

alignment-based techniques can get. We find that KHILL, a more direct, swifter measure of 324 

complexity, also corresponds to bacterial lifestyle. For example, pathogens have significantly 325 

lower KHILL than mutualists. Challenging environments presumably encourage the accretion of 326 

pangenome complexity as species contend with instability. Our compression-based techniques 327 

squeeze this information from genomes without the normal bioinformatics playbook. We provide 328 

a systems biology measure of complexity that compiles the effects of selective pressure on 329 

numerous genes and loci, either streamlining or expanding genomes as required of a microbe’s 330 

lifestyle. 331 

 332 

Challenges? In sacrifice there is clarity! 333 

Metrics based in compression can distort mechanism. KHILL increases with population 334 

heterogeneity, as in the case of our SARS-CoV-2 populations. But it also increases with genetic 335 

distance. This genetic diversity could be the result of environmental pressure, or it could simply 336 

be lazy, inconsistent categorization. Because block entropy curves and KHILL dispense with 337 

alignment, we also lose the ability to pinpoint change in genomic space.  Compression obscures 338 

mechanism, sacrificing genome location information, and conflates biological forces. For 339 

example, since programmed ribosomal frameshifting in viruses depends on reading frame, our 340 

method may obscure frame-dependent signals in viral studies. And compression will likely 341 

collapse individual genome copy number variation. But in a field saturated with sequence data, 342 

our approach allows researchers to skim data streams without resorting to the heaviest, most 343 

cumbersome algorithms in bioinformatics. 344 



 

The idea of conflating signal is a hallmark of information-based approaches. Shannon’s 345 

communication problem is emblematic of this compromise. Distortion is inevitable as 346 

information is relayed from sender to receiver. This concept has been used in everything43 from 347 

telecommunications, to thermodynamics, to data encoding in Natural Language Processing. 348 

More complex data requires a broader channel to communicate. But sometimes we must 349 

sacrifice nuance for meaning. In fact, compressing away the noise can sometimes distill signal. 350 

In other words, conflation sometimes yields clarity. 351 

We take this concept to genomics44. Mutation, homologous recombination, and 352 

horizontal gene transfer all distort genomic signal. We can capture the degree of distortion by 353 

measuring how difficult it is to compress strings (k-mers) from a set of genomes, through the 354 

information bottleneck, and into a set number of clusters. If the compression is easy, we need 355 

fewer clusters – a narrower channel – to achieve communication at an acceptable level of 356 

distortion. But if the genomes are labile, we need more clusters to communicate the added 357 

information diversity. The information bottleneck26 therefore also quantifies complexity. 358 

The clusters that comprise our information channel, are datasets that sort meaning. Where 359 

KHILL is a mark of compression, these clusters are actual compressed representations. We can 360 

measure the fidelity of the original ‘message’ carried by the genomes relative to these 361 

compressed representations. Clonal, tree-like, bifurcating species generally require fewer clusters 362 

to model modes of genomic change. Recombinogenic species require more clusters to achieve 363 

the same signal clarity.  364 

Like KHILL, this approach conflates biological phenomena. Lossy compression through 365 

the bottleneck does not distinguish between mutation and recombination. But for both KHILL 366 

and the bottleneck, the compressibility of a set of genomes becomes a metric that can be used to 367 

compare sets of species. We anticipate that in future work, both techniques will operate on raw 368 



 

reads, making assembly as optional as alignment. Building evolutionary models from streamed 369 

sequence would realize our ambition to sense change directly from raw data. 370 

We began this essay bemoaning genomics as a retrospective enterprise. We believe 371 

information theory allows us to shift our gaze forward. Eliminating references opens us to 372 

novelty. De-centering the gene offers a new view of pangenome complexity. And eliminating 373 

alignment boosts speed. Together these efficiencies recast sequencing as a sensor delimiting 374 

change. We can sense change along a pandemic trajectory. We can predict bacterial lifestyle 375 

from compression. And we can probe the unbalanced hierarchies of bacterial taxonomy.  376 
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