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Abstract 27 

Contemporary evolution occurs on observable timescales, enabling prospective evolutionary forecasting with 28 
quantitative frameworks rather than only retrospective inference. We propose a unified probabilistic framework 29 
that integrates three approaches linked to detectability windows through time. Trait-based models use 30 
multivariate quantitative-genetic equations to project correlated phenotypic responses over ~5–20 generations 31 
while the G-matrix is locally stable. Allele-based analyses model frequency dynamics at identifiable loci over 32 
~20–100 generations, when selection outpaces drift and sampling error. For longer horizons, composite 33 
adaptation scores aggregate many small effects to support 100+-generation projections under novel 34 
environments. These windows reflect detectability and parameter stability, not genetic architecture. Bayesian 35 
inference integrates genomic, phenotypic, and environmental evidence to yield probabilistic predictions with 36 
explicit uncertainty. Experimental evolution, historical herbarium series, and reciprocal transplants provide 37 
independent validation of forecast skill and transferability. Validated forecasts can guide conservation programs 38 
(genomic vulnerability and assisted gene flow), breeding programs (multi-generational, climate-aware selection), 39 
and ecosystem management (species-composition planning). By quantifying and propagating uncertainty, this 40 
programme shifts evolutionary biology from largely descriptive synthesis toward predictive practice. 41 

I. Recent Advances in Evolutionary Prediction 42 

Why now, and why it matters 43 

The evolutionary changes we track today often unfold within the lifespan of our experiments (Lenski et al. 1991; 44 
Good et al. 2017; Tenaillon et al. 2016). Because we can assay genomes, phenotypes and environments at fine 45 
temporal resolution, we no longer observe evolution from the sidelines: we can study its mechanisms as they 46 
operate. Evidence for rapid evolutionary change spans diverse taxa: Darwin's finches reshaped their beak and 47 
body sizes over six drought-driven generations (Grant & Grant 2002), plant mating systems shifted toward 48 
selfing within decades as pollinators declined (Thomann et al. 2015), and Lenski's Escherichia coli lines 49 
accumulated adaptive mutations within a few years (Lenski et al. 1991). Other clear examples of the speed of 50 
evolution occur in crop pests that have evolved pesticide resistance faster than chemists can deploy new 51 
chemistries to control them (Gould et al. 2018), and in annual plants that are shifting flowering time in response 52 
to drought (Franks et al. 2017). Biological and experimental timescales have converged, creating possibilities and 53 
requirements.   Possibility, because real-time data let us test quantitative forecasts against a moving target. 54 
Necessity, because management decisions, from biodiversity conservation to crop protection, must anticipate 55 
adaptive change for a more resilient society. 56 

Evolution acts through hierarchical levels of organization: nucleotide changes alter proteins, proteins alter 57 
pathways, pathways alter traits, and traits alter fitness (James et al. 2023). Communities and biomes further 58 
aggregate these levels of organization into systems that we continually try to manage (Ball et al. 2009; Moilanen 59 
et al. 2009) and protect (IUCN 2013, Possingham et al. 2006). Mapping information spanning these levels 60 
remains challenging (Hasin et al. 2017). For decades, biological research has fallen into a "certainty trap," where 61 
researchers assumed that exhaustive mechanistic knowledge would automatically yield deterministic forecasts 62 
(Beatty, 1990). Other epistemological approaches suggest otherwise. Systems biology and ecological research 63 
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demonstrate that when interactions are many, detailed mechanisms alone may not suffice for prediction (May, 64 
1972; Grimm & Railsback 2005; Alon, 2019), yet they remain invaluable because they provide the levers for 65 
manipulating and validating models that consider higher levels of organization (Kitano, 2002). We need not 66 
abandon mechanism; rather, we must let it create rules while embracing the inherent uncertainty of biological 67 
systems. 68 

Importantly, all evolutionary forecasting approaches share a common currency: fitness. Whether tracking 69 
phenotypic responses through the breeder's equation, monitoring allele frequencies via selection coefficients, or 70 
integrating polygenic effects, each method ultimately predicts fitness consequences through different mechanistic 71 
lenses. This unified perspective anchors our probabilistic framework. 72 

Technological and Conceptual Convergence 73 

Several interconnected advances have converged to make evolutionary forecasting feasible today. Genomic 74 
technologies now provide comprehensive views of genetic variation at population scales (Ellegren, 2014; 75 
Goodwin et al. 2016), revealing the raw material that constrains and enables evolutionary responses with 76 
unprecedented resolution (Allendorf et al. 2010). Computational advances enable Bayesian frameworks that 77 
embrace rather than eliminate uncertainty, treating probabilistic predictions as valuable information through 78 
integration of empirical data with evolutionary theory (Aguirre et al. 2014; Beaumont, 2010; Gelman et al. 2013). 79 
Perhaps most importantly, the maturation of long-term ecological studies and experimental evolution programs 80 
provides temporal validation datasets for testing forecasts against independent outcomes, transforming 81 
evolutionary prediction from theoretical exercise to empirically grounded science (Box 2; Kawecki et al. 2012; 82 
Exposito-Alonso et al.  2019; Wilkinson et al. 2021). 83 

These technological advances reflect a broader philosophical transformation in the field. Evolutionary biology 84 
increasingly embraces its inherently probabilistic nature rather than pursuing deterministic approaches (Noble, 85 
2012). Researchers are shifting from asking "Will this population adapt?" to asking "What is the probability of 86 
adaptation, with what confidence bounds, and over what time horizon?" Evolutionary prediction is becoming an 87 
empirically testable science (Nosil et al. 2020) increasingly adopted across a wide range of taxa (Table 1). This 88 
shift from seeking certainty to precise quantification of uncertainty enables practical applications of evolutionary 89 
forecasting now emerging in conservation and agriculture (Capblancq et al. 2020; Wortel et al. 2023). 90 

One consequence of biological organization is that predictive breakthroughs emerge from recognizing that 91 
evolution shows scale-dependent predictability: outcomes can be more predictable than the mechanisms 92 
producing them (Noble, 2012; Tenaillon, 2014). Evolution confounds the normal relationship between 93 
mechanistic understanding and predictive power that characterizes most physical sciences (Beatty, 1990), though 94 
recent advances are improving our capacity to predict contemporary evolutionary change (Nosil et al. 2020). 95 
Unlike Newtonian systems where better mechanism characterization improves prediction quality, evolutionary 96 
systems can have well-characterized mechanisms yet remain unpredictable due to their combinatorial complexity 97 
(Kauffman, 1993; Orr, 2005; Wagner, 2005). This complexity often resolves at higher scales, where many lower-98 
level contingencies average out to reveal predictable patterns, such as when we measure heritability and other 99 
quantitative genetic parameters (Walsh & Lynch, 2018), summarize evolutionary processes into rates (Haldane, 100 



Ortiz-Barrientos et al.  Predictive Evolutionary Genomics 
 

4 
 

1949; Gingerich, 2009), or organize variation into categories whose relative abundance becomes predictable. 101 
Influenza surveillance demonstrates this principle, predicting the dominant global lineage a year ahead with 102 
~93% accuracy despite stochastic mutation processes that underlie the emergence of each lineage (Luksza & 103 
Lässig, 2014). 104 

Although evolutionary patterns may be more predictable than underlying mechanisms, mechanistic detail 105 
remains necessary for two reasons. First, it sharpens the priors of statistical models (Gelman et al. 2013): 106 
knowing which genes regulate flowering time or drought response (Andrés & Coupland, 2012; Shinozaki & 107 
Yamaguchi-Shinozaki, 2007) guides the choice of covariates and constrains parameter space. Second, it offers 108 
actionable entry points for intervention such as assisted gene flow (Aitken & Whitlock, 2013), or targeted 109 
breeding (Meuwissen et al. 2001), all of which operate at molecular or physiological scales (Heath et al. 2016). 110 
Our goal is to build forecasts that are informed by, and feed back to, actionable mechanisms at higher levels of 111 
organization. 112 

Theoretical Foundations and the Certainty Trap 113 

Nearly a century ago, Fisher, Wright, and Haldane built the mathematical foundations of evolutionary prediction 114 
(Figure 1), providing equations that linked mutation, drift, and selection to measurable population changes 115 
(Fisher, 1918; Wright, 1932; Haldane, 1927). Fisher's infinitesimal model captured how randomness permeates 116 
inheritance of complex traits (Fisher, 1918), while Wright formalized how genetic drift creates stochasticity even 117 
without environmental change (Wright, 1931). Haldane developed methods for estimating fixation probabilities 118 
of new alleles (Haldane, 1927), presaging our current ability to study the genetics of adaptation (Nosil et al. 119 
2018). These contributions established evolutionary biology's quantitative foundations, yet reliable forecasts of 120 
evolutionary change remained elusive until the genomics era (Berg & Coop, 2014; Fuller et al. 2020). This early 121 
wave of prediction reveals a philosophical problem that affected evolutionary biology for decades: the relentless 122 
pursuit of certainty in an inherently uncertain process (Beatty, 1990). 123 

The genetic variance-covariance matrix (𝑮-matrix) exemplifies this certainty trap. Classical quantitative genetics 124 

treated the 𝑮-matrix as an unchanging parameter that captures a population's evolutionary potential through 125 
genetic variances and correlations (Falconer & Mackay, 1996)—measure it once, apply it indefinitely. But real 126 
populations violate this assumption continuously. Selection eliminates beneficial variation, recombination 127 
reshuffles alleles, mutations introduce new variance, and genetic drift injects random fluctuations (Jones et al. 128 
2007; Walsh & Lynch, 2018). The matrix's reliability thus degrades predictably over time, creating a natural 129 
temporal horizon of ~ 5-20 generations for trait-based predictions—not as a methodological limitation but as a 130 
biological reality. To create robust frameworks for predictive evolutionary genomics, we must account for these 131 
dynamic uncertainties rather than assuming static parameters (Box 1; Arnold et al. 2008). 132 

Similarly, Wright's adaptive landscape maps fitness as topography: genotypes occupy positions, elevation equals 133 
reproductive success (Wright, 1932). Populations evolve by climbing peaks through genetic changes that increase 134 
fitness. Valleys represent maladaptive combinations that selection eliminates. Wright envisioned landscapes 135 
whose peaks and valleys rise and fall over time, yet generations of biologists applied his framework as fixed 136 
topographies—mountains and valleys through which populations climb toward unchanging peaks. This static 137 
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interpretation simplified analysis but missed a truth: both landscape and population evolve simultaneously. 138 
Simpson developed Wright's dynamic perspective, explicitly emphasizing landscapes that change as 139 
environments shift (Simpson, 1944), yet this view remained largely theoretical due to measurement complexity 140 
on interactive genotypic surfaces (Gavrilets, 2004). Climate change makes this recognition essential. Populations 141 
now navigate landscapes that shift faster than adaptation can track the “peaks.” 142 

The remainder of the paper develops a scale-integrated framework for predictive evolutionary genomics. We 143 
overview three forecasting approaches that match research questions to different biological scales and levels of 144 
uncertainty (Figure 2), show how to combine these approaches using Bayesian methods that quantify 145 
uncertainty (Figure 3), and provide implementation guidelines. We emphasize that mechanistic understanding is 146 
necessary to improve predictive accuracy. 147 

II. Three Complementary Forecasting Approaches 148 

Matching methods to biological scales 149 

Why are outcomes often more predictable than the mechanisms producing them? This question drives 150 
evolutionary forecasting and requires methods that work with biological hierarchies rather than applying uniform 151 
approaches to different organizational scales (Tenaillon, 2014; Beatty, 1990). 152 

Consider three contrasting examples that illustrate this principle. At the phenotypic scale, trait correlations and 153 
genetic constraints create predictable evolutionary trajectories that emerge from underlying genomic complexity 154 
we need not fully characterize. The Breeder's equation drives crop variety development of desired phenotypes 155 
using pedigrees, trait scores and macro-parameters like selection intensity and heritability (Lush, 1937; Falconer 156 
& Mackay, 1996). At the genomic scale, individual loci experiencing selection pressures can be tracked through 157 
allele frequency changes (Haldane, 1927; Wright, 1931), regardless of broader phenotypic outcomes. Yet 158 
identifying a gene that controls a fraction of trait variation, which in turn controls a fraction of fitness variation, 159 
illustrates how compounding fractions limit our ability to forecast evolution from single genes (Rockman, 2012). 160 
At the polygenic scale, hundreds of small-effect variants collectively determine adaptive capacity through 161 
distributed effects that neither trait-based nor single-locus approaches can capture in isolation. The challenge lies 162 
in identifying causal alleles and tracking their evolution accurately (Schlötterer et al. 2015), but models are 163 
emerging (Boyle et al. 2017).  164 

Instead of seeking one optimal forecasting method, we encourage researchers to use complementary approaches 165 
that target different biological hierarchies (Figure 2). These methods naturally stratify across temporal scales—166 
not by arbitrary choice but because genetic architecture determines when evolutionary signal becomes detectable 167 
above noise (Box 1). Major-effect alleles produce rapid, trackable changes; polygenic architectures require longer 168 
timescales for signal integration; and quantitative genetic parameters remain reliable only while genetic 169 
covariances persist. Rather than viewing this as a limitation, we exploit these emergent patterns by matching 170 
analytical methods to the scales where biology creates predictability (Beaumont, 2010). 171 

Trait-Based Approaches: Leveraging Phenotypic Predictability 172 
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Trait-based approaches apply the multivariate breeder's equation Δ𝒛 = 𝑮𝛽 to predict correlated responses from 173 

multiple traits simultaneously, leveraging 𝑮-matrix relationships established in quantitative genetic studies 174 
(Lande, 1979). These approaches excel when genetic constraints are well-characterized and selection gradients 175 
can be estimated reliably from field studies, typically excelling over a few generations (5-20, Walter & McGuigan 176 
2023). Modern genomic approaches are changing our ability to detect correlational selection from multiple traits 177 
simultaneously, providing the empirical foundation necessary for multivariate evolutionary forecasting (Svensson 178 
et al. 2021). When selection favors increased drought tolerance in crop plants, established 𝑮-matrix relationships 179 
reveal whether populations can evolve in that direction or whether genetic correlations will deflect responses 180 
toward unexpected phenotypic combinations. Recent experimental work confirms that the direction of 181 
phenotypic evolution can be predicted from the alignment between selection gradients and genetic constraints 182 
(Mallard et al. 2023). 183 

The approach's predictive power emerges from its ability to capture evolutionary constraints through the genetic 184 

variance-covariance matrix 𝑮, which determines both the magnitude and direction of evolutionary responses 185 
regardless of selection's intended targets. Empirical studies demonstrate that evolvability metrics derived from 𝑮-186 
matrix structure can successfully predict the magnitude of phenotypic divergence in plant populations (Opedal et 187 
al. 2023). These constraint patterns often display consistency from related species and environments, providing 188 
foundations for forecasting when genetic architecture remains relatively stable (Lande, 1979; McGlothlin et al. 189 
2018). For example, population divergence in Eucalyptus globulus follows predictable genetic lines of least 190 
resistance over geographic gradients (Costa e Silva et al. 2020). However, this consistency depends critically on 191 
𝑮-matrix stability. 192 

The magnitude of variation in mutational covariance structures affects the stability of evolutionary predictions 193 
over many generations (Mallard et al. 2023). Dynamic treatment of genetic architecture dramatically extends 194 
forecast horizons because models continuously update genetic constraints as integral parts of the prediction 195 
process rather than treating them as static inputs. Each generation brings not only observable trait changes 196 
(Franks et al. 2007) but simultaneous constraint evolution (McGlothlin et al. 2018), an evolutionary dynamic that 197 
static approaches miss entirely (Blows & Hoffmann, 2005).  198 

Trait-based approaches achieve optimal performance for short-term predictions spanning 5-20 generations, 199 
where 𝑮-matrix constraints dominate evolutionary responses more strongly than demographic stochasticity or 200 
mutational input (Lande, 1979). Implementation demands extensive phenotypic data collected in multiple 201 
controlled conditions, requiring multi-environment phenotyping for adequate statistical power (Kawecki & 202 
Ebert, 2004). This data intensity limits applicability primarily to model systems or economically important crops 203 
where such experiments remain logistically feasible (Table 2; Walsh & Lynch, 2018). 204 

Allele-Based Approaches: Mechanistic Genomic Insights 205 

Allele-based approaches track frequency changes at individual loci through population genetic relationships that 206 
connect selection pressures to allele frequency changes (Barton & Turelli, 1989). These approaches perform 207 
optimally when genetic architecture involves relatively simple inheritance patterns with major-effect loci, or when 208 
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polygenic architectures are characterized in multiple environments and populations. These methods suit 209 
medium-term forecasts spanning 20-100 generations (Schlötterer et al. 2015), effectively tracking beneficial 210 
mutations as they move through intermediate frequencies toward fixation while maintaining sensitivity to 211 
demographic and environmental factors influencing selection intensity (Wright, 1931; Lenski et al. 1991). 212 

Contemporary genomic approaches provide sophisticated tools for estimating functional relationships between 213 
genetic variation and environmental gradients that drive natural selection throughout the landscape. Genotype-214 
environment association (GEA) approaches scan entire genomes to identify loci whose frequencies vary 215 
predictably with environmental gradients, providing direct empirical estimates of how selection acts over 216 
geographic space while revealing environmental dependencies that likelihood functions require for reliable 217 
parameter estimation (Rellstab et al. 2015). Gradient forests extend this analytical logic by modeling nonlinear 218 
responses and complex interactions among multiple environmental variables, capturing the complex ways that 219 
climate, soil chemistry, and biotic factors jointly influence adaptive evolution through emergent selection 220 
pressures that simple correlation analyses cannot detect (Ellis et al. 2012). Whole-genome prediction models 221 
adopt a complementary strategy, using dense marker information to predict phenotypic outcomes spanning 222 
diverse environments, thereby revealing genetic architecture underlying adaptation while providing effect size 223 
estimates necessary for composite adaptation score approaches (Fitzpatrick & Keller, 2015). 224 

Implementation requires genome-wide variant data, typically one million or more high-quality SNPs, combined 225 
with environmental associations strong enough to provide reliable estimates of selection coefficients (Rellstab et 226 
al. 2015; Goodwin et al. 2016). Predictive effectiveness diminishes for highly polygenic traits where distributed 227 
effects on many loci create evolutionary responses that individual locus models cannot capture adequately (Boyle 228 
et al. 2017; Barghi et al. 2019). Exceptions include chromosomal inversions that aggregate polygenic effects into 229 
superloci (Rieseberg, 2001; Ortiz-Barrientos et al. 2002; Battlay et al. 2025; Huang et al. 2025). Capture of 230 
adaptive alleles appears common in nature (Noor et al. 2001, Ortiz-Barrientos et al. 2002; Huang & Rieseberg, 231 
2020) and suggests that allele-based approaches should be complemented with structural variation studies that 232 
can identify such chromosomal rearrangements (Wellenreuther & Bernatchez, 2018). 233 

Composite Adaptation Score Approaches: Integrating Polygenic Architecture 234 

Composite adaptation score approaches integrate information from thousands of loci simultaneously through 235 
weighted sums of variants, where each variant contributes to the score according to its estimated effect size and 236 
current frequency, capturing the distributed genetic architecture underlying complex trait evolution (Bay et al. 237 
2017; Fitzpatrick & Keller, 2015). This polygenic method acknowledges that most ecologically important traits—238 
drought tolerance, flowering time, thermal adaptation—arise from coordinated shifts from hundreds of genetic 239 
variants rather than dramatic changes at single loci (Barghi et al. 2019). This polygenic perspective is valuable for 240 
predicting responses to environmental conditions that lie outside historical experience, where individual loci 241 
provide insufficient predictive signal but coordinated response from many variants can reveal clearer adaptive 242 
trajectories. 243 

Composite approaches prove most valuable for complex genetic architectures involving many small-effect loci, 244 
medium- to long-term projections exceeding 50-100 generations that require polygenic integration, and novel 245 
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environmental conditions where individual loci provide insufficient predictive signal. These methods work 246 
effectively for quantitative traits like growth rate, stress tolerance, and reproductive timing that display 247 
continuous rather than discrete variation patterns (Barghi et al. 2019). Composite score methods have 248 
demanding data requirements, including genome-wide effect size estimates from  association studies that 249 
typically rely on thousands of individuals to achieve adequate statistical power (Crossa et al. 2017; Exposito-250 
Alonso et al. 2019). The computational intensity, combined with assumptions about effect size constancy and 251 
additivity in multiple environments, makes implementation challenging for natural systems where such datasets 252 
remain unavailable. Perhaps more challenging is moving from interpreting biological systems as simple sums of 253 
effects to systems where interactions among genes, like in genetic networks (Boyle et al. 2017; O’Brien et al. 254 
2024), define evolutionary trajectories with mechanisms that we can understand and leverage for forecasting. 255 

Distinguishing Prediction from Distance Metrics  256 

While genomic offset methods measure current maladaptation—the distance between populations and 257 
environmental optima (Fitzpatrick & Keller, 2015; Capblancq et al., 2020)—evolutionary forecasting predicts 258 
trajectories toward those optima. Distance does not determine destiny: populations with large genomic offset 259 
may harbor sufficient genetic variation for rapid adaptation (Bay et al., 2017), while those with small offset may 260 
lack evolutionary potential (Exposito-Alonso et al., 2019). Genomic offset provides valuable initial screening to 261 
identify populations requiring detailed predictive analysis but cannot forecast evolutionary outcomes. Our 262 
framework explicitly models the dynamic processes—genetic constraints, selection gradients, and demographic 263 
factors—that determine whether and how populations traverse fitness landscapes toward new optima. 264 
Operationally, many GO implementations are polygenic scores of environment-associated alleles; when 265 
calibrated against observed fitness they become polygenic fitness scores, which belong in the forecasting pipeline 266 
rather than as stand-alone distances. 267 

Integrative Framework for Scale-Dependent Prediction 268 

These three complementary approaches—trait-based methods leveraging 𝑮-matrix constraints, allele-based 269 
approaches tracking genomic mechanisms, and composite scores integrating polygenic architecture—represent 270 
different analytical lenses for viewing the same underlying evolutionary process rather than competing 271 
methodological paradigms. The power emerges from recognizing that biological organization creates natural 272 
scales of predictability that we can exploit systematically (Lande, 1979; Walsh & Blows, 2009; Wortel et al. 2023).  273 

Scale-dependent predictability operates through several mechanisms. At the trait level, genetic correlations and 274 
constraints create predictable trajectories even when underlying genomic mechanisms remain complex (Lande, 275 
1979; Arnold et al. 2008; Walter et al. 2018). Individual loci can be tracked precisely when their effects are large 276 
enough to overcome demographic noise and when environmental associations can be measured reliably (Wright, 277 
1931; Barton & Turelli, 1989; Schlötterer et al. 2015). Polygenic architectures become predictable when we 278 
integrate over enough variants to average out individual locus uncertainty, particularly under novel 279 
environmental conditions where aggregated effects, even if scattered across the genome, can be more reliable 280 
than single-locus predictions (Boyle et al. 2017; Barghi et al. 2019; Capblancq et al. 2020). 281 
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Each approach optimizes prediction accuracy for different biological scales and data availability scenarios. Trait-282 
based methods predict phenotypic responses through genetic constraints, allele-based approaches reveal 283 
mechanistic pathways driving adaptation, and composite scores capture polygenic architecture underlying 284 
complex trait evolution. When data permit multiple approaches, integration provides robust uncertainty 285 
quantification while revealing which biological scales drive predictable responses (Beaumont 2010; Csilléry et al. 286 
2010; Gelman et al. 2013). Rather than choosing between approaches, we select the combination that best 287 
matches our biological system, available data, and forecasting objectives (Box 1). This scale-dependent 288 
framework leads naturally to a unified probabilistic foundation that coordinates these diverse approaches and 289 
transforms their outputs into coherent, actionable predictions with explicit uncertainty bounds—our next focus. 290 

The take home message is that time is not architecture. The windows we assign (5–20, 20–100, 100+) are 291 
detectability and parameter-stability regimes, not statements about mono- vs polygenicity. Any architecture can 292 
be analysed on any timescale provided the relevant parameters are identifiable and calibrated. 293 

III. The Probabilistic Framework 294 

Unifying theory behind the three approaches 295 

The three forecasting approaches—trait-based, allele-based, and composite scores—share a common foundation 296 
rooted in Bayesian inference. This framework transforms raw genomic, phenotypic, and environmental 297 
observations into distributions of evolutionary futures (Figure 3). Rather than seeking single-point predictions, 298 
the approach quantifies uncertainty by treating each evolutionary parameter as a random variable that updates as 299 
empirical evidence accumulates (Beaumont, 2010; Gelman et al., 2013). In practice, 𝜷 (trait selection gradients), 𝑠 300 

(locus-specific selection), and polygenic fitness scores are all likelihood terms about 𝒘, so the posterior is 301 
“probability of future fitness paths given 𝜷, 𝑠, and polygenic effects under 𝐸(𝑡)”. 302 

The mathematical foundation applies regardless of which forecasting approach we employ: 303 

𝑃(𝐹𝑢𝑡𝑢𝑟𝑒|𝐷𝑎𝑡𝑎, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) ∝ 𝑃(𝐷𝑎𝑡𝑎|𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) × 𝑃(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 304 

This expression captures how fitness, the common currency across all approaches, manifests at different 305 
biological scales within our Bayesian framework. The likelihood function encodes fitness consequences whether 306 
measured through phenotypic selection gradients (β), allele-specific selection coefficients (s), or integrated 307 
polygenic effects. The expression thus reveals the logic of evolutionary forecasting: beliefs about future 308 
evolutionary trajectories (posterior) emerge from combining empirical evidence (likelihood) with theoretical 309 
understanding (prior), conditioned on environmental context. This approach transforms biological observations 310 
into risk assessments with explicit uncertainty bounds, making fitness both the biological currency and the 311 
prediction target unified through Bayesian inference. 312 

Stage 1: Constructing the Likelihood Function 313 

Forecasting begins by constructing a sampling model that links observed biological patterns to underlying 314 
evolutionary processes: 315 

𝑃(𝐷|𝐴, 𝐸) 316 
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This likelihood function contains the empirical foundation of evolutionary forecasts. The data component 𝐷 317 
represents genomic and phenotypic observations: allele frequencies sampled across populations and 318 
environments, trait measurements from common garden experiments, fitness estimates from field studies, and 319 
environmental associations detected through landscape genomics. The adaptive parameters 𝐴 capture 320 
unobserved evolutionary forces: selection gradients acting on traits, genetic covariance structures linking traits 321 
and constraining responses, demographic parameters governing population dynamics, and genetic interactions 322 
determining how populations respond to environmental challenges. The environmental component 𝐸 323 
encompasses environmental conditions that drive natural selection: temporal variance in temperature and 324 
precipitation, extreme event frequency and intensity, soil chemistry gradients creating microhabitat heterogeneity, 325 
and disturbance regimes reshaping fitness landscapes across space and time. 326 

Stage 2: Bayesian Integration and Uncertainty Propagation 327 

The likelihood function captures one component of the evolutionary story. To generate actionable forecasts, 328 
researchers must combine empirical evidence with broader understanding of evolutionary processes through 329 
prior distributions that formalize decades of quantitative genetic research establishing typical heritability ranges, 330 
common garden experiments revealing phenotypic plasticity magnitudes and environmental dependence, meta-331 
analyses providing baseline demographic rates across related species, and theoretical population genetics 332 
supplying principles about relationships between effective population size, selection intensity, and natural 333 
selection efficacy (Falconer & Mackay, 1996; Walsh & Lynch, 2018). 334 

Bayes' theorem provides the mathematical machinery for combining prior knowledge with empirical evidence: 335 

𝑃(𝐴|𝐷, 𝐸) ∝ 𝑃(𝐷|𝐴, 𝐸) × 𝑃(𝐴) 336 

The resulting posterior distribution 𝑃(𝐴|𝐷, 𝐸) represents updated beliefs about adaptive parameters after 337 
incorporating all available empirical evidence. Rather than collapsing this probabilistic information into point 338 
estimates, the Bayesian framework preserves entire distributions that capture remaining uncertainty about 339 
selection gradients, genetic variances, demographic rates, and all other parameters influencing evolutionary 340 
outcomes. 341 

Dynamic genetic architecture 342 

The framework treats every element of genetic architecture as a dynamic stochastic variable rather than a static 343 
parameter. This acknowledges that the genetic variance-covariance structure constraining evolutionary responses 344 
itself evolves: 345 

𝑮ᵢⱼ(𝑡 + 1) = 𝑮ᵢⱼ(𝑡) + 𝛥𝑮!"#"$%&'( + 𝛥𝑮)*&+% + 𝛥𝑮,-%.%&'( + 𝛥𝑮*"$',/&(.%&'( 346 

This dynamic treatment extends meaningful forecast horizons because models continuously update genetic 347 
constraints as part of the prediction process rather than treating them as static inputs estimated once and applied 348 
indefinitely. Each generation brings observable trait changes and simultaneous constraint evolution—an 349 
evolutionary dynamic that static approaches miss entirely (Blows & Hoffmann, 2005). 350 

Stage 3: Computational Implementation and Validation 351 
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The computational challenge lies in efficiently sampling from high-dimensional posterior distributions spanning 352 
thousands of genetic and demographic parameters while maintaining mathematical rigor for reliable uncertainty 353 
quantification. The choice of computational approach depends on the complexity of the likelihood function and 354 
the speed requirements of the application. 355 

When posterior distributions can be evaluated directly, Markov Chain Monte Carlo (MCMC) methods provide 356 
the most rigorous approach. Algorithms like Metropolis-Hastings explore posterior landscapes by generating 357 
samples that converge to true posterior distributions (Gelman et al., 2013). Although computationally intensive, 358 
these methods excel when likelihood functions can be computed exactly because they enable precise parameter 359 
uncertainty characterization without approximation. 360 

However, many evolutionary models involve demographic complexity or polygenic architectures that make 361 
likelihood calculations mathematically intractable. In these cases, Approximate Bayesian Computation (ABC) 362 
bypasses the likelihood entirely through forward simulation (Beaumont, 2010). Rather than computing 363 
probabilities directly, ABC generates synthetic datasets by simulating evolutionary processes under proposed 364 
parameter values, then assigns high posterior weight to parameters producing synthetic data that closely match 365 
observed patterns. Modern implementations enhance efficiency by using machine learning to identify 366 
informative summary statistics that capture the most relevant aspects of the data for parameter estimation. 367 

When computational speed becomes critical—such as in real-time forecasting applications or ensemble 368 
approaches requiring hundreds of independent model runs—Variational Bayes offers a faster alternative by 369 
trading some approximation accuracy for dramatic speed gains (Gelman et al., 2013). Instead of sampling from 370 
the full posterior complexity, this approach finds simpler distributions that approximate the true posterior 371 
shapes. Although less precise than MCMC, Variational Bayes scales effectively to thousands of parameters while 372 
providing uncertainty estimates orders of magnitude faster, making it particularly valuable when rapid results are 373 
needed for management decisions. 374 

Unified Foundation for Evolutionary Prediction 375 

This probabilistic framework provides mathematical and conceptual unity underlying all three forecasting 376 
approaches by establishing common foundations for uncertainty quantification, prediction validation, and 377 
adaptive learning from forecast errors. Whether researchers track 𝑮-matrix evolution, monitor allele frequency 378 
changes, or calculate polygenic adaptation scores, the framework ensures that all forecasts provide appropriately 379 
calibrated assessments of confidence and risk that can guide evidence-based conservation and management 380 
decisions. 381 

The practical implementation of this framework across biological systems, data types, and management 382 
applications forms the foundation for transforming evolutionary prediction from academic exercise to 383 
operational infrastructure for managing life on a changing planet. Our next section translates these principles 384 
into implementation guidelines that researchers and managers can deploy immediately. 385 

IV. From Data to Implementation: Matching Requirements to Forecasting Approaches 386 

Strategic decision framework for evolutionary forecasting 387 
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Evolutionary forecasting requires strategic decisions that match biological questions, available resources, and data 388 
constraints to appropriate analytical approaches. Rather than overwhelming practitioners with data requirements, 389 
this section provides guidance on essential elements that can expand analytical capability for evolutionary 390 
forecasting, as resources permit. The first decision determines everything else: how far into the future do you 391 
need to predict, and under what environmental scenarios? Your forecasting horizon shapes both the biological 392 
questions you can address and the data requirements you must meet. This temporal dimension directly connects 393 
to our three-scale framework because different approaches excel at different time horizons while requiring 394 
distinct data architectures. The second strategic decision involves resource allocation among data collection, 395 
analytical development, and validation activities. Most studies lack adequate sample sizes or environmental 396 
coverage for their chosen approach. When data are insufficient, the axiom is to collect more data, but in its 397 
absence simpler models can be the better solution rather than forcing complex approaches onto inadequate 398 
datasets. 399 

Essential data architectures for each approach 400 

Trait-Based Forecasting: Phenotypic Infrastructure Requirements 401 

Trait-based evolutionary forecasting through the multivariate breeder's equation requires phenotypic 402 
characterization that captures both genetic variance-covariance structure 𝑮-matrix) and selection gradients (β) 403 
operating in multiple correlated traits simultaneously. Statistical requirements are substantial: detecting genetic 404 
correlations between traits typically requires minimum sample sizes of 100-200 genotypes measured in multiple 405 
environments to achieve adequate precision to determine evolutionary constraints (Lynch & Walsh, 1998). 406 
Common garden experiments provide the empirical foundation by growing genetically diverse individuals under 407 
controlled conditions that separate heritable genetic effects from environmental plasticity. The experimental 408 
design must span sufficient environmental variation to estimate selection gradients while maintaining replication 409 

adequate for 𝑮-matrix estimation. In practice, this typically demands growing 100+ genotypes in 3-5 410 
environments with 5-10 replicates per genotype-environment combination. 411 

High-throughput phenotyping platforms address data collection constraints by capturing thousands of trait 412 
proxies through automated imaging systems. Drone-based multispectral flights can record spectral signatures 413 
encoding information about photosynthetic capacity, water status, nitrogen content, and stress responses in 414 
hundreds of individuals in single flights (Shakoor et al. 2017). This approach enables replacing labor-intensive 415 
measurements on limited individuals with multispectral indices capturing population-scale variation. Selection 416 
gradient quantification requires fitness measurement spanning environmental gradients that capture selective 417 
pressures operating in natural populations. Direct fitness measurement through lifetime reproductive success 418 
represents the standard but often becomes logistically challenging, particularly for long-lived species where 419 
complete life cycles exceed experimental timeframes. Validated proxy fitness metrics offer practical alternatives 420 
when direct measurement becomes infeasible. Multi-year sampling enables estimation of both mean selection 421 
gradients and their temporal variance—both essential for dynamic 𝑮-matrix forecasting models. 422 

Allele-Based Forecasting: Population Genomic Sampling 423 
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Allele-based evolutionary forecasting requires population-scale genomic sampling that captures both standing 424 
genetic variation and its environmental associations over geographic and temporal scales. Minimum genomic 425 
sampling standards exceed those typically employed in population genetic surveys. Detecting environmental 426 
associations typically requires at least 20 unrelated individuals per population combined with sequencing depth 427 
≥10× coverage to reliably distinguish genuine polymorphisms from technical artifacts (Nielsen et al. 2011). 428 
Geographic sampling design is important because environmental associations emerge from spatial correlations 429 
between allele frequencies and climatic gradients. Effective sampling requires population collections that span 430 
substantial environmental variation while maintaining sufficient geographic replication to distinguish genuine 431 
adaptive signals from population structure confounds. In practice, this typically demands sampling 10-20 432 
populations in multiple environmental gradients with 20+ individuals per population. For instance, a study of 433 
281 lodgepole pine populations by Mahony et al. (2020) exemplifies this approach. By sampling across extensive 434 
environmental gradients in western Canada (e.g., mean annual temperatures from -4°C to +9°C), they were able 435 
to identify climate-associated genetic variants. Crucially, their broad sampling was essential for distinguishing 436 
these adaptive signals from the confounding effects of the species' postglacial expansion, a historical factor that 437 
itself aligned with major environmental gradients. This work underscores the utility of large-scale genomic 438 
studies in providing data for climate-based seed transfer and conservation efforts. 439 

Composite Adaptation Scores: Polygenic Architecture Integration 440 

Composite adaptation score approaches integrate information from thousands of loci through weighted sums 441 
where each variant contributes according to its estimated effect size and current frequency. Statistical power 442 
requirements for polygenic score development exceed those for single-locus approaches substantially. Reliable 443 
effect size estimation typically requires genome-wide association studies with thousands of individuals to achieve 444 
adequate precision for variants explaining small phenotypic variance fractions. Multi-environment Genome Wide 445 
Association Studies (GWAS) are essential because effect sizes must generalize over environmental conditions 446 
where forecasts will be applied. Single-environment GWAS studies risk substantial bias when selection pressures 447 
differ between original study conditions and environments where predictions are needed (Table 3).  448 

Cross-environment validation frameworks help tests of predictive accuracy while ensuring that genotype-449 
environment relationships generalize beyond specific study conditions. For example, Exposito-Alonso et al. 450 
(2019) validated genomic predictions across 30 field sites spanning diverse European climates, demonstrating 451 
that composite adaptation approaches calibrated on contemporary populations could predict evolutionary 452 
responses to climate manipulation experiments. Implementation requires careful partitioning of available data 453 
into training and validation sets that maintain environmental independence while preserving adequate sample 454 
sizes for both effect size estimation and validation testing (Kawecki & Ebert 2004; Kawecki et al. 2012). 455 
Geographic stratification approaches that use distinct environmental regions for training versus validation can 456 
provide stringent tests of transferability. Temporal validation using historical samples provides additional 457 
evidence for polygenic score reliability by testing whether scores calibrated on contemporary populations can 458 
predict evolutionary changes observed in museum or herbarium specimens. These temporal tests reveal whether 459 
polygenic architectures remain sufficiently stable to enable forecasting in relevant timescales. 460 
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Integration strategies and adaptive management 461 

The Mechanistic Foundation for Predictive Power 462 

The predictive power of evolutionary forecasting emerges not from sophisticated statistical methods alone, but 463 
from mechanistic understanding of how environmental variation translates into fitness consequences through 464 
physiological processes. Traditional approaches that collapse climate complexity into annual averages 465 
fundamentally misrepresent the environmental variance that drives evolutionary responses, discarding precisely 466 
the information most relevant to management strategies. When micro-environmental loggers record temperature, 467 
humidity, and soil moisture at hourly intervals, they reveal selection-relevant patterns invisible to weather station 468 
averages—patterns that determine which genotypes survive extreme events and contribute to subsequent 469 
generations (Pettorelli et al. 2014; Fick & Hijmans, 2017). 470 

This mechanistic perspective transforms how we interpret genotype-environment relationships. Rather than 471 
assuming linear correlations between climate variables and fitness, process-based environmental models enable 472 
direct linkage between environmental measurements and physiological outcomes. Energy balance models, for 473 
instance, predict how temperature and humidity combine to determine leaf temperatures and water loss rates 474 
under stress, while biogeochemical models reveal how soil chemistry modulates nutrient uptake during drought. 475 
These mechanistic insights provide the causal foundation that statistical associations alone cannot deliver. 476 

Plasticity as the Bridge Between Genes and Environment 477 

The relationship between genetic potential and realized evolutionary responses operates through phenotypic 478 
plasticity—the capacity for genotypes to express different phenotypes across environments (Lande 2009; Nicotra 479 
et al. 2010; Chevin et al. 2013; Ghalambor et al. 2015). This creates a fundamental interdependence: plasticity 480 
provides immediate population response to environmental change, determining which individuals survive and 481 
reproduce successfully enough to contribute genetic material to subsequent generations, thereby directly shaping 482 
the selection gradients that drive genetic evolution. Simultaneously, plastic responses buffer populations against 483 
environmental stress long enough for genetic adaptation to accumulate. 484 

Understanding this interdependence requires measuring complete reaction norms—mathematical functions that 485 
precisely relate genotype, environment, and phenotype—rather than treating traits as static properties 486 
(Schlichting & Pigliucci, 1998; Des Marais et al. 2013). Common garden experiments that grow replicated 487 
genotypes across environmental gradients provide the empirical foundation for estimating these reaction norms. 488 
The resulting data reveal not just how traits respond to environment, but how genetic variation in plasticity itself 489 
shapes evolutionary trajectories. 490 

Adaptive Management as Evolutionary Learning 491 

The implementation of evolutionary forecasting demands a philosophical shift from prediction as endpoint to 492 
prediction as process. Adaptive management transforms forecasting from static exercise into dynamic, iterative 493 
learning that continuously improves accuracy by incorporating new information through targeted monitoring and 494 
experimental intervention (Walters, 1986; Williams, 2011). This approach treats initial evolutionary forecasts as 495 
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working hypotheses rather than fixed predictions, deliberately designing near-term management actions to 496 
generate maximum information for improving subsequent iterations. 497 

The practical implementation requires pre-specified "trigger points" where management actions activate 498 
regardless of remaining uncertainty, preventing analysis paralysis while maintaining flexibility for course 499 
corrections (Martin et al. 2009; Cook et al. 2016). When genetic diversity metrics drop below critical thresholds, 500 
assisted gene flow protocols activate automatically. When climate stress indices exceed predetermined tolerance 501 
limits, ex-situ conservation efforts begin immediately to preserve evolutionary potential while natural populations 502 
attempt in-situ adaptation (Aitken & Whitlock, 2013; Weeks et al. 2011; Havens et al. 2006). The aim shifts from 503 
perfect prediction to calibrated risk assessment that improves management decisions under uncertainty. 504 

Digital Validation: Testing Predictions Before Implementation 505 

Digital twin approaches provide the critical validation infrastructure for evolutionary forecasting by creating 506 
computational replicas of biological systems that can be tested against real-world outcomes before committing to 507 
costly interventions (Cooper et al. 2014; Haller & Messer 2019). These virtual populations, parameterized with 508 
empirical genetic and environmental data, enable researchers to test forecasting accuracy through controlled 509 
simulation experiments. Implementation involves creating population models that mirror real systems in genetic 510 
architecture, demographic parameters, and environmental responses (Technow et al. 2015). 511 

As empirical data accumulate from monitored populations, digital twins undergo continuous updating and re-512 
calibration, providing iterative improvement of forecasting accuracy (Hammer et al. 2019). Agricultural breeding 513 
programs demonstrate this approach by testing genomic selection strategies over multiple breeding cycles in 514 
silico, enabling optimization of selection intensities and population sizes before committing resources to long-515 
term programs (Messina et al. 2011; Cooper et al. 2021). The same logic applies to conservation interventions—516 
testing assisted gene flow or habitat management strategies virtually before implementing costly field programs 517 
(Flanagan et al. 2018; Razgour et al. 2019). 518 

The integration of mechanistic understanding, plasticity dynamics, adaptive management, and digital validation 519 
creates a coherent framework for implementing evolutionary forecasting. Rather than viewing these as separate 520 
methodological additions, they represent interconnected components of a learning system that improves 521 
predictive capacity through systematic integration of biological understanding with empirical observation.  522 

V. Conclusions––Evolution as Infrastructure 523 

From theoretical possibility to operational reality 524 

Evolutionary biology has achieved a transformation: the ability to forecast adaptive responses before they fully 525 
manifest in natural populations, though significant challenges remain in translating theoretical frameworks into 526 
reliable operational tools (Wortel et al. 2023). This capability emerged from recognizing that evolution shows 527 
scale-dependent predictability—outcomes are often more predictable than the mechanisms producing them—528 
and that uncertainty can be treated as useful information rather than methodological failure. The three 529 

complementary approaches highlighted here—trait-based methods leveraging 𝐺-matrix constraints, allele-based 530 
approaches tracking genomic mechanisms, and composite scores integrating polygenic architecture—now 531 
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provide calibrated risk assessments over diverse biological systems and temporal scales. The practical 532 
demonstrations are compelling. Genomic vulnerability maps guide assisted migration of climate-threatened 533 
species (Fitzpatrick & Keller, 2015), agricultural breeding programs incorporate multi-generational climate 534 
projections into genomic selection strategies (Crossa et al. 2017), and forest managers deploy evolutionary 535 
predictions to inform reforestation spanning shifting climate envelopes. These applications demonstrate 536 
evolution's emergence as standard planning infrastructure alongside climate projections and demographic 537 
forecasts.  538 

Integration across biological scales reveals predictable patterns 539 

The success of evolutionary forecasting stems from matching analytical methods to biological scales where 540 
predictable patterns emerge from complex underlying processes. Rather than forcing uniform approaches onto 541 
different organizational levels, we exploit natural hierarchies of biological organization to extract maximum 542 
predictive information from available data. Trait-based approaches capture predictable phenotypic trajectories 543 
constrained by genetic architecture, providing reliable short-term forecasts when 𝐺-matrix relationships remain 544 
stable. Allele-based methods track mechanistic pathways through individual loci, offering medium-term 545 
predictions when environmental associations can be quantified reliably. Composite adaptation scores integrate 546 
distributed polygenic effects, enabling long-term projections under novel environmental conditions where 547 
neither trait-based nor single-locus approaches provide adequate signal. When multiple approaches are feasible, 548 
integration provides robust uncertainty quantification while revealing which biological scales drive predictable 549 
responses. An alpine plant study demonstrates this integration potential (Cotto et al. 2017): dynamic eco-550 
evolutionary models combining demographic processes with genetic forecasting predicted that alpine species 551 
would persist longer than ecological niche models suggested but produce increasingly maladapted offspring—552 
ideas that emerge only from cross-scale integration. Temporal validation spans systems from annual plants to 553 
viral evolution, suggesting that forecasting thinking is common across many distinct research fields. Resurrection 554 
ecology studies using stored seeds validate trait-based predictions during decades (Franks et al. 2007; 2016; 555 
Hamann et al. 2018. Time-series genomics tracks allele frequency predictions over seasons and years (Machado 556 
et al. 2021; Kelly, 2022). Composite adaptation scores demonstrate predictive accuracy for climate vulnerabilities 557 
decades into the future (Exposito-Alonso et al. 2019).  558 

Constraints define reliable forecasting boundaries 559 

Important limitations define where evolutionary forecasting remains unreliable. Prediction accuracy degrades for 560 
traits involving extensive epistatic interactions where individual locus effects depend strongly on genetic 561 
background. Demographic collapses can weaken genetic predictions when population bottlenecks eliminate the 562 
genetic variation that forecasting models assume remains available. Novel environmental conditions may trigger 563 
responses beyond current model capacity when environmental change exceeds the range of conditions used for 564 
parameter estimation (Jones et al. 2007; Melbourne & Hastings, 2008). Temporal horizons impose additional 565 
constraints that reflect fundamental evolutionary properties rather than temporary methodological shortcomings. 566 
Trait-based approaches prove most reliable for 5-20 generations when genetic architecture remains relatively 567 
stable. Allele-based methods extend to 20-100 generations but require environmental associations that may 568 
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weaken as landscapes change. Composite scores become increasingly uncertain beyond 100 generations as 569 
polygenic architectures evolve and novel environmental conditions hinder effect size transferability. These 570 
limitations demand honest assessment of forecasting boundaries while identifying opportunities for 571 
improvement through better data collection, model development, and validation strategies. Rather than 572 
abandoning forecasting where uncertainty is high, we recommend quantifying that uncertainty explicitly to 573 
inform decision-making about when to act despite incomplete information versus when to collect additional data 574 
before intervening. 575 

Adaptive management enables continuous improvement 576 

The most promising implementations of predictive evolutionary genomics treat evolutionary forecasting as an 577 
iterative learning process rather than one-time prediction exercise. Adaptive management frameworks transform 578 
initial forecasts into working hypotheses that guide near-term interventions designed to generate maximum 579 
information for improving subsequent predictions (Walters, 1986; Williams, 2011). This approach acknowledges 580 
that initial forecasts will be imperfect while creating systematic pathways for improvement through targeted 581 
monitoring and experimental intervention. Rather than demanding impossible accuracy from initial limited 582 
datasets, adaptive management focuses on calibrated risk assessments that improve management decisions under 583 
uncertainty while building predictive capacity through systematic learning from forecast errors. Successful 584 
adaptive management requires pre-specified trigger points where conservation or management actions activate 585 
regardless of remaining uncertainty, preventing analysis paralysis while preserving flexibility for course 586 
corrections as new information becomes available. 587 

Evolution is becoming predictable enough to serve as reliable infrastructure for evidence-based decision-making. 588 
The analytical frameworks exist, methodological approaches are empirically validated, and practical applications 589 
are scaling across multiple sectors. The central question is no longer whether we can predict evolutionary 590 
responses, but how wisely we will deploy this capability to safeguard the evolutionary processes that sustain life 591 
on Earth. The tools are ready, the need is urgent, and Earth's biological future depends on rapidly scaling 592 
evolutionary forecasting from research frontier to standard practice. 593 

The responsibility is ours. 594 
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Box 1: Temporal windows reflect detectability and parameter stability—not genetic architecture. 880 

How genetic complexity determines prediction horizons through biological constraints 881 

Short-, medium-, and long-term horizons are identifiability regimes set by selection, drift, sampling error, and the 882 
stability of model parameters. They are not statements about whether a trait is mono- or polygenic. Any 883 
architecture can be analysed on any horizon if the relevant quantities are estimable and kept in calibration. The 884 
bands we use are soft: roughly 5–20 generations when trait models retain calibration, ~20–100 generations when 885 
per-locus signals outpace noise, and 100+ generations when many weak effects dominate and aggregation 886 
becomes powerful. 887 

Trait-based forecasts (≈5–20 generations). 888 
Quantitative-genetic predictions exploit Δ𝑧̅ ≈ 𝐺β while 𝑮 is locally stable and environmental covariance is 889 
controlled. Skill here hinges on parameter stability, replication, and design—not on whether the underlying 890 
architecture is mono- or polygenic. As selection, drift, mutation, or environment shift 𝐺, calibration erodes and 891 
forecasts degrade for that reason, not because “traits are polygenic”. In practice, near-term responses in field or 892 
common-garden studies live in this window because 𝐺 is estimable and behaves well over tens of generations. 893 

Allele-based inference (≈20–100 generations). 894 

Locus-specific trajectories become informative once per-locus selection 𝑠 exceeds drift and sampling noise; the 895 
detection time scales on the order of ∼ 1/𝑠 given realistic sample sizes. Recombination, linkage, and 896 
demography set power, but architecture does not dictate the timescale: large-effect sweeps, moderate-effect 897 
haplotypes, or several loci with enough signal all qualify once trackable. This is the window where we can 898 
estimate 𝑠 with tolerable error and follow alleles through time—think herbicide or pesticide resistance, or 899 
temperature-associated variants that move measurably across cohorts. 900 

Composite (polygenic) scores (100+ generations). 901 
As signals disperse across many loci and 𝐺 drifts, aggregation gains power. Composite scores—polygenic 902 
predictors calibrated to observed fitness—summarise diffuse effects and support long-horizon projections. Their 903 
limiting factors are calibration and transfer: the mapping between predictors and fitness must hold under the 904 
environments to which we apply them, and extrapolation outside the training envelope must be flagged with 905 
uncertainty inflation. The virtue of this regime is not that it is “polygenic by definition”, but that aggregation 906 
restores signal when per-locus effects are individually weak, and trait parameters no longer hold still. 907 

Orthogonality. Time is not architecture. The ≈5–20, 20–100, and 100+ generation bands describe detectability 908 
and parameter stability. We should choose methods by what is identifiable and calibratable for the question at 909 
hand—in other words, use trait models when 𝐺 is stable, allele trajectories when 𝑠 clears noise, and composite 910 
scores when signals are diffuse and horizons are long. 911 

Notation: 𝑧̅, mean trait vector; 𝐺, additive genetic (co)variance; β, directional selection gradient; 𝑠, per-locus 912 

selection; “composite score”, a calibrated polygenic predictor of fitness or trait under environment 𝐸.  913 
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Box 2: Arabidopsis Climate Adaptation Case Study 914 

Empirical Demonstration of Evolutionary Forecasting 915 

This case study summarises a globally synchronised, multi-year evolution experiment in Arabidopsis thaliana that 916 
measured rapid adaptation and extinction risk across climates. Over five years and more than thirty outdoor 917 
gardens spanning Europe, the Levant, and North America, the team sequenced ~70,000 surviving reproductive 918 
individuals, directly observing repeatable, climate-linked genetic change and population outcomes. 919 

We treat fitness as the prediction target. Trait information enters through estimated selection gradients β; allele 920 

information enters through locus-specific selection coefficients 𝑠; genome-wide signals enter through a calibrated 921 
polygenic predictor of fitness (a composite score). The model links genotype and environment to observed 922 
fitness with a hierarchical likelihood, expresses forecasts as 𝑝{𝑤(𝑡) ∣ 𝐸(𝑡)}, and reports uncertainty from 923 
parameters, demography, and climate scenarios. In this framing, “genomic offset” functions as a polygenic 924 
fitness score once trained on observed www. 925 

Short horizon. Skill is assessed on held-out gardens, years, or accessions within ≤ five generations using proper 926 
scoring rules (e.g., log score) and error on fitness (RMSE), with credible intervals. Highest skill is expected when 927 
forecast climates lie inside the training envelope, with quantified decay as climates diverge. 928 

Medium horizon. When per-locus signals clear drift and sampling noise, allele trajectories provide estimates of 929 
𝑠 and enable locus-level forecasts; detection time scales on the order of 1/𝑠 given realistic sampling. Power 930 
hinges on recombination, LD, and demography inferred from the same data. 931 

Long horizon. As signals disperse across many loci and 𝐺 drifts, aggregation gains power. Composite scores, 932 
calibrated to fitness in the gardens, support decadal projections (e.g., 2050/2070) with transfer checks and 933 

uncertainty inflation outside the training envelope. The posterior 𝑝{𝑤(𝑡)} naturally integrates β, 𝑠, and 934 
composite effects, producing unified fitness forecasts under explicit 𝐸(𝑡). 935 

Limits. Forecasts remain contingent on calibration and environmental coverage. Population structure, 𝑮 × 𝑬, 936 
and plasticity are modelled where estimable; where not, we state the limits on external validity. The approach is 937 
general, but the Arabidopsis experiment provides rare, direct evidence that links replicated climate exposure, 938 
genome-wide change, and realised fitness over multiple years and sites.  939 

Attribution note: Case study adapted from Exposito-Alonso and collaborators’ preprint on synchronised outdoor 940 
evolution gardens in A. thaliana (Wu et al. 2025).  941 
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Figure B2. GrENE-net’s globally distributed evolution experiment in Arabidopsis thaliana and genome–943 
environment signals. A Experimental design. 231 accessions mixed in tubes of ~5,000 seeds; each tray was 944 
sown with three tubes, with sowing every two weeks through autumn 2017 to ensure establishment. Each site 945 
started 12 trays as independent replicates. The map shows 43 gardens (sites); colours indicate outcomes, with 30 946 
sites completing at least one generation and producing genomic data. B Calendar of time-series flower-tissue 947 
collections used for genomic sequencing during the first three years. C Density of samples collected across the 948 
calendar year, pooling all three years. D Daily temperature curves and precipitation bars over the first three years 949 
at two example locations: humid continental Würzburg, Germany (site #46, green) and arid desert Sde Boker, 950 
Negev, Israel (site #26, brown). E Example photographs of experimental populations in Germany and Israel 951 
during spring of the first growing season (dates as labelled). F Experimental-evolution Genome–Environment 952 
Associations (eGEA) with temperature and summer precipitation. Manhattan-style summary combining LFMM, 953 
quasi-binomial GLMM, and Kendall correlation, with haplotype-block P-value pooling by WZA. Top: 954 
associations with mean annual temperature; bottom: associations with summer precipitation. Y-axis is 955 

− log01(𝑃); the five chromosomes are shown in alternating grey/black; selected candidate genes are annotated. 956 
Panels (a–e) adapted from Fig. 1 and panel (f) from Fig. 4D of Exposito-Alonso et al., bioRxiv 2025 957 
(doi:10.1101/2025.05.28.654549). 958 

  959 
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Figure Legends 960 

Figure 1. Historical development of theoretical foundations enabling predictive evolutionary genomics 961 

The timeline traces conceptual advances from early mathematical foundations through the convergence of 962 
distinct theoretical streams into modern predictive frameworks. The quantitative genetics tradition developed 963 
from Lush's breeder's equation through Fisher's infinitesimal model to Lande's multivariate 𝑮-matrix framework, 964 
emphasizes trait-based approaches to evolutionary prediction. The population genetics tradition evolved from 965 
Hardy-Weinberg equilibrium through the foundational work of Fisher, Wright, and Haldane on allele frequency 966 
dynamics, extending through Kimura's diffusion theory to modern coalescent approaches. The integration phase 967 
(1980s-1990s) unified these traditions into coherent evolutionary theory, while the genomics era enabled practical 968 
implementation through Bayesian methods, genomic selection, and population genomics approaches (GWAS, 969 
GEA, ancient DNA). The modern synthesis combines these elements into the contemporary framework 970 
enabling probabilistic evolutionary forecasting with explicit uncertainty quantification. Color progression marks 971 
the historical transition from foundational theory through classical development, integration, and modern 972 
applications to current predictive capabilities. 973 

Figure 2. Empirical windows for evolutionary forecasts across genetic architecture, space and time. The 974 
isometric cube locates three forecasting approaches in a shared three-dimensional space defined by genetic 975 
architecture (few → many loci, vertical axis), spatial scale (single → many populations, front axis) and temporal 976 
scale in generations (near → far future, right axis). Semi-transparent slices show where each approach is most 977 

reliable: a purple plane marks trait-based models that work for roughly 5–20 generations while the ancestral 978 
𝑮-matrix remains stable; a red plane marks allele-based inference that becomes informative over about 20–979 
100 generations once selection can outrun drift at individual loci; and a green plane marks polygenic or 980 
composite scores that dominate beyond 100 generations when many loci and traits contribute to adaptation and 981 
the 𝑮-matrix has shifted. Grey spheres place representative study systems on each slice, while a blue fan of 982 
arrows sketches probable evolutionary trajectories as selection, drift and contingency reshape genetic architecture 983 

through time—from short-term trait responses based on standing variation, through selective sweeps or 984 
concurrent allele shifts, to long-horizon polygenic change (Box 1). These detectability surfaces arise from 985 
biological and sampling limits rather than methodological preference and provide the scaffold for the Bayesian 986 
integration framework developed in the main text and Figure 3. 987 

Figure 3. Modular Bayesian workflow for evolutionary forecasting 988 

The probabilistic integration framework combines five information streams to generate actionable evolutionary 989 
forecasts. Theoretical priors encode accumulated evolutionary understanding from decades of quantitative 990 
genetic research, population genetic theory, and meta-analyses of demographic parameters. Fitness data from 991 
field measurements of reproductive success quantify selection gradients operating on multiple traits 992 
simultaneously. Environmental data capture climate patterns, soil chemistry, and disturbance regimes at scales 993 
relevant to selection pressures. Phenotypic data from multivariate trait measurements enable estimation of 994 
genetic variance-covariance matrices and constraint structures. Genomic data including allele frequencies and 995 
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variant effects provide the raw material for evolutionary responses. These streams feed into a probabilistic 996 
integration engine where Bayesian algorithms (MCMC, ABC, or Variational Bayes) combine empirical evidence 997 

with theoretical understanding: 𝑃(𝜃|𝐷𝑎𝑡𝑎) ∝ 𝑃(𝐷𝑎𝑡𝑎|𝜃) · 𝑃(𝜃). The framework outputs probabilistic 998 
forecasts as full posterior distributions with credible intervals and quantified uncertainty, enabling evidence-based 999 
conservation and management decisions while treating uncertainty as valuable information rather than 1000 
methodological limitation. 1001 
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Table 1. Evolutionary Prediction Studies: Key Systems and Temporal Scales 1002 

GEA = Genotype-Environment Association; GDM = Generalized Dissimilarity Modeling; GWAS = Genome-Wide Association Study. Study types distinguish 1003 
retrodictive validation using historical data from predictive forward-looking forecasts. Forecasting Approach classifications follow the three-scale framework: Trait-Based 1004 
(5-20 generations, 𝐺-matrix constraints), Allele-Based (20-100 generations, individual loci tracking), Composite Adaptation Score (50-100+ generations, polygenic 1005 
integration), Multi-Approach (combining methods), and Specialized (system-specific methods). Examples emphasize plant systems while demonstrating broad taxonomic 1006 
applicability of evolutionary forecasting approaches. 1007 
 1008 

Study System Study 
Type 

Prediction 
Focus 

Timeframe Analytical 
Approach 

Forecasting 
Approach 

Key Results Validation 
Strategy 

References 

Arabidopsis 
thaliana 

Predictive Climate 
adaptation and 
survival under 
warming 

30 years 
(2050 
projections) 

GWAS integrated 
with GEA and 
random forest 
modelling 

Composite 
Adaptation 
Score 

Identified 7-89 causal 
loci under natural 
selection by climate 
variables; generated 
population-specific 
vulnerability 
assessments 

Common garden 
validation under 
simulated future 
climates; historical 
selection signature 
analysis 

Exposito-
Alonso et al. 
(2019) 

Arabidopsis 
thaliana 

Predictive Extreme 
drought 
adaptation 
potential 

~50 years 
(2070 
projections) 

Controlled drought 
experiments with 
predictive 
modelling 

Composite 
Adaptation 
Score 

Central European 
populations predicted 
to show adaptation lag 
under 21st century 
climate scenarios 

Terminal drought 
stress validation 
experiments 

Exposito-
Alonso et al. 
(2018) 
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Brassica rapa Retrodictive Flowering 
phenology and 
drought 
response 
evolution 

7 generations Resurrection 
ecology with 
genome sequencing 

Trait-Based Rapid evolution toward 
earlier flowering under 
drought stress; detected 
divergent short-term 
versus long-term 
selection signatures 

Ancestral-
descendant seed 
comparisons among 
controlled 
environments 

Franks et al. 
(2007, 2016) 

Brassica rapa Retrodictive Multi-decadal 
evolutionary 
responses 

20 years Resurrection 
ecology integrated 
with long-term 
field monitoring 

Trait-Based Documented 
evolutionary responses 
to precipitation 
fluctuations; suggested 
evolutionary rates may 
lag environmental 
change 

Stored seed 
resurrection 
experiments 
spanning two 
decades 

Hamann et al. 
(2018) 

Populus 
balsamifera 

Predictive Climate 
adaptation 
through 
genomic offset 
analysis 

~40 years 
(2050 
projections) 

Genomic offset 
modeling using 
gradient forests 
and GDM 

Composite 
Adaptation 
Score 

Northwestern 
populations identified 
as most climatically 
vulnerable; developed 
robust gradient forest 
framework  

Comparative 
genomic offset 
approach validation 

Fitzpatrick & 
Keller (2015) 

Four 
perennial 
alpine 
species 

Predictive Range shifts 
under climate 
warming 

~180 years 
(1970-2150) 

Dynamic eco-
evolutionary 
modeling with 
demographic 
integration 

Multi-
Approach 
(Trait + 
Composite) 

Alpine plants predicted 
to persist longer than 
niche models suggest 
but produce 
increasingly maladapted 
offspring  

Demographic 
simulations 
integrated with 
genetic forecasting 
models 

Cotto et al. 
(2017) 

Mimulus 
guttatus 

Retrodictive Genome-wide 
fluctuating 
selection 
patterns 

23 
generations 

Time-series 
genomics with 
selection analysis 

Allele-Based Documented 
temporally variable 
selection from 1.86 
million SNPs with high 
variance in selection 

Long-term field 
monitoring 
combined with 

Kelly (2022) 
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intensity  genome-wide 
analysis 

Drosophila 
melanogaster 

Predictive Seasonal 
adaptation and 
allele frequency 
cycling 

6 months Temporal 
genomics with 
generalized linear 
modeling 

Allele-Based High predictability in 
most populations; 
environmental extremes 
reduce forecast 
accuracy 

Leave-one-out 
cross-validation 
during seasonal 
cycles 

Machado et 
al. (2021) 

Escherichia 
coli 

Retrodictive Beneficial 
mutation 
proportion 
during long-
term evolution 

50,000 
generations 

Experimental 
evolution with 
genome sequencing 

Allele-Based Most fixed mutations 
proved beneficial rather 
than neutral, 
contradicting neutral 
theory expectations  

Comparison with 
mutation-
accumulation 
experiment controls 

Tenaillon et 
al. (2016) 

Influenza A 
virus 

Predictive Clade frequency 
dynamics and 
antigenic 
evolution 

1 year Fitness modeling 
integrated with 
epidemiological 
dynamics 

Specialized 
Viral (Non-
standard) 

Achieved up to 93% 
prediction accuracy for 
dominant lineages; 
revealed strain-specific 
fitness variation  

Retrospective 
validation against 
global surveillance 
data 

Łuksza & 
Lässig (2014) 

Helianthus 
annuus x H. 
debilis 

Predictive Effect of 
hybridization on 
repeatability of 
evolution 

13 years Time-series 
genomics with 
selection analysis 

Allele-Based Evolution was highly 
parallel throughout 
replicates, with shared 
selection driving 88% 
of variance in 
introgressed allele 
frequency change 

Long-term field 
monitoring 
combined with 
genome-wide 
analysis. Common 
garden validation 

Mitchell et al. 
(2022); 
Owens et al. 
(2025) 

Table 2.  Data Architecture for Evolutionary Forecasting 1009 

Essential data requirements span seven hierarchical layers from genomic foundations through adaptive management infrastructure, with implementation guidelines tailored 1010 
to specific forecasting approaches. Genomic data provides the raw material for evolutionary responses and drives likelihood functions linking environmental gradients to 1011 
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genetic changes. Field phenotypes and fitness measurements anchor empirical estimates of selection gradients and validate evolutionary predictions. Environmental 1012 
characterization captures selection pressures operating at relevant scales, while temporal baselines establish starting points for evolutionary forecasts and detect population 1013 
demographic changes. Regulatory and multi-omic extensions capture heritable variation invisible to DNA sequence analysis alone. Adaptive management infrastructure 1014 
enables continuous forecast improvement through systematic learning from prediction errors. Priority levels indicate relative importance for each forecasting approach: 1015 
Essential (required for reliable predictions), High (substantially improves accuracy), Moderate (beneficial when resources permit), Low (optional enhancement). 1016 
 1017 

Data Layer Variables Implementation Guidelines Forecasting Approach 
Priority 

Critical for Uncertainty 
Quantification 

Genomic 
Foundation 

Genome-wide variant discovery 
with adequate coverage and 
population sampling to distinguish 
genuine polymorphisms from 
technical artifacts. Capture 
structural variants and haplotype 
information when feasible. Gene 
expression data from relevant 
tissues and developmental stages. 

Deploy reference assemblies to 
anchor variant identification. 
Implement balanced sampling 
spanning geographic sites and 
temporal periods to distinguish 
spatial from evolutionary signals. 

Essential: Allele-Based, 
Composite 

Moderate: Trait-Based 

Allele frequency data drives likelihood 
functions linking environmental 
gradients to genetic changes. 
Expression data identifies plastic 
responses that may confound or 
mediate adaptive evolution. 

Regulatory and 
Multi-omic 
Extensions 

Heritable regulatory variation 
including DNA modifications, 
chromatin structure, and post-
translational regulation. 

Sample representative subsets of 
genomically-characterized individuals 
to balance costs with coverage. 
Process treatment and control 
conditions in parallel to capture 
regulatory responses. 

High: Composite 

Moderate: Allele-Based 

Low: Trait-Based 

Captures heritable variation invisible 
to DNA sequence analysis alone. 
Provides empirical estimates for 
unexplained heritability components 
in forecasting models. 

Field Phenotypes Core life-history traits: survival, 
reproductive output, phenological 
timing. Functional traits relevant to 
environmental stress and 
adaptation. Scale: hundreds of 

Implement systematic tracking with 
standardized measurement protocols. 
Integrate automated remote sensing 
with ground-based validation 

Essential: Trait-Based 

High: Composite 

Phenotypic distributions provide 
empirical anchors for selection 
gradient estimation while validating 
evolutionary predictions. Multi-year 
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individuals per site over multiple 
years and environmental 
conditions. 

measurements using consistent 
spatial sampling. 

Moderate: Allele-Based data enables separation of plastic 
versus genetic responses. 

Environmental 
Characterization 

Microclimate: high-resolution 
temperature, humidity, and 
moisture logging. Soil properties: 
chemistry, texture, and nutrient 
status over relevant spatial scales. 
Macroclimate: gridded 
environmental data. Disturbance 
history: anthropogenic and natural 
perturbation records. 

Co-locate environmental monitoring 
with genetic sampling locations. 
Implement systematic calibration and 
maintain physical archives for future 
reanalysis. 

Essential: All approaches Drives likelihood functions 
connecting environmental gradients to 
fitness outcomes through mechanistic 
understanding of selection pressures 
operating at relevant scales. 

Temporal 
Baselines 

Historical biological materials 
spanning multi-decadal periods; 
long-term environmental records 
from multiple sources. 

Utilize available biological archives 
under controlled revival conditions 
to measure traits. Apply appropriate 
molecular techniques for temporal 
genetic analysis. 

High: Trait-Based 
(resurrection ecology) 

Moderate: Allele-Based, 
Composite 

Establishes temporal starting points 
for evolutionary forecasts while 
detecting population demographic 
changes that could confound 
evolutionary inference. 

Fitness 
Quantification 

Absolute fitness through lifetime 
reproductive success; relative 
fitness through comparative 
performance measures. When 
direct measurement is impractical, 
employ validated proxy metrics 
combining survival and 
reproductive components. 

Implement sampling strategies that 
balance measurement intensity with 
population coverage, maintaining 
validation subsets for direct fitness 
measurement. 

Essential: All approaches Transforms phenotypic changes into 
selection gradient estimates, 
completing the empirical chain linking 
environmental change through genetic 
architecture to evolutionary outcomes. 

Adaptive 
Management 
Infrastructure 

Standardized monitoring protocols; 
trigger points for intervention; 
decision frameworks; stakeholder 

Establish clear protocols for model 
updating as new data become 
available. Pre-specify intervention 
thresholds to prevent analysis 
paralysis. Maintain long-term data 

Essential: All approaches 
(implementation) 

Enables continuous forecast 
improvement through systematic 
learning from prediction errors. 
Provides framework for evidence-
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communication systems; iterative 
model updating procedures. 

continuity through personnel and 
institutional changes. 

based decision making under 
uncertainty. 

  1018 
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Table 3: Key Consideration and Potential Pitfalls in Evolutionary Forecasting.  1019 

Successful evolutionary forecasting requires systematic validation against independent temporal or spatial data whenever possible, embracing uncertainty by reporting 1020 
credible intervals and validating model calibration rather than seeking false precision. Methods should match biological scales, using trait-based approaches for short-1021 
term predictions with simple architectures and composite scores for long-term polygenic traits. Throughout implementation, researchers must monitor whether G-1022 
matrices, selection coefficients, and environmental relationships remain stable over prediction horizons. 1023 

Category Specific Issue Consequence Detection/Prevention 

Data Quality Insufficient sequencing depth (<10×) or 
population sampling (<20 individuals) 

False polymorphisms inflate evolutionary 
signal; rare beneficial alleles missed 

Verify call quality metrics; increase sampling; validate 
subset with deep sequencing 

 
Population structure confounding 
environmental associations 

Spurious adaptive signals from shared 
ancestry rather than selection 

Include kinship matrices or PCs in models; test 
geographic vs. environmental predictors 

 
Temporal sampling misalignment Genetic changes attributed to wrong 

environmental drivers 
Synchronize genetic sampling with environmental 
measurements; account for generation time 

Model 
Assumptions 

Static 𝑮-matrix assumption in trait-based 
approaches 

Systematic forecast degradation over 
extended timescales 

Monitor	𝑮-matrix stability across environments; use 
dynamic models for >20 generations 

 
Additive genetic effects assumption in 
composite scores 

Underestimate responses when epistasis is 
strong 

Test for interaction effects; compare additive vs. non-
additive models 

 
Constant selection coefficients over time Poor transferability to novel 

environmental conditions 
Validate across multiple environments; model GxE 
interactions explicitly 

Environmental 
Bias 

Single-environment GWAS for multi-
environment predictions 

Effect sizes don't generalize; systematic 
prediction bias 

Conduct multi-environment GWAS; validate across 
contrasting conditions 

 
Weather station vs. microclimate 
mismatch 

Missing selection-relevant environmental 
variation 

Deploy local sensors; validate remote sensing with 
ground truth 

 
Novel climate conditions beyond 
calibration range 

Model extrapolation failure; unpredictable 
responses 

Test model performance at environmental extremes; 
acknowledge uncertainty bounds 
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Temporal 
Validity 

Rapid genetic architecture evolution 𝑮-matrix becomes outdated; constraint 
predictions fail 

Update 𝑮-estimates regularly; use shorter prediction 
horizons 

 
Demographic catastrophes override 
genetic predictions 

Population crashes eliminate genetic 
variation faster than selection can act 

Monitor effective population size; include 
demographic stochasticity in models 

 
Historical baseline bias Cryptic population turnover confounds 

evolutionary inference 
Verify population continuity; use multiple temporal 
samples 

Statistical Power Insufficient replication for 𝑮-matrix 
estimation 

Imprecise off-diagonal elements; 
unreliable constraint predictions 

Minimum 100 genotypes × 3 environments; focus on 
major traits 

 
Weak environmental associations for 
allele-based approaches 

Poor selection coefficient estimates; low 
prediction accuracy 

Sample across broader environmental gradients; 
increase population number 

 
Small effect sizes in polygenic traits Individual variants undetectable; 

composite scores unreliable 
Use larger GWAS sample sizes (>5,000 individuals); 
focus on major-effect loci 

Interpretation 
Errors 

Confusing prediction accuracy with 
biological certainty 

Overconfident management decisions 
despite inherent uncertainty 

Always report credible intervals; validate against 
independent data 

 
Assuming linear responses to 
environmental change 

Missing threshold effects and tipping 
points 

Test for nonlinear relationships; model multiple 
scenarios 

 
Ignoring plasticity-evolution interactions Underestimate total adaptive capacity; 

miss buffering effects 
Measure reaction norms; integrate plastic and genetic 
responses 

  1024 
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Figure 1 1025 

 1026 
1027 
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Figure 2 1028 

 1029 
  1030 
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Figure 3 1031 

 1032 
 1033 
 1034 
 1035 



Ortiz-Barrientos et al.  Predictive Evolutionary Genomics 
 

44 
 

Supplementary Table 1. Analytical Frameworks for Predictive Evolutionary Genomics 1036 

Approach Core Methodologies Primary Strengths Key Limitations Optimal Applications 

Mechanistic 
Models 

Lande's multivariate equation for 
trait evolution (Lande, 1979); 
individual-based population models 
(Haller & Messer, 2019); reaction-
diffusion frameworks for spatial 
dynamics (Barton & Turelli, 1989); 
stochastic differential equations 
capturing demographic noise 
(Wright, 1932; Kimura, 1964) 

Provide biologically interpretable 
predictions by exposing causal 
mechanisms underlying 
evolutionary change. Function 
effectively with limited empirical 
data while building on established 
evolutionary theory foundations 
that enable transparent scientific 
communication. 

May oversimplify complex 
genetic architectures 
involving extensive epistasis. 
Become computationally 
intensive for scenarios with 
complex demographic 
structure and require explicit 
specification of all 
evolutionary parameters. 

Short-term forecasts spanning fewer 
than 20 generations; systems with 
well-characterized genetic 
architecture; conservation planning 
applications requiring transparent, 
interpretable logic for stakeholder 
communication. 

Machine 
Learning 

Deep neural networks for pattern 
recognition (LeCun et al. 2015); 
ensemble methods including 
random forests and gradient 
boosting (Rellstab et al. 2015); 
Approximate Bayesian 
Computation for intractable 
likelihoods (Csilléry et al. 2010); 
forward population genetic 
simulators like SLiM (Haller & 
Messer, 2019) 

Excel at detecting non-linear 
relationships in high-dimensional 
genomic data while capturing 
complex genotype-by-
environment interactions without 
requiring explicit mathematical 
specification of underlying 
biological relationships. 

Suffer from limited 
interpretability that obscures 
biological understanding 
("black box" problem). Risk 
overfitting to training data 
and may learn spurious 
correlations that fail to 
generalize, while requiring 
training datasets for reliable 
parameter estimation. 

Complex polygenic traits showing 
extensive epistatic interactions; high-
dimensional genomic datasets; 
rapidly changing selection landscapes 
where traditional methods may fail 
to capture nonlinear relationships 
(Łuksza & Lässig, 2014); automated 
pattern detection in environmental 
genomics applications (Rellstab et al. 
2015); viral evolution prediction 
(Hayati et al. 2020). 

Hybrid 
Approaches 

Theory-guided machine learning 
frameworks that integrate 
mechanistic biological 
understanding with computational 
prediction (Cooper et al. 2021); 
neural networks incorporating 
biological kernels; Bayesian model 
averaging over multiple analytical 
paradigms (Gelman et al. 2013); 
cross-species parameter inference 
through comparative genomic 
approaches (Rellstab et al. 2015) 

Successfully balance biological 
interpretability with analytical 
flexibility by incorporating 
established evolutionary 
constraints while leveraging 
machine learning's pattern 
detection capabilities. Quantify 
model uncertainty through 
principled integration of multiple 
analytical approaches. 

Involve increased 
implementation complexity 
requiring expertise in 
computational and biological 
domains. Present parameter 
tuning challenges while 
demanding computational 
resources for   ensemble 
approaches. 

Long-term predictions exceeding 20 
generations; multi-omics data 
integration requiring synthesis from 
several biological scales (Hasin et al. 
2017); agricultural breeding 
programs balancing multiple 
objectives (Cooper et al. 2021); 
conservation risk assessment 
demanding rigorous uncertainty 
quantification. 
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Supplementary Table 2. Evaluation Metrics for Evolutionary Forecasting Performance 1038 

 1039 
Metric Category Specific Measures Methodological Description Primary Applications 

Point Forecast 
Accuracy 

Root Mean Square 
Error (RMSE); Mean 
Absolute Error 
(MAE) 

Quantify average prediction error magnitude by comparing 
point estimates (posterior means or medians) against observed 
evolutionary outcomes. Lower values indicate superior 
forecasting accuracy from continuous trait distributions. 

Assessing prediction quality for quantitative traits 
including phenotypic evolution, allele frequency 
changes, and fitness component responses under 
environmental stress. 

Explanatory 
Power 

Coefficient of 
Determination (R²) 

Measures the proportion of empirical variance in evolutionary 
outcomes explained by model predictions. Values 
approaching unity indicate strong explanatory fit, while low 
values suggest inadequate model specification or excessive 
stochasticity. 

Evaluating overall model performance for 
continuous evolutionary responses while 
identifying systems where prediction may be   
limited by stochastic processes. 

Probabilistic 
Calibration 

Reliability diagrams 
(calibration plots) 

Provide visual assessment of forecast calibration by 
comparing predicted probability distributions against 
observed outcome frequencies. Well-calibrated models show 
diagonal relationships where stated confidence levels match 
empirical coverage rates. 

Validating Bayesian forecasting frameworks where 
uncertainty quantification is important for 
evidence-based conservation and management 
decisions requiring risk assessment. 

Integrated 
Forecast Quality 

Proper scoring rules 
including Brier Score 
and Log Score 

Simultaneously evaluate both prediction accuracy and 
calibration quality by rewarding forecasts assigning high 
probability to observed outcomes while penalizing 
overconfident or poorly calibrated predictions. 

Probabilistic forecast evaluation enabling 
comparison of different modeling approaches 
while identifying optimal forecasting strategies for 
specific biological systems. 

Classification 
Performance 

Area Under the 
Receiver Operating 
Characteristic Curve 
(AUC) 

Measures discriminatory ability for categorical evolutionary 
outcomes including adaptation versus maladaptation, 
population persistence versus extinction, or successful versus 
failed conservation interventions. Values near 0.5 indicate 
random performance while unity represents perfect 
classification. 

Evaluating conservation triage applications where 
populations must be classified by risk level, or 
breeding programs requiring selection of 
genotypes most likely to succeed under projected 
environmental conditions. 

Uncertainty 
Communication 

Confidence and 
Credible Intervals 

Provide probabilistic ranges expected to contain true 
evolutionary outcomes with specified probabilities. Interval 
width directly reflects prediction uncertainty, enabling 
transparent communication of forecasting limitations to 
stakeholders and decision-makers. 

Supporting evidence-based management decisions 
by communicating prediction uncertainty 
transparently while enabling robust conservation 
strategies that acknowledge forecasting limitations 
inherent in complex evolutionary systems. 
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