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Abstract—Bird sound classification is pivotal in bioacoustic
monitoring, species identification, and ecological conservation.
Recent studies have demonstrated that CNN-based approaches,
which convert bird sounds into image spectrograms, provide
higher classification accuracies. However, in bioacoustics, many
researchers still rely on single-resolution spectrograms, which
often struggle to capture the diverse temporal and spectral
characteristics of avian vocalizations. To address this limitation,
we introduce DualStack, a new multi-resolution fusion technique
that vertically stacks high-resolution and low-resolution Mel
spectrograms into a unified input for a CNN. For comparison,
the Biparallel ResNet18 model is employed that simultaneously
processes multi-resolution Mel spectrograms parallelly using
two branches that handle different resolutions respectively. The
results are tested on a dataset comprising 22 bird species with a
total of 967 bird sounds, indicate that these two multi-resolution
fusion models yield higher accuracies than models using single
resolutions. DualStack achieved an accuracy of 86.63 %, while the
Biparallel ResNet18 model demonstrated an accuracy of 83.66%.
In contrast, a single high-resolution model ResNet50 scored
82.18%, and a single low-resolution model ResNet50 achieved an
accuracy of 75.74%. To our knowledge, this is the first application
of vertical multi-resolution stacking in bioacoustics, offering
an automated and scalable approach for real-time ecological
monitoring applications.

Index Terms—Bird sound classification, multi-resolution fu-
sion, spectrogram, CNN, bioacoustics

I. INTRODUCTION

Bird sound classification is a cornerstone of bioacoustic
research as it enables automated species identification, bio-
diversity, and ecological studies. However, with the increased
availability of large-scale audio datasets from Xeno Canto,
there is a need for new robust classification methods that han-
dle the complexity of bird vocalizations [2]. Bird calls exhibit
significant variability ranging from rapid tonal chirps to sus-
tained broadband vocalizations. Thus, when single resolution-
based approaches are applied for classification, they often
fail because they have an inherent trade-off: high-resolution
spectrograms capture fine temporal details but lose broader
spectral context, while low-resolution spectrograms preserve
frequency trends at the expense of temporal granularity.

Recently, deep learning, particularly Convolutional Neural
Networks (CNNs), has revolutionized audio classification by
learning hierarchical features directly from spectrogram rep-
resentations. Mel spectrograms are used in models as they
mimic the human auditory system by providing finer reso-

lutions at lower frequencies [13]. However, single-resolution
spectrograms fail to fully exploit the multi-scale nature of bird
vocalizations, which limits classification accuracy, especially
for species with overlapping frequency distributions or subtle
temporal modulations.

Thus, to solve this problem, multi-resolution analysis pro-
vides an effective solution. Multi-resolution analysis is widely
used in image processing and speech recognition. In speech
processing, multi-resolution techniques have improved recog-
nition accuracy by capturing both short-term phoneme transi-
tions and long-term prosodic patterns [0]. However, its use in
bioacoustics is still lacking, particularly in bird sound clas-
sification. Also, existing multi-resolution fusion approaches
like paralle]l CNN branches or late-stage feature concatenation
introduce computational overhead when larger models are
used, and they often fail to fully leverage resolution synergies
due to independent feature extraction.

To address this, we introduce DualStack, a new multi-
resolution fusion approach that vertically stacks high-
resolution and low-resolution Mel spectrograms into a single
input image, processed by a unified CNN pipeline. Unlike
parallel architectures, DualStack ensures spatial coherence
between resolutions, allowing CNNs to jointly learn multi-
scale features without additional complexity. We evaluated Du-
alStack on a dataset of 967 recordings across 22 bird species
[1] and compared it against single-resolution baselines and a
BiParallel ResNet18 model. Our results show that DualStack
achieves a validation accuracy of 86.63%, significantly out-
performing single-resolution models (82.18% high-resolution,
75.74% low-resolution) and BiParallel ResNetl8 (83.66%).
This opens new gateways for future research using multi-
resolution fusion approaches in other areas of bioacoustics.

II. RELATED WORK

Bird sound classification has evolved significantly over the
past few years, transitioning from traditional handcrafted fea-
tures to deep learning-based approaches. However, the appli-
cation of multi-resolution spectrogram fusion in bioacoustics
remains a nascent area of research.

A. Traditional Approaches to Bird Sound Classification

The earlier methods relied on manually engineered fea-
tures such as Mel-Frequency Cepstral Coefficients (MFCCs),



wavelet transforms, and Linear Predictive Coding (LPC).
These features were then paired with statistical classifiers
like Support Vector Machines (SVMs), Gaussian Mixture
Models (GMMs), and Hidden Markov Models (HMMs). How-
ever, they achieve moderate success on controlled datasets.
However, these methods struggled with real-world challenges
such as background noise, overlapping calls, and inter-species
variability because they relied on predefined feature sets.

B. Deep Learning and Spectrogram-Based Methods

With the advent of deep learning, the paradigm quickly
shifted toward leveraging CNN-based approaches for the
classification of spectrogram representations. Various spectro-
grams other than Mel are used for classification, such as Log-
Mel spectrograms and Constant-Q Transforms (CQT) [9] [3].
Log-Mel spectrograms have been explored for their ability to
enhance low-energy frequencies, and Constant-Q Transforms
(CQT) for their ability to provide better frequency resolu-
tion. Recent studies have applied CNNs to large-scale bird
sound datasets, demonstrating significant improvements over
traditional methods [7]. However, these approaches typically
use single-resolution spectrograms which fail to capture the
full spectrum of spectral-temporal features, therefore limiting
robustness.

C. Multi-Spectrogram Fusion in Audio Classification

Multi-spectrogram fusion technique refers to combining
different spectrogram types (e.g., Mel, Gammatone, CQT)
to leverage feature representation. Lambamo (2022) fused
cochleogram and mel spectrogram for speaker recognition,
highlighting the benefits of spectral diversity [5]. However,
these studies demonstrated the value of multi-spectrogram
fusion but focused on combining different spectrogram types
rather than varying resolutions of the same type, which helps
capture multi-scale features in bioacoustics.

D. Multi-Resolution Spectrogram Fusion

Multi-resolution analysis has been successfully applied in
speech and music processing. Toledano (2018) used multi-
resolution speech representations to improve automatic speech
recognition [4]. However, in computer vision, multi-resolution
techniques like pyramid representations are standard for tasks
that require multi-scale feature extraction, but their application
in bioacoustics is still limited.

[II. METHODOLOGY

This section provides a detailed description of the dataset,
spectrogram generation, model architectures, training setup,
and evaluation metrics.

A. Approach

Our dataset is a small subset from the Xeno Canto dataset.
It consists of a total of 967 audio recordings spanning 22
bird species [1]. The original dataset comprises raw audio
recordings, which we converted into Mel spectrograms to serve
as input for CNN-based classification models.

B. Single-Resolution Models

1) High-Resolution Mel Spectrogram Model:

o Dataset: High-resolution spectrograms are generated us-
ing a 44.1 kHz sampling rate, 4096 FFT window, 1024
hop length, and 256 mel bands.

o Architecture: A ResNet50 CNN processes these spectro-
grams, extracting hierarchical feature representations.

e Results: This model achieves 82.18% accuracy, demon-
strating that high-resolution spectrograms effectively cap-
ture fine-grained temporal details.

2) Low-Resolution Mel Spectrogram Model:

« Dataset: Low-resolution spectrograms are generated us-
ing a 16 kHz sampling rate, 1024 FFT window, 256 hop
length, and 64 mel bands.

o Architecture: The same ResNet50 CNN architecture is
employed.

o Results: The model achieves 75.74% accuracy, indicating
that low-resolution spectrograms retain broader spectral
trends but sacrifice finer temporal resolution.

C. Multi-Resolution Fusion Models
1) DualStack (Vertical Stacking of Spectrograms):

o Dataset: High-resolution and low-resolution spectro-
grams are concatenated vertically, forming a single
stacked image.

o Architecture: The ResNet50 model is trained on these
vertically stacked spectrograms, processing them as stan-
dard input.

o Results: Achieves 86.63% accuracy, confirming that
combining different resolutions enhances classification
performance.

2) BiParallel ResNetl8 (Dual-Branch Network):

o Dataset: The same dataset previously generated for
single-resolution models (high-resolution and low-
resolution) was used and passed independently to a dual-
branch CNN.

o Architecture: A BiParallel ResNetl8 processes each
spectrogram separately before concatenating the extracted
features in the fully connected layer.

o Results: Achieves 83.66% accuracy, outperforming
single-resolution models but slightly lower than Dual-
Stack, due to the lack of direct spatial fusion between
resolutions.

D. Training Setup

The training setup was kept the same for all models for fair
comparison:

o Optimizer: Adam with a learning rate of 0.0001 and
weight decay of le-4 to prevent overfitting [8].

« Batch Size: 32.

e Loss Function: CrossEntropyLoss, suitable for multi-
class classification.

o Scheduler: ReduceLROnPlateau with a factor of 0.1.

o Hardware: NVIDIA GTX 1650 GPU, 16GB RAM, Intel
i5 CPU.
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Fig. 1. BiParallel ResNetl8 architecture

in milliseconds. It indicates computational efficiency.

o FPS (Frames Per Second): Number of samples pro-

« Validation Accuracy: Percentage of correctly classified
samples. It reflects general classification performance.

e Macro F1-Score: Harmonic mean of macro precision
and recall. It is averaged across classes, balancing per-
formance despite class imbalance.

o Macro Precision: Average precision across classes. It
measures the proportion of correct positive predictions.

o Macro Recall: Average recall across classes. It assesses
the proportion of actual positives correctly identified.

o Top-1 Accuracy: Same as overall accuracy. It indicates
the percentage of correct top predictions.

o Top-3 Accuracy: Percentage of samples where the cor-
rect class is among the top three predictions. It shows
ranking reliability.

o Top-5 Accuracy: Percentage of samples where the cor-
rect class is among the top five predictions. It evaluates
broader ranking performance.

« Average per Sample: Average inference time per sample

cessed per second. It measures throughput for high-speed
applications.

F. Evaluation Metrics Formulas

The following metrics are used to evaluate the performance

of our models, where C is the number of classes (22 bird
species), T'P;, F'P;, T'N;, and F' N, represent the true positives,
false positives, true negatives, and false negatives for class 1,
respectively, and N is the total number of samples.
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IV. RESULTS AND ANALYSIS

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Metric DualStack  BiParallel High Res Low Res
Validation Accuracy 86.63% 83.66% 82.18% 75.74%
Macro F1-Score 78.44% 68.35% 68.90% 61.70%
Macro Precision 85.59% 70.42% 73.10% 64.48%
Macro Recall 76.19% 67.96% 68.81% 62.65%
Top-1 Accuracy 86.63% 83.66% 82.18% 75.74%
Top-3 Accuracy 94.06% 95.05% 94.06% 90.59%
Top-5 Accuracy 97.52% 97.52% 97.03% 94.55%
Avg. Time (ms) 8.28 6.77 5.77 5.59
FPS 120.81 147.77 173.31 179.02

A. Low-Resolution ResNet50

Low-Resolution ResNet50 achieved an accuracy score of
75.74%, which is the lowest among all the models. It was
trained on spectrograms with a 16 kHz sampling rate, a 1024
FFT window, a 256 hop length, and 64 Mel bands. Due
to this configuration, the model prioritizes broader spectral
trends over fine-grained temporal details. The macro F1-
score of 61.70%, macro precision of 64.48%, and macro
recall of 62.65% indicate challenges in balanced classifica-
tion across the 22 classes. The higher precision compared
to recall, suggests that the model is more confident in its
positive predictions but misses some true positives, particularly
for classes with subtle vocalizations. The 16 kHz sampling
rate limits the frequency analysis to below 8 kHz, omitting
critical high-frequency harmonics, while the longer hop length
reduces temporal resolution, affecting the detection of rapid
vocalizations.

The model excels in computational efficiency despite these
limitations, with an inference time of 5.59 ms per sample and
an FPS of 179.02, which is the highest among all models.
Thus, the model can be useful in remote resource-constrained
ecological monitoring environments.

B. High-Resolution ResNet50 Model

High-Resolution ResNet50 achieved an accuracy score
of 82.18%, showing a 6.44% improvement over the Low-
Resolution model (Table I). It was trained with spectrograms
using a 44.1 kHz sampling rate, a 4096 FFT window, a 1024
hop length, and 256 Mel bands. This model captures high-
frequency components up to 22.05 kHz, which is crucial for
distinguishing classes with rapidly modulated calls. The macro
Fl1-score of 68.90%, macro precision of 73.10%, and macro
recall of 68.81% reflect improved performance, driven by

finer temporal resolution that resolves short-duration frequency
shifts.

However, the model struggles with inter-class frequency
overlap. Its inference time (5.77 ms) and FPS (173.31) are
slightly less efficient due to the larger image input size. The
top-3 accuracy (94.06%) and top-5 accuracy (97.03%) indicate
high prediction confidence, making it suitable for scenarios
where ranking classes is valuable, such as biodiversity assess-
ments. Overall, this model shows the importance of capturing
fine details, but its limitations suggest that multi-resolution
fusion is necessary for further improvements.

C. BiParallel ResNetl8 Model

BiParallel ResNet18 achieved an accuracy score of 83.66%,
processing high and low-resolution spectrograms through two
independent ResNetl8 branches before late-stage fusion. It
outperforms single-resolution models based on validation ac-
curacy (Table I). The macro Fl-score of 68.35%, macro
precision of 70.42%, and macro recall of 67.96% indicate
that the model delivers balanced performance by leveraging
complementary features from both resolutions. A key lim-
itation is the lack of early cross-resolution interaction, as
independent processing delays fusion, reducing the model’s
ability to learn joint patterns, thus contributing to a 16.34%
error rate. Its inference time (6.77 ms) and FPS (147.77)
reflect higher computational complexity compared to single-
resolution models. However, the top-3 accuracy (95.05%) and
top-5 accuracy (97.52%), the highest among models, thus mak-
ing BiParallel architecture suitable for applications needing
ranked predictions, such as bioacoustic monitoring. Despite
these strengths, it still lags behind DualStack performance,
indicating that early fusion is more effective for increasing
accuracy.

D. DualStack (Vertical Stacking) Model

DualStack ResNet50 achieved the highest accuracy score of
86.63% (Table I). It vertically stacks high and low-resolution
Mel spectrograms into a single input image. Its macro F1-score
(78.44%), precision (85.59%), and recall (76.19%) demon-
strate superior balanced performance, driven by early fusion
that integrates spectral and temporal features from the input
level. This approach outperforms BiParallel (83.66%) by 3%
and High-Resolution (82.18%) by 4.45%. Top-3 (94.06%)
and top-5 (97.52%) accuracies shows that it makes reliable
predictions. However, the inference time (8.28 ms) and FPS
(120.81) are the highest and lowest, respectively, mainly
due to larger image input sizes. Also, a 13.37% error rate
suggests challenges like fixed stacking order and intra-class
variability exist. Overall, DualStack sets a new benchmark that
is ideal for accuracy-focused bioacoustic applications despite
its computational cost, highlighting the effectiveness of early
fusion in multi-resolution learning.

V. FUTURE RESEARCH DIRECTIONS

The success of DualStack in achieving the highest accuracy
among all models clearly shows that early multi-resolution
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Fig. 2. Example of a single DualStack image, where the high-resolution and low-resolution spectrogram is vertically stacked within one image. This
spectrogram is extracted from an MP3 audio recording of the bird Troglodytes pacificus.

fusion opens new avenues for future research in more fields
of bioacoustics. One promising direction is the exploration of
adaptive multi-resolution learning, where the model dynam-
ically adjusts the resolution based on the characteristics of
each class’s vocalization, thus improving robustness in learn-
ing more diverse patterns. Also, incorporating self-supervised
learning techniques could further enhance DualStack’s per-
formance by leveraging large-scale, unlabeled audio datasets,
reducing reliance on labeled data and improving generalization
to underrepresented classes or noisy environments. Future
work should also aim to reduce the computational overhead
of 8.28 ms by using lightweight models such as MobileNet
to enable on-the-edge processing in remote monitoring sys-
tems [11]. Additionally, extending the use of the DualStack
framework to other areas of the bioacoustics domain, such
as amphibian or bat monitoring, and integrating uncertainty
estimation methods could enhance its reliability for real-time
ecological applications [!2]. Finally, expanding the dataset to
include more diverse environmental conditions and a broader
range of classes could mitigate intra-class variability and
frequency overlap challenges and other overall challenges,
further improving classification performance [10].

VI. CONCLUSION

In this paper, we introduced DualStack, a new multi-
resolution fusion technique for bird sound classification. Our
experiments have shown that DualStack outperforms both
single-resolution models and the BiParallel ResNetl18 model,
thus, achieving an accuracy of 86.63%. The success of Du-
alStack also highlights the importance of early fusion in
capturing multi-scale features from bird vocalizations. Future
studies will now focus on reducing computational efficiency
and extending this DualStack framework to other bioacoustic
applications.
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