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Abstract 1 

 Genome annotation, alignment, and phylogenetics are at the center of most work in 2 

evolutionary genomics. These techniques function best when rooted in prior work. Genes are mined 3 

from new genomes using evidence from old gene models. These genomes are aligned to well-worn 4 

references to create matrices for tree reconstruction. And trees are often populated with well 5 

characterized genomes to add context to the newly sequenced. Genome inference traces a line back 6 

to model organisms, yoking the analysis of new genomes to layers of previous knowledge. We 7 

instead highlight methods that use unannotated and unaligned sequence to understand the 8 

information diversity of sequence ensembles. Any set of genomes can comprise our sequence 9 

ensemble. In a pandemic context, a sequence ensemble might be clinically isolated strains from one 10 

day. In a systematic context, a sequence ensemble could be the pangenome available for a clade. 11 

The normal bioinformatics playbook would have us align. But we instead compress. A sequence 12 

ensemble that compresses easily contains lower information diversity. For pandemics, we can use 13 

curves of information diversity to trace genomic novelty and monitor selective sweeps in new 14 

strains. For systematics, we can calculate compressibility quickly across all known bacterial taxa, 15 

leveling the criteria for species across clades.  If we tolerate data loss, we can go one step further 16 

and capture structural evolution as we compress. Our approach sacrifices a lot. We skip many of the 17 

products of modern bioinformatics like variation anchored to known genes or genome alignment to 18 

prescribed references or pangenome graphs. But we gain speed, breadth, and the ability to respond 19 

to novelty. 20 

 21 

Introduction (The problem) 22 

Compression encodes information into reduced representations. Whether bits are 23 

eliminated through statistical redundancy (lossless compression), or shed entirely (lossy 24 

compression), compressed data always has a smaller footprint than the original. The act of 25 

compression – its difficulty or ease – communicates information about the original data source. 26 



 

Highly redundant data with many common patterns will compress easily. In contrast, novelty or 27 

surprise with little repeated context is difficult to compress. Evolution creates ensembles of 28 

sequence. These ensembles can be represented as pangenomes. Pangenomes are compressible 29 

entities, but how compressible depends on evolutionary strategy. 30 

Genomics is a retrospective field. Existing bioinformatic techniques often model new 31 

genomes on sequences annotated in the past1. Alignment to these reference genomes 32 

circumscribes our knowledge of diversity. Large swaths of the tree of life are presumably 33 

unknown2. For example, much of the sequence from environmental samples passes through 34 

annotation filters as undefined3. In a read streaming era4, we need forward looking techniques 35 

that flag genomic novelty by dispensing with references, annotation or alignment. Standard 36 

methods are ill-equipped for these volumes. New species are not easily caught in the sparse web 37 

of the known.  38 

As genomics has swept through biology, systematics has come to favor molecular 39 

character sets to help delimit species boundaries5,6. While morphology is still important, and 40 

holdouts have been more than vocal7, phylogenomics has more recently carried the day. 41 

Phylogenomics extends the handful of marker genes that were the foundation of early molecular 42 

systematics to matrices that concatenate thousands of orthologous genes8. This character 43 

explosion has been a boon to systematics, but annotation is still anchored to the known.  44 

The thousands of orthologous genes found in phylogenomic datasets are rarely evenly 45 

distributed among the genomes that describe a species9. The complete set of these genes is one 46 

definition of the pangenome, and its complexity was originally defined as the rate of gene 47 

accumulation with newly sequenced genomes10. Genes found universally comprise a genomic 48 

core and are considered indispensable for core species functions. Genes found sporadically may 49 

contribute to strain success in particular niches but may not be essential to their overall biology. 50 

The ratio of core genomes to accessory genomes informs genome fluidity11. Species whose 51 



 

genomes are mostly core have closed, less fluid pangenomes. Species with a large fraction of 52 

accessory genes are considered open and more fluid. 53 

This gene-centric view of orthologs is blind to the diversity in the non-coding genome12. 54 

Whole genome alignment to annotated, chromosomal references13,14 makes variation in non-55 

coding genome accessible but again circumscribes its characterization. If all we know is a linear 56 

reference on a single coordinate system, our understanding of the non-coding genome will be 57 

limited to what will stick.  58 

More recent pangenome methods attempt to enhance the reference by conveying it as a 59 

graph15. For example, a species graph through elements of the genomic core would collapse into 60 

a single consensus, punctuated by bubbles that code small scale variation like single nucleotide 61 

polymorphism and small insertion/deletion elements. In contrast, the accessory genome forks the 62 

pangenome graph along entirely disparate paths. Graph-based methods attempt to incorporate 63 

nuance and novelty into a more complex reference structure. But the game is still the same: new 64 

data is aligned to a set of old genomes bound together into a complex, branching network. 65 

Is there another way? Can we measure some other property of whole genomes that isn’t 66 

contingent on their alignment? Can we de-center the gene so we aren’t limited to the protein 67 

coding genome? Can we dispense with phylogenomics so we aren’t spending CPU years 68 

deciphering a bifurcating set of species relationships that convey a mere shadow of a more 69 

reticulate truth16?  70 

Here, we  propose several new information theoretic techniques that reimagine genomes 71 

as ensembles of information, containers subject to compression. This view of genomic 72 

information does not require annotation. Because we aren’t concerned with genes or the 73 

contiguous arrangements of genomic elements, we also forgo alignment. We instead describe 74 

pangenomes with summary statistics of string-based intersections.  In this article, we argue that 75 

compression can enhance existing comparative genomic strategies, highlight structural evolution 76 



 

through controlled information loss, and democratize the bacterial species question by applying a 77 

uniform mathematics across the Linnean taxonomy.  78 

 79 

The toolkit (entropy) 80 

Our approach is guided by two foundational concepts at the very root of information 81 

theory: entropy and relative entropy. Both ideas rely heavily on Claude Shannon’s seminal ideas 82 

on information introduced in “A Mathematical Theory of Communication”, the founding 83 

document of information theory17. Information is data that reduces uncertainty. Shannon’s 84 

original formulation resembled the thermodynamic construction of entropy devised for statistical 85 

mechanics18. We measure information entropy as 86 

𝐻 =	−%𝑝!𝑙𝑛	𝑝!
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 87 

where N is the set of all possible states, i, and pi is the probability of the ith state. This expression 88 

quantifies data into bits (base two logarithm) or nats (natural log). The bit is the most irreducible 89 

unit of information. A bit is gained when a binary variable is assigned either a 1 or a 0.  90 

In genomics, our data comes in sequences. We can measure the entropy of sequences by 91 

digesting into substrings of specific size. In the bioinformatics literature, substrings of biological 92 

readouts (DNA, RNA, protein) are called k-mers. In a comparative setting, we’re most interested 93 

in the entropy of a group of sequences, or sequence ensemble19,20. For genome sequence 94 

ensembles, alignment has been the tool of choice. But alignment is computationally arduous and 95 

breaks down with evolutionary distance. Fields as diverse as linguistics21, neurobiology22, and 96 

statistical mechanics23 have successfully employed entropy to quantify ensemble complexity. In 97 

each of these fields, researchers code a linear string of observations and divide into 98 

subsequences, calculating the entropy  of each set across the ensemble. In Figure 1, we show 99 



 

how the entropy of genome sequence (e.g. DNA/RNA) typically increases with increasing 100 

subsequence size. This is a block entropy curve. 101 

Block entropy curves contain information about the complexity of the ensemble19. 102 

Systems with more ensemble structure – repeated elements across sequences – will peak at lower 103 

entropy. More novelty across sequences yields 104 

higher entropy. In genomics, closed pangenomes, 105 

with a large core shared across all species 106 

genomes, have low entropy. Auxiliary genes 107 

unique to subsets of genomes add entropy to the 108 

ensemble system. The uneven distribution of 109 

these elements is the hallmark of an open 110 

pangenome. But to measure complexity we don’t 111 

need the annotated and aligned genes. Signal is 112 

preserved in unaligned and unannotated k-mers. 113 

Block entropy curves asymptote at the 114 

minimum block size required to efficiently capture information across the sequences. We use 115 

three quantities calculated from these curves to describe the complexity of a pangenome: source 116 

entropy, excess entropy and transient information19. The source entropy (Hmu) is the irreducible 117 

randomness that remains even as larger block sizes capture most ensemble correlations. Hmu is a 118 

direct measure of randomness. Random distributions are hard to compress. A high source 119 

entropy is associated with the accumulation of unevenly distributed accessory genes, resulting in 120 

a more complex pangenome. The excess entropy (EE) is the non-random fraction of the total 121 

information in the system. It’s the information we model from redundancies across the ensemble. 122 

Alignment is anchored to these same redundancies. In fact, alignment only works if enough of 123 

these redundancies are spread across the query genomes. Finally, the transient information (TI) 124 

Figure 1. Block Entropy Curve. We show that 

entropy increases with k-mer size. We use this 

curve to calculate Excess Entropy (EE) and 

Transient Information (TI). 

 



 

measures how much information we must invest to learn Hmu and EE. In Figure 1 we show it as 125 

the area between the block entropy curve and the line defining Hmu. Species with closed 126 

pangenomes typically have a lower TI than those open to accumulating gene diversity. Closed 127 

pangenomes with a large core set of genes compress at lower k-mer sizes, approaching their 128 

Hmu quickly. 129 

 130 

More tools in the toolkit (the information bottleneck) 131 

 Entropy is the workhorse of lossless compression. In fact, it defines lossless 132 

compression’s limit. We cannot compress any further than the entropy of the source. In our 133 

context, the block entropy curve follows compression limits along a k-mer spectrum. Lossless 134 

compression preserves all data, but sacrifice can bring evolution into relief by isolating patterns 135 

from genomic noise. Using lossy compression, we can identify the core genome of any species 136 

without alignment or annotation. Along the way, we unlock the homologous and non-137 

homologous recombination events that violate vertical signal.  138 

To understand how we can detect structural evolution without annotation or alignment, 139 

we leverage Shannon’s ideas on lossy compression. Shannon based his theory in communication. 140 

A sender passes a message to a receiver through a channel. The fundamental problem of 141 

communication is reconstructing that message. Communication channels suffer distortion. Data 142 

rarely reaches the receiver whole. Information entropy represents the limit on how efficiently a 143 

message can be compressed in the noise-less ideal.  144 

No channel is noise-less. Still, the distortion introduced by noisy channels does not doom 145 

message passing. A sender can compensate for noise by encoding more information into a 146 

message, or a receiver can tolerate some level of distortion while ascertaining a sender’s core 147 

meaning. Shannon formalized this concept as rate-distortion theory17. On the sender side, the rate 148 

is measured as bits of information per symbol. The sender’s message is distorted as it passes 149 



 

through a channel. The sender’s rate and the receiver’s distortion are inversely related. The 150 

function describing the two variables for any given channel informs lossy compression. How 151 

much information loss can we tolerate in reconstructing a sender’s message?  152 

This idea is central not only to information theory and lossy coding, but also to modern 153 

machine learning methods that use variational autoencoders to populate the compressive layers 154 

of a neural net24,25. The two key questions are 1. How well does a dataset compress, and 2. How 155 

much data can we afford to lose? 156 

We use these concepts to further understand pangenome complexity. Imagine the 157 

compression regime in Figure 2. A set of genomes comprising a sequence ensemble are digested 158 

into k-mers and compressed into a set number of clusters. This compression is analogous to a 159 

communication channel. The more clusters we model, the higher the rate, and the lower the 160 

distortion. 161 

With fewer 162 

clusters, we 163 

force the k-164 

mers through 165 

a narrower 166 

channel and 167 

suffer more 168 

distortion. 169 

If we hold the channel constant and model the same number of clusters across species 170 

ensembles, open pangenomes will suffer more data loss than their closed counterparts. Open 171 

pangenomes have more complex information to communicate. We employ the information 172 

bottleneck26, an idea first proposed in the Natural Language Processing literature, to measure 173 

loss in our compression framework. Moreover, the clusters we glean from the information 174 

Figure 2. The information bottleneck. As k-mers from our input genomes are 
compressed into a narrow channel, patterns of structural evolution emerge from the 
resulting clusters. 



 

bottleneck comprise a model of structural evolution. The largest cluster usually represents the 175 

core. K-mers from recombination regions populate the others. The act of compression therefore 176 

deconstructs real biological events without the need to align genomes, build sets of orthologs, or 177 

calculate any trees.  178 

 179 

Even more tools in the toolkit (relative entropy) 180 

Block entropy curves measure the compressibility of any sequence ensemble. The 181 

bottleneck compresses information into clusters that communicate only the most salient bits. 182 

Compressibility is directly related to evolutionary strategy. Some species are open to genomic 183 

input, others have narrower, closed pangenomes. But as we’ve described it here, entropy treats 184 

the entire pangenome distribution as a single entity. This allows us to measure overall 185 

complexity, but doesn’t account for each genome’s departure from that distribution. Relative 186 

entropy, a measure of how one distribution (any given single genome) diverges from the overall 187 

distribution (our pangenome) adds nuance to our approach. Summed across all genomes, the 188 

relative entropy gives another, complementary angle on pangenome complexity and 189 

compression.  190 

To formalize this concept, we turn to bedrock principals in ecology. Ecology has an 191 

extensive history of incorporating ideas from information theory and compression27. The 192 

Shannon Index has long been used to combine the effects of species richness, the absolute 193 

number of unique species in an environment, and species evenness, the relative abundances of 194 

those species28. But for ecologists the core equation is more general than Shannon entropy. 195 

Ecological datasets span many types of environments. Comparing diversity across those 196 

environments is crucial. Hill introduced the effective number of species as an intuitive solution29. 197 

The effective number of species of order q is given as 198 
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where pi is the frequency of a particular species i, and N, the total number of unique species. 200 

Sweeping through the parameter q controls the metric’s responsiveness to rare (q = 0) or 201 

common species (q = 2 or more). At q = 0, the expression reduces to species richness, and at q = 202 

2, the expression expands into the Simpson Index. But the sweet spot is at q = 1. The limit of this 203 

equation as q approaches 1 is Shannon’s information entropy (or the Shannon Index if overheard 204 

in an ecology department). This transformation connects ideas from mathematical ecology to 205 

information theory. The exponent of Shannon entropy yields the Hill number at q = 1, or the 206 

effective number of species: 207 

𝐷$ = 	𝑒𝑥𝑝	 *−%𝑝!𝑙𝑛	𝑝!
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More diverse samples have higher Hill numbers. Hill numbers convey species diversity as an 209 

intuitive number. Because of its connection to information theory, Hill numbers are not the 210 

exclusive domain of ecologists. In Natural Language Processing, perplexity30 is used to measure 211 

how well a language model can predict a string of text. Perplexity is the effective number of 212 

words in a library. Perplexity and Hill numbers draw from the same mathematical toolkit. This 213 

toolkit’s simplicity allows for easy comparisons between entirely different experiments. But the 214 

expression collapses each experiment’s observations into a single distribution.  215 

We can enrich Hill numbers by extending beyond species measured as single variable 216 

distributions. To this point, we’ve defined what an ecologist would term alpha diversity31, or the 217 

diversity of species in any one sample. One sample usually doesn’t cut it. Ecologists sample 218 

multiple transects from their environment of interest. Sampling introduces several opportunities. 219 

First, the degree of sample overlap is a potential gauge of efficacy. Second, sample diversity 220 

yields insight into the overall, hypothetical, unapproachable diversity of the system, or the 221 



 

gamma diversity. If samples are highly diverse, ascertaining the diversity of the target 222 

environment may require more samples to be taken. If gamma diversity is too high, no sampling 223 

scheme may be enough. Beta diversity measures the degree of overlap between samples32,33. 224 

Grounding the concept in information theory, we extend the Hill number of species into a Hill 225 

number of samples. The following expression yields the effective number of samples: 226 
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This equation incorporates the Kullback-Leibler divergence or relative entropy, a formulation as 228 

frequently used as entropy in the information theory literature34. The relative entropy measures 229 

the divergence of any one genome’s k-mer distribution against the k-mer distribution of the 230 

entire pangenome. Here, N is the number of unique species, M, the number of samples, psi is the 231 

frequency of species i in sample s, pi is the frequency of species i across all samples, and ws 232 

weighs all observations in sample s relative to all individuals collected in the experiment.  233 

The effective number of samples is another measure of compression. If species richness 234 

and evenness is the same across all samples, the effective number of samples reduces to 1. If the 235 

samples contain no species in common, or if species have wildly different occurrence counts, the 236 

effective number of samples approaches the number of samples taken. In the first case, we have 237 

perfect compression. In the latter, no compression at all. 238 

We take this ecological concept and adapt it to genomics. Our goal is to calculate the 239 

information diversity embedded in sequence ensembles. This requires a complete reframe. 240 

Rather than species in a community (alpha diversity), we think k-mers in a genome. Rather than 241 

transects in an environment (beta diversity), we think genomes in a pangenome. The shift is in 242 

the container. Employed in this way, we recast Hill numbers as the effective number of genomes 243 

or genome equivalents. We coin KHILL, an intuitive metric that quantifies the information space 244 

of a pangenome, or the degree to which it will compress. We calculate KHILLs in a fraction of 245 



 

the time it takes to annotate genomes, run alignments, and build the orthologs required to 246 

compute pangenome fluidity. 247 

 248 

The toolkit applied 249 

Biological datasets are large and growing. Other fields also contend with large datasets, 250 

and some have been grappling with them for decades longer.  For example, astronomers have big 251 

data, perhaps the biggest data in the sciences35. Processing and saving all astronomic data is 252 

impossible. Astronomers have known for years the importance of sensing data as it shines onto 253 

their mirrors. Compression normally happens at the point of collection. We are quickly reaching 254 

this point in biology. 255 

Organized, collaborative genome sequencing projects began in earnest in the 1990s. 256 

Starting then and through the first two decades of this century, genomic datasets were sacrosanct. 257 

Groups held onto their data until every angle was exhausted. Though genomic data has always 258 

been big data, generating it back then was costly. This is no longer the case. The price of genome 259 

sequencing has seen steep decline. Storing this accumulating data has become nearly impossible. 260 

Perhaps it is time to let go. With the information bottleneck, we tolerate controlled data loss. 261 

New sequencing platforms emit data in nearly unending streams. Sensors are designed to glean 262 

information from data streams in real time. There are sensors that detect change in acceleration 263 

(engineers), in light (astronomers), in brain activity (doctors). Perhaps streams of biological 264 

sequence can also be processed and discarded. Can sequence become a sensor? 265 

Take for example SARS-CoV-2. Fifteen million SARS-CoV-2 genomes are now 266 

available in various repositories around the world36. The state of the art in surveilling these 267 

genomes as they accumulate in time and space is phylodynamic37,38. But phylodynamics is 268 

retrospective. Investigators curate a fraction of the genomes available, compare them against an 269 

even more rarefied set of references, and embed the new alongside the old either in phylogenetic 270 



 

trees or networks. Alignment is the linchpin in this arrangement. Genome alignments feed tools 271 

like Nextstrain39, which employ Bayesian and likelihood phylogenetic approaches – some of the 272 

most computationally costly algorithms in bioinformatics – to extend our view of SARS-CoV-2 273 

biology slightly beyond the anointed references in a database. 274 

We find this limiting. We can use KHILL to look forward, analyzing all the sequence 275 

available to us outright40. Whether it’s 15 million clinical genomes or streams of wastewater, 276 

KHILL is capable of processing terabytes of streaming sequence and flagging the emergence of 277 

new variants without relying on the references that confine biological novelty. KHILL can also 278 

achieve rapid community analysis as exemplified in our study of the microbial shifts in the 279 

making of cheese (ref), and the microbiome perturbations caused by broad spectrum antibiotics 280 

(unpublished data). Whether it’s a life threatening virus or the cheese you spread on crackers, we 281 

use all sequence, not just the bits that will stick to existing references. 282 

For SARS-CoV-2, we calculate one KHILL number per day along a pandemic time 283 

course. Compiling these genome equivalents yields an information diversity curve through time. 284 

KHILL increases as variants of concern ascend in a population mixing with a prior background. 285 

KHILL decreases once these variants grow dominant and sweep away all other genomic 286 

heterogeneity. In this way, we detect the emergence of concerning strains well before annotation 287 

clearinghouses have blessed new database entries.  288 

As a genomic measure of compression, KHILL also naturally lends itself to the analysis 289 

of pangenomes. In fact, with SARS-CoV-2, we used KHILL as a rolling measure of pangenome 290 

complexity. Because of their contracted timeline, pandemic genomes occupy a small information 291 

space. The KHILL of all the millions of sequenced SARS-CoV-2 compresses to about 1.15 292 

effective genomes. But KHILL is not restricted to any one biological scale. We can measure the 293 

complexity of strains, species, genus, and collections at even higher taxonomic levels.  294 



 

For example, we have used KHILL to calculate the pangenome complexity of all known 295 

bacterial species41. An analysis at this scale is impossible with current alignment-based 296 

bioinformatic techniques. But because KHILL is fast, we can compute genome equivalents for 297 

every species in the database. We couple this with metrics derived from block entropy curves 298 

(Hmu, EE and TI) to calculate the information space occupied by all known bacterial species. 299 

This information theoretic approach democratizes species classification, labeling each 300 

pangenome with a single number.  301 

As we’ve defined it, KHILL species complexity mixes two separate phenomena. First, 302 

species definitions vary. The Linnaean taxonomy imposes a hierarchy on life, but this hierarchy 303 

is not uniformly applied. Species in one part of the taxonomic tree may not mean the same thing 304 

to its experts as species in another part of the tree. This is cultural. But it does influence the 305 

relative breadth of species buckets. We expect some variation in KHILL based just on these very 306 

human inconsistencies.  307 

More interesting, however, is our second observation. Pangenome fluidity11 has been 308 

shown to track with some gross aspects of bacteria phenotype42. For example, host-bound 309 

species accustomed to a uniform environment typically have less complex pangenomes. 310 

Cosmopolitan species occupying diverse niches tend towards more pangenome diversity. 311 

Obligate bacteria are less complex than their facultative counterparts. Non-motile organisms, 312 

less complex than those on the move. Complexity, in this case, was measured as pangenome 313 

fluidity. Pangenome fluidity is as near to measuring information-theoretic complexity as 314 

alignment-based techniques can get. We find that KHILL, a more direct, swifter measure of 315 

complexity, also corresponds to bacterial lifestyle. We see this borne out in KHILLs. For 316 

example, pathogens have significantly lower KHILL than mutualists. Challenging environments 317 

presumably encourage the accretion of pangenome complexity as species contend with 318 



 

instability. Our compression based techniques squeeze this information from genomes without 319 

the normal bioinformatics playbook. 320 

 321 

Challenges? In sacrifice there is clarity! 322 

Metrics based in compression can distort mechanism. KHILL increases with population 323 

heterogeneity, as in the case of our SARS-CoV-2 populations. But it also increases with genetic 324 

distance. This genetic diversity could be the result of environmental pressure, or it could simply 325 

be lazy, inconsistent categorization. Because block entropy curves and KHILL dispense with 326 

alignment, we also lose the ability to pinpoint change in genomic space.  In criticism of this 327 

work, we’ve heard over and over how obscuring mechanism, sacrificing location, or conflating 328 

biological forces is a weakness. But in a field saturated with sequence data, our approach allows 329 

researchers to skim data streams without resorting to the heaviest, most cumbersome algorithms 330 

in bioinformatics. 331 

The idea of conflating signal is a hallmark of information-based approaches. Shannon’s 332 

communication problem is emblematic of this compromise. Distortion is inevitable as 333 

information is relayed from sender to receiver. This concept has been used in everything43 from 334 

telecommunications, to thermodynamics, to data encoding in Natural Language Processing. 335 

More complex data requires a broader channel to communicate. But sometimes we must 336 

sacrifice nuance for meaning. In fact, compressing away the noise can sometimes distill signal. 337 

In other words, conflation sometimes yields clarity. 338 

We take this concept to genomics44. Mutation, homologous recombination, and 339 

horizontal gene transfer all distort genomic signal. We can capture the degree of distortion by 340 

measuring how difficult it is to compress strings (k-mers) from a set of genomes into a set 341 

number of clusters. If the compression is easy, we need fewer clusters – a narrower channel – to 342 

achieve communication at an acceptable level of distortion. But if the genomes are labile, we 343 



 

need more clusters to communicate the added information diversity. The information 344 

bottleneck26 quantifies complexity. 345 

The clusters that comprise our information channel, are datasets that sort meaning. Where 346 

KHILL is a mark of compression, these clusters are actual compressed representations. We can 347 

measure the fidelity of the original ‘message’ carried by the genomes relative to these 348 

compressed representations. Clonal, tree-like, bifurcating species generally require fewer clusters 349 

to model modes of genomic change. Recombinogenic species require more clusters to achieve 350 

the same signal clarity.  351 

Like KHILL, this approach conflates biological phenomena. Lossy compression through 352 

the bottleneck does not distinguish between mutation and recombination. But for both KHILL 353 

and the bottleneck, the compressibility of a set of genomes becomes a metric that can be used to 354 

compare sets of species. 355 

We began this essay bemoaning genomics as a retrospective enterprise. We believe 356 

information theory allows us to shift our gaze forward. Eliminating references opens us to 357 

novelty. De-centering the gene offers a new view of pangenome complexity. And eliminating 358 

alignment boosts speed. Together these efficiencies recast sequencing as a sensor delimiting 359 

change. We can sense change along a pandemic trajectory. We can predict bacterial lifestyle 360 

from compression. And we can probe the unbalanced hierarchies of bacterial taxonomy.  361 
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