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Abstract  16 

 Marine crustacean capture fisheries have been contributing increasingly more to global aquatic 17 

food production in recent decades, helping secure socioeconomic benefits. In the past decade the 18 

landings of marine crustaceans rose by more than 67% while expanding spatially and 19 

taxonomically, doubling their contribution to global fisheries landings. Although efforts to 20 

improve the data collection that informs stock assessments and management decisions have risen 21 

to promote sustainability of these fisheries, many stocks remain data-limited and unassessed. For 22 

many assessed stocks fishing pressures have declined, but some continue experiencing excessive 23 

fishing pressures and remain depleted. Here we review recent progress made to stock assessment 24 

methods and management measures applied to both data-limited and -rich crustacean stocks 25 

across the globe with particular emphasis on addressing sources of uncertainty. Although an 26 

increasing number of assessment methods have been developed to account for various types of 27 

uncertainty, evaluation of these methods applied to crustaceans is still limited. Less than one-28 

fifth of the recent assessments accounted for multiple types of uncertainty using flexible methods 29 

like integrated population models. And uncertainties associated with crustaceans’ unique biology 30 

were not fully accounted for in estimating key demographic parameters in many assessments. 31 

Our review also identifies areas of research to address remaining knowledge gaps, including 32 

parameter estimation uncertainties associated with spatial stock structure, incorporating dynamic 33 

ecosystem effects, and management implications of accounting for uncertainties. These issues 34 

are anticipated to play a greater role in the performance of assessment methods adopted for and 35 

thus the management of crustacean fisheries under ongoing environmental change. 36 

Keywords: stock assessment, integrated model, size-based method, data-limited stock, 37 

management strategy evaluation, ecosystem-based management  38 
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Global expansion of crustacean fisheries  56 

The global consumption of aquatic resources has been rising at about double the rate of human 57 

population growth in recent decades (FAO 2024b). This demand for aquatic foods is supported 58 

increasingly more by marine shellfish fisheries, helping secure socioeconomic benefits in fishing 59 

nations (Anderson et al. 2011; Boenish et al. 2022; FAO 2024b). The reported landings of marine 60 

crustaceans in particular rose by more than 67% and expanded spatially in the past decade (Fig. 61 

1, Boenish et al. 2022), doubling their contribution to global fisheries landings (8% of total 62 

landings, contributing over 23% of total value of seafood production, FAO 2024b). The landings 63 

of lobsters (a broadly categorized group in the FAO FishStat database, including Homarus spp., 64 

Nephrops norvegicus, “rock lobsters”, and other crawfishes, FAO 2024a), for example, increased 65 

by 80% in the Americas, whereas those of crabs (e.g., Chionoecetes spp. and Callinectes spp.) 66 

and shrimps (e.g., Penaeus spp.) increased by 225% and 98% in Asia (Fig. 1, FAO 2024a). The 67 

number of commercially exploited crustacean species also rose in many parts of the world; for 68 

example, the past decade saw a two-fold increase in crab and shrimp species reported in Europe 69 

and a 58% increase in lobster species in Africa (Fig. 2, FAO 2024a). Harvests of these 70 

crustaceans provide high economic values, generating up to US$104 billion annually (23% of an 71 

estimated first sale value of US$452 billion in 2022, FAO 2024b).  72 

An increase in demand for and thus economic value of crustaceans can lead to overexploitation 73 

when managed poorly (Anderson et al. 2011). Exploitation of a few, high value species can 74 

further add ecological pressures to already stressed ecosystems from past human activities (Lotze 75 

and Worm 2009). Many crustacean fisheries in Europe and North America, for example, 76 

developed and expanded following the depletion of major finfish stocks like Atlantic cod (Gadus 77 

morhua) and herring (Clupea harengus) and the stagnation of capture fisheries production 78 



(remaining at ~45% of total aquatic food production) since the 1980s (FAO 2024b; Pauly et al. 79 

1998). The landings of crustaceans such as the American lobster (Homarus americanus) and 80 

northern shrimp (Pandalus borealis) in the northwest Atlantic rose at unprecedented rates 81 

following several big ecosystem and fishery changes (e.g., trophic downgrading, Estes et al. 82 

2011), including the stock collapses of large predatory fishes like cod and climate regime shifts 83 

(Fogarty and Gendron 2004; Mullowney and Baker 2020; Pérez-Rodríguez et al. 2012; Steneck 84 

and Wahle 2013). Some crustacean stocks such as snow crab (Chionoecetes opilio) in the North 85 

Pacific have already experienced stock depletions or collapses in recent years (Mullowney and 86 

Baker 2020; Szuwalski et al. 2023). Because many exploited crustacean species play key 87 

ecological roles in the oceans, depletions of the stocks can ripple through food webs, disrupting 88 

essential ecosystem processes (Boudreau and Worm 2012; Phillips et al. 2013).  89 

Although overexploitation of living marine resources (stock biomass being below a biomass 90 

that produces the maximum sustainable yield, BMSY) remains widespread (Fig. 3, RAM Legacy 91 

Stock Assessment Database 2024), well-managed stocks (through the use of quantitative stock 92 

assessments) can produce more yield and promote sustainable exploitation (Hilborn et al. 2020). 93 

Over three-quarters (76 %) of global fisheries landings in recent years, for example, come from 94 

sustainably managed stocks (FAO 2024b). Collaboration among scientists, managers, and 95 

stakeholders can further help achieve this goal (Goethel et al. 2023b). With growing human 96 

populations, improving the management of crustacean fisheries can better safeguard biodiversity 97 

in the oceans while securing socioeconomic benefits in fisheries-dependent communities and 98 

societies (FAO 2024b).  99 

 100 

Managing marine crustacean fisheries for sustainability 101 



Sustainable exploitation of living marine resources stems from science-based evidence that 102 

informs management decisions through assessments of stock status and fishing pressure applied 103 

(Hilborn and Walters 1992). Exploitation rate, catch rate, and mean body size from a stock 104 

assessment are often used as the basis for management decisions to achieve sustainable 105 

exploitation of resource populations under varying levels of recruitment (Caddy 2004). Common 106 

management measures applied to limit fishing pressure and conserve reproductive potential of 107 

the stock include minimum landing size, gear restriction, effort and/or catch control, and 108 

seasonal and area closure (Addison and Bennett 1992; Fogarty and Gendron 2004; Siddeek et al. 109 

2004). The data collection to inform management to regulate fishing pressures, however, has 110 

lagged behind finfish fisheries in many crustacean fisheries (though there are a few exceptions 111 

such as rock lobster (Jasus edwardsii) fisheries in western Australia and snow crab fisheries in 112 

the Bering Sea) and these stocks remain data-limited (Perry et al. 1999). Less resource-intensive 113 

effort control is thus often adopted when available data or resources are insufficient for stock 114 

assessment (Penn et al. 2015). Effort control, however, may become ineffective in regulating 115 

catches for species that form seasonal aggregations like spawning events (Armstrong et al. 116 

2013). Technological advancement in gear can also improve fishing efficiency over time, in 117 

effect increasing landings under input control (Kleiven et al. 2022).  118 

With growing social, economic, and cultural values of shellfish fisheries in recent decades 119 

(FAO 2024b), efforts to improve the quality and quantity of data to inform quantitative stock 120 

assessments also have risen to promote sustainable exploitation of these fisheries (Phillips and 121 

Melville-Smith 2005; Plagányi et al. 2024). Following international agreements like the Code of 122 

Conduct for Responsible Fisheries adopted by the Food and Agriculture Organization (FAO) of 123 

the United Nations in the late 1990s, the precautionary approach (as opposed to previous reactive 124 



approaches) to fisheries management began being adopted to minimize the risk of 125 

overexploitation of marine living resources despite uncertainty (FAO 1995). Over the past few 126 

decades the management of some crustacean fisheries has transitioned from ad hoc systems 127 

(Orensanz et al. 1998) to quota-based management systems (through the application of agreed 128 

harvest control rules) to improve stock status (size and stability) and economic performance; 129 

examples include rock lobster stocks in Australia (Linnane et al. 2023; Penn et al. 2015) and 130 

South Africa (Johnston and Butterworth 2005), and crab stocks in Alaska, USA (Heller-Shipley 131 

et al. 2021), and crab (e.g., Paralithodes camtschaticus) and shrimp (e.g., Panulirus borealis) 132 

stocks in Norway (Hjelset et al. 2024; Hvingel and Zimmermann 2023). In these quota-based 133 

management systems, when the reference points (limit and target exploitation rate and stock size) 134 

are crossed, a plan that triggers prompt management action (a reduction in catch limit or total 135 

allowable catch for example) should be in place to prevent further declines in a stock and rebuild 136 

its biomass (Linnane et al. 2023; Penn et al. 2015). Challenges of not meeting management goals 137 

and their consequences should be further evaluated by accounting for tradeoffs among multiple 138 

(biological, economic, and social) objectives through inclusions of managers’ and stakeholders’ 139 

opinions (Heller-Shipley et al. 2021; Punt and Hobday 2009). Assessing stock status is an 140 

essential part of evaluating and applying these decision-based rules (Punt and Hobday 2009; 141 

Punt et al. 2012a). 142 

 143 

Assessing crustacean stock status for effective management 144 

A range of assessment methods have been developed to inform fisheries management over the 145 

past decades (Hilborn 1992; Hilborn 2003; Perry et al. 1999). Despite high economic values, 146 

however, assessment methods for crustaceans have progressed relatively slowly due to a lack of 147 



investment in data collection and stock assessment (Punt 2024). While marine crustacean 148 

landings were reported by more than 160 countries in the past decade, crustacean stocks were 149 

assessed in less than one-fifth of these countries and comprised less than 30% of all assessed 150 

stocks in most of the countries where they were assessed (Fig. 4, Hodgdon et al. 2022; RAM 151 

Legacy Stock Assessment Database 2024). In some countries, however, the proportions of 152 

assessed crustacean stocks were equal to or higher than those of crustacean landings, such as 153 

Spain, Italy, and New Zealand (excluding countries with <5 assessed stocks, Fig. 4). Without 154 

effective management informed by quantitative assessments crustacean stocks may follow the 155 

familiar scenarios that many finfish stocks had experienced decades earlier, as displayed in 156 

Alaskan crab and shrimp fisheries (Orensanz et al. 1998). While fishing pressures on many 157 

assessed crustacean stocks have declined in recent decades, some stocks (especially those in 158 

Europe) are still depleted (stock biomass being below BMSY) as they continue experiencing 159 

excessive fishing pressures (above a fishing mortality rate that produces the maximum 160 

sustainable yield, FMSY, Fig. 3). 161 

A global review on the stock assessment methods adopted for crustaceans shows high variation 162 

among geographical regions and stocks over time (Hodgdon et al. 2022). In general, data 163 

available for many crustacean stocks remains insufficient for traditional analytical stock 164 

assessment (Hodgdon et al. 2022; Miethe et al. 2016). Although an increasing number of data-165 

limited assessment methods have been developed in recent decades, evaluation of these methods 166 

applied to crustaceans remain limited. Analysts may face further challenges when assessing these 167 

stocks because of their unique biology (e.g., lack of permanent calcified structures that record 168 

age), preventing them from applying age-based assessment methods often developed to finfish 169 

stocks. Some of the assessment methods adopted for these ‘hard-to-age’ species in the past 170 



include length-based virtual population analysis (VPA), which depends on length-based 171 

population structure reconstructed from catch-at-size data and life history information, assuming 172 

constant recruitment (Lassen and Medley 2001). Another is length-based cohort analysis, which 173 

has been often applied to deterministically compute stock size and exploitation rate, assuming 174 

population-in-equilibrium or constant recruitment (Gulland and Rosenberg 1992). In contrast, 175 

catch-at-size conditional age methods construct an age-structured model by assigning length 176 

classes to age classes, assuming time-invariance in life history processes that influence size-at-177 

age like growth (Gulland and Rosenberg 1992). The assumptions made in these methods may, 178 

however, be violated for many exploited stocks and result in biased assessments (Punt et al. 179 

2013a; Smith and Addison 2003). The biased assessments can lead to mismanagement if applied 180 

(Szuwalski 2022), especially when the stock is managed with size-based measures like minimum 181 

landing size (Punt et al. 2013a). 182 

Many stock assessment models developed for finfishes also do not capture size-based 183 

dynamics of crustaceans well, making these methods less suitable (Punt et al. 2016c). Molting 184 

may, for example, bias mortality rate estimates in methods sensitive to life history traits like 185 

length-cohort analysis (Bennett 1995). Resulting modeled stock dynamics may produce biased 186 

estimates of abundance and size structure, projecting unsustainable yields especially when 187 

density-dependent processes like recruitment and variability in habitat condition are ignored 188 

(Addison 1986; Caddy 2004). Few methods are, however, developed specifically for crustaceans, 189 

with some exceptions like the American lobster in the Gulf of Maine, USA (Chen et al. 2005), 190 

snow crab in the Bering Sea (Szuwalski and Turnock 2016), and rock lobster in southern 191 

Australian waters (Punt and Kennedy 1997). It remains unclear how well the assessment 192 

methods developed for finfish species perform when applied to crustaceans (Hodgdon et al. 193 



2022; Perry et al. 1999; Punt 2024). In the following we review recent progress made to 194 

assessment methods for both data-limited and -rich stocks and their applications to crustaceans 195 

by addressing sources of uncertainty (including bias) in the context of the precautionary 196 

approach to fisheries management (Caddy 2004) where applicable. 197 

 198 

Applications and challenges of data-limited methods  199 

Primary data sources for single-species quantitative stock assessment often comprise catch, 200 

abundance index, size or age composition, and auxiliary information such as life history traits 201 

(Hilborn and Walters 1992). Insufficient data to represent the population or stock is, however, 202 

widespread in stock assessments (Maunder and Piner 2015). More than 80% of harvested 203 

crustacean stocks are currently broadly categorized as data-limited (Hodgdon et al. 2022); these 204 

stocks often lack scientific survey data that characterize their abundance and size or age structure 205 

(Carruthers et al. 2014).  206 

Of the primary data sources, catch is often the most commonly available type of data on fishing 207 

activities (fishery-dependent data) (Pauly and Zeller 2016). An increasing number of catch-based 208 

methods have been developed in recent decades to inform management advice through 209 

estimation of reference points (Dick and MacCall 2011; Free et al. 2020), including depletion-210 

corrected average catch (MacCall 2009), a depletion-based stock reduction analysis (Dick and 211 

MacCall 2011), and catch-MSY (Martell and Froese 2013). These catch-based models are, 212 

however, sensitive to assumed depletion levels and can produce biased estimates when stock 213 

productivity varies (Carruthers et al. 2014; Pons et al. 2020). When applied to pink spiny lobster 214 

(Palinurus mauritanicus) in Mauritania, for example, the catch-MSY method produced highly 215 

imprecise estimates for stock status (Meissa et al. 2021). But the performance of these methods 216 



can be improved using additional sources of data. When combined with a method fitted to a 217 

recruitment index (based on catch surveys of juveniles), for example, an extended depletion 218 

model can produce outputs largely comparable to those from more complex models like a length-219 

based integrated model, as shown for Australian southern rock lobster stocks (de Lestang and 220 

How 2023; Feenstra et al. 2017).  221 

Another common type of data available for data-limited stocks (especially in small-scale 222 

fisheries in developing nations) is size composition from fishery-dependent sources owing 223 

primarily to its low cost and technical expertise required for data collection (Carruthers et al. 224 

2014; Chrysafi and Kuparinen 2016). When estimating management reference points, size 225 

composition data in addition to catch data can improve the accuracy and precision of the 226 

estimates (Punt et al. 2016c; Rudd et al. 2021) and minimize their sensitivity to recruitment 227 

variability. Size frequency data alone can also be used to estimate management-relevant total and 228 

fishing mortality rates using methods like the length-based Bayesian biomass (LBB) estimation 229 

method (Froese et al. 2018) and the length-based spawning potential ratio (LBSPR) method 230 

(Hordyk et al. 2015b), as applied to European lobster (Homarus gammarus) in the North Sea 231 

(Miethe et al. 2019).  232 

Many size-based methods for data-limited stocks, however, make assumptions about the 233 

population and the fishery (steady state, constant average recruitment, etc.) that may not be met 234 

in reality (Chrysafi and Kuparinen 2016; Hordyk et al. 2015a; Hordyk et al. 2015b), producing 235 

imprecise estimates of stock status and recommended catch limits exceeding sustainable levels 236 

(Carruthers et al. 2014; Newman 1995). The LBB method applied to spiny pink lobster in 237 

Mauritania, for example, shows model estimates can become unreliable when recruitment is 238 

nonstationary and can also produce overly protective optimal landing sizes (Meissa et al. 2021). 239 



Size composition in catch also may not necessarily represent that of the stock owing to gear 240 

selectivity, size-dependent processes, intra- and inter-specific behavioral interactions, and size or 241 

sex-based catch limits, likely biasing fishing mortality rate and reference point estimates if not 242 

accounted for when using length-based methods (Addison 1986; Bennett 1995; Chrysafi and 243 

Kuparinen 2016); this is especially true for short-lived species (Chong et al. 2020; Hordyk et al. 244 

2015b). For crustaceans, spatial and temporal variability in size-dependent parameters such as 245 

molting frequency (resulting from ontogenetic shifts in movement) can bias stock status 246 

estimates if not accounted for (Bennett 1995). Spatial patterns of fishing operation can further 247 

bias size composition in fishery-dependent data when fishers expand fishing areas through 248 

localized size-selective depletions of the stock. As such, setting size-based management 249 

measures often applied to crustaceans, notably minimum landing size, can be challenging if 250 

fecundity-at-size varies and sexual dimorphism is present (Theberge et al. 2024). The efficacy of 251 

these management measures or consequences of resulting changes in selectivity thus cannot be 252 

addressed using many length-based methods alone (Smith and Addison 2003).  253 

Outputs from these size-based methods are often sensitive to uncertainty in life history 254 

parameters, fishery selectivity, or exploitation level (Chong et al. 2020; Dowling et al. 2019; 255 

Hordyk et al. 2015b). The LBSPR method assumes a logistic form of fishery selectivity and may 256 

produce biased estimates especially for species with slow life history when the selectivity curve 257 

is dome-shaped (Hordyk et al. 2015b; Hordyk et al. 2015c). Dome-shaped selectivity truncates 258 

the right hand side of length frequency data and is confounded with mortality, creating biased 259 

estimates, though this is addressed in an updated version of the method (Hommik et al. 2020). 260 

Many crustacean fisheries are trap- or pot-based and are thus expected to show dome-shaped 261 

gear selectivity because of the difficulty of larger animals entering traps through fixed size 262 



entrances (Heney et al. 2025). Size-dependent variations in fishing mortality within each age 263 

(known as Lee’s phenomenon, Lee 1912) can also bias spawning stock ratio in the LBSPR 264 

method if not accounted for (Hordyk et al. 2016). Fishing mortality and reference point estimates 265 

from size-based methods can, however, be improved by accounting for life history strategy (e.g., 266 

slow- vs. fast-growing) with asymptotic size especially when the spatial or temporal coverage of 267 

the data is limited (Chrysafi and Kuparinen 2016; Miethe et al. 2019). Fishing mortality and 268 

reference point estimated from size composition data can, for example, be improved by 269 

integrating asymptotic size estimation and estimating size-dependent natural mortality (Kokkalis 270 

et al. 2015). 271 

A wide range of empirical assessment methods have been developed and applied to many 272 

crustacean stocks with limited data. Catch time series data with effort data, for example, can help 273 

characterize fishing behavior (localized stock depletion for example) (Fitzgerald et al. 2018). 274 

Although time-varying catchability (catch efficiency) may lead to fluctuations in a fishery-275 

dependent abundance index (catch per unit effort or CPUE) independent of actual abundance, 276 

this can be improved via index standardization (Bishop 2006; Wilberg et al. 2009). In contrast, 277 

fishery-independent data to directly estimate relative abundance such as underwater television 278 

(UWTV) survey are widely used for some species such as Norway lobster (Nephrops 279 

norvegicus) stocks in the northeast Atlantic (Morello et al. 2007), though variability in fishing 280 

efficiency may introduce bias in abundance estimates (Dichmont et al. 2006c). This approach can 281 

further be improved by joint use of new monitoring technologies like eDNA and AI tools (e.g., 282 

for species identification) (Aguzzi et al. 2022). Other indices like pre-recruit abundance, 283 

accounting for density dependency and environmental variability, can be informative when 284 

empirically developing catch forecasts, as demonstrated for data-limited crustacean fisheries like 285 



western and southern rock lobster in Australia (Caputi et al. 2021; Caputi et al. 2014; McGarvey 286 

et al. 2024), European lobster in England (Addison 1995), and the American lobster in the Gulf 287 

of Maine (Wahle et al. 2009). 288 

Variations in life history traits may also act as proxies for stock status (Caddy 2004). Because 289 

many fisheries are size-selective and many biological processes are size-dependent, size-based 290 

indicators such as mean (or median) length and length-at-maturity may be used as part of an 291 

empirical assessment of stock status or fishing pattern (Beverton and Holt 1956; Chrysafi and 292 

Kuparinen 2016; Pauly 1990). For crustaceans that molt less frequently as they grow, for 293 

example, changes in molting frequency may indicate changes in fishing pressure as larger adults 294 

become scarce (Caddy 1992). Persistent deviations in these indicators can then be quantified 295 

generally by cumulative sum (CUSUM) control, or more explicitly stock productivity using 296 

productivity susceptibility analysis based on life history information like intrinsic growth rate, as 297 

demonstrated for crab fisheries in California, USA (Fitzgerald et al. 2018). Changes in these 298 

indicators may, however, not necessarily be specific to responses to fishing pressure and need to 299 

be interpreted carefully when other factors also vary, as they can inflate uncertainty in stock 300 

status (Caddy 2004; Fitzgerald et al. 2019). Declines in mean body size, for example, could 301 

result from high fishing pressure (removal of large adults), from high recruitment success 302 

(entrance of small juveniles and density-regulated growth) (Addison 1997; Caddy 2004), or from 303 

responses to adverse environmental conditions (Mendo et al. 2016). When management 304 

measures to maintain reproductive capacity like prohibiting berried (egg-carrying) females from 305 

being landed are applied, size-based indicators like length-at-maturity in landed animals may 306 

also be biased (Miethe et al. 2016). When applying indicator-based methods, thus, use of 307 



multiple indicators can improve the robustness of the assessment (Caddy 2004; Fitzgerald et al. 308 

2019; Mullowney and Baker 2023).  309 

With catch data and exploitable biomass indices (commercial or survey CPUEs), aggregate 310 

biomass models such as surplus production models (SPMs) can capture stock dynamics (biomass 311 

production described as a dome-shaped function of stock size) given the fishing pressures 312 

applied and provide management reference points (e.g., maximum sustainable yield) (Froese et 313 

al. 2017; Kokkalis et al. 2024). These methods are often applicable to ‘data-moderate’ stocks 314 

lacking size or age composition data (Kokkalis et al. 2024). While earlier forms of aggregate 315 

biomass models such as Pella and Tomlinson (1969) and Polacheck et al. (1993) have limited 316 

capabilities to account for uncertainties, more recent forms like Stochastic surplus Production 317 

Model in Continuous Time (SPiCT, Pedersen and Berg 2017) and Just Another Bayesian 318 

Biomass Assessment (JABBA, Winker et al. 2018) can capture stock biomass and fisheries 319 

dynamics as unobserved states by accounting for process and observation errors (i.e., a state-320 

space model). SPiCT can also account for irregular survey timings using varying timescales (e.g., 321 

annually or quarterly) in input data (Pedersen and Berg 2017). A challenge of these models is that 322 

key parameters like intrinsic growth rate (r) and carrying capacity (K) are highly correlated and 323 

need to be estimated numerically (using maximum likelihood or Markov chain Monte Carlo 324 

methods), which can pose estimation challenges (Kokkalis et al. 2024) and necessitate the use of 325 

informative priors. The priors should thus be chosen carefully to avoid model misspecification 326 

and estimation bias in management reference points (Kokkalis et al. 2024).  327 

Applications of SPMs to crustacean stocks are still limited but the number of assessed stocks is 328 

increasing as more data become available (at least 15 years of the data are needed for reliable 329 

model estimation, Kokkalis et al. 2024). SPiCT has been applied to crustaceans like Norway 330 



lobster, northern shrimp, and snow crab in the northeast Atlantic (González Herraiz et al. 2023; 331 

ICES 2024a). When applied to the Norway lobster stocks off the Iberian coast, for example, 332 

stock assessments using SPiCT were able to capture severe stock depletions indicated by survey 333 

indices, whereas other data-limited methods like length-based indicators and LBSPR produced 334 

overly optimistic stock status estimates when the assumptions were violated (González Herraiz et 335 

al. 2023). Using auxiliary information like life history parameters and fishing selectivity (length-336 

at-age, maturity-at-age, selectivity-at-age, etc.), extended versions of aggregate biomass models 337 

like JABBA-select can also capture cohort dynamics (accounting for recruitment variability) 338 

without age or size data (Winker et al. 2020). These models may, however, perform poorly for 339 

crustaceans like snow crab with poorly-defined selectivity curves (Szuwalski and Punt 2015) or 340 

time-varying selectivity (Kokkalis et al. 2024), resulting in biased estimates of stock size, 341 

exploitation rate, and management reference points (Kokkalis et al. 2024). 342 

 343 

Advancing crustacean stock assessment with integrated methods 344 

Integrated assessment methods can project the population dynamics of harvested species by 345 

synthesizing multiple sources of data and accounting for a range of uncertainties in data source 346 

and parameter estimation (Maunder and Punt 2013; Punt et al. 2013a). These methods applied to 347 

size-structured stocks assume all demographic processes and fisheries are size-dependent but 348 

when these assumptions are violated (ontogenetic movement for example), the assessment may 349 

be biased (Punt et al. 2017). While integrated methods have been increasingly developed and 350 

adopted for hard-to-age species, applications to crustaceans are still limited; for example, only 351 

~16% of crustacean stocks reviewed in Hodgdon et al. (2022) are assessed with these models. Of 352 

these stocks, supplemented with additional stocks assessed with integrated models in the past 353 



decade (Table 1), ~60% were assessed with length-structured models, whereas the rest were 354 

assessed with age-length- or age-structured models (such as Stock Synthesis) (Fig. 5). Examples 355 

of size-structured integrated models applied to crustaceans include rock lobsters in Australian 356 

waters (Punt and Kennedy 1997), the American lobster in the Gulf of Maine (Chen et al. 2005), 357 

snow crab in the Bering Sea (Szuwalski and Turnock 2016), and northern shrimp in the Gulf of 358 

Maine (Cao et al. 2017a) and Alaska (Fu and Quinn 2000) (Table 1).  359 

Integrated methods can provide flexibility in model complexity depending on data availability, 360 

allowing the performance of assessment models to be evaluated more consistently and facilitate 361 

the transition from data-limited to -rich methods when sufficient data are collected (Cope 2024; 362 

Rudd et al. 2021; Rudd and Thorson 2018; Zhang and Cadigan 2022). Examples of integrated 363 

methods developed for data-limited stocks include the length-based Integrated mixed effects 364 

(LIME) models (Rudd and Thorson 2018) and Stock Synthesis-Catch and Length (SS-CL) (Cope 365 

2024; Rudd et al. 2021). These methods can be applied to common data-limited situations with 366 

fisheries-dependent (catch and/or length composition) data to estimate management-relevant 367 

metrics by accounting for biological reality like time-varying recruitment and fishing mortality 368 

(Cope 2024; Rudd et al. 2021; Rudd and Thorson 2018). The integrated methods can perform 369 

better (in accuracy and precision) in estimating stock status than other data-limited methods, 370 

though the integrated methods may produce imprecise estimates for long-lived species when the 371 

temporal coverage of data is limited (Pons et al. 2020; Rudd and Thorson 2018). 372 

Despite flexibility there are still unresolved issues associated with the development of 373 

integrated models for crustaceans. In the following we review the literature (complemented by 374 

the reports on the stocks assessed with integrated population models in the past decade, Table 1) 375 

on recent progress made to address model parameter estimation issues (growth, 376 



reproduction/recruitment, natural mortality, and selectivity) and their possible solutions relevant 377 

to crustaceans where applicable. 378 

Growth. Reliable growth rates are critical in assessing stock status and quantifying management 379 

reference points in size-structured models (Chang et al. 2012; Punt et al. 2013a). Most crustacean 380 

species grow discretely through molting without retaining any hard structure that records age 381 

(like fish otolith), posing challenges in estimating growth (Chang et al. 2012; Punt et al. 2013a; 382 

Smith and Addison 2003). Some species (e.g., tanner crab Chionoecetes bairdi) even show 383 

determinate growth, ending with a terminal molt (Chang et al. 2012; Szuwalski and Turnock 384 

2016), which can pose a challenge in estimation of natural mortality without age information. 385 

While several ageing methods have been developed for some crustacean species (Huntsberger et 386 

al. 2024; Kilada et al. 2012), obtaining reliable age information remains a challenge when 387 

conducting a stock assessment (Chang et al. 2012; Punt et al. 2013a). Bias introduced by 388 

incorrectly estimating growth rates can propagate through parametrization of the assessment 389 

model (Chang et al. 2012; Punt et al. 2016c). Not accounting for time-varying growth in size-390 

structured models, for example, may produce biased estimates of size structure and in turn 391 

selectivity (Cao et al. 2017b). 392 

Many size-structured models use growth models like the von Bertalanffy model to estimate 393 

growth deterministically (Sullivan et al. 1990) but research demonstrates that probabilistic 394 

approaches using the Schnute model (a more general form of growth model, Schnute 1981) 395 

better perform in an assessment model for species with discrete growth (Punt et al. 2016c; Punt 396 

et al. 1997). Of the recently assessed crustacean stocks, 60% used the von Bertalanffy model and 397 

19% used the Schnute-Francis model, whereas 21% estimated growth rates empirically using 398 

tagging (or other empirical) data to generate size transition matrices (Fig. 5). With size transition 399 



matrices, crustacean growth can be modeled by a two-step process: individuals grow from one 400 

(pre-molt) size class to another given the probability of molting (Chang et al. 2012). The two-401 

step approach can also be extended to account for other state variables that influence the molting 402 

probability like shell condition (Bradshaw et al. 2025; Punt et al. 2013a). Likewise, maturity can 403 

be modeled via size transition and molting probability (Bradshaw et al. 2025; Punt et al. 2013a). 404 

For short-lived species (e.g., Pandalid shrimp) shorter time steps (monthly or quarterly) may be 405 

needed to account for fast growth (Cao et al. 2017a). Further, variation in growth among 406 

individuals can bias growth parameter estimates (Cronin-Fine and Punt 2020; Punt et al. 2009). 407 

Size class (or bin) is often pre-defined but can be dynamically modeled (McGarvey et al. 2007), 408 

which can be further expanded to account for variability in size-dependent processes within each 409 

age such as higher fishing mortality in fast-growing animals in the population (Zhang and 410 

Cadigan 2022).  411 

Size transition matrices can be estimated either externally or internally in an assessment model 412 

using tagging and size frequency data (Millar and Nottingham 2019; Punt et al. 2016c; Siddeek 413 

et al. 2016; Zheng et al. 1995). But estimating internally has some advantages when tagging data 414 

is incomplete (Siddeek et al. 2016), allowing uncertainty in size-transition parameters to be 415 

estimated (Punt et al. 2010), an option also considered best practice (Punt 2024). In contrast, 416 

estimating externally may result in growth patterns inconsistent with other sources of data used 417 

in an assessment model (Punt et al. 2013a). 418 

Uncertainty in a size transition matrix can play a critical role in estimating metrics relevant to 419 

management measures in size-structured population models (Punt et al. 2016c; Szuwalski and 420 

Punt 2012) and in turn the efficacy of these measures (Chen and Wilson 2002). The mature male 421 

biomass estimates of golden king crab (Lithodes aequispinus) in Alaska, for example, were 422 



biased because of estimation errors in growth increment (Siddeek et al. 2017). When estimating 423 

size transition matrices, thus, plausibility of other biological processes with pre-specified 424 

parameters should be tested by sensitivity analysis or simulation (Punt et al. 2016c). 425 

Reproductive traits (size at maturity, molting and breeding cycles, etc.) can also influence 426 

catchability and catch rates (Bennett 1995) and in turn size transition probabilities. Males of 427 

some crustaceans like snow and tanner crabs in the Bering Sea, for example, skip molting in 428 

years with poor winter habitat conditions (Murphy 2019). The seasonal molting cycle of western 429 

Australian rock lobster varies along latitudes, reflecting variability in sea temperature (de 430 

Lestang and Melville-Smith 2006). Resulting seasonal variations in size composition and sex 431 

ratio data may bias growth estimates and harvestable biomass if not accounted for (Murphy 432 

2019; Steneck and Wilson 2001), which is especially relevant for hermaphroditic species like 433 

Pandalid shrimp that go through length-dependent sex change and experience sex-biased fishing 434 

pressure (Cao et al. 2017a). Size compositions in fishery-dependent data can be shaped by 435 

fishing pattern (Addison 1986); selective fishing behavior, for example, can truncate size 436 

structure, biasing estimates of size-dependent parameters (Tu et al. 2018). Standardizing size 437 

composition data or use of fishery-independent surveys may help improve the estimates in such a 438 

case (Siddeek et al. 2016).  439 

Reproduction and recruitment. Like finfish stocks, establishing a stock–recruitment (often 440 

defined as 0 year-olds or age groups that recruited to fisheries) relationship is essential in stock 441 

assessments based on structured population models, estimation of management reference points, 442 

and provision of catch advice (Brooks 2024; Maunder and Thorson 2019). But insufficient data 443 

or the absence of a detectable stock-recruitment relationship remain major hurdles in assessing 444 

sustainable levels of crustacean stocks (Caputi 1993). Assessment models for some stocks 445 



assume constant recruitment or spawner-independent recruitment, often based on historically 446 

observed values (Caputi et al. 2014; Punt et al. 2013a; Smith and Addison 2003). Of the recently 447 

assessed stocks, nearly 80% assumed spawner-independent recruitment, whereas ~20% assumed 448 

spawner-dependent recruitment using the Ricker or Beverton–Holt model (Fig. 5). A meta-449 

analysis on more than 200 fish and shellfish stocks also showed stronger support for 450 

relationships with environmental drivers than spawner biomass (Szuwalski et al. 2015). In 451 

several crustacean stocks in western Australia like rock lobster, brown tiger prawn (Penaeus 452 

esculentus), and king prawn (Penaeus latisulcatus), for example, spawner abundance contributes 453 

little to recruitment variability when accounting for environmental factors (Caputi et al. 2021). 454 

Further, the spawner-independent recruitment approach can be robust to uncertainty in 455 

environmentally driven recruitment processes (which are often not well defined) when making 456 

short-term stock projections (Brooks 2024). 457 

While spawner-independent recruitment is supported by empirical evidence (Caputi et al. 458 

2021), past research instructs us that management reference points strongly depend on a stock–459 

recruitment relationship, capturing (compensatory or depensatory) density dependence in recruit 460 

mortality (Bannister and Addison 1986; Caputi 1993) especially when the stock is depleted 461 

(Caputi et al. 2021). If not accounted for when forecasting stock sizes and catch limits, 462 

fluctuations in recruitment strength (including regime shifts) may risk overexploitation of a stock 463 

(Caputi et al. 2014; Maunder and Thorson 2019), as shown in the northern shrimp stock in the 464 

Gulf of Maine (Richards and Hunter 2021). In size-structured integrated models, recruitment can 465 

be modeled based on one or more size classes of juveniles (Punt et al. 2013a) and recruitment 466 

estimates are often informed by composition data (Maunder and Thorson 2019). For hard-to-age-467 

species like crustaceans, however, lack of information about recruitment- and fecundity-at-age 468 



poses challenges in estimation of time-varying year class strength and characterizing spawner-469 

recruitment relationships (Caputi 1993; Maunder and Thorson 2019; Punt et al. 2013a). These 470 

issues hinder estimation of management reference points for stock status and fishing pressure to 471 

achieve sustainable fisheries (Caputi 1993; Fitzgerald et al. 2018; Maunder and Thorson 2019). 472 

Misspecification in other assessment model components like growth can also bias recruitment 473 

estimates (Maunder and Thorson 2019). In such cases, however, integrated methods can estimate 474 

demographic and life history parameters such as growth rates internally using tagging data, 475 

removing some of the confounding issues within the data and therefore improving estimates of 476 

proportions of recruits to different size classes and recruitment strength (Maunder et al. 2023; 477 

Punt et al. 2016c; Punt et al. 2013a) and associated uncertainties, as adopted in some assessments 478 

like red king crab (Paralithodes camtschaticus) (Zheng and Siddeek 2013) and golden king crab 479 

in Alaska (Siddeek et al. 2022).  480 

In addition to the lack of age information, uncertainty in larval and adult dispersal and survival 481 

of exploited crustaceans can pose challenges in identifying cohorts in size composition data, the 482 

source of recruitment, year class strength, and stock-recruitment relationships (Punt et al. 2013a). 483 

For example, for some crustacean species, because of long larval stages (e.g., up to 2 years in 484 

Jasus edwardsii), their larval dispersal patterns, settlement locations, and recruitment processes 485 

are poorly understood (Richards and Hunter 2021). Incomplete knowledge of early life stage 486 

dispersal, including distinguishing local mortality from emigration or local density dependency 487 

in sedentary species, can bias stock-recruitment relationships (Caddy 2004; Wahle 2003). 488 

Further, intense sex-biased exploitation in some crustacean stocks can also distort sex ratio 489 

(Heller-Shipley et al. 2021; Orensanz et al. 1998), misinforming estimation of spawner biomass 490 

and in turn stock-recruitment relationships if not accounted for (Zheng et al. 1995). In these 491 



cases, combined with larval surveys (use of pre-recruit abundance to account for recruitment 492 

variability), tagging experiments can help explore spatial connectivity among fishing grounds 493 

through adult movement (Bennett 1995) and better inform catch forecasts to regulate fishing 494 

pressure, as demonstrated for some crustacean and other shellfish fisheries (Caputi et al. 2021; 495 

Caputi et al. 2014). 496 

Natural mortality. Natural mortality, defined as non-fishing mortality (including disease, 497 

predation, starvation, etc.), is another key demographic parameter in structured population 498 

models that influences management-relevant metrics and yet remains challenging to estimate 499 

(Cao and Chen 2022; Cronin-Fine and Punt 2022; Maunder et al. 2023). Estimation of natural 500 

mortality rate is often confounded with that of other demographic parameters (especially growth 501 

rate) and selectivity in size-structured integrated assessment models, posing challenges, 502 

especially for crustaceans (Cronin-Fine and Punt 2022; Siddeek et al. 2022; Siddeek et al. 2016; 503 

Szuwalski 2022). Incorrectly specified selectivity (Butterworth and Punt 1990) or growth 504 

(Cronin-Fine and Punt 2022), for example, can bias natural mortality estimates. Of the recently 505 

assessed stocks, only ~2% estimated natural mortality internally, whereas the rest pre-specified 506 

values or estimated externally by age/size/stage, sex, and/or area (Fig. 5). Indirect methods to 507 

estimate natural mortality outside an assessment model are however limited for hard-to-age 508 

species like crustaceans. Natural mortality is often estimated empirically using life history 509 

information including maximum age, von Bertalanffy growth parameter (k), and asymptotic 510 

length, but uncertainty in these life history parameter estimates is relatively high, as shown for 511 

blue crab (Callinectes sapidus) in Chesapeake Bay, USA (Hewitt et al. 2007). These 512 

uncertainties can bias natural mortality estimates if not accounted for, leading to unreliable stock 513 

status estimates (Maunder et al. 2023).  514 



When estimating natural morality internally in an assessment model, variability in catchability, 515 

growth pattern, and spatial distribution can result in unreliable estimates of both fishing and 516 

natural mortality rates (Cao and Chen 2022; Cronin-Fine and Punt 2022; Maunder et al. 2023). 517 

Assuming constant natural mortality over time (or size, age, or sex) when it is in fact time-518 

varying can bias stock assessment outputs (Cao and Chen 2022; Cao et al. 2017b; Szuwalski 519 

2022). Natural mortality rates internally estimated for eastern Bering Sea snow crab, for 520 

example, were highly variable over time (Murphy et al. 2018) and led to big variations in 521 

assessment model estimates (Szuwalski 2022). Likewise, spatial variation in natural mortality 522 

due to ecosystem processes such as predator-prey overlap can be substantial (Tengvall et al. 523 

2024), posing a challenge for stock assessment. Because of high predation rates on juveniles 524 

(Caddy 2004; Maunder et al. 2023), not accounting for size-dependent natural mortality in size-525 

structured models can further bias stock size and fishing mortality estimates (Cao and Chen 526 

2022; Cao et al. 2017b). In such cases incorporating auxiliary information like predation rate and 527 

habitat condition into estimation of time-varying natural mortality may improve model estimates 528 

(Cao and Chen 2022).  529 

Because of selective (size- or sex-biased) removals caused by management measures or fishers’ 530 

preference, natural mortality estimates are likely biased when the assessment model is informed 531 

by fishery-dependent data alone (Chen et al. 2005; Punt et al. 2016a). When the data are 532 

insufficiently informative to estimate natural mortality, models using a range of natural mortality 533 

should be weighted and used to inform management decisions (Cope and Hamel 2022). An 534 

example of such an ensemble approach is northern shrimp in Skagerrak and Norwegian Deep, 535 

with an assessment model that combines three natural mortality assumptions into a weighted 536 

stock estimate (Cardinale et al. 2023). Tagging studies can also provide valuable information in 537 



estimating natural mortality rate (Siddeek et al. 2022) if potential issues (non-mixing, non-538 

reported tags, tag loss, tag-induced mortality, emigration, or changes in behavior, etc.) are 539 

properly accounted for (Maunder et al. 2023; Siddeek et al. 2022). These tagging-related issues 540 

may be mitigated by close-kin mark-recapture based on population genetics (like parent-541 

offspring or half sibling relationships) to estimate demographic parameters (Bravington et al. 542 

2016; Maunder et al. 2023), perhaps combined with use of ageing methods when applied to 543 

crustaceans. 544 

Selectivity. Selectivity, resulting from the probability of selectivity of a given size class by gear 545 

given the probability of availability of that size class, is another key parameter that is often 546 

confounded with demographic parameters (including natural mortality and recruitment) and can 547 

influence estimation of management-relevant metrics in size-structured assessment models 548 

(Butterworth et al. 2014; Maunder et al. 2014; Sampson 2014). Like demographic parameters, 549 

misspecification of selectivity can bias assessment model outputs, especially for hard-to-age 550 

species, whose growth parameters, for example, can be overestimated when relying on size 551 

composition data from fishery-dependent sources (Sampson 2014). Management-relevant 552 

metrics like catch limits may, however, be less influenced by uncertainty in selectivity than other 553 

sources, as demonstrated for South African rock lobster (Butterworth et al. 2014).   554 

Selectivity form can be shaped by an interaction between the spatial distributions (e.g., size- or 555 

stage-dependent patterns) of a target species and fishing (Sampson 2014), which can be modeled 556 

with an “areas-as-fleets” approach (assuming homogeneity in selectivity in each spatial strata) in 557 

an assessment model (Punt et al. 2014). This interaction can result in dome-shaped (population) 558 

selectivity (Sampson 2014) and is likely more common in shellfish stocks than asymptotic 559 

selectivity, reflecting their behavior and availability to gear and varying fishing pressures among 560 



areas (Pezzack and Duggan 1995). In trap or pot fisheries, for example, the availability and in 561 

turn selectivity of sizes can result from a complex interaction between habitat conditions like 562 

current and tide, and the sensory and behavioral responses by target and non-target animals to 563 

bait and traps (e.g., an escape gap for juveniles) used by fishers (Pezzack and Duggan 1995). 564 

Behavioral responses to and species interactions near traps can also reduce the probability of 565 

entry for certain species or sizes, as demonstrated for European lobster (Skerritt et al. 2020), the 566 

American lobster (Pezzack and Duggan 1995), spiny lobsters (Palinurus spp.) (Tuffley et al. 567 

2021), and Cancer crabs (Cancridae) (Skerritt et al. 2020). Further, because discard survival is 568 

often high in pot or trap fisheries, onboard selection (e.g., high-grading of catches) may also 569 

affect fishery selectivity. 570 

In many crustaceans sexual dimorphism in life history traits and demographic rates are 571 

prominent and can influence survey and fishery selectivity (Heney et al. 2025; Tuffley et al. 572 

2021). Sexual dimorphism often emerges from sex-specific molting, growth, maturation, 573 

(seasonal and ontogenetic) migration patterns, and fishing mortality (e.g., male-only fisheries, 574 

Heller-Shipley et al. 2021; Orensanz et al. 1998). Selectivity can also vary over time because of 575 

the movement of target species and fishing operation between areas (Sampson 2014) and gear 576 

changes. Sex-specific movement, for example, may lead to sex-biased spatial variability in 577 

catchability and size distribution, confounding the estimation of exploitation rates based on 578 

changes in size distribution (Chang et al. 2010; MacDiarmid 1991; Steneck and Wilson 2001). 579 

Of the recently assessed stocks, 38% used sex-specific selectivity curves and ~26% accounted 580 

for time-varying selectivity (Fig. 5). Assuming constant selectivity when in fact it is time-581 

varying, for example, can bias assessment model estimates (Sampson 2014). As with age-582 

structured models (Martell and Stewart 2014), size-structured models in general also perform 583 



better with time-varying selectivity, producing less biased estimates of stock size and other 584 

management-relevant metrics (Cronin-Fine and Punt 2021; Maunder et al. 2014; Punt et al. 585 

2014).  586 

 587 

Emerging issues with research needs 588 

Movement and spatial stock dynamics  589 

Although spatial stock structure is a widely recognized source of uncertainty in crustacean 590 

stock assessments, it is rarely explicitly accounted for (Orensanz et al. 1998). Of the recently 591 

assessed stocks, more than 60% were assessed without any spatial structure (Fig. 5). Seasonal 592 

and spatial variations in size composition and sex ratio, for example, often lead to complex 593 

population structure in crustaceans (Bennett 1995). For species with limited adult movement 594 

such as spiny lobsters in Tasmania and Victoria, Australia (Punt and Kennedy 1997) and the 595 

European lobster (Smith et al. 2001) assessments can be done for different management units 596 

separately to account for variations in life history traits. For these species spatial variations in 597 

growth and other size-dependent processes may influence the accuracy and precision of stock 598 

abundance estimates in each management unit (Punt 2003). But for others the movement of 599 

target species and spatial variability of fishing operation may pose a range of challenges in stock 600 

assessment and management (Goethel et al. 2023a; Perry et al. 1999; Punt 2019). Adult 601 

movement and larval dispersal of exploited species that migrate seasonally, for example, 602 

influence source-sink dynamics of a metapopulation (Canales et al. 2016; Orensanz et al. 1998; 603 

Steneck and Wilson 2001) or connections between inshore and offshore fisheries (Bennett 1995; 604 

Murphy et al. 2018). Not accounting for seasonal and ontogenetic spatial distribution shifts 605 

(distinction between nursery and spawning areas for example) may bias demographic parameters 606 



confounded with movement (like recruitment or survival rate) in size-structured models (Chen et 607 

al. 2005; Murphy et al. 2018).  608 

For crustaceans characterizing spatial stock structure (including subpopulations) may minimize 609 

misinterpretation of size composition data when estimating demographic parameters and fishing 610 

mortality (Maunder et al. 2016; Punt 2023). Spatial and temporal variability in life history 611 

parameters (like size-at-maturity) may emerge from molting frequency and in turn growth 612 

shaped by environmental conditions (food availability, sea temperature, shelter availability, etc., 613 

(Addison 1986; Bennett 1995; Steneck and Wilson 2001). If life history traits vary among 614 

management units and this variability is not accounted for in a stock assessment model, 615 

management-relevant quantities can be biased (Punt 2003; Punt 2019; Punt and Hobday 2009). 616 

Likewise, spatial shifts in fishing activity (serial depletion driven by market demand for 617 

example, Cardinale et al. 2023; Perry et al. 1999), may influence estimation of movement 618 

patterns, stock status, and management reference points (Goethel et al. 2023a; McGarvey et al. 619 

2010; Orensanz and Jamieson 1998). Size composition data without information about 620 

movement and spatial stock structure may thus be insufficient to identify cohorts and patterns in 621 

exploitation (Bennett 1995). In such cases tagging studies can help quantify the movement of 622 

adult females and the spatial distribution of larvae and juveniles (and thus recruitment 623 

variability) (Bennett 1995). 624 

Spatial structure in many stock assessments is often determined by the level of data 625 

aggregation and thus availability (Goethel et al. 2023a; Punt 2019; Szuwalski and Punt 2015). 626 

Owing partly to data deficiency, spatial structure is not well defined for many crustacean stocks 627 

(Szuwalski and Punt 2015) and adopting methods that account for biological processes 628 

(recruitment for example) in spatial strata (“areas-as-fleets” assuming homogeneity in each area) 629 



remains a challenge, especially for species with temporal or ontogenetic habitat expansion 630 

(Goethel et al. 2023a). One way to implicitly account for spatial stock structure is through survey 631 

indices using the same spatial scale used for data collection (Cadigan et al. 2017, McDonald et 632 

al. 2021). When applied to northern shrimp stocks in the Gulf of Maine (Cao et al. 2017c) and 633 

the Skagerrak-Norwegian Deep (Cardinale et al. 2023), for example, this approach improves the 634 

performance of the stock assessment models. Integrating spatial data into spatially explicit 635 

population models may further improve model performance by capturing fine-scale 636 

spatiotemporally dynamic processes (e.g., seasonal movement) of stocks and fishing fleets 637 

especially in an increasingly dynamic environment (Cao et al. 2020; Olmos et al. 2023). 638 

Improved knowledge of spatial stock structure can also help develop area-based management 639 

measures like development of reserve areas for spawner protection (Perry et al. 1999).  640 

 641 

Ecosystem processes and climate change 642 

Exploited marine species experience a range of dynamic ecosystem processes in the oceans that 643 

may modulate their demographic rates (growth, survival, migration, etc.) and catchability over 644 

space through time and thus regulate their stock dynamics (Goto 2023; Goto et al. 2022b; 645 

Phillips et al. 2013). Some crustacean species have long early life stages and their recruitment 646 

strength strongly depends on environmental conditions like sea temperature and pH (Caputi 647 

1993; Caputi et al. 2013). Disregarding environmental effects on spawners, for example, can bias 648 

stock–recruitment relationships, estimation of stock status, and likely stock projections, as shown 649 

for rock lobster in western Australia (Pearce and Phillips 1988). These ecosystem effects may 650 

become intensified especially for shellfish species whose life history processes (like molting for 651 

crustaceans) rely on habitat quality as the climate becomes warmer and more variable (Caputi et 652 



al. 2013; Punt et al. 2022). More frequent occurrences of marine heatwaves in the past decades, 653 

for example, diminished recruitment success and catches of crustacean stocks including brown 654 

tiger prawn, rock lobster, blue swimmer crab (Portunus armatus) in western Australia (Caputi et 655 

al. 2021; Caputi et al. 2019; Chandrapavan et al. 2019).  656 

Responses to increasingly more variable environmental conditions like sea temperature by 657 

exploited species may also deviate from the past under a changing climate, making management 658 

measures informed by historically observed patterns less effective (Caputi et al. 2021). This 659 

poses further challenges to the management of crustacean species (Szuwalski and Punt 2013). 660 

Many exploited crab stocks (including snow crab, red king crab, and tanner crab) in the Bering 661 

Sea, for example, show declining trends in stock size and productivity that may be unrelated to 662 

fishing pressure but be driven by climate-driven changes in environmental conditions like ice 663 

cover and sea temperature (Szuwalski et al. 2021). Similar trends may apply for other species 664 

such as northern shrimp, especially for stocks at the southern limit of the species range extent 665 

[e.g., the Gulf of Maine, Pershing et al. (2021) and the North Sea, Kjesbu et al. (2022)]. 666 

Temperature dependence in crustacean growth may drive the size of harvestable biomass when 667 

the fishery is regulated based on minimum landing size: as the climate warms, some species may 668 

molt less frequently and mature slower, resulting a stock with fewer legal-sized animals (Caputi 669 

et al. 2013; Fedewa et al. 2020). Climate change-induced habitat conditions may also prompt 670 

some species to systematically modify their geographical distributions (through adult migration 671 

and larval dispersal and survival) to mitigate adverse effects of changing habitat conditions, 672 

reshaping local marine community dynamics and fisheries catches (Caputi et al. 2013; Szuwalski 673 

et al. 2021). The range shifts of marine species have been increasingly more documented in 674 

recent decades (Hollowed et al. 2013; Sorte et al. 2010). But this strategy to mitigate climate 675 



change-induced stress may be limited for some species, especially in high-latitude systems, 676 

where transformation rates in ecosystem structure and process are more accelerated (Henson et 677 

al. 2017). Snow crab in the Bering Sea, for example, whose juveniles depend on cold bottom 678 

habitat patches as a predation refuge, experienced habitat contraction and shifts in demographic 679 

structure (maturity, sex, size, etc.) in recent years (Fedewa et al. 2020), which, combined with 680 

record high stock abundances, led to unprecedented food shortage and ultimately a stock collapse 681 

(Szuwalski et al. 2023). 682 

When climate change-induced spatial and temporal variability in biological parameters is not 683 

accounted for in a stock assessment model, the model could be misspecified and yield biased 684 

stock size, fishing mortality, and management reference point estimates, resulting in setting 685 

unsustainable catch limits (Cao et al. 2017b; Khalsa et al. 2023; Szuwalski and Hollowed 2016). 686 

Since environmental conditions are likely to fluctuate more frequently as climate warms, the 687 

assumption of time-invariance in vital parameters should be reevaluated (Punt et al. 2022). 688 

Recruitment success of the American lobster stock in Nova Scotia, Canada, for example, depends 689 

on local climate conditions, modulating landings size (Harding et al. 1983). Accounting for 690 

environmental effects and other ecosystem processes in stock assessment and management, 691 

however, remains challenging (Szuwalski and Punt 2013). We cannot effectively forecast the 692 

consequences of climate change for the management of exploited species without understanding 693 

how affected biological processes should be incorporated into a stock assessment model (Punt et 694 

al. 2016b). Despite documented empirical evidence, however, few studies have evaluated how 695 

ecosystem processes and climate change influence the performance of quantitative stock 696 

assessments and management strategies for crustaceans (but see Punt et al. 2016b; Szuwalski et 697 

al. 2023; Szuwalski and Punt 2013). Model misspecification due to time-varying parameters such 698 



as growth or natural morality in response to environmental variability can bias assessment 699 

outcomes and thus the performance of management measures applied (Punt et al. 2013b). Of the 700 

recently assessed stocks, only 14% accounted for time-varying growth, 12% for natural 701 

mortality, and 26% for catchability and selectivity (Fig. 5). 702 

One alternative approach to account for time-varying ecosystem processes (regime shift, 703 

species interaction, etc.) when forecasting near-term catch limits may be to adopt dynamic 704 

reference points as part of harvest strategies (Berger 2019; Bessell-Browne et al. 2022; Haltuch 705 

et al. 2009). Methods that account for variable environments can provide reliable management 706 

reference points like unfished biomass, depending on species-specific life history traits (Berger 707 

2019; Bessell-Browne et al. 2022; Haltuch et al. 2009). The consequences of non-stationarity in 708 

stock productivity may be more pronounced under directional changes driven by climate change 709 

(Berger 2019). When mechanisms underlying time-varying productivity are misspecified, 710 

however, harvest strategies based on dynamic reference points may also perform poorly and thus 711 

should be evaluated through closed loop simulations prior to implementation (Berger 2019; 712 

Bessell-Browne et al. 2022). 713 

 714 

Applying precaution to crustacean fisheries management 715 

Stock assessments inform decision making based on agreed management strategies such as 716 

harvest control (input or output) rules (HCRs), which link stock status and reference points to 717 

management action to mitigate overexploitation of a resource population in the context of a 718 

precautionary approach (Patterson et al. 2001). The efficacy of control rules can, however, vary 719 

because of incomplete knowledge of the biology, fishery, and management of a stock (Fogarty 720 

and Gendron 2004; Zhang et al. 2011). In managing crustacean fisheries, uncertainties in 721 



management-relevant metrics and reference points are not always accounted for in evaluation 722 

and application of management measures (Addison and Bennett 1992; Fogarty and Gendron 723 

2004; Siddeek et al. 2004). HCRs developed for data-limited stocks, those based on abundance 724 

indices (CPUEs), length compositions, and life history invariants, for example, can perform 725 

poorly when uncertainties are accounted for (Jardim et al. 2015). High uncertainty in the drivers 726 

of recruitment variability in particular remains prevalent in most stock assessments (Maunder 727 

and Piner 2015; Maunder and Thorson 2019). Not accounting for non-stationarity in recruitment 728 

(owing to climate-induced ecosystem regime shifts for example) when estimating management 729 

reference points could also under- or over-estimate the risk of overexploitation (Fogarty and 730 

Gendron 2004; Punt et al. 2016a; Zhang et al. 2011) and the performance of HCRs (Szuwalski 731 

and Punt 2013). 732 

Quantitatively evaluating how robust management measures are against uncertainties before 733 

the implementation would minimize the risk of undesirable outcomes (Sethi 2010); this is 734 

especially critical for data-limited fisheries, where high uncertainties exist in stock assessments 735 

(input data, assumed parameters, model structure, etc.) (Carruthers et al. 2014). Management 736 

strategy evaluation (MSE) is one tool for such purpose used in fisheries management, allowing 737 

quantification of trade-offs among short- and long-term management (conservation and 738 

socioeconomic) goals of stakeholders and promoting transparency in decision-making process 739 

(ICES 2019; Punt 2017; Punt et al. 2016a). MSE is designed to evaluate the performance of 740 

candidate management measures with key uncertainties accounted for through simulations with 741 

feedback between natural resources, fishing patterns, and management systems (ICES 2019; 742 

Punt et al. 2016a). Some of the early applications of MSE to crustaceans include rock lobster in 743 

New Zealand (Starr et al. 1997) and South Africa (Johnston and Butterworth 2005) and tiger 744 



prawns (Penaeus semisulcatus and P. esculentus) in Australia (Dichmont et al. 2006a; Dichmont 745 

et al. 2006b; Dichmont et al. 2006c). 746 

Uncertainties in the fisheries management cycle (data collection and processing, stock 747 

assessment, and implementation of control rules) can be generally grouped in several types, 748 

including process uncertainty, parameter uncertainty, model uncertainty, estimation uncertainty, 749 

and implementation uncertainty (Punt et al. 2016a). Candidate management strategies 750 

(management procedures) for South African rock lobster, for example, were developed and 751 

evaluated to rebuild this highly valuable (but depleted) stock by accounting for a range of 752 

uncertainties, including those in growth and recruitment (process uncertainties), and trade-offs 753 

among management objectives set by stakeholders (Johnston and Butterworth 2005). While 754 

applications of MSE to crustacean or other shellfish fisheries remain limited compared to finfish 755 

fisheries, research shows that the performance of management strategies can vary vastly 756 

depending on the source and amount of uncertainty in stock assessment methods (Dichmont et 757 

al. 2006a; Dichmont et al. 2006b; Punt and Hobday 2009). For example, not accounting for 758 

uncertainties in spatial structure in stock assessment and implementation of catch limits for 759 

species with limited adult movement like rock lobster can fail to meet management and 760 

conservation objectives (Punt and Hobday 2009). Likewise, uncertainties associated with effort 761 

allocation by season, species, and stock area, along with time-varying fishing efficiency and 762 

fisher behavior can inflate implementation uncertainty, posing challenges in identifying effective 763 

control measures to achieve management goals, as demonstrated through MSEs for mixed prawn 764 

fisheries in Australia (Dichmont et al. 2006a; Dichmont et al. 2006b; Dichmont et al. 2006c). 765 

Management strategy evaluation can also be an effective tool for evaluating (and revising if 766 

needed) current data collection and assessment methods (Carruthers et al. 2014; Dichmont et al. 767 



2006c; Punt et al. 2016a). Evaluating risk associated with trade-offs in investing resources for 768 

data collection and stock assessment can inform, for example, the management of small-scale 769 

fisheries with relatively low economic value, where input control is often used as a management 770 

measure (Blamey et al. 2022; Hordyk et al. 2015c; Plagányi et al. 2023). Applications of MSE 771 

show that data-limited assessment methods like LBSPR are sufficiently informative to 772 

sustainably manage (or rebuild when overexploited) a stock through an iterative effort-based 773 

harvest control rule (Hordyk et al. 2015c). This MSE-aided process could also facilitate the 774 

transition to more rigorous assessment and management as more data is collected (Hordyk et al. 775 

2015c). In recent decades an increasing number of methods to set output control measures have 776 

been developed and simulation-tested as part of efforts of national governments and regional and 777 

intergovernmental organizations to apply a precautionary approach to sustainably manage 778 

capture fisheries including for data-limited stocks (Carruthers et al. 2014). The performance of 779 

data-limited (catch-, depletion-, and abundance-based) methods, however, highly vary depending 780 

on input data type, life history, and fishing pattern (Carruthers et al. 2014; ICES 2024b). These 781 

methods are especially sensitive to uncertainty in current stock size and stock depletion and 782 

perform poorly when stock dynamics are not accounted for (Carruthers et al. 2014), underscoring 783 

the need for further research and development. 784 

Persistent overestimation of abundance and underestimation of fishing mortality in perceived 785 

population status (retrospective pattern) are prevalent in marine fisheries stock assessment (ICES 786 

2020b; Punt et al. 2020) and likely contribute to stock overexploitation and depletion (Brooks 787 

and Legault 2016). In such situations MSE can also be an effective tool to evaluate consequences 788 

of biased stock assessments (Hordyk et al. 2019; Szuwalski et al. 2017) and optimize reference 789 

points to mitigate the adverse effects of applying catch limits based on biased assessments if 790 



needed (Goto et al. 2022a). For example, when consequences of not accounting for time-varying 791 

biological parameters in the stock assessment of rock lobster in Victoria, Australia are evaluated, 792 

non-stationarity in recruitment and catchability can more likely result in biased assessments and 793 

management failures than non-stationarity in natural mortality and growth (Punt et al. 2013b).  794 

Because of high computational cost, a full MSE (with stock assessment) is not always applied 795 

(ICES 2019; Pérez-Rodríguez et al. 2022; Punt et al. 2016a). For example, MSEs without stock 796 

assessment fully simulated (‘short-cut’ MSEs, ICES 2020a) are applied to red king crab in 797 

Bristol Bay, USA using a range of scientific uncertainty (stock–recruitment relationship, natural 798 

mortality, etc.) levels, demonstrating that accounting for more uncertainty can reduce 799 

overexploitation risk but also reduce catch limits substantially (Punt et al. 2012b). Likewise, 800 

robustness of model-based HCRs for golden king crab in the eastern Aleutian Islands, USA is 801 

also evaluated with a similar approach by accounting for four sources of uncertainty; stock–802 

recruitment relationship, parameter estimation, initial stock size, and implementation of catch 803 

limit (Siddeek et al. 2020). Short-cut MSEs have been also applied when the complexity of an 804 

integrated stock assessment makes a full MSE challenging (e.g., northern shrimp in the 805 

Skagerrak and Norwegian Deep, ICES 2023). Short-cut MSEs may, however, overestimate the 806 

performance of management strategies and underestimate their associated risks of stock 807 

depletion (ICES 2020a; Punt et al. 2016a), though optimization of harvest control rules may 808 

mitigate these risks (Fischer et al. 2023). 809 

 810 

Synthesis and moving forward  811 

Although crustacean stocks contribute to substantial socioeconomic benefits and food security 812 

globally, many crustacean stocks remain data-limited and unassessed. Lack of quantitative 813 



evidence may also pose challenges in justifying investments of financial and human resources by 814 

management agencies in data collection, storage, and analysis (FAO 2024b). Reviewing recent 815 

advances in stock assessment methods and management measures has identified various 816 

shortcomings that still need to be addressed in achieving sustainable management of marine 817 

crustacean fisheries. 818 

Assessment methods: Given the prevalence of data deficiencies in crustacean fisheries, efforts 819 

to improve the performance of data limited methods remain integral. Data-limited (empirical or 820 

model-based) methods based on commonly collected data types like catch and size composition 821 

(or combined multiple data sources) can quantify stock status and fishing pressure to inform 822 

management of data-deficient stocks until sufficient data becomes available. The performance of 823 

these methods can be improved by the use of demographic, life history, selectivity pattern, or 824 

other auxiliary information (e.g., molting probability) of a stock or its phylogenetically related 825 

species (based on a meta-analysis for example) (Prince et al. 2015). While more methods have 826 

been developed to accommodate a range of data-limited situations in recent decades, assessment 827 

methods applied to crustaceans often account for an insufficient amount of uncertainty, likely 828 

underestimating the risk of overexploitation. When applying catch- and especially size-based 829 

methods applied to crustaceans, the reliability of model output should be simulation-tested by 830 

accounting for uncertainty in the data (Carruthers et al. 2014). Of the recently assessed stocks 831 

using structured models, 52% applied sensitivity analysis, but less than 1% applied simulation 832 

testing (Fig. 5). Evaluating robustness of an assessment model to assumptions made and 833 

uncertainty sources by simulation or sensitivity analysis can improve its reliability and avoid 834 

taking unnecessary risks in managing the stock (Chrysafi and Kuparinen 2016).  835 



Accounting for uncertainty and incorporating auxiliary information can be done more 836 

efficiently using integrated methods, which provide flexibility in model complexity depending 837 

on data availability. Integrated methods also streamline the transition from data-limited to -rich 838 

situations (Cope 2024). Still, integrating a variety of data sources and biological information 839 

about a stock can pose additional challenges in estimating management-relevant quantities for 840 

crustacean stocks. First, lack of age information can still pose many challenges in data collection 841 

and assessment model development. In size-structured models growth is characterized using a 842 

size transition matrix, in which transition probability is influenced by size- and sex-dependent 843 

processes like molting and maturity probabilities as well as reproductive traits like breeding 844 

cycle. Although recent research has made some progress in development of size transition 845 

matrices (Millar and Nottingham 2019), issues remain, including accounting for individual 846 

variability in growth (Cronin-Fine and Punt 2020) and terminal molting (Chang et al. 2012). 847 

Further, uncertainty stemming from difficulties in identifying cohorts in size composition data 848 

and incomplete knowledge about early life histories can also pose a range of challenges in 849 

estimating stock-recruitment relationships and estimation of management reference points; 850 

combination of larval surveys and tagging studies can help better understand recruitment 851 

dynamics. Second, because some biological parameters like growth are also confounded with 852 

other model parameters like natural mortality and selectivity, these parameters should be 853 

estimated internally (using auxiliary information and tagging data if available) and propagate 854 

their uncertainties in the assessment model (Maunder and Punt 2013). Also, model sensitivity to 855 

time invariance in biological parameters if assumed should be tested to mitigate potential bias in 856 

stock status estimates.  857 



Uncertainty in spatial stock structure is one potential source of bias rarely accounted for in 858 

estimation of assessment model parameters and management reference points (Goethel et al. 859 

2023a). For most crustaceans spatial variability in life history information and movement of a 860 

target species (and resulting fishing pattern) can misinform estimation of demographic rates 861 

(Murphy et al. 2018; Punt 2003). Accounting for these spatial variations using approaches like 862 

“areas-as-fleets”, however, remains challenging for many crustacean stocks that have poorly 863 

defined spatial structure. Further development of methods that account for fine-scale spatial 864 

stock structure through survey indices (Cadigan et al. 2017; McDonald et al. 2021) and spatially 865 

explicit models (Cao et al. 2020; Olmos et al. 2023) may provide promising paths forward and 866 

also facilitate development of area-based management measures (Perry et al. 1999). 867 

Accounting for dynamic ecosystem processes under climate change: Assessment methods and 868 

management measures may need to account for increasingly greater spatial and temporal 869 

variability in exploited crustacean stock dynamics (Caputi et al. 2013; Szuwalski et al. 2021) to 870 

avoid model misspecification and biased estimates under climate change (Cao et al. 2017b; 871 

Khalsa et al. 2023; Szuwalski and Hollowed 2016). Amplified variability in habitat conditions 872 

like sea temperature are likely to influence the estimation of stock status and management 873 

reference points through changes to demographic parameters (growth, natural mortality, 874 

recruitment movement, etc.) under varying levels of fishing pressure. One approach to confront 875 

climate change-induced variability in ecosystem processes is development of minimally realistic 876 

assessment models such as Models of Intermediate Complexity for Ecosystem assessments 877 

(MICE), which can integrate climate effects into demographic parameters, along with other 878 

ecosystem processes such as species interactions (Plagányi et al. 2014). Another is to consider 879 

non-equilibrium management reference points to account for greater non-stationarity in stock 880 



productivity (Berger 2019; Bessell-Browne et al. 2022; Haltuch et al. 2009) and evaluate these 881 

management measures through closed-loop simulations (Berger 2019; Bessell-Browne et al. 882 

2022). 883 

A precautionary approach to fisheries management: To mitigate the risk of undesirable 884 

outcomes, control measures applied to manage exploited species must be robust to a range of 885 

uncertainties in input data, model structure, and parameter estimation (Sethi 2010). Closed-loop 886 

simulation tools like MSE can be effective for such a purpose, promoting transparency in 887 

evaluating tradeoffs among management objectives against uncertainties in the biology, fishery, 888 

and management of a stock (Fogarty and Gendron 2004; Zhang et al. 2011). When applying 889 

(data-limited and -rich) assessment methods in the context of precautionary approach to fisheries 890 

management, simulation testing such as MSE can account for a range of uncertainty and evaluate 891 

the performance of the assessment methods under management scenarios (Prince and Hordyk 892 

2019). Select candidate methods/indicators should be evaluated under those scenarios and 893 

probabilities of meeting management objectives quantified to provide a range of values for 894 

management measures (Carruthers et al. 2014). Because crustacean fisheries remain data-limited 895 

and small-scale in most regions, MSE can also be valuable in evaluating trade-offs in investing 896 

resources in data collection and stock assessment (Blamey et al. 2022; Hordyk et al. 2015c; 897 

Plagányi et al. 2023), facilitating the transition to more data-demanding assessment and 898 

management (Hordyk et al. 2015c).  899 

As we face increasingly more variable environmental conditions in the oceans under climate 900 

change, assessment methods and management measures should also be expanded to account for 901 

the human (socioeconomic) dimensions of crustacean fisheries; this is especially vital in 902 



developing nations where fishing communities would disproportionately experience the 903 

consequences of climate change-induced effects on fisheries production (Ding et al. 2017).  904 
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Tables 
 
Table 1. Crustacean stocks assessed (in 2015–2024) with age- age-size-, or size-structured 
population models that are included in this review. 
 

species location assessment period reference¶ 

Aristaeomorpha foliacea Central Mediterranean Sea (GSA 9-11) 2005-2021 1 
Aristeus antennatus Northern Alboran Sea and Alboran Island (GSA 1-2) 2002-2022 1 
Aristeus antennatus Balearic Island (GSA 5) 2002-2022 1 
Aristeus antennatus Northern Spain and Gulf of Lions (GSA 6-7) 2004-2022 1 
Chionoecetes bairdi Eastern Bering Sea 1948-2022 2 
Chionoecetes opilio Eastern Bering Sea 1982-2021 3 

Farfantepenaeus aztecus Gulf of Mexico 1984-2017 4 
Farfantepenaeus duroarum Gulf of Mexico 1984-2017 5 

Homarus americanus Gulf of Maine & Georges Bank 1982-2018 6 
Homarus americanus Southern New England, USA 1984-2018 6 
Homarus gammarus Skagerrak, Kattegat and Öresund (Sweden) 1875-2023 7 

Jasus edwardsii New Zealand CRA 1 statistical areas (901, 902, 903, 904, 
939) 1945-2018 8 

Jasus edwardsii New Zealand CRA 2 statistical areas (905, 906, 907, 
908) 1979-2021 9 

Jasus edwardsii New Zealand CRA 3 statistical areas (909, 910, 911) 1945-2018 10 

Jasus edwardsii New Zealand CRA 4 statistical areas (912, 913, 914, 915, 
934) 1945-2019 11 

Jasus edwardsii New Zealand CRA 5 statistical areas (916, 917, 918, 919, 
932, 933) 1945-2020 12 

Jasus edwardsii New Zealand CRA 6 statistical areas (940, 941, 942, 
943) 1965-2022 13 

Jasus edwardsii New Zealand CRA 7 and CRA 8 statistical areas (920, 
921, 922, 923, 924,  925,926, 927,  928) 1945-2020 14 

Jasus edwardsii Victoria, Australia 1978-2022 15 
Jasus edwardsii West Australian Coast 1975-2023 16 
Jasus Ialandii South Africa (areas 1-8) 1910-2023 17 

Litopenaeus setiferus Gulf of Mexico 1984-2017 18 
Metanephrops challengeri Auckland islands, New Zealand 1991-2024 19 
Metanephrops challengeri Bay of Plenty, New Zealand 1986-2022 20 
Metanephrops challengeri Hawke Bay Wairapa, New Zealand 1986-2022 20 
Metanephrops challengeri Mernoo Bank, New Zealand 1990-2021 21 

Nephrops norvegicus Ligurian and North Tyrrhenian Sea (GSA 9) 1994-2021 1 
Nephrops norvegicus Malta Island and South of Sicily (GSA 15, 16) 2005-2021 22 
Nephrops norvegicus Balearic Island (GSA 5) 2009-2022 1 
Nephrops norvegicus Northern Spain (GSA 6) 2009-2022 1 

Pandalus borealis Gulf of Maine 1984-2023 23 
Pandalus borealis Skagerrak and Norwegian Deep 1970-2023 24 
Panulirus argus Caribbean 1983-2016 25 

Paralithodes camtschaticus Bristol Bay, Alaska 1975-2023 26 
Paralithodes camtschaticus Norton Sound, Alaska 1976-2023 27 

Parapenaeus longirostris Corsica Island and western Mediterranean Sea (GSA 8-
11) 2009-2022 1 

Parapenaeus longirostris Northern Alboran Sea (GSA 1) 2002-2022 1 
Parapenaeus longirostris Western Mediterranean Sea (GSA 5-7) 2008-2022 1 

Penaeus esculentus Northern Australia 1970-2021 28 
Penaeus semisulcatus Northern Australia 1970-2021 28 

Portunus armatus Queensland East Coast, Australia 1988-2019 29 
Squilla mantis  Adriatic Sea (GSA 17,18) 2004-2020 30 

¶See Table S1 for full reference information. 

  



Figure legends 
 
Fig. 1. Spatial and temporal patterns in marine crustacean fisheries catches. (a) mean annual 

catch (t) during 1950–1970 and 2010–2022. Lighter colors indicate higher catches; gray 

indicates no reported catch. (b) Region-specific trends in fisheries catches of all crustaceans and 

three major taxonomic groups: lobsters, crabs, and shrimps during 1950–2022 (data source: 

https://www.fao.org/). 

Fig. 2. Spatial and temporal patterns in species diversity in marine crustacean fisheries. (a) mean 

number of reported species during 1950–1970 and 2010–2022. Lighter colors indicate higher 

species diversity; gray indicates no reported species. (b) Region-specific trends in species 

diversity in fisheries catches of all crustaceans and three major taxonomic groups: lobsters, 

crabs, and shrimps during 1950–2022 (data source: https://www.fao.org/). 

Fig. 3. Status of assessed major crustacean stocks (crabs, lobsters, and shrimps) with 

management reference points estimated (n = 91) by region during 1945–2022 (data source: 

https://www.ramlegacy.org/; v4.65). (a) relative biomass (B/BMSY) and (b) relative fishing 

pressure (U/UMSY). 

Fig. 4. Spatial patterns in the proportions of (a) crustacean catch in total marine capture fisheries 

catches during 2010–2022 (https://www.fao.org/) and (b) assessed crustacean stocks in all 

assessed stocks in the RAM Legacy Stock Assessment Database (https://www.ramlegacy.org/; 

v4.65) with additional stocks included in Hodgdon et al. (2022).  

Fig. 5. Features of the age, age-size, and size-structured stock assessment models used for 

crustacean stocks in the RAM Legacy Stock Assessment Database (https://www.ramlegacy.org/; 

v4.65) and additional stocks assessed during 2015–2024 that are included in this review (n = 42, 

Table 1).  

https://www.fao.org/
https://www.fao.org/
https://www.ramlegacy.org/
https://www.fao.org/
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https://www.ramlegacy.org/
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Table S1 1. Full reference information for the assessment reports for the crustacean stocks that are 
included in the review (Table 1). 
 

reference# reference 
1 Scientific, Technical and Economic Committee for Fisheries (STECF). Stock assessments in the 

Western Mediterranean Sea (STECF 23-09), Mannini, A., Ligas, A. and Pierucci, A. editor(s), 
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Center, Galveston Laboratory, Galveston, Texas. 17 p. 
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