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Glossary

Sequence ensemble

A population-level view of genomic sequences treated as a statistical ensemble, rather than as
alignments. This framing enables direct measurement of diversity, structure, and novelty without
relying on reference coordinates.

Pangenome

The complete collection of genes and genomic elements across all members of a species or clade,
including both the conserved core genome and the variable accessory genome.

Compression

The process of representing data more efficiently by removing redundancy. In comparative
genomics, compression highlights shared structure across genomes, enabling reference-free
comparisons and novelty detection.

Entropy

A measure of uncertainty or unpredictability. In out context, entropy captures the genomic
information content of a population, with higher entropy reflecting greater information diversity.
Relative entropy (Kullback—Leibler divergence)

A measure of the difference between two or more probability distributions. In genome analysis,
relative entropy quantifies how much the distribution of sequence features from single genomes
deviate from the pangenome.

Information bottleneck

A lossy compression method that reduces data while preserving the information most relevant for
predicting a target variable. Applied to genomics, the bottleneck compresses k-mers or other
features into coarser clusters while retaining genome origin information. The resulting clusters
distill evolutionary signal.
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Abstract

Genome annotation, alignment, and phylogenetics are at the center of most work in
evolutionary genomics. These techniques function best when rooted in prior work. Genes are mined
from new genomes using evidence from old gene models. These genomes are aligned to well-worn
references to create matrices for tree reconstruction. And trees are often populated with well
characterized genomes to add context to the newly sequenced. Genome inference traces a line back
to model organisms, yoking the analysis of new genomes to layers of previous knowledge. We
instead highlight methods that use unannotated and unaligned sequence to understand the
information diversity of sequence ensembles. Any set of genomes can comprise our sequence
ensemble. In a pandemic context, a sequence ensemble might be clinically isolated strains from one
day. In a systematic context, a sequence ensemble could be the pangenome available for a clade.
The normal bioinformatics playbook would have us align. But we instead compress. A sequence
ensemble that compresses easily contains lower information diversity. For pandemics, we can use
curves of information diversity to trace genomic novelty and monitor selective sweeps in new
strains. For systematics, we can calculate compressibility quickly across all known bacterial taxa,
leveling the criteria for species across clades. If we tolerate data loss, we can go one step further
and capture structural evolution as we compress. Our approach sacrifices a lot. We skip many of the
products of modern bioinformatics like variation anchored to known genes or genome alignment to
prescribed references or pangenome graphs. But we gain speed, breadth, and the ability to respond

to novelty.

Introduction (The problem)

Compression encodes information into reduced representations. Whether bits are
eliminated through statistical redundancy (lossless compression), or shed entirely (lossy
compression), compressed data always has a smaller footprint than the original. The act of

compression — its difficulty or ease — communicates information about the original data source.
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Highly redundant data with many common patterns will compress easily. In contrast, novelty or
surprise with little repeated context is difficult to compress. Evolution creates ensembles of
sequence. These ensembles can be represented as pangenomes. Pangenomes are compressible
entities, but how compressible depends on evolutionary strategy.

Genomics is a retrospective field. Existing bioinformatic techniques often model new
genomes on sequences annotated in the past!. Alignment to these reference genomes
circumscribes our knowledge of diversity. Large swaths of the tree of life are presumably
unknown?. For example, much of the sequence from environmental samples passes through
annotation filters as undefined®. In a read streaming era*, we need forward looking techniques
that flag genomic novelty by dispensing with references, annotation or alignment. Standard
methods are ill-equipped for these volumes. New species are not easily caught in the sparse web
of the known.

As genomics has swept through biology, systematics has come to favor molecular
character sets to help delimit species boundaries®®. While morphology is still important, and
holdouts have been more than vocal’, phylogenomics has more recently carried the day.
Phylogenomics extends the handful of marker genes that were the foundation of early molecular
systematics to matrices that concatenate thousands of orthologous genes®. This character
explosion has been a boon to systematics, but gene annotation is still anchored to the known.

These orthologous genes are rarely evenly distributed among the genomes that describe a
species’. The complete set is one definition of the pangenome, and its complexity was originally
defined as the rate of gene accumulation with newly sequenced genomes!®. Genes found
universally comprise a genomic core and are considered indispensable for basic species
functions. Genes found sporadically may contribute to strain success in particular niches but may

not be essential to their overall biology. The ratio of core genomes to accessory genomes informs
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genome fluidity'!. Species whose genomes are mostly core have closed, less fluid pangenomes.
Species with a large fraction of accessory genes are considered open and more fluid.
This gene-centric view of orthologs is blind to the diversity in the non-coding genome!'2.

13.14 makes variation in non-

Whole genome alignment to annotated, chromosomal references
coding genome accessible but again circumscribes its characterization. If all we know is a linear
reference on a single coordinate system, our understanding of the non-coding genome will be
limited to what will stick.

More recent pangenome methods attempt to enhance the reference by conveying it as a
graph!. For example, a species graph through elements of the genomic core would collapse into
a single consensus, punctuated by bubbles that code small scale variation like single nucleotide
polymorphism and small insertion/deletion elements. In contrast, the accessory genome forks the
pangenome graph along entirely disparate paths. Graph-based methods attempt to incorporate
nuance and novelty into a more complex reference structure. But the game is still the same: new
data is aligned to a set of old genomes bound together into a complex, branching network.

Is there another way? Can we measure some other property of whole genomes that isn’t
contingent on their alignment? Can we de-center the gene so we aren’t limited to the protein
coding genome? Can we dispense with phylogenomics so we aren’t spending CPU years
deciphering a bifurcating set of species relationships that convey a mere shadow of a more
reticulate truth!®?

Here, we propose several new information theoretic techniques that reimagine genomes
as ensembles of information, containers subject to compression. This view of genomic
information does not require annotation. Because we aren’t concerned with genes or the
contiguous arrangements of genomic elements, we also forgo alignment. We instead describe
pangenomes with summary statistics of string-based intersections. In this article, we argue that

compression can enhance existing comparative genomic strategies, highlight structural evolution
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through controlled information loss, and democratize the bacterial species question by applying a

uniform mathematics across the Linnean taxonomy.

The toolkit (entropy)

Our approach is guided by two foundational concepts at the very root of information
theory: entropy and relative entropy. Both ideas rely heavily on Claude Shannon’s seminal ideas
on information introduced in “A Mathematical Theory of Communication”, the founding
document of information theory!”. Information is data that reduces uncertainty. Shannon’s
original formulation resembled the thermodynamic construction of entropy devised for statistical

mechanics'®. We measure information entropy as

N
H= - z piln p;
i=1

where N is the set of all possible states, 7, and p; is the probability of the ith state. This expression
quantifies data into bits (base two logarithm) or nats (natural log). The bit is the most irreducible
unit of information. A bit is gained when a binary variable is assigned either a 1 or a 0.

In genomics, our data comes in sequences. We can measure the entropy of sequences by
digesting into substrings of specific size. In the bioinformatics literature, substrings of biological
readouts (DNA, RNA, protein) are called k-mers. In a comparative setting, we’re most interested
in the entropy of a group of sequences, or sequence ensemble!*2°, For genome sequence
ensembles, alignment has been the tool of choice. But alignment is computationally arduous and
breaks down with evolutionary distance. Fields as diverse as linguistics?!, neurobiology??, and
statistical mechanics?? have successfully employed entropy to quantify ensemble complexity. In
each of these fields, researchers code a linear string of observations and divide into

subsequences, calculating the entropy of each set across the ensemble. In Figure 1, we show how
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the entropy of genome sequence (e.g. DNA/RNA) typically increases with increasing
subsequence size. This is a block entropy curve.

Block entropy curves contain information about the complexity of the ensemble!.
Systems with more ensemble structure — repeated elements across sequences — will peak at lower
entropy. More novelty across sequences yields higher entropy. In genomics, closed pangenomes,
with a large core shared across all species
genomes, have low entropy. Auxiliary genes
unique to subsets of genomes add entropy to

the ensemble system. The uneven distribution

Entropy

of these elements is the hallmark of an open

pangenome. But to measure complexity we

don’t need the annotated and aligned genes.

K-mer Size

Signal is preserved in unaligned and
Figure 1. Block Entropy Curve. We show that

unannotated k-mers. entropy increases with k-mer size. We use this

curve to calculate source entropy (Hmu), Excess
Block entropy curves asymptote at the

Entropy (EE) and Transient Information (TI).
minimum block size required to efficiently capture information diversity across the sequences.
We use three quantities calculated from these curves to describe the complexity of a pangenome:
source entropy, excess entropy and transient information'®. The source entropy (Hmu) is the
irreducible randomness that remains even as larger block sizes capture most ensemble
correlations. Hmu is a direct measure of randomness. Random distributions are hard to
compress. A high source entropy is associated with the accumulation of unevenly distributed
accessory genes, resulting in a more complex pangenome. The excess entropy (EE) is the non-
random fraction of the total information in the system. It’s the information we model from

redundancies across the ensemble. Alignment is anchored to these redundancies. In fact,

alignment only works if enough of these redundancies are spread across the query genomes.
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Finally, the transient information (TI) measures how much information we must invest to learn
Hmu and EE. In Figure 1 we show TI as the area between the block entropy curve and the line
defining Hmu. Species with closed pangenomes typically have a lower TI than those open to
accumulating gene diversity. Closed pangenomes with a large core set of genes compress at

lower k-mer sizes, approaching their Hmu quickly.

More tools in the toolkit (the information bottleneck)

Entropy is the workhorse of lossless compression. In fact, it defines lossless
compression’s limit. We cannot compress any further than the entropy of the source. In our
context, the block entropy curve follows compression limits along a k-mer spectrum. Lossless
compression preserves all data, but sacrifice can feature evolutionary events by isolating patterns
from genomic noise. Using lossy compression, we can identify the core genome of any species
without alignment or annotation. Along the way, we unlock the homologous and non-
homologous recombination events that violate vertical signal®*.

To understand how we can detect structural evolution without annotation or alignment,
we leverage Shannon’s ideas on lossy compression. Shannon based his theory in communication.
A sender passes a message to a receiver through a channel. The fundamental problem of
communication is reconstructing that message. Communication channels suffer distortion. Data
rarely reaches the receiver whole. Information entropy represents the limit on how efficiently a
message can be compressed in the noise-less ideal.

No channel is noise-less. Still, the distortion introduced by noisy channels does not doom
message passing. A sender can compensate for noise by encoding more information into a
message, or a receiver can tolerate some level of distortion while ascertaining a sender’s core
meaning. Shannon formalized this concept as rate-distortion theory!”. On the sender side, the rate

is measured as bits of information per symbol. The sender’s message is distorted as it passes
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through the channel. The sender’s rate and the receiver’s distortion are inversely related. The
function describing the two variables for any given channel informs lossy compression. How
much information loss can we tolerate in reconstructing a sender’s message?

This idea is central not only to information theory and lossy coding, but also to modern
machine learning methods that use variational autoencoders to populate the compressive layers
of a neural net?*?>, The two key questions are 1. How well does a dataset compress, and 2. How
much data can we afford to lose?

We use these concepts to further understand pangenome complexity. Imagine the
compression regime in Figure 2. A set of genomes comprising a sequence ensemble are digested
into k-mers and compressed into a set number of clusters. This compression is analogous to a
communication channel. The more clusters we model, the higher the rate, and the lower the

distortion.
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Figure 2. The information bottleneck. As k-mers from our input genomes are ~~  suffer more
compressed into a narrow channel, patterns of structural evolution emerge from the ) )
distortion.

resulting clusters.

If we hold the channel constant and model the same number of clusters across species
ensembles, open pangenomes will suffer more data loss than their closed counterparts. Open
pangenomes have more complex information to communicate. This is the information
bottleneck?®, an idea first proposed in the Natural Language Processing literature. The bottleneck

modulates loss in our compression framework. Moreover, the clusters we glean comprise a
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model of structural evolution. The largest cluster usually represents the core genome. K-mers
from recombination regions populate the others. For example, we have shown that we can detect
the horizontal gene transfer events that fueled the evolution of pathogenicity in Staphylococcus
aureus Clonal Complex 8 (CC8). We do this de novo, without knowing anything about the
elements themselves. In CC8, the staphylococcal chromosomal cassette carrying the methicillin
resistance gene expanded, accumulating other disease associated elements as the pathogen
moved between North and South America**. The act of compression therefore learns real
biological events without the need to annotate genes, align genomes, build sets of orthologs, or

calculate any trees.

Even more tools in the toolkit (relative entropy)

Block entropy curves measure the compressibility of any sequence ensemble. The
bottleneck compresses information into clusters that communicate only the most salient bits.
Compressibility is directly related to pangenome composition. Some species are open to
genomic input, others have narrower, closed pangenomes. But as we’ve described it here,
entropy treats the entire pangenome distribution as a single entity. This allows us to measure
overall complexity but doesn’t account for each genome’s departure from that distribution.
Relative entropy, a measure of how one distribution (any given single genome) diverges from
the overall distribution (our pangenome) adds nuance to our approach. Summed across all
genomes, the relative entropy gives another, complementary angle on pangenome complexity
and compression.

To formalize this concept, we turn to bedrock principals in ecology. Ecology has an
extensive history of incorporating ideas from information theory and compression?’. The
Shannon Index has long been used to combine the effects of species richness, the absolute

number of unique species in an environment, and species evenness, the relative abundances of
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those species?®. But for ecologists the core equation is more general than Shannon entropy.
Ecological datasets span many types of environments. Comparing diversity across those
environments is crucial. Hill introduced the effective number of species as an intuitive solution®”.
The effective number of species of order ¢ is given as

N 1/(1-q)

Dy = (Z P} )

i=1
where p; is the frequency of a particular species 7, and N, the total number of unique species.
Sweeping through the parameter ¢ controls the metric’s responsiveness to rare (¢ = 0) or
common species (¢ = 2 or more). At g = 0, the expression reduces to species richness, and at g =
2, the expression expands into the Simpson Index. But the sweet spot is at ¢ = 1. The limit of this
equation as q approaches 1 is Shannon’s information entropy (or the Shannon Index if overheard
in an ecology department). This transformation connects ideas from mathematical ecology to
information theory. The exponent of Shannon entropy yields the Hill number at q = 1, or the

effective number of species:

N
D; = exp (‘ZPiln Pi)
im1

More diverse samples have higher Hill numbers. Hill numbers convey species diversity as an
intuitive number. Because of its connection to information theory, Hill numbers are not the
exclusive domain of ecologists. In Natural Language Processing, perplexity*? is used to measure
how well a language model can predict a string of text. Perplexity is the effective number of
words in a library. Perplexity and Hill numbers draw from the same mathematical toolkit. This
toolkit’s simplicity allows for easy comparisons between entirely different experiments. But the
expression collapses each experiment’s observations into a single distribution.

We can enrich Hill numbers by extending beyond species measured as single variable

distributions. To this point, we’ve defined what an ecologist would term alpha diversity®!, or the
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diversity of species in any one sample. One sample usually doesn’t cut it. Ecologists sample
multiple transects from their environment of interest. Sampling introduces several opportunities.
First, the degree of sample overlap is a potential gauge of efficacy. Second, sample diversity
yields insight into the overall, hypothetical, unapproachable diversity of the system, or the
gamma diversity. If samples are highly diverse, ascertaining the diversity of the target
environment may require more samples. If gamma diversity is too high, no sampling scheme

may be enough. Beta diversity measures the degree of overlap between samples?

. Grounding
the concept in information theory, we extend the Hill number of species into a Hill number of

samples. The following expression yields the effective number of samples:

M N
s=1  i=1 Pi

This equation incorporates the Kullback-Leibler divergence or relative entropy, a formulation as
frequently used as entropy in the information theory literature®*. The relative entropy measures
the divergence of any one genome’s k-mer distribution against the k-mer distribution of the
entire pangenome. Here, N is the number of unique species, M, the number of samples, py; the
frequency of species i in sample s, p; the frequency of species i across all samples, and w; the
weight all observations in sample s relative to all individuals collected in the experiment.

The effective number of samples is another measure of compression. If species richness
and evenness is the same across all samples, the effective number of samples reduces to 1. If the
samples contain no species in common, or if samples have wildly different species occurrence
counts, the effective number of samples approaches the number of samples taken. In the first
case, we have perfect compression. In the latter, no compression at all.

We take this ecological concept and adapt it to genomics. Our goal is to calculate the
information diversity embedded in sequence ensembles. This requires a complete reframe.

Rather than species in a community (alpha diversity), we think k-mers in a genome. Rather than
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transects in an environment (beta diversity), we think genomes in a pangenome. The shift is in
the container. Employed in this way, we recast Hill numbers as the effective number of genomes
or genome equivalents. We coin KHILL*, an intuitive metric that quantifies the information
space of a pangenome, or the degree to which it will compress. Because KHILL is weighted, we
can compare statistics across species regardless of how many genomes are available for each.
This allows us to compare the information diversity of pathogens alongside less represented
organisms from the rare biosphere. We calculate KHILLs in a fraction of the time it takes to
annotate genomes, run alignments, and build the orthologs required to compute pangenome

fluidity.

The toolkit applied

Biological datasets are large and growing. Other fields also contend with large datasets,
and some have been grappling with them for decades longer. For example, astronomers have big
data, perhaps the biggest data in the sciences®. Processing and saving all astronomic data is
impossible. Astronomers have known for years the importance of sensing data as it shines onto
their mirrors. Compression normally happens at the point of collection. We are quickly reaching
this point in biology.

Organized, collaborative genome sequencing projects began in earnest in the 1990s.
Starting then and through the first two decades of this century, genomic datasets were sacrosanct.
Groups held fast to their data until every angle was exhausted. Though genomic data has always
been big data, generating it back then was costly. This is no longer the case. The price of genome
sequencing has seen steep decline. Storing this accumulating data has become nearly impossible.
Perhaps it is time to let go. With the information bottleneck, we stream data through a channel,
and encourage controlled data loss. New sequencing platforms emit data in nearly unending

streams. Sensors are designed to glean information from data streams in real time. There are
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sensors that detect change in acceleration (engineers), in light (astronomers), in brain activity
(doctors). Perhaps streams of biological sequence can also be processed and discarded. Can
sequence become a sensor?

Take for example SARS-CoV-2. Fifteen million SARS-CoV-2 genomes are now
available in various repositories around the world3®. The state of the art in surveilling these

3738 Phylodynamics is the study

genomes as they accumulate in time and space is phylodynamic
of organism spread over short time scales with molecular phylogenetics. But phylodynamics is
retrospective. Investigators curate a fraction of the genomes available, compare them against an
even more rarefied set of references, and embed the new alongside the old either in phylogenetic
trees or networks. Alignment is the linchpin in this arrangement. Genome alignments feed tools
like Nextstrain®’, which employ Bayesian and likelihood phylogenetic approaches — some of the
most computationally costly algorithms in bioinformatics — to extend our view of SARS-CoV-2
biology slightly beyond the anointed references in a database.

We find this limiting. We can use KHILL to look forward, analyzing all the sequence
available to us outright*’. Whether it’s 15 million clinical genomes or streams of wastewater,
KHILL is capable of processing terabytes of streaming sequence and flagging the emergence of
new variants without relying on the references that confine biological novelty. KHILL can also
achieve rapid community analysis as exemplified in our study of the microbial shifts in the
making of cheese (ref), and the microbiome perturbations caused by broad spectrum antibiotics
(unpublished data). Whether it’s a life-threatening virus or the cheese you spread on crackers, we
use all sequence, not just the bits that will stick to existing references.

For SARS-CoV-2, we calculate one KHILL number per day along a pandemic time
course. Compiling these genome equivalents yields an information diversity curve through time.
KHILL increases as variants of concern ascend in a population mixing with a prior background.

KHILL decreases once these variants grow dominant and sweep away all other genomic
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heterogeneity. In this way, we detect the emergence of concerning strains well before annotation
clearinghouses have blessed new database entries.

As a genomic measure of compression, KHILL also naturally lends itself to the analysis
of pangenomes. In fact, with SARS-CoV-2, we used KHILL as a rolling measure of pangenome
complexity. Because of their contracted timeline, pandemic genomes occupy a small information
space. The KHILL of all the millions of sequenced SARS-CoV-2 compresses to about 1.15
effective genomes. But KHILL is not restricted to any one biological scale. We can measure the
complexity of strains, species, genus, and perhaps collections at even higher taxonomic levels.

For example, we have used KHILL to calculate the pangenome complexity of all known
bacterial species*!. An analysis at this scale is impossible with current alignment-based
bioinformatic techniques. But because KHILL is fast, we compute genome equivalents for every
species in the RefSeq database (version 223). We couple this with metrics derived from block
entropy curves (Hmu, EE and TI) to calculate the information space occupied by bacterial
species. This information theoretic approach democratizes species classification, labelling each
pangenome across the microbial tree of life with a single number.

As we’ve defined it, KHILL species complexity mixes two separate phenomena. First,
species definitions vary. The Linnaean taxonomy imposes a hierarchy on life, but this hierarchy
is not uniformly applied. Species in one part of the taxonomic tree may not mean the same thing
to its experts as species in another part of the tree. This is cultural. But it does influence the
relative breadth of species buckets. We expect some variation in KHILL based just on these very
human inconsistencies.

More interesting, however, is our second observation. Pangenome fluidity'! has been
shown to track with some gross aspects of bacterial phenotype**. For example, host-bound
species accustomed to a uniform environment typically have less complex pangenomes.

Cosmopolitan species occupying diverse niches tend towards more pangenome diversity.
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Obligate bacteria are less complex than their facultative counterparts. Non-motile organisms,

less complex than those on the move. Complexity, in this case, was measured as pangenome
fluidity. Pangenome fluidity is as near to measuring information-theoretic complexity as
alignment-based techniques can get. We find that KHILL, a more direct, swifter measure of
complexity, also corresponds to bacterial lifestyle. For example, pathogens have significantly
lower KHILL than mutualists. Challenging environments presumably encourage the accretion of
pangenome complexity as species contend with instability. Our compression-based techniques
squeeze this information from genomes without the normal bioinformatics playbook. We provide
a systems biology measure of complexity that compiles the effects of selective pressure on
numerous genes and loci, either streamlining or expanding genomes as required of a microbe’s

lifestyle.

Challenges? In sacrifice there is clarity!

Metrics based in compression can distort mechanism. KHILL increases with population
heterogeneity, as in the case of our SARS-CoV-2 populations. But it also increases with genetic
distance. This genetic diversity could be the result of environmental pressure, or it could simply
be lazy, inconsistent categorization. Because block entropy curves and KHILL dispense with
alignment, we also lose the ability to pinpoint change in genomic space. Compression obscures
mechanism, sacrificing genome location information, and conflates biological forces. For
example, since programmed ribosomal frameshifting in viruses depends on reading frame, our
method may obscure frame-dependent signals in viral studies. And compression will likely
collapse individual genome copy number variation. But in a field saturated with sequence data,
our approach allows researchers to skim data streams without resorting to the heaviest, most

cumbersome algorithms in bioinformatics.



345 The idea of conflating signal is a hallmark of information-based approaches. Shannon’s
346  communication problem is emblematic of this compromise. Distortion is inevitable as

347  information is relayed from sender to receiver. This concept has been used in everything®® from
348  telecommunications, to thermodynamics, to data encoding in Natural Language Processing.

349  More complex data requires a broader channel to communicate. But sometimes we must

350  sacrifice nuance for meaning. In fact, compressing away the noise can sometimes distill signal.
351  In other words, conflation sometimes yields clarity.

352 We take this concept to genomics*. Mutation, homologous recombination, and

353  horizontal gene transfer all distort genomic signal. We can capture the degree of distortion by
354  measuring how difficult it is to compress strings (k-mers) from a set of genomes, through the
355 information bottleneck, and into a set number of clusters. If the compression is easy, we need
356  fewer clusters — a narrower channel — to achieve communication at an acceptable level of

357  distortion. But if the genomes are labile, we need more clusters to communicate the added

358  information diversity. The information bottleneck?® therefore also quantifies complexity.

359 The clusters that comprise our information channel, are datasets that sort meaning. Where
360 KHILL is a mark of compression, these clusters are actual compressed representations. We can
361  measure the fidelity of the original ‘message’ carried by the genomes relative to these

362  compressed representations. Clonal, tree-like, bifurcating species generally require fewer clusters
363  to model modes of genomic change. Recombinogenic species require more clusters to achieve
364  the same signal clarity.

365 Like KHILL, this approach conflates biological phenomena. Lossy compression through
366  the bottleneck does not distinguish between mutation and recombination. But for both KHILL
367  and the bottleneck, the compressibility of a set of genomes becomes a metric that can be used to

368  compare sets of species. We anticipate that in future work, both techniques will operate on raw
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reads, making assembly as optional as alignment. Building evolutionary models from streamed
sequence would realize our ambition to sense change directly from raw data.

We began this essay bemoaning genomics as a retrospective enterprise. We believe
information theory allows us to shift our gaze forward. Eliminating references opens us to
novelty. De-centering the gene offers a new view of pangenome complexity. And eliminating
alignment boosts speed. Together these efficiencies recast sequencing as a sensor delimiting
change. We can sense change along a pandemic trajectory. We can predict bacterial lifestyle

from compression. And we can probe the unbalanced hierarchies of bacterial taxonomy.
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