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“But I can’t preregister my research”: Improving the reproducibility and 1 

transparency of ecology and conservation with adaptive preregistration for 2 

model-based research 3 

Abstract 4 

1. Preregistration is an open-science practice which aims to improve research transparency 5 

and mitigate questionable research practices, like cherry-picking results. It helps protect 6 

against cognitive biases, like hindsight bias, that can influence how study outcomes are 7 

interpreted. There has been little uptake of preregistration in ecology and conservation, 8 

arguably because existing pre-registration templates focus on null-hypothesis significance 9 

testing whereas ecology and conservation often rely on different types of statistical 10 

modelling. 11 

2. We argue that preregistration in model-based research in ecology and conservation is 12 

both possible and beneficial, using templates adapted for domain-specific methodologies. 13 

We applied a user-centred design approach to translate the concept of preregistration into 14 

model-based research practice for ecology and conservation. 15 

3. To better align the internal logic of preregistration with the iterative and non-linear 16 

process of ecological modelling, we propose, test and evaluate a methodology for 17 

‘adaptive preregistration’, using a case study of modelling managed water releases 18 

(“environmental flows modelling”) in regulated rivers for maintaining riparian vegetation 19 

condition in Victoria, Australia.  20 

4. This research provides a template and methodology for implementing adaptive 21 

preregistration of ecological models. Although we focus on ecology and conservation in 22 

this paper, the concept of adaptive preregistration, and the templates developed here, 23 
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could be applied to model-based research in other scientific disciplines within science 24 

more broadly. Modelers in ecology and conservation need no longer cry “but I can’t 25 

preregister my research.” 26 

Keywords: adaptive preregistration, ecological modelling, environmental flows modelling, good 27 

modelling practice, metascience, preregistration, open science, transparency 28 

Data/Code for peer review statement: Data and code hosted on GitHub have been anonymised 29 

for peer review. R code for the case study modelling is available in a GitHub repository 30 

https://anonymous.4open.science/r/VEFMAP_VEG_Stage6-7B5F/.  31 

Collaborative workshop materials and analysis (Appendix S1 and S2) are also hosted on the 32 

OSF, accessed with the anonymised view-only links: 33 

https://osf.io/tz5da/?view_only=992aca57db814e9484a603f8e09b349b and 34 

https://osf.io/5w4ms/files/osfstorage?view_only=b60796fed71f4cc8abe9e5feac5e9465. 35 

The adaptive preregistration user guide is accessible as a website (URL removed for double-36 

blind peer review, see Appendix S3 for anonymised PDF version guide), with the website code 37 

hosted in a GitHub repository (https://anonymous.4open.science/status/EcoConsPreReg-4C05)  38 

and Zenodo archive (link suppressed for double-blind peer review, coauthor-1 et al. 2024). 39 

Cross-references to the pdf version of the guide (Appendix S3) replace URLs throughout the 40 

manuscript.  41 

The preregistration template is available for installation and use as a quarto template extension in 42 

either .pdf (Appendix S4), .docx (Appendix S5) or .html format, and is hosted on GitHub at 43 

https://anonymous.4open.science/r/EcoConsModPreReg-6FF5 (coauthor-1 2025).  44 

We have anonymised coauthor names / initials throughout the manuscript text and in supporting 45 

information. Some material was unable to be anonymised, e.g. the URL to the case study 46 

preregistration GitHub commit history, and the URL to the case study GitHub repository 47 
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releases. These links remain in the manuscript, but the repository is set to private. The repository 48 

that the URLs reference is also provided in an anonymised format, described above. 49 

1. Introduction 50 

Over the past decade, a ‘replication crisis’ in some scientific fields has exposed problems with 51 

the reliability of research findings (Camerer et al., 2018; Neoh et al., 2023). One such problem is 52 

the prevalence of Questionable Research Practices (QRPs), including p-hacking, Hypothesising 53 

After Results are Known (HARKing), and cherry-picking (Wicherts et al., 2016). QRPs increase 54 

the probability of false positive results, artificially inflate effect size estimates, and ultimately 55 

reduce the replicability of published findings, while encouraging overconfidence in the precision 56 

of results and exacerbating the risk of accepting and propagating false facts (Hoffmann et al., 57 

2021). Self-reports from researchers show that QRPs are surprisingly common across disciplines 58 

(Agnoli et al., 2017; Makel et al., 2023, Liu et al., 2020), including in ecology (Fraser et al., 59 

2018; Kimmel et al., 2023). Although self-report surveys of QRPs are heavily focused on 60 

statistical significance testing research employing p-values, some broader practices, like selective 61 

reporting/cherry-picking, occur and operate analogously in other inferential frameworks. 62 

QRPs are precipitated when researchers opportunistically or systematically misuse ‘researcher 63 

degrees of freedom’ without disclosure (Bakker et al., 2018; Wicherts et al., 2016). Researcher 64 

degrees of freedom refer to the many decisions and alternative analytic choices researchers make 65 

throughout the research process (Wicherts et al., 2016). Analytic decisions are typically 66 

subjective but methodologically defensible, however, choices and omissions taken at each ‘fork’ 67 

may collectively and significantly influence the final ‘analysis strategy’ (sensu Hoffmann et al., 68 

2021), or ‘modelling path’ (sensu Hämäläinen & Lahtinen, 2016). The set of all (plausible or 69 

reasonable) possible decisions that a researcher could make over the entire analysis from 70 

beginning to end has been termed collectively as the ‘garden of forking paths’ (Gelman & 71 
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Loken, 2013). ‘Many-analyst studies,’ where multiple researchers independently investigate the 72 

same research question by analysing the same dataset have now demonstrated the consequences 73 

of the ‘garden of forking paths’, whereby alternative analytical decisions can lead researchers to 74 

make vastly different interpretations of results, with conflicting conclusions (Gould et al., 2025; 75 

Silberzahn et al., 2018). 76 

Good intentions and simply being aware of the potential for researcher degrees of freedom to 77 

lead to QRPs cannot sufficiently mitigate their risk because of the unconscious nature of their 78 

origin (Zvereva & Kozlov, 2021). Preregistration is an open-science practice that aims to 79 

distinguish between planned and ad hoc analyses (Parker et al., 2019) thereby restricting 80 

opportunities for trialling analytical alternatives (‘researcher degrees of freedom’) and making 81 

any deviations from the preregistered plan transparent (Wicherts et al., 2016). Preregistration 82 

requires researchers to register their methods and analysis plan in a secure and publicly 83 

accessible platform prior to collecting and/or analysing data, which cannot be altered after 84 

submission (Parker et al., 2019). Preliminary empirical evidence shows that studies with 85 

preregistered analysis plans are more transparently reported and are less likely to contain positive 86 

or significant results (Brodeur et al., 2024). This finding in part reflects the researcher 87 

commitment to honest, complete and transparent reporting, especially when the preregistration 88 

template includes detailed instructions and requirements (Bakker et al., 2018). It also reflects a 89 

correction for publication bias, where negative or non-significant results tend not to be 90 

published, so would otherwise remain in the 'file drawer'. ‘Registered Reports’ (Koivisto & 91 

Mäntylä, 2024), a form of preregistration, contain a direct mechanism for addressing publication 92 

bias, whereby the methods and analysis plan are peer-reviewed in advance, and the decision to 93 

publish is made before the results are known.  94 

 95 
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One potential objection to preregistration for modelling is that model development is an 96 

intrinsically exploratory process (MacEachern & Van Zandt, 2019), while preregistration is for 97 

confirmatory research (i.e. hypothesis or theory testing, Prosperi et al., 2019). These conceptions 98 

of modelling and preregistration are not entirely wrong, but they are oversimplified. In this 99 

iterative and non-linear process of modelling, initial analyses often inform future analyses of the 100 

same data whereby the modeler's understanding of the problem and the model itself are 101 

incrementally adjusted in light of intermediate results from previous decision points (Dwork et 102 

al., 2015; Hämäläinen & Lahtinen, 2016). Modelers are typically uncertain about which model is 103 

most appropriate for the data (Popovic et al., 2024) and are reluctant to register a modelling 104 

strategy that may turn out to be incompatible with the data (Roettger, 2019).  For example, 105 

modelers may perform exploratory analyses to validate distributional assumptions (Campbell, 106 

2021), which may result in subsequent changes to the model specification. Also, in response to 107 

data, modellers may learn a new approach that they were previously unaware of. We argue that 108 

data-dependent decisions like these should not be interpreted as violating a key tenet of 109 

preregistration, that is, failing to define the entire analysis protocol ahead of time (Dwork et al., 110 

2015; MacEachern & Van Zandt, 2019). We propose a methodology for implementing an 111 

expanded view of preregistration called Adaptive Preregistration (sensu Srivastava, 2018), 112 

which captures decision points and reasoning about modelling choices, but which embraces the 113 

data-dependency practices that constitute the modelling development process. This goes beyond 114 

the work of others who offer discussion and guidance about when and how to deviate from a 115 

preregistration (Lakens, 2024; Willroth & Atherton, 2024), instead providing an approach to 116 

preregistration embodying the principles of registered flexibility (Roettger, 2019; Srivastava, 117 

2018) and iterative or interim preregistrations (Hofman et al., 2023; Ioannidis, 2022). 118 

In this study we aim to translate preregistration for application to model-based research, 119 

specifically aimed at ecology, conservation and related disciplines. Here, we first identify a 120 
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generalised ‘modelling workflow’ that captures critical analysis decisions in the model 121 

development cycle and use it to build an Adaptive Preregistration template that can work for 122 

ecological modelling. We then test and evaluate our template using a case study of modelling 123 

managed water releases in regulated rivers (‘environmental flows’) to improve riparian 124 

vegetation condition in Victoria, Australia. This case study demonstrates a novel approach to 125 

preregistration using a template designed for model development and evaluation. 126 

2. Materials and Methods 127 

We modified preregistration for use in model-based research contexts following a user-centered 128 

design framework (Pavelin et al., 2012), where users were engaged at all stages to produce a 129 

preregistration template and protocol that is fit for purpose (Figure 1). 130 

 131 
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Figure 1 Process for translating preregistration to ecological modelling research. We followed 

the user-centred design steps proposed by Pavelin et al. (2012), except for the ‘Evaluate and 

Iterate’ phase of the process, which we hope will be taken up by the community when trialling 

the Adaptive Preregistration methodology and Template developed in this study. Following a 

collaborative workshop (Step 2), we specified a general modelling workflow that informed the 

structure and content of a Preregistration Template (Step 3) and proposed a methodology we call 

‘Adaptive Preregistration’ (Step 3) addressing challenges to preregistering model-based research 

identified in Step 2. We tested and refined the Template and Methodology using a real-world 

modelling case-study (Step 4). The Template is provided in multiple formats, including as a 

quarto markdown extension, and instructions for conducting Adaptive Preregistration are 

detailed in a User Guide (Step 5). 

2.1 Problem Formulation: Defining vision & objectives for a preregistration template for 132 

model-based research 133 

We first specified the research context, purpose, target users and use-cases, (per Pavelin et al., 134 

2012; Pu et al., 2019, Figure 1, step 1). Our context is model-based research, defined broadly as 135 

any research that uses quantitative modelling to answer its research question (Brudvig, 2017). 136 

The purposes of the preregistration template and methodology are to: 137 

1. Delimit ‘researcher degrees of freedom’ (Pu et al., 2019), to mitigate the risk of QRPs 138 

when conducting model-based research in applied ecology and conservation. 139 

2. Increase ‘research transparency’ of ecological modelling, including both: 140 

1. production transparency — including research artefacts like open-access data and 141 

materials, or data collection procedures (Lupia & Elman, 2014), 142 
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2. analytic transparency — a complete account of how analytic conclusions are 143 

drawn from the data (Lupia & Elman, 2014) where model choices, steps in the 144 

modelling process, assumptions and expectations about model outputs are clearly 145 

articulated (Bodner et al., 2020). 146 

We specified two use-cases for our Adaptive Preregistration template: 147 

1. study authors or modelers seeking to preregister their modelling study, 148 

2. editors, reviewers, and/or readers of the completed preregistration, who are tasked with 149 

‘preregistration checking’ or verifying that analyses and findings reported in the final 150 

manuscript are consistent with the preregistered analysis plan (Pu et al., 2019). 151 

Existing preregistration formats are designed primarily for study authors; they are static text-152 

based documents that do not easily facilitate preregistration checking. We designed our template 153 

expand its utility to editors, reviewers and readers. 154 

2.2 Designing the General Modelling Workflow 155 

We conducted a literature review (Appendix S1) to identify a modelling workflow suitable for 156 

application to a range of different modelling goals, research contributions, model types and 157 

problem contexts; where modelling goals may include exploration, inference and both 158 

explanatory and anticipatory predictions (Mouquet et al., 2015; Tredennick et al., 2021), research 159 

contributions may include development of new methods or application/extension of existing 160 

methods and model transfers (Yates et al., 2018); model types may range from 161 

phenomenological to mechanistic (Connolly et al., 2017) and research contexts may include 162 

basic and applied modelling exercises across ecology and conservation (Brudvig, 2017). The 163 

final output was a workflow that reflected a balance between idealised and actual modelling in 164 
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practice, aligned with the prescriptive guidelines of ‘good modelling practice’ (Augusiak et al., 165 

2014).  166 

2.3 Designing the Preregistration Template 167 

We organised and facilitated a workshop with 10 ecologists and ecological modellers (Appendix 168 

S2). A key task was to identify common modelling workflows and critical decision-steps in 169 

model development (Figure 1, step 2). ‘Critical’ decision-steps are points in the modelling 170 

process where researchers, or modelers, make analytical decisions that could change the output 171 

of the analysis. In this activity, workshop participants first individually reflected on their own 172 

scientific process for a recent or memorable research project, listing the steps undertaken 173 

throughout the process. Next, participants collaboratively mapped the decision steps in their own 174 

personal modelling workflows onto a modelling workflow template 175 

(https://osf.io/fgd23/?view_only=d3379ed454d84d29b6ef999c0ecc1d83)  prepared earlier, 176 

informed by our general workflow (Figure 1). We then collaboratively reviewed and refined the 177 

modelling workflow into a standard set of modelling phases and commonly implemented 178 

decision steps that formed the basis of the preregistration template (Figure 1, step 3). 179 

2.4 Developing an Adaptive Preregistration Methodology 180 

We developed a methodology for application of preregistration to model-based research, or 181 

‘adaptive preregistration’ (Figure 1, step 3), comprising two key components: registered 182 

flexibility and interim preregistrations. We summarise the methodology, and direct readers to our 183 

user-guide for more detailed guidance on implementing adaptive preregistration in practice 184 

(coauthor-1 et al., 2024, Appendix S3). 185 

Registered Flexibility 186 
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Registered flexibility includes preregistration of “plans to deploy flexible strategies” (Srivastava, 187 

2018) whereby the preregistration author specifies flexible heuristics containing alternate 188 

analysis or modelling strategies whose execution depends on the outcome of previous decision-189 

points or analyses. For example, when faced with methodological or analytic uncertainty that 190 

cannot be resolved without observing parts of the data, conducting preliminary analyses, model 191 

checking or other data-dependent decisions, a modeller can preregister a decision-tree that 192 

consists of predefined rules about when a particular modelling strategy or decision should be 193 

implemented (Baldwin et al., 2022). There are three requirements for adequately registering 194 

flexible analyses: 195 

1. Stating what quantity needs to be known to move forward with the modelling and 196 

analysis and why. 197 

2. Describing the analysis that will be used to generate this quantity, and which parts of the 198 

data will be used. 199 

3. Explaining how the results will be interpreted, listing each alternative decision under 200 

consideration, and the analysis result that will trigger each decision respectively. 201 

Interim Preregistrations 202 

The modeller follows an iterative process of preregistration in parallel with modelling, consisting 203 

of interim preregistrations that mark key phases of modelling and analysis as different parts of 204 

the data are observed (Srivastava, 2018). As the modeller proceeds through the model 205 

development process they shift from ideation and preregistration to execution of the 206 

preregistered analysis plan, and back again, generating interim preregistrations at different points 207 

within the model development process, depending on observed outcomes of the flexible 208 
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heuristics described in the interim preregistration (Figure 2).The realised modelling path 209 

executed from the garden of forking modelling paths will depend on the observed outcomes of 210 

the registered flexible analyses at each interim preregistration. 211 

Transparent Documentation of Adaptive Preregistration 212 

Ideally, to transparently document the adaptive preregistration process and facilitate 213 

preregistration checking of flexible modelling and analysis strategies (one intended use-case for 214 

our methodology and template, Section 2.1) the results of any interim and final analyses must be 215 

explicitly linked back to the preregistered analysis strategy. Researchers can take simple steps to 216 

achieve this, for example, by retaining separate versions of initial, interim and final 217 

preregistration documents; retaining the implementation and results of registered flexible 218 

analyses alongside the preregistration documents while recording their filenames in the relevant 219 

preregistration document; and utilising existing platforms with basic version control features, 220 

such as the Open Science Framework (OSF, https://www.cos.io/products/osf). 221 

Optional: Preregistration With git & GitHub 222 

The use of version-control for transparently documenting code-based analyses is considered 223 

best-practice, however, is not yet widespread in ecology and related disciplines (Braga et al., 224 

2023). We propose using git and GitHub as the vehicle for transparent documentation of 225 

adaptive preregistration of a modelling study for those researchers already comfortable with 226 

these tools (see user-guide for details, coauthor-1 et al., 2024, Appendix S3). The procedure 227 

leverages GitHub’s tag and release feature (https://help.github.com/en/github/administering-a-228 

repository/releasing-projects-on-github) in conjunction with Semantic Versioning 229 

(https:/semver.org/) to track, document and collaborate on changes to the preregistration 230 

document and the analysis. Modelling code and results are stored and versioned alongside the 231 
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preregistration document in the project repository, while GitHub issues (see Braga et al., 2023 232 

for explanation and definition) are used to track discrete analysis tasks described in the 233 

preregistration. GitHub issues are particularly useful for registered flexible analyses, facilitating 234 

documentation of any interpretation of the results of registered flexible analyses and their 235 

influence on the rationale for the subsequent preregistration; the outcome of the registered 236 

flexible analysis is recorded within that issue, hyper-linked to the registered heuristic in the 237 

preregistration document, alongside interpretation of those results and documented decisions 238 

about which decision alternative is to be selected based on those results. 239 
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 240 

Adaptive Preregistration Modelling & Analysis
1

2

3

4

Conduct remainder of analyses as planned and 
described in v.3.0.0. 
No further amendments to preregistration.

Respond to additional preregistration template Item, or, 
Provide further detail on items that were already 
drafted in v0.1.0.

Initial Preregistration Complete
All items addressed, or, Preliminary investigations or 
analyses required to inform analysis choices.

Begin drafting initial preregistration.

Conduct next analysis described in v1.0.0.
Check results: violated assumptions / unexpected 
finding, or,
if preliminary analysis registered, results inform analysis 
plan.

5

Conduct  analysis, as described in v1.0.0.

Check results: as expected / registered.

1.1.0

6

7

0.1.0

0.2.0

1.0.0

1.2.0

Conduct analyses based on preregistration v.2.0.0.
Check results: no modifications to already 
preregistered analyses.

Modify analysis plan, or complete additional 
preregistration items based on preliminary analysis in 
v1.2.0.

Complete additional preregistration template items, or, 
provide further detail on items that have already been 
drafted (but not yet actioned) in v2.1.0.

3.0.0

2.1.0

2.0.0

8

9
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Figure 2 Implementing Adaptive Preregistration. The preregistration (blue steps) and modelling 241 

and analysis processes (orange steps) operate in parallel. Purple tags represent git tags, 242 

corresponding to incremental versions of the preregistration.  Any changes to the analysis plan 243 

receive a GitHub release and major version number increment. Step 3 corresponds to the initial 244 

preregistration document, Step 6 corresponds to an interim preregistration, and Step 8 245 

corresponds to the final preregistration. The execution of the Final Preregistration occurs in Step 246 

9. 247 

2.5 Evaluating and Refining Adaptive Preregistration with a Case Study 248 

We preregistered a real-world model-based research problem as a case study for evaluating and 249 

testing the Preregistration Template and proposed Adaptive Preregistration methodology (Figure 250 

1, step 4). The case study analysed the effectiveness of environmental flows on maintaining 251 

riparian vegetation condition in Victoria, Australia (Jones et al., 2025, in review), forming a 252 

component of the Victorian Environmental Flows Monitoring and Assessment Program 253 

(VEFMAP), a large-scale, long-term monitoring program delivered by the Arthur Rylah Institute 254 

for Environmental Research. The VEFMAP research team consisted of; a project lead (coauthor-255 

2), who was responsible for establishing the conceptual framework and research questions that 256 

inform the analysis, and a modeller (coauthor-4) who undertook much of the coding and 257 

exploratory analysis under direction of a lead modeller (coauthor-3). Modelling experience 258 

among the team ranged from moderate to advanced, and the preregistration was collaboratively 259 

completed by the case study research team and the study lead (coauthor-1). In addition to 260 

following the protocol for adaptive preregistration using git and GitHub, we also utilised the 261 

version-control and collaborative project management features of git and GitHub (Braga et al., 262 

2023) to live-develop the preregistration template and capture the case study researchers’ 263 



 

 16 

Public 

feedback about the template and adaptive preregistration methodology. For example, if it 264 

emerged in the process of completing the case study preregistration that we had missed an 265 

important step in the modelling process or found that the order and structure of the template 266 

should change, the suggested change and its justification was recorded in GitHub discussions. 267 

We also conducted follow-up semi-structured interviews with the case study researchers to 268 

capture detailed reflections. 269 

3. Results 270 

3.1 The Preregistration Template 271 

The final Preregistration Template refined by application of the draft Preregistration Template 272 

developed from the user-research workshops to the case study, is hosted at 273 

https://anonymous.4open.science/r/EcoConsModPreReg-6FF5. We provide the template as a 274 

quarto markdown extension template (coauthor-1, 2025) which can be installed and rendered to 275 

three different formats, html, pdf, and docx (Appendices S4 and S5. Intermediate versions of the 276 

template developed through application of the initial template to the case study are available in 277 

the case study preregistration document’s GitHub commit history (link suppressed for peer-278 

review) or in case study GitHub repository releases (link suppressed for peer-review). 279 

3.2 Findings from the Case Study 280 

The application of our preregistration template and Adaptive Preregistration methodology to the 281 

environmental flows modelling case study occurred across three distinct stages (Table 1, 282 

Figure 3), with two interim preregistrations (Version 1 and Version 2) preceding the finalised 283 

preregistration (Version 3, Appendix S6), each corresponding to distinct phases in both the 284 

Preregistration and Modelling & Analysis processes. While preparing Version 1, the modellers 285 
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decided that they needed to conduct some analysis to specify a set of appropriate candidate 286 

models. They preregistered a pilot analysis (Version 2) which used a subset of the full dataset to 287 

preserve some degree of data-dependent decision-making while permitting a degree of 288 

exploratory analysis. Results from the pilot analysis informed subsequent preregistration of the 289 

Main Analysis on the full dataset (Version 3, Appendix S6). Several classes of data-dependent 290 

decisions (Liu et al., 2020) emerged during our case study, which were managed using a 291 

combination of registered flexibility and interim preregistrations: 292 

• Data-flow dependencies: where the output of one decision is the input to another. For 293 

example, the models parameterised on the full dataset in the case study’s Main Analysis 294 

were subject to a suite of model checks as outlined in the decision-trees in Preregistration 295 

Version 3, with the results of model checking informing a priori specified alternative 296 

model structures and model functional forms. 297 

• Information dependency: where one decision informs another. For example, outcomes 298 

from the exploratory pilot analysis (Interim Preregistration Version 2, Table 1) informed 299 

the model structures specified in Preregistration Version 3 (Table 1), as well as the 300 

decision heuristics for triggering their fitting and acceptance. 301 

• Procedural dependency: where downstream decisions would not exist if some alternative 302 

upstream decision was made instead. For example, if preliminary analysis of the data had 303 

not revealed over-dispersion or zero-inflation in the data, then the case study modellers 304 

would not have fitted zero-inflated Poisson models, nor would they have trialled 305 

accounting for over-dispersion or refitting using negative binomial models (Figure 4). 306 
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3.2.1 Interim Preregistration (Versions 1 and 2) 307 

Two initial candidate ‘maximal’ models were preregistered in Version 1 (Figure 3), one for each 308 

study response variable, however, modellers were unsure if these models would be supported by 309 

the dataset due to low sample sizes relative to the complexity and spatio-temporal patchiness of 310 

the data. Preregistration Version 2 described an exploratory pilot analysis that aimed to resolve 311 

critical uncertainties about how to operationalise the models, given data constraints, and how to 312 

specify a candidate set of models that could feasibly be fitted to the full dataset (Table 1). This 313 

involved partitioning the dataset into a ‘Pilot Analysis’ subset for making subsequent data-314 

informed modelling decisions, which were then preregistered in a subsequent preregistration of 315 

the ‘Main Analysis’ (Version 3, Table 1 and Figure 3). The pilot analysis dataset consisted of 316 

observations from a single site with good temporal data coverage, while the main analysis 317 

dataset comprised the full dataset, including the pilot dataset. Preliminary analysis informed how 318 

to operationalise the models given the underlying structure of the dataset. For example, simple 319 

tests of data distributions within hierarchies were required to check for data spread and the 320 

presence of zero-inflation, while checks for collinearity among candidate predictor variables 321 

were needed to prevent confounding and overfitting, and to ensure relevant interactions were 322 

captured in the models. The same procedures for evaluating model fit and model checking were 323 

preregistered for both the pilot and main analysis (Figure 4B), however the purpose of model 324 

checking in the Pilot Analysis was to identify appropriate model structures, whereas the purpose 325 

for the Main Analysis was to ensure that the fitted models were supported by the data. 326 

3.2.2 Final Preregistration (Version 3): Main Analysis 327 

In Version 3 of the Preregistration, we derived and preregistered: 328 
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1. A preferred candidate model or ‘full model’ for each response variable (vegetation 329 

richness and vegetation cover), to be fitted to the full dataset (Initial Preregistration, 330 

Figure 3 and Appendix S6, p.13). 331 

2. A candidate set of simplified models that separately captured different flow components 332 

for each response variable, with two versions of the flow events model for vegetation 333 

cover (Flow Events Models A & B, Figure 3 and Appendix S6, pp.20-21). 334 

3. Decision-trees for triggering fitting and acceptance of the candidate simplified models 335 

should the preferred full model specifications fail to converge and/or provide appropriate 336 

parameter estimates (Figure 3). 337 

4. A second flexible strategy, for determining model functional form and to account for 338 

potential over-dispersion (Figure 3). Preregistering this flexibility was motivated by the 339 

modellers’ concerns that the actual data distributions in the full dataset did not match 340 

expectations informed by the pilot analysis. This final decision-point for choosing the 341 

model family is subjective and fuzzy, and explicit weightings between the three model 342 

performance criteria could not be expressed or preregistered. Instead, modellers 343 

explained that the final decision will be guided by the model’s overall ability to capture 344 

key associations reliably. 345 

  346 
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Table 1. Key stages of the modelling and Adaptive Preregistration process implemented in the 

environmental flows modelling case study. Version numbers in parentheses are GitHub tags, 

marking snapshots of the repository for each Preregistration Version. 

Preregistration 
Version 

Preregistration Process Modelling and Analysis Process 

Version 1: 
(v0.10 – 
v0.8.1) 

Establish problem 
context, study background 
and aims, describe data 
collection and data 
cleaning process, 
articulate modelling 
objectives, and specify 
candidate models. 

Data cleaning and preparation undertaken 
concurrently by lead and supporting 
researchers due to limited resourcing and short 
timelines for project deliverables. Candidate 
models addressing different components of the 
research question were preregistered. Data 
structural properties and potential 
consequences for model fitting were identified 

Version 2: 
(v0.9.0 – 
v.0.12.5) 

Describe Pilot Analysis 
on data subset and specify 
registered flexibility in 
the form of decision 
heuristics. 

Critical uncertainties in modelling decisions 
were articulated (e.g. how do we classify best 
flow regime based on inundation data?). In 
addition, data partitioning, exploratory data 
analysis, refined candidate models and model 
checking procedure preregistered 

Version 3: 
(v0.13.0 – 
v.0.20.1) 

Describe Main Analysis, 
including specification of 
decision tree for model 
selection process based on 
results of pilot analysis. 

Conducted modelling and analysis as outlined 
in preregistration. Reported deviations and 
rationale as necessary. 
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Figure 3: The evolution of model development across preregistration iterations in the case 

study. Each preregistration corresponds to different stages of the model development process, 

summarised in Table 1. Maximal models for each response variable were specified in the 

initial preregistration (Version 1). Exploratory and pilot analyses and data partitioning were 

next preregistered (Version 2), aiming to resolve uncertainties in model specification given 

data constraints. The pilot analysis identified three candidate simplified models for vegetation 

richness and two for vegetation cover. These model structures were preregistered in the final 

preregistration for the Main Analysis (Version 3), in conjunction with registered flexibility for 

determining model structure and functional form. The two Registered Flexibility steps in the 

Main Analysis (shown in blue) were informed by preliminary analyses conducted in the Pilot 

Analysis (Version 2) and are further described in Figure 4. The Main Analysis was 

preregistered to be conducted on the full dataset. After conducting the preregistered Main 

Analysis, three final models were identified for model fitting and analysis, one model for 

vegetation cover, and two vegetation richness models, with one incorporating ‘flow events’ 

(spring and summer freshes) and the other incorporating ‘flow regime’ (days per year above 

baseflow and days per year above spring fresh). 

348 
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Figure 4: Application of registered flexibility within the case study preregistration, for selecting model structure (A) and selecting an 

alternative functional form over the default zero-inflated Poisson model (B). 
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3.3 Adaptive Preregistration in Practice: Benefits and Challenges 349 

At the end of user-testing, case study researchers concluded that preregistration is a valuable tool 350 

to facilitate good modelling practice, but also acknowledged several difficulties encountered 351 

during Adaptive Preregistration (Table 2). 352 
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Table 2: Summary of challenges , benefits and added value , as well as tips   for using Adaptive Preregistration for ecological modelling. 

Type Name & Description Case Study Example Practitioner Recommendations and 
Reflections 

 
Decide on template resolution.  
Time required to make preregistration 
templates specific, precise, and exhaustive 
may be off-putting. What is an appropriate 
resolution? 

The preregistration template first used in the case study was 
unwieldy and overwhelming. Resolution was reduced by 
restructuring, removing and merging template items, making the 
task more approachable. 

“Be willing to modify the template if it 
does not meet the needs of the project. 
Any attempt to preregister is better than 
none at all” –coauthor-3. 

 
Decide on template formatting. 
The visual design, presentation and 
formatting affects usability. 

Reformatting template with collapsible help and explanatory text boxes, as well as coloured icons to 
differentiate preregistration items from explanatory text, improved clarity of the initial preregistration and 
facilitated more efficient completion of the preregistration using the template. 

 Choose a version-control platform that 
does not require too much investment in 
upskilling. 
Adaptive Preregistration requires interim 
versions of the preregistration be deposited 
in a single location that is ideally version 
controlled. Some platforms have a steeper 
learning curve than others, impacting on the 
efficiency of preregistration. 

Using GitHub to track iterations in the preregistration proved difficult to combine with a GitFlow approach 
for simultaneously collaborating on the analysis code and preregistration across branches. The lead modeler 
(coauthor-3) regularly uses git for version control but was less familiar with the GitHub web GUI. Under 
broad direction of the lead modeller, a second modeler (coauthor-4) undertook much of the coding and 
exploratory analysis, but had limited familiarity with version-control systems, and was unfamiliar with 
collaborative code-base development tools, such as GitHub. Substantial project time was allocated to 
developing a collaborative GitHub workflow and familiarising both modellers with this approach. 

 
Ensure that modelling decisions and 
registered flexibility are accurately 
documented and easily discernible when 
preregistration checking.  
For complex modelling studies, especially 
where there are multiple models being 
preregistered and/or where there are 
multiple models under consideration within 
a model selection approach, it is difficult to 
keep track and accurately document 
analysis decisions, including flexible 
decision-heuristics. 

When checking the preregistration to write the case study report, 
the lead author (coauthor-1) found it difficult to clearly identify 
registered decision-triggers for choosing alternative model 
functional forms over preferred forms, due to information 
dispersal over multiple sub-sections within the preregistration 
(4.3.1 Quantitative Model Checking, 3.2.2 Choose Model 
Family, 3.5 Model Assumptions & Uncertainties, 3.4.2 
Estimation Performance Criteria). Moreover, some decisions 
concerning the model selection process were informed by tacit 
knowledge of the modelling team and not recorded in the 
preregistration (Section 3.1.4). 

“I could not figure out why quadratic 
associations rather than linear 
associations were fitted at the 
functional group level when these were 
not described in the preregistered full 
model descriptions and pseudo-code. 
After significant effort, it became 
apparent that this decision was 
described across multiple sub-sections” 
– coauthor-1. “In hindsight, we would 
specify the model selection procedure 
in both the Pilot Analysis and Main 
analysis more clearly. The process was 
more akin to ’make the model more 
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complex again, and make it look more 
like the full model” - coauthor-3. 

 
Adaptive Preregistration may be 
incompatible with model management 
workflows in real world applications. 
Operational procedures may constrain 
analytic decision-making too early in the 
research timeline and requires modellers to 
be involved earlier and throughout the 
research. Operational constraints may be 
easier to overcome in academic rather than 
government or industry settings. 

At the case study institution, similar to many organisations working on applied problems, modellers are 
typically brought into the research project late in the research programme and are allocated limited time 
over a discrete period (e.g. 5 days immediately before report-writing and well after project planning) to 
conduct the modelling with limited knowledge of data provenance, dependency structure and underlying 
distributions. Following the Adaptive Preregistration procedure – where there were several rounds of 
iterative planning and preregistration, and implementation and analysis – required modellers to be involved 
much earlier in the research process than usual. Changes in operational procedure and culture would need 
to occur at the case study institution to facilitate Adaptive Preregistration becoming commonplace. 

 Preregistering flexible analyses is 
difficult and may delay the research 
process, especially as the analysis 
increases in complexity.  
Formulating alternative decision-pathways 
and their decision-triggers is challenging 
under certain conditions: when the 
underlying dataset is complex, unfamiliar to 
the modellers, zero-inflated, over-dispersed, 
and small (low sample size). On the other 
hand, preregistration of straightforward 
projects would likely take less time due to 
increased familiarity with “standard” or 
“go-to” analyses for simpler data types and 
structures. 

The process of working through and documenting analysis 
decisions prior to analysing the data delayed completion of the 
analysis considerably when compared to expectation. The task 
of mentally forecasting potential analysis scenarios and decision 
pathways was particularly challenging in this instance, because 
the dataset was complex and unfamiliar to the modellers. 
Compared to knowledge and models of processes affecting fish 
responses to environmental flows, the vegetation models are 
relatively less developed. The lead modeller has much more 
familiarity modelling count data on fish and reflected that there 
would be less analytic unknowns in those instances, which 
would have made the task of preregistering flexibility much 
easier. 

“Adaptive Preregistration did delay the 
research process initially, because we 
had to carefully consider all the likely 
scenarios to the end of the process and 
document those, as opposed to only 
needing to figure out the first part and 
then starting. I expected this delay to be 
about a month; however, the delays 
were much longer due to the fact that 
we had never tried preregistration 
before, we were also feeding back 
information into the Adaptive 
Preregistration process, and the model 
design and structure was very complex 
and different to things we had done in 
the past. It was a pretty challenging 
analysis – far more complex than many 
ecological studies I have worked on” –
coauthor-2. 

 Adaptive Preregistration is difficult at 
first and therefore slows the research 
process but will become easier and more 
efficient with familiarity and experience 
with preregistration. 

The preregistration of decision trees and heuristics for triggering 
the selection of some models over others was the most difficult 
and time-consuming aspect of Adaptive Preregistration for the 
case study modellers. However, with practice and experience 
they expect Adaptive Preregistration will become easier and 
quicker. 

“The process would definitely be easier 
and faster the next time, even for a 
project of the same complexity. Partly 
this is because of just knowing how it 
works and what to expect. The first one 
will always be the most difficult and 
slow. Going through the Adaptive 
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Preregistration process once or twice 
will make it much more efficient.” – 
coauthor-2. 

 Planning the analysis at the outset likely 
saves time in long run.  
Using a structured workflow that carefully 
considers modelling decision points and 
options in advance reduces scope for time-
consuming back-and-forth adjustments later 
in the process. Having a documented plan 
to refer back to also saves time on similar, 
future tasks and report writing. 

Typically, the modelling team follows a more trial-and-error 
based approach to model development, particularly for research 
and decision-making contexts where conceptual models, 
variable definitions and model parameters are uncertain (such as 
for the vegetation components of VEFMAP, compared to fish 
models). Adaptive Preregistration forced the modellers away 
from their usual iterative process towards a carefully considered 
and well-justified a priori construction of the models. The case 
study modellers thought that the modelling process saved time 
in the coding of the models and by preventing iterative 
adjustments in the models and code and saving potential back-
and-forth communications between modelling team members 
when deciding on and implementing and those changes. 

“Undoubtedly using Adaptive 
Preregistration saved some time at the 
end of the process, but it is hard to say 
how much. Shifting the process from a 
more trial-and-error based approach to 
a very carefully considered 
construction of the model a-priori, must 
surely have saved time in the coding 
and back-and-forth adjustments stages. 
The document was very helpful when it 
came to write the report. We also have 
a worked example that we are happy 
with that we can use to leverage off or 
remind ourselves how we approached a 
step in the past” – coauthor-2. 

 Preregistering model structures and 
predictors in advance strengthens links 
between methods and the original study 
aims / concepts. 

Preregistration required careful consideration of the candidate 
predictors and possible model structures. The case study 
modellers acknowledged that while the broad approach to model 
development would likely have followed a similar progression 
(expanding on a basic Poisson model to address zero-inflation 
and overdispersion, while also reducing a candidate predictor set 
down to a maximal viable set), in the absence of Adaptive 
Preregistration they may have proceeded without clear criteria 
for selecting one model over another (noting that these criteria 
were still relatively vague in the preregistered study). 

“If these models were developed 
without preregistration, much of this 
thinking would have been ‘on the fly’, 
which may have resulted in better 
model fit (under a range of criteria) but 
perhaps weaker links to the study’s 
aims and conceptual basis” – coauthor-
3. 

 Adaptive Preregistration reduces 
researcher degrees of freedom by shifting 
the nature of the modelling process away 
from a loosely bounded and iterative, trial 
and error style strategy towards a more 
constrained, goal-directed type analysis. 
Incorporating loosely defined pilot analyses 
with data subsetting facilitates data 

When considering how the case study modelling would have 
occurred without being preregistered, both the project lead and 
lead modeler thought that the preregistration process led to 
similar outcomes to what would be expected under standard 
practices, but that the modelling process under Adaptive 
Preregistration may have resulted in a different set of predictors 
(including entirely different predictor variables) being selected 
because the model selection process was more constrained 
compared to usual practice. 

“I do think we probably would have 
tried more variations on the model 
structure and variables without the pre-
registration. After starting with 
standard data checks to determine 
appropriate model structure, I would 
usually run simple models to see if I 
could get them to work. I would have 
then added complexity incrementally 
adjusting my model as I went and 
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exploration being formally incorporated 
into the analytic decision-making process. 

troubleshooting problems as they arose. 
I would have adjusted the definition of 
the regime variable, in particular, 
based on ecological expectations and 
model outputs (if required)” – 
coauthor-2. 

 Adaptive Preregistration increases 
research transparency.  
Specifying modelling and analysis plans, in 
a preregistration, together with justification 
of choices, ensures decisions are 
documented and reported in greater detail. 
Typically, only the final models are 
reported. 

The use of interim preregistrations of the pilot analysis ensured 
that preliminary analyses of exploratory nature were 
documented when they otherwise would not have been, the 
results of which were expressly linked to candidate model 
structure selection in the preregistered main analysis. In 
particular, the project lead noted that early stages of the analysis 
were documented when typically, decisions and analyses at 
these early stages, such as data cleaning and processing 
decisions, would not have been reported. 

“We would have conducted an 
extensive data review in the same way 
as with the preregistration, but the 
process would not have been as well 
documented and that would have made 
it much more likely that we would have 
had gaps in the process and therefore 
more potential for errors” – coauthor-
2. 

 Adaptive Preregistration increases 
research accountability.  
Documenting the process helps demonstrate 
accountability to funders and decision 
makers. 

The project timeline included several reporting milestones and 
review processes. At early to middling timepoints, the modellers 
were able to share the preregistration document to funders to 
indicate how they intended to conduct the analysis, 
communicate rationale for particular analysis choices, and 
demonstrate time investment. 

“I was very glad to have the 
preregistration on hand to share or 
refer to for reporting milestones and 
review processes. The project was also 
long and complex with several delays, 
so it was nice to have a clear document 
outlining the process so that we could 
go back and check if we forgot an 
element of our plans” – coauthor-2. 

 Adaptive preregistration encourages 
regular communication between 
modellers and others involved in the 
research.  
Clear communication among team members 
improves the chances that model outputs 
align with the project aims. 

“The Adaptive Preregistration process (like static preregistration) requires clear communication between 
all people involved in collecting and modelling the data. Frequent communication provides more clarity 
about the purpose and scope of analyses, which may lead to model outputs being more closely aligned with 
project aims than would otherwise occur”– coauthor-3. 

 Preregistration helps clarify good 
practice and process for less experienced 
researchers. 

The lead and assistant modellers worked closely together during 
the case study, with the assistant modeller implementing part of 
the model development and coding of the models under the 
supervision of the lead modeller. The iterative nature of 
Adaptive Preregistration and its interim preregistrations could 
facilitate less experienced researchers to document their analysis 

“The process helps to avoid future 
problems, improves transparency and 
quality of research practices, and is a 
very useful tool for less experienced 
researchers wanting to develop their 
skills. I strongly encourage everyone to 
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choice rationale and validate this with experts or more 
experienced modellers before proceeding, so they could 
progress with confidence. 

go through it to understand how it 
works and how it could be of benefit to 
themselves and/or their colleagues” – 
coauthor-2 

 
Develop the preregistration and analysis 
over a short time period so that 
institutional or organisational shifts do not 
disrupt the research process. 

“The case study presented here was developed over several years, during which time there was staff 
turnover and changes in project constraints (including budgets). This complicated the process.” – 
coauthor-3. 

 Adaptive Preregistration provides a 
paper trail and archive of the current 
state of the project, facilitating swift 
continuation of progress in case of 
unexpected loss of key personnel. 

“It would have been extremely important to have the preregistration document on hand if something 
happened to our biometrician (e.g. sickness or other absence, which is common). If we had their code and 
the pre-registration document, another biometrician would have been able to very quickly get everything 
they needed to progress things.” – coauthor-2. 
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4. Discussion 353 

The potential benefits of preregistration are clear: it encourages careful and considered 354 

analysis, restricts researcher degrees of freedom, and mitigates the Questionable Research 355 

Practices that can derail research. Preregistration can improve the reproducibility and 356 

reliability of scientific research (Koivisto & Mäntylä, 2024).  357 

Existing preregistration templates are best suited to hypothesis testing research, and less 358 

suited to the style of analysis often taken by ecologists: that is, iterative modelling of 359 

complex relationships, often switching between exploratory and confirmatory practices 360 

(Alspaugh et al. 2019; Connolly et al. 2017; Prosperi et al. 2019). Although iteration makes 361 

preregistration less approachable for model-based studies, it need not preclude it entirely. 362 

Here, we show how 'Adaptive Preregistration' can facilitate best practice via a structured, 363 

principled and flexible approach to analysis. 364 

Despite fears that preregistration may limit creativity and flexibility (Pu et al., 2019) and 365 

lessen researchers’ engagement with data (MacEachern & Van Zandt, 2019), our case study 366 

shows how adaptive preregistration can improve reproducibility and transparency of 367 

process, research outputs and analytic decision-making (Liu et al 2020). By separating the 368 

planning stage from the analysis, our lead case study researcher found the structured 369 

approach helped focus modelling and analysis activities, maintaining clear links between 370 

methodological decisions and the study aims and conceptual models (Table 2). 371 

By facilitating data exploration in the modelling through registered flexibility, data-372 

subsetting and interim preregistrations, Adaptive Preregistration trades unbounded 373 

explorations for more goal-directed analyses, constraining researcher degrees of freedom 374 
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and ‘fishing expeditions.’ In the absence of Adaptive Preregistration, the case study 375 

modellers felt they would have started with a much larger decision-space, trialling more 376 

variations on model structure and predictor variable operationalisations along the way, 377 

risking overfitting (Lewis et al., 2023). 378 

Our findings also show that Adaptive Preregistration increases both analytic and model 379 

transparency (Bodner et al., 2020; Lupia & Elman, 2014) by ensuring that modelling 380 

choices, steps, assumptions, and expectations about outputs are articulated in greater detail 381 

than would typically occur (Schmolke et al., 2010). Documenting intermediate models, 382 

analyses and results avoids reporting only the final models and exposes the influence of 383 

exploratory and data-contingent analyses on modelling choices. In our case study, the use 384 

of explicit prompts for choosing between and transparently justifying alternative model 385 

functional forms served to illuminate the analytic garden of forking paths, which too often 386 

remains opaque in ecological modelling (Schmolke et al. 2010, Fitzpatrick et al. 2024). 387 

Modelling is considered an ‘art form’ as well as a science (Smaldino, 2020). Unpacking 388 

ingrained tacit knowledge may take time, especially the first time around, but there is clear 389 

value to capturing this expertise for future researchers working on the same or similar 390 

problems. It took several attempts for our case study modellers to fully articulate registered 391 

flexibility when selecting model structure and functional form, perhaps because these 392 

procedures were second-nature in the modeller’s practice, but by directing users to specific 393 

modelling tasks, preregistration prompted modellers to explicitly recognise, document and 394 

justify tacit modelling choices. 395 

 396 
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4.1 Difficulties encountered using Adaptive Preregistration in our case study 397 

Our case study researchers reported that the most challenging aspects of Adaptive 398 

Preregistration involved anticipating analysis decisions in advance, in addition to changes 399 

to model management and timelines. Registering flexibility requires careful thought and 400 

time to adequately capture analytic decision-points and describe the process for resolving 401 

those decisions. In our case study, while the decision heuristic for choosing model 402 

functional form was accurately preregistered, the process for determining model structure 403 

was underspecified in the ‘Main Analysis’ preregistration. This occurred because the 404 

preregistration did not specify that the heuristic should only be applied to some models and 405 

not others (i.e. Flow event models and not flow regime models, Figure 3). 406 

The case study researchers noted that anticipating potential analysis scenarios and decision 407 

pathways was complicated by large uncertainties about the underlying system dynamics in 408 

a complex and patchy dataset. The preregistration, while detailed, did not fully capture the 409 

modellers’ intended and implemented model selection strategy, where after fitting the set of 410 

simpler models identified from the pilot study (preregistration version 2, Table 1), the 411 

modellers iteratively trial different combinations of model terms to generate models closer 412 

to the more complex ‘maximal’ models identified in the initial preregistration 413 

(preregistration version 1, Table 1). The preregistered specification did not explain which 414 

combinations of model terms would be trialled, and in what order they would be trialled, 415 

rendering aspects of the model selection process unregistered. Project milestones with tight 416 

project turn-around times left limited time to iteratively review analysis specification 417 

decisions, resulting in some decisions and components of the modelling process being 418 

omitted from the preregistration. In an ideal world, following our Adaptive Preregistration 419 
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user guide more closely may have avoided underspecificity in the case study 420 

preregistration, but our case study faced the same resource constraints typical of the real 421 

world, for example, costs required to upskill some members of the research team with git 422 

and GitHub. 423 

Our second aim for the template and adaptive preregistration methodology was to facilitate 424 

‘preregistration checking,’ — the process of verifying that the analyses reported in a study 425 

matched those in the preregistration (Pu et al., 2019). We approached preregistration 426 

checking through the adaptive preregistration methodology itself, specifically, through the 427 

'registered flexibility' mechanism and 'interim preregistrations', together with our git and 428 

GitHub implementation protocol. These facilitated comparison of the data-dependent 429 

modelling pathways realised in the course of the study with the full set of decision 430 

alternatives at each decision-point, providing explicit rationale for any data-dependent 431 

preregistered analysis. By version-controlling the preregistration document with git and 432 

GitHub, the genesis of the preregistration from one version of the next is made explicit, for 433 

example, GitHub’s ‘diff view’ illustrates exactly how and where a document has changed 434 

between versions (Appendix S3, Figure 1). Also, the use of GitHub 'issues' in our protocol 435 

tracks the findings of each analysis and links them to the corresponding preregistration 436 

item. By viewing each preregistration item’s GitHub 'issue', the implemented analyses and 437 

findings, together with any subsequent analyses, is clear to anyone checking the 438 

preregistration. Due to limitations in our own case study application (discussed above), the 439 

analysis paths and rationale were only transparent for some preregistration items (e.g. 440 

preregistered data cleaning and processing tasks 441 

https://anonymous.4open.science/r/VEFMAP_VEG_Stage6-7B5F/issues/23) or only 442 
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partially transparent, with discussion of some changes to the analysis plan being recorded 443 

transparently (e.g. https://anonymous.4open.science/r/VEFMAP_VEG_Stage6-444 

7B5F/issues/23issues/71 - issuecomment-1990420515), but not explicitly linked to changes 445 

to the modelling and analysis code itself due to the failure to use GitHub issue tags for 446 

changes to the relevant modelling code. Consequently, we only partially achieved our aim 447 

of facilitating preregistration checking. 448 

These aspects combined may result in researchers feeling like Adaptive Preregistration is 449 

slowing the research process because preregistration front-loads the decision-making and 450 

planning in the project timeline, delaying analysis and implementation of the preregistration 451 

(Evans et al., 2023), which may be incongruent with existing institutional approaches to the 452 

governance, administration and operational support of modelling (i.e. “model management” 453 

Arnold et al., 2020, p.2). In hindsight, the case study preregistration process may have been 454 

more efficient and better specified if modellers and/or biostatisticians were brought earlier 455 

into the project’s planning and decision-making process to allow sufficient time to review, 456 

record and better connect analysis decisions to project aims. Due to the data constraints and 457 

uncertainty in determining adequate model structures for the data, the case study was a 458 

particularly complex analysis with which to apply and test adaptive preregistration. For 459 

simpler analyses, adaptive preregistration would likely not be as difficult once the process 460 

is broadly understood. We recognise that learning and implementing a new approach is 461 

unappealing at first, and although adaptive preregistration may save time later on, it may 462 

require a rearrangement of project timelines and resources. 463 
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Adaptive preregistration is likely to become easier and more efficient as researchers gain 464 

experience and familiarity with preregistration. When implementing Adaptive 465 

Preregistration for the first time, we recommend the following: 466 

1. Start with simple descriptions or dot points in preregistration responses and build 467 

detail and complexity in analysis specification incrementally, as well as in thorough 468 

and ongoing collaborative review. 469 

2. Refer to existing preregistrations to guide researchers in completing their own. 470 

Although there are few examples in ecology now, with future uptake and an 471 

increasing number of journals offering the registered reports publication pathway, 472 

e.g. Conservation Biology, Biological Conservation, Journal of Ecology and Nature 473 

Ecology & Evolution, readers should expect an expanding pool of preregistrations 474 

to draw on. Existing registration repositories, such as OSF registries, can also be 475 

searched. 476 

3. Developing refined templates for specific applications (e.g. prediction versus 477 

inference, or specialised complex methods and study designs) may be necessary for 478 

adequately capturing analytical decisions. In contrast, with time and community 479 

uptake, a set of decision-points common across modelling methods and applications 480 

may naturally evolve over time through practice. Our template offers a starting 481 

point from which researchers can use, modify and add to as they see fit. 482 

4. For some researchers, using git and GitHub for transparently documenting the 483 

adaptive preregistration process may be too challenging. In such cases, or for 484 

simpler analyses, separate sequential analysis plans could be preregistered for the 485 



 

 36 

Public 

same study with metadata linking the chain of preregistrations without tracking 486 

associated analysis files. The OSF currently allows for preregistration updating after 487 

submission (but not updating of project files, https://help.osf.io/article/410-488 

registration-files#ViewingPrevious). 489 

5. Any attempt to implement adaptive preregistration is unlikely to work perfectly the 490 

first time, there will be mistakes and details that are omitted. Being upfront about 491 

this in study reporting is still better than avoiding the preregistration entirely. See 492 

Figure 1 in Lakens (2024) and Table 1 in Wilroth & Atherton (2024) for guidance 493 

on and examples of reporting preregistration deviations. 494 

4.2 What’s the right resolution for a modelling preregistration template? 495 

We aimed to design a preregistration template that was ‘parsimonious’, in that 1) template 496 

items should be specific and exhaustive enough to adequately constrain researcher degrees 497 

of freedom (Wicherts et al., 2016) so as to; 2) facilitate transparent documentation of the 498 

modelling paths and decisions conducted during research, while; 3) not requiring a 499 

prohibitive level of detail. Increasing the completeness and resolution of the template in 500 

capturing decisions throughout the modelling process may improve the ability of 501 

preregistration to restrict researcher degrees of freedom and transparently report results, 502 

however it also makes the preregistration more challenging to complete. Refining the 503 

template during user-testing, greatly reduced the perceived difficulty of preregistration. 504 

However, our case study researchers conceded that some modellers may still consider the 505 

final template to be too cumbersome to invest the time in preregistration.  506 
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The writing and reporting phase of the case study also highlighted the need for ongoing 507 

refinement of the template content and structure in pursuit of our second use-case for the 508 

adaptive preregistration template: ‘preregistration checking’. Information about the 509 

registered flexibility for determining alternative model functional forms was spread over 510 

multiple sub-sections within the case study’s preregistration template, hampering our 511 

ability to conduct preregistration checking post-analysis (see Table 2). We simplified the 512 

template during testing to ameliorate this issue, but it might be further improved by 513 

building modularity into the template and preregistration platform when preregistering 514 

multiple or complex models, such as in our case study. 515 

4.3 Future Work 516 

While we believe we have partly addressed the problem of preregistering model-based 517 

research with the adaptive preregistration protocol, further work remains, particularly 518 

around developing cyberinfrastructure to effectively and transparently handle registering 519 

and reporting flexible analyses. Improvements to the template content, structure and visual 520 

presentation are limited by the infrastructure at existing registries. A registry platform that 521 

can accommodate adaptive preregistration requires a dedicated instrument for capturing 522 

flexible analyses, as well as reporting their outcomes and linking them to downstream 523 

decisions in subsequent preregistrations, which cannot be accommodated by existing 524 

registries, such as the Open Science Foundation (OSF, https://help.osf.io/article/330-525 

welcome-to-registrations), OSF registries (https://www.cos.io/products/osf-registries), As 526 

Predicted (https://aspredicted.org/), and EcoEvoArXiv (https://ecoevorxiv.org/). Similarly, 527 

a preregistration platform with modular content that is shown to the user conditionally 528 
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based on their previous preregistration processes, such that the preregistration ‘expands’ as 529 

items are completed, may streamline the preregistration process. 530 

As open-science practices are becoming increasingly embedded in the publication process, 531 

e.g. reproducibility checklists at Conservation Biology and data- and code-checking in the 532 

peer-review workflow at Ecology Letters (Thrall et al., 2023), preregistration should further 533 

streamline the publication process by enhancing the transparency and rigour of the study. 534 

We encourage researchers to preregister their research using our template and adaptive 535 

preregistration protocol flexibly, adopting elements that work and experimenting with 536 

alternative implementations that work better. New preregistration templates for expanding 537 

application of preregistration specific modelling approaches and methods could be 538 

developed by integrating our template with existing reporting checklists and guidelines, 539 

such as ODMAP for reporting Species Distribution Models (Fitzpatrick et al., 2021). 540 

Alternately, researchers may identify a reduced version of our template with a minimum set 541 

of items that balances trade-off between an exhaustive and specific template and the 542 

resource burden of pre-specifying the analysis. 543 

5. Conclusions 544 

Although challenges remain in preregistering ecological modelling, it is important to 545 

remember the costs and risks of not doing so. Ecological modelling has long been plagued 546 

by poor transparency. Incomplete reporting of the modelling process risks models being 547 

used in inappropriate applications or decisions and may mask poor model design or serious 548 

flaws in the model, resulting in adverse or irreversible outcomes when informing decision-549 

making. Moreover, a lack of transparency in describing ecological models and reporting the 550 
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modelling process provides significant opportunity for undisclosed researcher degrees of 551 

freedom, and hence, the possibility of Questionable Research Practices, with researchers 552 

routinely executing alternative analyses, and selectively reporting them when they do. 553 

Reproducible, transparent and reliable models are essential for sound conservation 554 

decision-making, and adaptive preregistration can improve documentation of modelling 555 

decisions, which is helpful for remembering and explaining the study’s method at the time 556 

of report-writing, to aid others in replicating and understanding model-based research, and 557 

to communicate to funders and stakeholders. 558 

We provide a template and methodology for adaptive preregistration that we hope will 559 

extend the benefits of preregistration to model-based research in a way that strengthens 560 

rather than inhibits that research. Although we focus on ecological applications in this 561 

paper, many elements of the template are relevant across fields, and the template is open 562 

source and can be readily adapted to new fields and purposes. 563 
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Figure-S1-coded-workshop-

outputs.pdf 
Figure S1: Figure of workshop output coding and 

analysis, described in Appendix S1. 

Appendix_S2-

UserResearchWorkshopAnalysis_

MaterialsMethods.docx 

Appendix S2: Additional details of the user research 

and analysis process, including workshop materials 

and analysis. 

Appendix_S3-

AdaptivePreregistration_UserGuide

.pdf 

Appendix S3: Detailed user guide to implementing 

adaptive preregistration transparently using git and 

GitHub. .pdf reproduction of coauthor-1 et al. (2024), 

https://anonymous.4open.science/status/EcoConsPreR

eg-4C05.  

Appendix_S4-

EcoConsPreReg_template.pdf 

 

Appendix S4: Preregistration template in .pdf format, 

generated from 

https://anonymous.4open.science/r/EcoConsModPreR

eg-6FF5.. 

Appendix_S5-

EcoConsPreReg_template.docx 
Appendix S5: Preregistration template in .docx 

format, generated from 

https://anonymous.4open.science/r/EcoConsModPreR

eg-6FF5.  

Appendix_S6-

case_study_preregistration.pdf 

 

Appendix S6: Final version of the case study 

preregistration. 
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Appendix_S7-

case_study_pilot_analysis_summar

y_report_2024_01_24.docx 

Appendix S7: Summary report of the case study pilot 

analysis. 
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Appendix S1: Modelling Workflow 
Identification 

Task 1: Iden,fy Scien,fic Workflows for Ecological 
Modelling 
The goal of this analysis task was to identify scientific workflows for ecological modelling, 
both in practice, and idealised, with the broader aim of identifying a workflow that describes 
the modelling cycle that should underpin the structure and content of a preregistration 
template for ecological modelling.  

We conducted a literature review on ‘good modelling practice’ and structured decision 
making in ecological management, coding distinct tasks in the modelling workflow into 
‘phases,’ ‘steps’ and ‘sub-steps’ using the qualitative data analysis software ATLAS.ti (version 
8.4.13, 2019). See the documents below, stored on the OSF at 
https://osf.io/tz5da/?view_only=992aca57db814e9484a603f8e09b349b: 

• PRT-WorkshopCoding - Memo Manager.csv contains descriptions of modelling 
workflow phases derived from Modelling Workflow Identification Task 1 analysis. 

• references.bib contains all references informing Task 1 Modelling Workflow 
Identification. 

We then synthesised a preliminary idealised scientific workflow describing ecological 
modelling (https://osf.io/fgd23?view_only=b60796fed71f4cc8abe9e5feac5e9465, 
https://osf.io/v7kjh?view_only=b60796fed71f4cc8abe9e5feac5e9465). This work informed 
Workshop Activity 1, whereby participants collated and categorised modelling activities from 
their personal modelling workflows under the main phases of this workflow. See Appendix 
S2 and Section 2.3 of the manuscript for workshop details. 

Task 2: Describe a General Workflow for Ecological 
Modelling 
Participant responses in workshop discussions were analysed using a combination of 
inductive and deductive coding using the qualitative coding analysis software ATLAS.ti 
(ATLAS.ti Scientific Software Development GmbH, 2019). Each decision-point from the 
personal modelling workflows in Workshop Activity 1 were coded as belonging to one of 
these phases, steps and sub-steps. We revised the coding structure according to patterns 
and themes identified across multiple personal workflows. For example, we added the final 
phase “model analysis”, which aimed to capture the fact that analysts usually present the 
results of their modelling to clients, decision-makers or other stakeholders that must 
interpret the evidence and are responsible for making management decisions. In this way, 
we identified a common or generalised workflow from different types of applied ecological 
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modelling projects that synthesised both idealised norms and norms of practice. This final 
workflow underpinned our draft preregistration template used in the case study.  

The documents relevant to this analysis are stored on the OSF at 
https://osf.io/tz5da/?view_only=992aca57db814e9484a603f8e09b349b: 

• PRT-WorkshopCoding.xml contains the entire Atlas.TI database of coded workshop 
outputs in .xml format. 

• individual_sheets_FW.csv contains decision-steps identified in individual workflow 
worksheets for fieldwork. Decision-steps are coded into phases and sub decision-
points following Workshop Activity 1 group worksheets (see Appendix S2 for details). 

• individual_sheets_MDA.csv contains decision-steps identified in individual 
workflow worksheets for modelling. Decision-steps are coded into phases and sub 
decision-points following workshop activity 1 group worksheets (see Appendix S2 for 
details). 

• PRT-WorkshopCoding - Quotation Manager.csv Contains individual modelling 
workflow decision-steps coded into modelling phases and decision-points. 

• PRT-WorkshopCoding - Code Manager.csv modelling phases and decision-steps 
and their descriptions, derived from Modelling Workflow Identification Task 1 and 
Task 2 analysis. 

• Figure S1 – Coded Workshop Outputs (See attached file “Figure-S1-coded-
workshop-outputs.pdf”). Numbered boxes correspond to phases, steps and sub-
steps of the modelling process. Each different phase of the modelling process is 
assigned a different colour. Coloured boxes are components of the modelling 
process that are synthesised from a combination of literature and workshop Task 1, 
with accompanying text describing the phase, step or sub-step. Grey boxes 
correspond to verbatim text from Task 1 workflows (indicated by the  symbol) or 
from the literature (indicated by the symbol), representing different modelling 
activities. The relationship of each node in the diagram is represented by arrows. 
Dashed arrows represent modelling activities that we have categorised as belonging 
to the associated modelling phase, step sub-step, or activity. Whereas solid lines 
represent cases where the relationship is drawn from existing taxonomies of the 
modelling process reported in the literature, with directionality indicating hierarchy. 
The ordinal numbering of the modelling component corresponds to the phase, step 
and sub-step in our taxonomy of the modelling process. 
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For prediction and/or 
management, a key question is 
what the subjects of predictive 
or management in…
For prediction and/or management, a 
key question is what the subjects of 
predictive or management interest are. 
For ex- ample is a qualitative idea of 
behaviour (e.g. direction of change) 
required, or a rough indication of the 
extent of a re- sponse, an extreme 
value, a trend, a long-term mean, a 
proba- bility distribution, a spatial 
pattern, a time series, the frequency or 
location of an event?

The next choice is of how to 
estimate the parameter values and 
supply non-parametric variables 
and/o…
The next choice is of how to estimate the 
parameter values and supply non-parametric 
variables and/or data (e.g. distrib- uted 
boundary conditions). The parameters may 
be calibrated all together by optimising the fit 
of the model outputs to ob- served outputs, 
or piecemeal by direct measurement or infer- 
ence from secondary data, or both. Coarse 
parameter values indicating presence or 
absence of a factor or the rough timing of a 
seasonal event, for instance, might be found 
by eliciting expert opinion

Preparati︎on: manipula︎tion o…
Prepara ︎on: manipula ︎on of environmental 
layers, e.g., standardisa ︎on, geographic 
projec ︎on ...

5.7-model_validation_evaluation: sensitivity analysis 
and uncertainty analysis
“As regards what method should be used, our preference is for 
methods which are exploratory, model-independent, able to capture 
interactions and to treat a group of factors. A carefully performed 
un- certainty analysis, followed by sensitivity analysis, is an 
important in- gredient of the quality assurance of a model as well as 
a necessary condition for any model-based analysis or 
inference.” [@Saltelli2019]. Uses of sensitivity analysis: “Sensitivity 
analysis is used for many purposes. Primarily it is used as a tool to 
quantify the contributions of model inputs, or sub-groups of inputs, 
to the uncertainty in the model output” … “In this uncertainty 
setting, typical objectives are to identify which input factors 
contribute the most to model uncertainty (“factor prioritisation”) so 
that further information might be collected about these parameters 
to reduce model uncertainty, or to identify factors which contribute 
very little and can potentially be !xed (“factor !xing”) (Saltelli and 
Tarantola, 2002).” … “Other applications that are not necessarily 
related to uncertainty are for example in engineering design, where 
“design sensitivity analysis” is used as a tool for structural 
optimisation (Allaire et al., 2004). Sensi- tivity analysis can also be 
used to better understand processes within models, and thereby, 
the natural systems on which they are based (Becker et al., 2011), or 
as a quality assurance tool: an unexpected strong dependence of 
the output upon an input deemed irrelevant might either illuminate 
the analyst on an unexpected feature of the system or reveal a 
conceptual or coding error.” “sensitivity analysis is “the study of 
how the un- certainty in the output of a model (numerical or 
otherwise) can be apportioned to di"erent sources of uncertainty in 
the model input” (Saltelli, 2002).” [@Saltelli2019]. “uncertainty 
analysis (UA), which, as we de!ne it here, characterizes the 
uncertainty in model prediction, without identifying which assump- 
tions are primarily responsible.” [@Saltelli2019]. “Characterising the 
output distribution – e.g. by constructing it em- pirically from the 
output data points, constitutes an uncertainty ana- lysis. The UA 
may also involve extracting summary statistics, such as the mean, 
median, and variance, from this distribution and possibly by 
assigning con!dence bounds, e.g. on the mean. Once this is done, 
the next step could be to use sensitivity analysis to assign this 
uncertainty to the input factors. Sensitivity analysis allows us to infer 
that, for example, “this factor alone is responsible for 70% of the 
uncertainty in the output”. “[@Saltelli2019]. Item: What experiments 
(sensitivity analysis or simulation experiments) will you perform to i…

Following this 
step, one might 
proceed to 
compare the 
performance of 
alternative models 
embodying di…

3.2.3-Choose model family
Specify which family of statistical distributions you will use in your 
model, and describe any transformations, or link functions. Justify 
your decision based on the purpose, objectives, prior knowledge 
and logistical constraints (Jakeman, 2006) specified in the 
problem formulation phase. Include in your rationalse for 
selection detail about which variables the model outputs are 
sensitive to, what aspects of their behaviour are important, and 
any associated spatial or temporal dimensions in sampling.

For instance, 
implementation verification 
might be conducted by peer-
reviewing the code, i.e., 
other…
For instance, implementation 
verification might be conducted by 
peer-reviewing the code, i.e., other 
scientists thoroughly com- paring 
it with the written formulation of 
the model, or by independently 
implementing submodels. This 
TRACE element provides evidence 
that the model software has been 
thoroughly tested and accurately 
implements the model description.

How will we 
assess the 
quality / goodness 
of fit of the 
models?

Choice of how model 
structure and parameter values 
are to be found

How will we 
identify which 
model 
components are 
significant / 
meaningful?

a strong 
rationale for the 
choice of model 
families and fea- 
tures 
(encompassing 
alternatives);
a strong rationale for 
the choice of model 
families and fea- tures 
(encompassing 
alternatives);

3.4.2-Choice of 
structure and 
parameter 
estimation 
technique

3.8. Conditional 
verification 
including 
diagnostic 
checking

4.1-model_calibration_fitting_checking: Model calibration and 
validation scheme
Describe the validation scheme you will use for model testing and 
evaluation.  Please explain your reasoning for your choice of model calibration and 
validation scheme. The model may be tested on data independent of those used to 
parameterise the model (external validation), or the model may be cross-validated 
on random sub-samples of the data used to parameterise the model (internal cross-
validation)  [@Yates2018;[@Barnard2019]. Although using independent data is the 
gold-standard or idealised practice for model evaluation, Typically testing on 
independent datasets is not possible for large and/or integrated models, especially 
when they are being used to generate anticipatory predictions beyond the 
conditions on which they were calibrated [@Jakeman:2006ii]. Describe and justify 
the method for your calibration and validation schema, including how many folds 
and what methods you will use to partition the data set into training/testing data. 
(What other items, esp. re. partitioning are missing?)

we list the features we used plus the quantitative 
crite- ria for deciding whether a certain observa…
we list the features we used plus the quantitative crite- ria for 
deciding whether a certain observation was matched by the 
model. 

Families and features often overlap, and in 
some cases fam- ilies can even be transformed 
into each…
Families and features often overlap, and in some cases fam- 
ilies can even be transformed into each other. For instance 
lin- ear, constant-coefficient, ordinary differential equations 
can be transformed into, or from, Laplace or Fourier transfer 
func- tions. The choice depends on the purpose, objectives, 
prior knowledge and convenience.

The present step addresses 
the iterative process of find-…
The present step addresses the 
iterative process of find- ing a 
suitable model structure and 
parameter values. This step ideally 
involves hypothesis testing of 
alternative model struc- tures. The 
complexity of interactions proposed 
for the model may be increased or re…

Class: correla︎ve, 
mechanis︎c, hybrid ... 
Algorithm: GLM/GAM, 
MaxEnt, CLIMEX, FATE-
HD ... Ensemble…
Class: correla ︎ve, mechanis ︎c, 
hybrid ...
Algorithm: GLM/GAM, MaxEnt, 
CLIMEX, FATE-HD ... Ensemble: 
single model, mul ︎model average ...

Should be / is 
often done in 
conjunction with 
client / manager / 
user

Conduct analysis, 
including confirming 
correct assumptions are 
met

How are uncertainty & 
variation represented in 
this model?

5.5-model_validation_evaluation: evaluate model assumptions
What tests, analyses or visualisations will be performed to evaluate whether model 
assumptions have been violated?  Violation of the theoretical and statistical 
assumptions of a particular model can lead to unreliable results (37, 134, 137, 138) 
for model interpretation, geographic predictions, and projections (38, 50). 
Demonstrating that no model assumptions were violated is a gold standard in 
modelling. In cases where a researcher tests assumptions and finds departures 
from them, it is necessary to assess the consequences on interpretation of the 
results. If violation of assumptions cannot be avoided, explicit exploration and 
discussion of consequences for the interpretation of results in the particular 
context in which they are being used represents the bronze standard (25, 50). 
Blindly using models without testing assumptions should be considered a deficient 
practice. ” [@Araujo2019].  What tests, analyses or visualisations will be performed 
to evaluate whether model assumptions have been violated?

1.3.2-Identify 
outcomes to 
evaluate decisions 
under scenarios

The selection of model family should also 
depend on the level (quantity and quality) of prior 
inform…
The selection of model family should also depend on the 
level (quantity and quality) of prior information specified in 
step 3.3. It must take account of what can be determined 
and how far, i.e. to which accessible and inaccessible 
variables the model outputs are sensitive, what aspects of 
their behav- iour must be considered, and the associated 
spatial dimensions and sampling intervals in space and time.

The data description and evaluation al…
The data description and evaluation allows model 
users to (1) see whether a model was mainly built on 
its authors’ own data and knowledge, or on that of a 
certain expert or group of experts, or on a systematic 
evaluation of the literature, and (2) assess how 
uncertain the data are.

Model choice 
and implementa︎on
Model choice and 
implementa ︎on

4.3-model_calibration_fitting_checking: model 
checking

“Model Checking” goes by many names (“conditional verification”, 
“quantitative verification”, “model output verification” <cite>), but 
refers to a series of analyses that assess a model’s performance in 
representing the system of interest [@Conn:2018hd]. During this 
process, observed data, or data and patterns that guided model 
design and calibration is compared to model output in order to 
identify if and where there are any systematic differences. Model 
checking therefore heps diagnose assumption violations, and reveals 
where a model might need to be altered to better represent the data, 
and therefore system [@Conn:2018hd]. Quantitative model checking 
diagnostics include goodness of fit, tests on residuals or errors, such 
as for heteroscedascity, cross-correlation, and autocorrelation 
[@Jakeman:2006ii].

3.2.3-Choose model features

Specify which types of variables are 
covered in the model, and the nature of 
their treatment (e.g. lumped/distributed, 
linear/non-linear, stochastic/deterministic, 
Jakeman, 2006). Specify model structural 
features, including: - the functional form 
of interactions, - data structures - 
measures used to specify links, spatio 
temporal scales and processes as well as 
their interactions - any bins or 
discretisation of continuous variables

Translate conceptual model in…
Translate conceptual model into 
quantitative model. Decision point: what 
modelling structure is used. What is in or 
out of scope. 

Model output verification always includes ‘tweaking’, 
i.e., we try to make a model reproduce certain…
Model output verification always includes ‘tweaking’, i.e., we try to 
make a model reproduce certain observations by tuning 
parameters, environmental settings, and submodel formulation. 
Such adjustments are often necessary to compensate for pro- 
cesses not included in a model (due to insufficient information or to 
keep the model simple) but were important in the real sys- tem 
when the verification data were collected. Making a model 
simultaneously reproduce multiple observed patterns reduces the 
risk that the model is completely unrealistic, but does not eliminate 
this risk. Only when a model predicts phenomena that we even did 
not think about during model development and test- ing do we have 
the strongest indicator of its structural realism,
because no tweaking could have been involved.

justification of 
the methods and 
criteria employed 
in calibration;
justification of the 
methods and criteria 
employed in 
calibration;

These 
questions aren’t 
asked thoroughly 
enough at the 
beginning of 
model projects. 
That said, the in…
These questions aren’t 
asked thoroughly 
enough at the 
beginning of model 
projects. That said, 
the initial answers can 
easily change as the 
project develops, 
especially when 
managers are involved, 
emphasiz- ing again 
the need for iteration

Qualitative verification preferably 
involves knowledgeable data suppliers or 
model users who are not…
Qualitative verification preferably involves 
knowledgeable data suppliers or model users 
who are not modellers. Where the model does 
not act feasibly or credibly, the assumptions, 
including structure and data assumptions, must 
be re-evaluated. Indeed, this stage of model 
development may involve reassess- ment of the 
choices made at any previous stage. Checking of 
a model for feasibility and credibility is given little 
promi- nence in the literature because it is largely 
informal and case-specific, but it is plainly 
essential for confidence in the model’s outputs. 
Again this is a very important step, not only to 
check the model’s believability, but to build the 
client’s confidence in the model. It assumes 
sufficient time for this checking and enough 
flexibility of model structure to allow 
modifications. Often these assumptions are not 
met.

Conceptual model evaluation. This 
element is defined by Augusiak et al. 
(2014) as “the critical asse…
Conceptual model evaluation. This element is 
defined by Augusiak et al. (2014) as “the critical 
assessment of the simplifying assumptions 
underlying a model’s design”. The design of any 
mathematical or simulation model is based on a 
concep- tual model which reflects our 
preliminary understanding and perception of the 
system to be represented in the model. For 
example, we may focus on nutrients and energy, 
species
composition, or individual organisms

Evaluation of output verification needs 
to consider such concerns as over-fitting 
and extrapolation.…
Evaluation of output verification needs to consider 
such concerns as over-fitting and extrapolation. 
The higher the pro- portion of calibrated, 
guesstimated, or uncertain parameters (see TRACE 
element ‘Model analysis’ below), the higher the 
risk that the model seems to work correctly (e.g., 
because it fits calibration data well) but for the 
wrong reasons, i.e., has not captured the 
mechanisms of the real system.

Revise 
statistical model 
based on 
violations to 
assumptions, 
misfit

4.2-model_calibration_fitting_checking: Implementation 
verification
What Quality Assurance measures will you take to verify the modle has 
been correctly implemented as per the formal model specification ? 
This could be as simple as an informal ‘model walkthrough’ to 
examine the model’s behaviour qualitatively, or it could include more 
sophisticated approaches such as formal unit testing approaches 
using continuous integration platforms (see [@Yenni2019]). Qualitative 
tests could include syntax checking of code, and code reviews by 
peers. Checks for verification implementation should include i) 
thoroughy checking for bugs or programming errors,  and ii) whether 
the implemented model performs as dictated by the model description  
[@Grimm:2014es]. Specifying up front QA tests for implementation 
verification may help to avoid selective debugging.

If model is 
suitable and 
performed well, 
then proceed with 
extracting 
required model 
outputs for the…

f pos- sible, the reliability of the data used should 
be discussed, as data quality and ecological s…
f pos- sible, the reliability of the data used should be discussed, as 
data quality and ecological significance might be limited by 
measure- ment errors, inappropriate experimental design (e.g., 
number of replicates), and, in particular, the heterogeneity and 
variabil- ity inherent to environmental systems (Gass, 1983; Wang 
and Luttik, 2012). Likewise, expert knowledge and the detection of 
patterns are prone to bias and therefore must be treated with 
particular caution.

There are multiple ways of assessing a model’s 
performance in representing the system being stud- 
ie…
There are multiple ways of assessing a model’s performance in 
representing the system being stud- ied. A first step is often to 
examine diagnostics that compare observed data to model 
output to pinpoint if and where any systematic differences 
occur. This process, which we term model checking, is a critical 
part of statistical inference because it helps diagnose 
assumption violations and illumi- nate places where a model 
might be amended to more faith- fully represent gathered data

What additional 
variables may interact 
in this system? 
(Things we can't 
control but hopefully 
measur…

Any modelling approach 
requires selection of model fea- 
tures, which must conform with 
the system an…
Any modelling approach requires selection 
of model fea- tures, which must conform 
with the system and data specifica- tion 
arrived at above. Major features such as 
the types of variables covered and the 
nature of their treatment (e.g. white/black/
grey box, lumped/distributed, linear/non-
linear, stochastic/deterministic) place the 
model in a particular family or families.

Ensure that model 
framework (and data or metric) 
correctly / appropriately 
addresses the original ne…

If needed, how 
will we choose a 
preferred model or 
composite model?

Identify 
possible 
indicators (and 
their individual 
notions of 
"deterioration")

The document should indicate 
which parame- ter values were used 
directly without calibration and whi…
The document should indicate which parame- 
ter values were used directly without 
calibration and which were determined 
inversely; the methods used for inverse 
parameter- ization will be described in the 
TRACE element, “Model output verification”.

2.4.3-Describe any data exploration or preliminary data analyses.

(i) ‘data evaluation’, asse…
(i) ‘data evaluation’, assessing the 
quality of numerical and qualita- tive 
data used for model development 
and testing

Quantitative verification is traditionally attempted, 
but rarely against a wide range of criteria. C…
Quantitative verification is traditionally attempted, but rarely 
against a wide range of criteria. Criteria may include goodness of 
fit (comparison of means and variances of ob- served versus 
modelled outputs), tests on residuals or errors (for 
heteroscedasticity, cross-correlation with model variables, 
autocorrelation, isolated anomalously large values) and, par- 
ticularly for relatively simple empirical models, the speed and 
certainty with which the parameter estimates converge as more 
input-output observations are processed.

Ensemble: single 
model, mul︎model 
average .

The question is whether some 
system descriptors, for instance 
dimensionality and processes, can be 
a…
The question is whether some system 
descriptors, for instance dimensionality and 
processes, can be aggregated to make the 
representation more efficient, worrying only 
about what dominates the re- sponse of the 
system at the scales of concern. 

Applies to 
phase description: 
Largely influenced 
by school of 
thinking, what you 
like, what you 
know…

and then 
evaluate model fit 
or performance.

"Living PR"

Again it is im- portant to avoid over-fl…
Again it is im- portant to avoid over-flexibility, since 
unrealistic behaviour, ill-conditioning and poor 
identifiability (impossibility of find- ing unique, or 
well enough defined, parameter estimates) are 
severe risks from allowing more degrees of freedom 
than jus- tified by the data.

In order to ensure that the computer 
code implementing the model works 
according to its specificatio…
In order to ensure that the computer code 
implementing the model works according to its 
specification in the ODD model description, a series 
of tests has been performed. These tests included 
syntax checking of the code, visual testing through 
NetLogo interface, print statements, spot tests with 
agent monitors, stress tests with extreme 
parameters values, test procedures and test 
programs, and code reviews.

"Laugh Test" 
Does model fit 
needs of client / 
user? Is some 
form of validation?

The parameter 
estimation criteria 
(hardly ever a 
single crite- rion) 
reflect the desired 
properties…

In developing any model, we tr…
In developing any model, we try to make it 
reproduce some features or patterns of 
the real system before claiming that it is a 
good enough representation.

(iv) ‘model 
output 
verification’, 
comparing model 
output to the data 
and patterns that 
guided model…
(iv) ‘model output 
verification’, 
comparing model 
output to the data 
and patterns that 
guided model design 
and calibration;

This third step defines the data, prior 
knowledge and as- sumptions about 
processes. The procedure i…
This third step defines the data, prior knowledge and 
as- sumptions about processes. The procedure is 
mainly qualita- tive to start with, asking what is 
known of the processes, what records, 
instrumentation and monitoring are available, and 
how far they are compatible with the physical and 
tempo- ral scope dictated by the purposes and 
objectives. However, it becomes quantitative as 
soon as we have to decide what to in- clude and 
what can be simplified or neglected. What variables 
are to be included, in how much detail? Once the 
outputs are selected, a rough assessment is needed 
of which drivers they are sensitive to and what 
internal processes influence the rela- tions between 
the drivers and outputs; this will usually be partly a 
quantitative assessment.

Alternatively, lesser known 
approaches to model checking, 
such as prior predictive checks, 
cross-val…
Alternatively, lesser known approaches to 
model checking, such as prior predictive 
checks, cross-validation probabil- ity 
integral transforms, and pivot discrepancy 
measures may produce more accurate 
characterizations of goodness-of-fit but are 
not as well known to ecologists

Output verification involves what 
often is referred to as ‘face validation’ 
and more formal tests. F…
Output verification involves what often is 
referred to as ‘face validation’ and more formal 
tests. Face validation can be defined as: “All 
methods that rely on natural human 
intelligence” (Klügl, 2008, p. 39). Examples 
listed by Klügl (2008) include: “Structured walk-
throughs, expert assessments of descriptions, 
animations of results”. Klügl (2008) accordingly 
concludes that face validity shows that a model’s 
processes and outcomes are reasonable and 
plausible within its theoretical basis and the 
knowledge of system experts or stakeholders. It 
should be noted, however, that system experts 
and stakeholders may disagree on the type of 
data and knowledge they have. Therefore more 
formal tests are required that are based on 
multiple quantitative criteria for a model 
matching data (e.g., Railsback and Grimm, 2012, 
Chapter 20.4.2).

However, achieving this standard is rarely 
possible with ecological systems because the 
empirical ex…
However, achieving this standard is rarely possible with
ecological systems because the empirical experiments 
are infeasible: we often build models to address 
questions such as response to climate change exactly 
because empirical experi- ments are impossible. 
Instead, we can directly test independent predictions 
of submodels. At the system level, we can identify 
characteristic patterns in model output that are robust 
and seem characteristic. Then, we can consult the 
literature or experts to find out how accurate these 
independent predictions are.

States by Type 
analysis. Again, 
look at the 
proportion of ppl's 
models in which 
this occurred. How 
l…

(iii) 
‘implementation 
verification’, 
checking the 
model’s 
implementation in 
equations and 
software
 (iii) ‘implementation 
verification’, 
checking the model’s 
implementation in 
equations and 
software

2.4.4-Data Evaluation

a suite of visual and targeted 
diagnostics can be used to examine 
violations of different model assu…
a suite of visual and targeted diagnostics 
can be used to examine violations of 
different model assumptions and lack of fit 
at differ- ent levels of the modeling 
hierarchy, and to check for residual temporal 
or spatial autocorrelation.

3.4-formalise_specify_model: choose estimation 
technique and performance criteria
Before calibrating the model to the data, the performance criteria 
on which the calibration is judged are chosen. These criteria and 
their underlying assumptions should reflect the desired properties 
of the parameter estimates / structure [@Jakeman:2006ii]. For 
example, modellers might seek that parameter estimates are 
robust to outliers, unbiased, and yield appropriate predictive 
performance. Modellers will need to consider whether the 
assumptions of the estimation technique yielding those desired 
criteria are appropriate to the problem at hand. For integrated or 
sub-divided models, other considerations might include choices 
about where to disaggregate the model for parameter estimation; 
e.g. spatial sectioning (streams into reaches) and temporal 
sectioning (piece-wise linear models) [@Jakeman:2006ii]. 
Specifying performance criteria a priori is important because it 
involves pre-specifying how the fitted or quantitative model will 
be interpreted in advance, avoiding biases like confirmation bias, 
HARKing, and cherry-picking some performance tests from the 
full suite of tests undertaken. This is important - because it 
involves pre-specifying how we will interpret the fitted or 
quantitative model to avoid cognitive biases like confirmation 
bias, HARKing or other questionable research practices.

Run models for 
all inidcators (in all 
river basins)

Discretising / threshold x state 
and transition. If below 50% then 
discount. -> But remember there 
w…

3.2.1-Explain how you will 
operationalise response 
variable(s)
Specify how you will operationalise 
response variables in the model. This 
should relate directly to the analytical 
and or management objectives specified 
during the problem formulation phase. 
Specifications could include: - 
qualitative change, such as a direction of 
change - the extent of a response - an 
extreme value - a trend - a long-term 
mean - a probability distribution - a 
spatial pattern - a time-series, or - the 
frequency, location, or probability of 
some event occuring. Provide a rationale 
for your choices, including why plausible 
alternatives were not chosen (Jakeman, 
2006).

2.4.2-Data Processing…

Evaluate model 
behaviour given 
input estimates in 
collaboration with 
experts

Once identified, the model must be 
‘conditionally’ verified and tested to ensure it 
is sufficiently…
Once identified, the model must be ‘conditionally’ 
verified and tested to ensure it is sufficiently robust, i.e. 
insensitive to possible but practically insignificant 
changes in the data and to possible deviations of the 
data and system from the idealising assumptions made 
(e.g. of Gaussian distribution of measure- ment errors, 
or of linearity of a relation within the model). It is also 
necessary to verify that the interactions and outcomes 
of the model are feasible and defensible, given the 
objectives and the prior knowledge. Of course, this 
eighth step should in- volve as wide a range of 
quantitative and qualitative criteria as circumstances 
allow.

Performance
: correla︎on 
score, 
coefficient of 
determina︎on, 
specificity, 
sensi︎vity, AU…

Concise text plus tables should summarize what 
data and knowledge went into the design and 
parameter…
Concise text plus tables should summarize what data and 
knowledge went into the design and parameterization of the 
model, including references, data sources, and information 
about where and when those data were collected, and by 
whom.

3.1-formalise_specify_model: choose model 
class, framework and approach
Describe what class or approach of model you will use 
and explain how the choice of model class was informed 
by the analytical objectives of the model. Modelling 
approaches lie on a spectrum from correlative or 
phenomenological to mechanistic or process-based  
[@Yates2018]; where correlative models use 
mathematical functions fitted to data to describe 
underlying processes, and mechanistic models explicitly 
represent processes and details of component parts of a 
biological system that are expected to give rise to the 
data [@White2019a].

The evaluation applies to the 
overall model structure and 
sometimes to submodels, for 
example of met…
The evaluation applies to the overall model 
structure and sometimes to submodels, for 
example of metabolism, competition among 
individuals, movement, or the physical 
environment.

3.6. Choice of 
estimation 
performance 
criteria and 
technique

2.5-define_conceptual_model: 
conceptual model evaluation

Describe how the model will be critically 
evaluated. Evaluation includes both the overall 
model structure, and any submodels if 
relevant. How will any simplifying assumptiosn 
be critically 
assessed[@Augusiak:2014gz]? Explain whether 
this process will include consultation or 
feedback from a client, manager, or model 
user.

Model output verification. Augusiak et 
al. (2014) define this ele- ment as “the 
critical assessment…
Model output verification. Augusiak et al. (2014) 
define this ele-
ment as “the critical assessment of (1) how well 
model output matches observations and (2) how 
much calibration and effects of environmental 
drivers were involved in obtaining good fits of model 
output and data”

Graphical 
representat 
results

Model structure 
specifies the links 
between system 
components and 
processes. Structural 
features inc…
Model structure specifies the 
links between system 
components and processes. 
Structural features include the 
functional form of interactions, 
data structures or measures
used to specify links, spatial and 
temporal scales of processes 
and their interactions, and bin 
sizes for AI techniques such as 
data-mining.

4.0-model_calibration_fitting_checking

Model Calibration, Model Fitting & Checking - this phase 
involves fitting the formally defined model to data and 
checking and testing the fitted model (what should go in 
thisphase if using a numerical, but not correlative model or 
how could we change the wording to make this optional if 
not relevant?)

Understand the data: how ma…
Understand the data: how many samples, 
how arranged, replication, variation, 
covariates. Includes some data summary 
figures / tables. Discuss with data 
collectors.

4.3.2-Qualitative Model Checking
This step is largely informal and case-specific, but requires ‘face 
validation’ with model users / clients / managers who aren’t involved in 
the development of the model to assess whether the interactions and 
outcomes of the model are feasible an ddefensible  [@Grimm:2014es]. 
This process could be called a “laugh test” or a “pub test, and in 
addition to checking the model’s believability, it builds the client’s 
confidence in the model [@Jakeman:2006ii]. Face validation could 
include structured walk-throughs, or presenting descriptions, 
visualisations or summaries of model results to experts for assessment. 
Briefly explain how you will qualitatively check the model, and whether + 
how you will include users and clients in the process.

3.4.1-Choice of 
estimation 
performance 
criteria

checking 
model 
assumptions and 
assessing 
potential lack of fit
checking model 
assumptions and 
assessing potential 
lack of fit

Build feasible 
statistical models

Depending on 
the case, this can 
be: e.g., to 
evaluate/trade-off 
between 
candidate 
decisions and 
anal…

(ii) ‘conceptual model 
evaluation’, scrutinizing the 
simplifying assumptions under- 
lying a model’s…
(ii) ‘conceptual model evaluation’, 
scrutinizing the simplifying assumptions 
under- lying a model’s design

1.5-problem_formulation: 
specify scenarios
Specify scenarios under which 
decisions are investigated. 
Scenarios should be set a priori 
(i.e. before the model is built, 
[@Moallemi2019]) and may be 
stakeholder-defined or expert 
judgment-driven 
[@Mahmoud2009].

Design an analysis approach 
to test . Evaluate the original 
question that the data are able to 
suppo…

5.3-model_validation_evaluation: model output 
corroboration
“How model predictions compare to independent data and patterns that 
were not used, and preferably not even known, while the model was 
developed, parameterized, and verified. By documenting model output 
corroboration, model users learn about evidence which, in addition to 
model output verification, indicates that the model is structurally realistic 
so that its predictions can be trusted to some degree.” This is what we 
typically call “validation”

2.4.1-Collate available data sources 
that could be used to parameterise or 
structure the model

1.4-problem_formulation: 
define candidate actions 
decisions
Candidate decisions should be 
investigated and are specified a 
priori. Depending on the modelling 
context, they may be specified by 
stakeholders, model users or the 
analyst[@Moallemi2019]. Describ…

Develop a conceptual model of the 
understanding of the history of the species 
and how threats / mana…
Develop a conceptual model of the understanding of 
the history of the species and how threats / 
management influence different demographic 
processes. Build in collaboration with species experts. 

Definitions - "Waterway", "Health", 
"Deteriation".

Where would Libby put this (which phase)? We 
could use this example here as an explanation 
of the decision-step in the preregistration 
template. Operationalising and defining 
biological responses to answer the research 
question appropriately.

Definitions - "Waterway", "Health", "Deteriation".

For each 
analysis, graph 
the relationship of 
each ?predictor 
marginally & then 
look at 
interactions.

Conceptual model in 3 part…
Conceptual model in 3 parts: 
controllable variables, uncontrollable 
variables, variables that interact.

In environmental man- agement, deciding on the…
In environmental man- agement, deciding on the boundary and 
degree of aggregation is a critical but very difficult step. It can 
usually only be learnt through trial and error, since managers and 
stakeholders usu- ally do not initially know the boundaries of what 
should be modelled.

Identify alternative management 
alternatives (often with end users). Set up 
model scenarios for comp…

This is interesting that the step was listed in 
practice as occurring after model development 
and parameterisation. I think this is important… 
Moallemi say it should go first, in the problem 
formulation phase, and I think that it should go 
there too in order to avoid any sort of QRP’s. 
However, I guess maybe there are insights that 
can be gained from the knowledge development 
process that might inform whether the candidate 
actions and scenarios are relevant / need to be 
altered and refined to match the nuances of the 
model. Perhaps there could be a stage in model 
evaluation that involves reviewing the specified 
scenarios and candidate actions.

Identify alternative management alternatives (often 
with end users). Set up model scenarios for 
comparison and run.

This second step identifies: ︎ the specific 
questions and issues that the model is to 
address; ︎ t…
This second step identifies:
︎ the specific questions and issues that the model is to 
address;
︎ the interest groups, including the clients or end-users of 
the model;
︎ the outputs required;
︎ the forcing variables (drivers);
︎ the accuracy expected or hoped for;
︎ temporal and spatial scope, scale and resolution (but see
also Section 3.3);
︎ the time frame to complete the model as fixed, for exam-
ple, by when it must be ready to help a decision;
︎ the effort and resources available for modelling and oper-
ating the model, and;
︎ flexibility; for example, can the model be quickly recon-
figured to explore a new scenario proposed by a manage- 
ment group?

Identify outcomes to 
evaluate decisions 
under scenarios 
Descriptive statistic 
measures, e.g., a mo…

Usually at same time as s…
Usually at same time as step 2. 
Collate available data sources that 
could be used to parameterise the 
model. 

3.3-Choose approach for identifying model structure and parameters
This refers to the iterative process of determining the most efficient or parsimonious 
representation of the system at the appropriate scale of concern (Jakeman, 2006) that best 
meets the analytical objectives specified in the problem formulation phase. Approaches to 
finding model structure and parameters may be knowledge-supported, or data-driven 
[@Boets:2015gl]. Model selection methods can include traditional inferential approaches such 
as unconstrained searches of a dataset for patterns that explain variations in the response 
variable, or use of ensemble-modelling methods (Barnard et al. 2019). Ensemble modelling 
procedures might aim to derive a single model, or a multi-model average [@Yates2018]. 
Refining actions to develop a model could include iteratively dropping parameters or adding 
them, or aggregating / disaggregating system descriptors, such as dimensionality and 
processes (Jakeman, 2006). Specify what approach and methods you will use to identify 
model structure and parameters.

2.3-define_conceptual_model: 
identify predictor response variables
Identify and define system variables 
structures).: i) What variables will support this 
decision or action (things we can control). ii) 
What additional variables may interact with 
this system (things we can’t control, but can 
hopefully measure). iii) In what ways do we 
expect these variables to interact (model 
structures). The identification and definition of 
primary model input variables should be 
driven by scenario definitions, and by the 
scope of the model described in the problem 
formulation phase [@Mahmoud2009].

1.3.1-problem_formulation: explain analytical 
objectives
How will the model be analysed, what analytical questions 
will the model be used to answer? Examples from ecological 
decision-making include: To compare the performance of 
alternative management actions under budget constraint 
[@Fraser:2017jf]. To search for ‘robust’ decisions under 
model uncertainty [@McDonald-Madden2008]. To choose 
the conservation policy that minimises uncertainty [insert ref]. 
See other examples in Moallemi et al. 2019 & ask Libby and 
others.

Explain 
analytical 
objectives

Applies to phase description: 
"model" can capture many 
different types of models: 
statistical, conce…

Specification of the 
modelling context: scope 
and resources

Determine 
spatial and 
temporal scales 
required.

Data-Vis & 
"Peeping"

What variables 
will support this 
decision / action? 
(Things we can 
control)

performance 
metric needs to 
be sensitive to the 
problem

Describe the conceptual 
framework (biological 
mechanisms)

Are there 
logistical or 
feasibility 
constraints?

Problem formulation. This 
element is largely unchanged 
from Schmolke et al. (2010). It 
should descri…
Problem formulation. This element is 
largely unchanged from Schmolke et al. 
(2010). It should describe: the decision-
making context in which the model will be 
used; the type of model clients, or 
stakeholders, addressed; the precise 
question(s) that should be answered with 
the model and the necessary model 
outputs; and the domain of applicability of 
the model, including the extent of 
acceptable extrapolations

Often described in different 
ways: pictures, words, etc.

2.4-define_conceptual_model: 
prior knowledge data specification 
and evaluation

Collect, process and prepare data available 
for parameterisation, determining model 
structure, and for scenario analysis.

Expectation 
management 
(difference between…
Expectation management 
(difference between 
applied science & science)

3.2-Choose model features and 
family
All modelling approaches require the 
selection of model features, which 
conform with the conceptual model and 
data specified in previous steps (Jakeman 
2006). The choice of model are 
determined in conjunction with features 
are selected. Usually difficult to change 
fundamental features of a model beyond 
an early stage of model development, so 
careful thought and planning here is use…

documentation of th…
documentation of the nature 
(identity, provenance, quan- 
tity and quality) of the data 
used to drive, identify and test 
the model;

2.0-define_conceptual_model
Define Conceptual Model - conceptual models 
underpin the formal or quantitative model (Cartwright 
et al. 2016). The conceptual model describes the 
biological mechanisms relevant to the ecological 
problem and should capture basic premises about 
how the target system works, including any prior 
knowledge and assumptions about system processes. 
Conceptual models may be representeed in a variety 
of formats, such as influence diagrams, linguistic 
model block diagram or bond graphs, and these 
illustrate how model drivers are linked to both outputs 
or observed responses, and internal (state) variables 
(Jakeman, Letcher, and Norton, 2006).

What decisions / 
actions does the 
manager / client 
need to make?

2.1-define_conceptual_model: 
choose elicitation and representation 
method

Describe what method you will use to elicit or 
identify the conceptual model. Some common 
methods include interviews, drawings, and 
mapping techniques including influence 
diagrams, cognitive maps and Bayesian belief 
networks (Moon et al. 2019). (Libby, to provide 
link to any structured expert elicitation methods). 
While itt is difficult to decide and justify which 
method is most appropriate, however Moon et 
al. (2019) provide guidance addressing this 
methodological question.  Finally, how do you 
intend on representing the final conceptual 
model? This will likely depend on the method 
chosen to elicit the conceptual model.

2.2:define_conceptual_model: specify key assumptions 
uncertainties
This step should list and explain the critical conceptual design 
decisions, including: “spatial and temporal scales, selection of entities 
and processes, representation of stochasticity and heterogeneity, 
consideration of local versus global interactions, environmental drivers, 
etc.” [@Grimm:2014es]. The influence of particular theories, concepts, 
or importantly, earlier models, should be explained and justified against 
alternative conceptual design decisions that might lead to alternative 
model structures [@Grimm:2014es]. Specify key assumptions and 
uncertainties underlying the model’s design. Describe how uncertainty 
and variation will be represented in this model. This includes both 
exogenous uncertainties affecting the system, parametric uncertainty in 
input data and structural / conceptual nonparametric uncertainty in th…

Selection of model features and families 
should be flexible, prepared for revision 
according to eval…
Selection of model features and families should be 
flexible, prepared for revision according to evaluation of 
the reason- ableness of initial guesses. However, in 
practice it is usually difficult to change fundamental 
features of a model beyond quite an early stage, for 
understandable but regrettable human reasons like 
unwillingness to admit a poor choice or abandon 
something into which much effort has already gone. A 
prefer- ence for a particular model, due to familiarity, 
established ac- ceptance by the technical community or 
availability of tools for it, often impedes change.

5.4-model_validation_evaluation: choose metric and 
performance criteria
I think this should be shifted to problem formulation… where I originally 
had this item… described here as: "An a priori method or methods of 
evaluating and distinguishing the performance of scenario outcomes is 
necessary. The performance measures link back to the analytical 
objectives. Examples include descriptive statistic measures, such as a 
model in the top 10th percentile of worst conditions, satisficing 
measures, e.g. a minimum performance threshold for achieving a 
performance objective, regret measures, e.g. choosing a decision with 
minimum regret [@Moallemi2019].” Also… I think this description by M…

5.0-model_validation_evaluation

Model Validation & Evaluation - This phase consists of a 
suite of analyses that collectively inform the decision and 
whether and when a model is suitable to meet its intended 
purpose (Augusiak, Van den Brink and Grimm 2014). 
Errors in design and implementation of the model and 
their implication on the model output are assessed. Ideally 
independent data is used against the model outputs to 
assess whether the model output behaviour exhibits the 
required accuracy for the model’s intended purpose. The 
outcomes of these analyses build confidence in the model 
applications and increase understandingof model 
strengths and limitations.

4.3.1-Model Checking-quantitative 
tests
Specify any diagnostics or tests you will use 
during model checking. For each test, specify the 
numerical threshold or criteria that will you use to 
interpret the outcome of the test in assessing the 
model’s ability to sufficiently represent the 
gathered data used to develop and parameterise 
the model.

1.2.3-Logistical Constraints

Analysis - 
evaluation of 
models 
assumptions etc.

3.6-formalise_specify_model: specify formal 
model
Once critical decisions have been made about the 
approach and method of model specification, translate the 
conceptual model into the quantitative model. For data-
driven and model-selection approaches that determine 
model structure and parameters, describe any initial 
model specifications and parameterisations, including for 
any tune-in parameters. (Should this go here or in model 
calibration?)

1.2-problem_formulation: 
specify modelling context
The scope of the model, including 
temporal and spatial resolutions 
are defined here 
[@Mahmoud2009], and any 
limitations on model development 
analysis and flexibility should be 
outlined here [@Jakeman:2006ii…

Reporting 
Requirements

1.2.1-Identify model interest group

A crucial step here is to decide the extent of the model, i.e. where 
the boundary of the modelled sy…
A crucial step here is to decide the extent of the model, i.e. where the boundary of 
the modelled system is. Everything out- side and not crossing the boundary is 
ignored. Everything crossing the boundary is treated as external forcing (known
or unknown) or as outputs (observed or not). The choice of a boundary is closely 
tied in with the choice of how far to ag- gregate the behaviour inside it. Classical 
thermodynamics gives an object lesson in the benefits of choosing the boundary 
and degree of aggregation well, so as to discover simple rela- tions between a small 
number of aggregated variables (e.g. en- ergy) crossing the boundary, without 
having to describe processes inside the boundary in detail

5.2-model_validation_evaluation: model analysis
“(1) How sensitive model output is to changes in model parameters 
(sensitivity analysis), and (2) how well the emergence of model output 
has been understood.” [@Grimm:2014es].

gaining a better qualitative 
understanding of the system (by means 
including social learning by inte…
 gaining a better qualitative understanding of the 
system (by means including social learning by 
interest groups);
︎ knowledge elicitation and review;
︎ data assessment, discovering coverage, limitations, 
incon-
sistencies and gaps;
︎ concise summarising of data: data reduction;
︎ providing a focus for discussion of a problem;
︎ hypothesis generation and testing;
︎ prediction, both extrapolation from the past and 
‘‘what if’’
exploration;
︎ control-system design: monitoring, diagnosis, 
decision-
making and action-taking (in an environmental 
context,
adaptive management);
︎ short-term forecasting (worth distinguishing from 
longer-
term prediction, as it usually has a much narrower 
focus); ︎ interpolation: estimating variables which 
cannot be mea-
sured directly (state estimation), filling gaps in data;
︎ providing guidance for management and decision-
making

who is this for? 
Who is involved in 
formulation? Who 
needs buy in.

Definition of the purposes for 
modelling It is a truism that the 
reasons for modelling should have a…
Definition of the purposes for modelling
It is a truism that the reasons for modelling 
should have a large influence on the selecting 
of a model family or families (see Section 2.5) 
to represent the system, and on the nature and 
level of diagnostic checking and model 
evaluation. However, it is not necessarily easy 
to be clear about what the purposes are. 
Different stakeholders will have different 
degrees of interest in the possible purposes of 
a single model. For example, a re- source 
manager is likely to be most concerned with 
prediction, while a model developer or 
scientific user may place higher stress on the 
ability of the model to show what processes 
dom- inate behaviour of the system. That said, 
better understanding is valuable for all parties 
as part of defining the problem and possible 
solutions, and as a means of assessing how 
much trust
to place in the model. It is important to 
recognize that some purposes, particularly 
increased understanding of the system and 
data, may be realised well even if the final 
model is poor in many respects. An inaccurate 
model may still throw light on how an 
environmental system works.

Defining key evaluation and 
research questions. Evaluation 
questions relate to evaluating 
responses…
Defining key evaluation and research 
questions. Evaluation questions relate 
to evaluating responses to e-water, 
research questions to understanding 
how and why things vary.

clear statement 
of the objectives 
and clients of the 
model- ling 
exercise;
clear statement of the 
objectives and clients 
of the model- ling 
exercise;

1.1.1-define model purpose & 
Problem context

Suitable habitat for soil organisms may be scarce, 
thus leading to locally high population densities…
Suitable habitat for soil organisms may be scarce, thus leading to 
locally high population densities, because soil, being more static than 
water or air, is heterogeneous: physical conditions often vary widely 
on a scale of a few centimetres. Moreover, toxic chemicals are likely 
to be unevenly distributed in the soil as well. The spatially explicit 
individual-based model presented in Meli et al. (2013) is developed to 
explore the consequences of these heterogeneities for the population 
dynamics of soil invertebrates, in particular the collembolan Folsomia 
candida. F. candida is a common arthropod that occurs in soils 
worldwide and is used as a standard test organism for estimating the 
effects of pesticides on non-target soil arthropods.

1.1-problem_formulation: 
define model purpose
Defining the purpose of the model 
is critical because the model 
purpose influences choices at later 
stages of model development 
[@Jakeman:2006ii]. Common 
model purposes in ecology 
include: gaining a better qualitative 
understanding of the target 
system, knowledge synthesis and 
review, and providing guidance for 
management and decision-making 
[@Jakeman:2006ii] (could also see 
Addison paper on the use of 
models). Note that modelling 
objectives are distinct from the 
analytical objectives of the model.

Implementation verification. This term 
is defined by Augusiak et al. (2014) as 
“the critical assessm…
Implementation verification. This term is defined by 
Augusiak et al. (2014) as “the critical assessment 
of (1) whether the com- puter code for 
implementing the model has been thoroughly 
tested for programming errors and (2) whether the 
implemented model performs as indicated by the 
model description”. 

Parameterise model using various methods depending on 
data sources. This may include development of…

"Parameterise model using various methods depending on data sources. 
This may include development of statistical models." The form of 
evaluation described here is not checking but evaluation in the 
commmonky used sense. Highlights the iterative nature of model 
development

3.0-formalise_specify_model
Formalise and Specify Model - Critical decisions 
are made here about the type of model, modelling 
framework and approach to be used. The model is 
formalised into a mathematical / statistical 
description of the system and respective changes 
it can experience (Mahmoud et al. 2009). In this 
section describe what quantitative methods you…

Focal taxa and study 
objec︎ves Organisms: 
terrestrial, marine, 
freshwater ... Common goals: 
conserv…

Yates, K. L., Bouchet, P. J., Caley, M. 
J., Mengersen, K., Randin, C. F., P…

Focal taxa and study objec ︎ves
Organisms: terrestrial, marine, 
freshwater ... Common goals: 
conserva ︎on planning, impact 
assessment, theore ︎cal ecology, niche 
evolu ︎on ...

Use hierarchy of data. - 
Published literature / grey on 
species in same location. - 
Data on same spe…
Use hierarchy of data. - Published 
literature / grey on species in same 
location. - Data on same species but 
different location. - Similar species 
same or different location but 
relevant. - expert elicited estimates.

What 
quantitative 
methods will we 
use to build 
models? Ensure 
they are relevant 
to client purpose.

These motives are not mutually exclusive, of 
course, but the modeller has to establish the 
purposes…

"list, because of their influence on the choices to be made at 
later stages.” Jakeman, A. J., Letcher, R. A., & Norton, J. P. 
(2006). Ten iterative steps in development and evaluation of 
environmental models. Environmental Modelling & Software,…

These motives are not mutually exclusive, of course, but the 
modeller has to establish the purposes and priorities within the

Scheme: internal cross-
valida︎on versus external 
testingg on independent 
datasets ...
Scheme: internal cross-valida ︎on 
versus external
tes ︎ng on independent datasets ...

list, because of their influence on the choices to 
be made at later stages. For example, economy in…

Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten 
iterative steps in development and evaluation of environmental 
models. Environmental Modelling & Software, 21(5), 602-614. 
doi:10.1016/j.envsoft.2006.01.004

list, because of their influence on the choices to be made at later 
stages. For example, economy in the degrees of freedom of a 
prediction model (‘‘parsimony’’) is important if the model is to 
register the consistent behaviour observed in the data but not 
the ephemeral, inconsistent ‘‘noise.’’ Experience confirms that it 
is often counterproductive to include much detail in a prediction 
model for a restricted purpose (Jakeman and Hornberger, 1993). 
Conversely, a model designed to increase insight into the proce…

Conceptual model being 
developed to outline predictions 
-> Justify inclusion / exclusion of 
predicto…

Identify 
variables relevant 
to the conceptual 
framework.

1-problem_formulation
Problem Formulation - specifies the decision-making context in 
which the model will be used, the clients driving model 
development or stakeholders addressed by the model. It also 
includes specification of model outputs, statements of the 
domain of applicability of the model, as well as the extent by 
which model outputs may be acceptably extrapolated (Grimm 
et al. 2014).

In what ways 
do we expect 
these variables to 
interact? (Model 
structures)

Sensitivity 
analysis. Evaluate 
model sensitivity 
using 3 methods. - 
deterministic 
sensitivity (vital…

1.2.2 - Model Scope and Scale

Ensure that 
model framework 
correctly / 
appropriately 
addresses the 
original needs / 
objectives of t…

Model 
validation not 
always possible 
e.g. PVA but can 
be interrogated

2.6-
define_conceptua
l_model: iterative 
link

iterative links 
between problem 
formulation phase 
and define 
conceptual model

5.6-model_validation_evaluation: evaluate 
model outputs

Test different aspects of the model, such as realism, 
generality and accuracy.    Ideally more than one 
performance measure is tested Performance assessment 
might include a suite of estimates, including tests of 
“accuracy, bias, calibration, discrimination, refinement, 
resolution, and skill (157)” [@Araujo2019].

Develop 
conceptual model 
linking "waterway 
health" and 
"deterioration" to 
natural variability 
in wat…

Model was 
unsuitable so 
need to try 
something else 
that will 
accomodate the 
data / questions 
better.…

iterative links…

Assess 
statistiacl model 
for fit

Quotation 96:2

The purpose of 
the element is to 
prevent blind trust 
in the model 
output by asking 
“How did this 
out…

Thus, foremost 
here we document 
how we made 
sure that we 
understood a 
model’s main 
mechanisms. For 
e…

Model analysis. 
This element is 
defined by 
Augusiak et al. 
(2014) as “the 
assessment of (1) 
how sens…

model 
analysis’, 
examining the 
model’s sensitivity 
to changes in 
param- eters and 
formulation to 
und…

TRACE should 
not include details 
on all these 
experiments, but 
give an overview 
of what kind of 
expe…

Model users 
learn from this 
TRACE element 
how the model 
works, i.e., which 
processes and 
process int…



 

 

“But I can’t preregister my research”: Improving the reproducibility and transparency of ecology and 
conserva<on with adap<ve preregistra<on for model-based research 

1 Last edited: August 8, 2025 
 

Appendix S2: User Research Workshop 
Materials 
 

• Introductory Presenta9on 1  
h<ps://osf.io/wezy3/?view_only=b60796fed71f4cc8abe9e5feac5e9465 

• Introductory Presenta9on 2 
h<ps://osf.io/egjwa/?view_only=b60796fed71f4cc8abe9e5feac5e9465 

 
Activity Time 
Introduction, Background to the “Credibility 
Revolution”, Introductions & Housekeeping 

10.30 am – 11.30 am (1 hour) 

Tea Break 11.30 am – 11.45 pm (15 minutes) 
Breakout group – Activity 1 
“Designing Preregistration Templates - 
Workflows and Decision Steps” 

 11.45 am – 1.15 pm (1.5 hours) 
 

Lunch 1.15 pm – 2.00 pm (45 minutes) 
Breakout group – Activity 2 
“Challenges & Solutions to Preregistration 
in Ecology” 

2.00 pm – 3.00 pm (1 hour) 
 

Breakout group report back, whole 
workshop discussion and debrief. 

3.00 pm – 4.00 pm (1 hour) 

 

Ac#vity 1 – Iden#fying Modelling Workflows 
Note that this ac9vity was run in two separate groups, with one group focusing on field 
work, and one focusing on modelling. Elements of the field work ac9vity responses were 
collated into the analysis of the modelling ac9vity outputs. 

Materials 
Workshop a<endees were provided a ‘Project Workflow and Decision Sequence’ worksheet 
(h<ps://osf.io/eza24/?view_only=b60796fed71f4cc8abe9e5feac5e9465) for individually 
describing decision steps and alterna9ves taken in a recent or memorable study. Next, each 
group collated their decision-steps from their individual worksheets onto group worksheets 
for modelling (h<ps://osf.io/fgd23/?view_only=b60796fed71f4cc8abe9e5feac5e9465) and 
for field studies (h<ps://osf.io/w68jt/?view_only=b60796fed71f4cc8abe9e5feac5e9465) 
with accompanying handouts describing workflow phases and steps (modelling: 
h<ps://osf.io/v7kjh/?view_only=b60796fed71f4cc8abe9e5feac5e9465; field work: 
h<ps://osf.io/uayt3/?view_only=b60796fed71f4cc8abe9e5feac5e9465). 
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Ac#vity 2 – Iden#fying Challenges and Solu#ons to 
Preregistra#on for Modelling in Ecology 
Materials 
Ac9vity 2 consisted of facilitated group discussions based on prepared ques9ons and talking 
points informed by recent debates about preregistra9on in the literature, for example: 

• What should a research workflow look like for a modeller in an applied ecological 
seing who wishes to preregister their work? 

• What barriers are there for preregistering model-based research? 
• How do we accommodate the itera9ve cycle of model development into the 

preregistra9on process? 
• At what stage in a modelling or structured decision-making process should 

preregistra9on begin? 
• Should we and how can we change the medium of the template and/or archiving 

plajorm to accommodate any roadblocks? 
• How could we change the medium of both the template and the archiving plajorm 

to accommodate these issues? 
• What procedural and or technical solu9ons could we implement to address these 

roadblocks to preregistra9on? 
• What decision-tools could be used to aid in comple9ng a preregistra9on? 
• What sort of parsimony should we aim for in terms of the resolu9on of the templates 

and therefore their applicability across different methodologies? 
 



Ecological Modelling Preregistration Template
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Background and Instructions
Here we present a preregistration template for ecological models in ecology, conservation and related

fields. For non-trivial modelling studies, especially where model parameter and structure is in any way
data-contingent, we recommend taking an Adaptive Preregistration approach ( .

Replace author, author-affiliations and persistent ID’s (e.g. ORCID iD), keywords, title and abstract
metadata as relevant to your study.

All preregistration items should be completed, excluding items marked as optional or in cases where
they are not applicable to your study. Additional preregistration items can be added as required at the
researchers’ discretion.
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Study Information
CRediT Contribution Statement

¾ Preregistration Item

Identify potential contributions according to the CRediT taxonomy (https://doi.org/10.1371/journal.pone.
0244611.t001) and write a CRediT contribution statement.

Conflict of Interest Statement

¾ Preregistration Item

! Explain any real or perceived conflicts of interest with this study execution. For example, any
interests or activities that might be seen as influencing the research (e.g., financial interests in a test
or procedure, funding by companies for research).

Data Availability Statement

¾ Preregistration Item

Select one option from below:
! “We plan to make the data available (yes / no),” specify the planned data availability level from the

following options:
– Data access via download; usage of data for all purposes (public use file)
– Data access via download; usage of data restricted to scientific purposes (scientific use file)
– Data access via download; usage of data has to be agreed and defined on an individual case

basis
– Data access via secure data centre (no download, usage/analysis only in a secure data centre)
– Data available upon email request by member of scientific community
– Other (please specify)

! “Data will not be made available”
! Justify reason for not making data available.

Code Availability

¾ Preregistration Item

Select one option from below:
! “We plan to make the code available (yes / no),” specify the planned code availability level from the

following options:
– Code access via download; usage of code for all purposes (public use file)
– Code access via download; usage of code restricted to scientific purposes (scientific use file)
– Code access via download; usage of code has to be agreed and defined on an individual case

basis
– Code access via secure code centre (no download, usage/analysis only in a secure code centre)
– Code available upon email request by member of scientific community
– Other (please specify)

! “Code will not be made available”
! Justify reason for not making code available.
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Ethics

¾ Preregistration Item

! Select and respond to the relevant item below:
– If relevant institutional ethical approval for the study has been obtained, provide the relevant

identifier, and link to relevant documents.
– If ethical approval has not yet been obtained, but is required, provide a brief overview of plans

for obtaining study approval in accordance with established ethical guidelines.
– Alternatively, if the study is exempt from ethical approval, explain exemption.

1 Problem Formulation

Ĺ Rationale & Explanation

This section specifies the decision-making context in which the model will be used or the intended scope
and context of conclusions. Important components include the decision maker and stakeholders (including
experts) and their view on: i) the nature of the problem or decision addressed and how the scope of the
modelling tool fits within the (broader) context (i.e. model purpose; ii) the spatial and temporal scales
relevant to the decision context; iii) specified desired outputs; iv) role and inclusion in model development
and testing; v) whether they foresee unacceptable outcomes that need to be represented in the model
(i.e. as constraints), and; vi) what future scenarios does the model need to account for (noting this may
be revised later). It should also provide a summary of the domain of applicability of the model, and
reasonable extrapolation limits (Grimm et al., 2014).

1.1 Model Context and Purpose

Ĺ Rationale & Explanation

Defining the purpose of the model is critical because the model purpose influences choices at later stages of
model development (Jakeman et al., 2006). Common model purposes in ecology include: gaining a better
qualitative understanding of the target system, synthesising and reviewing knowledge, and providing
guidance for management and decision-making (Jakeman et al., 2006). Note that modelling objectives are
distinct from the analytical objectives of the model.
The scope of the model includes temporal and spatial resolutions, which should also be defined here
(Mahmoud et al., 2009). Any external limitations on model development, analysis and flexibility should
also be outlined in this section (Jakeman et al., 2006).

1.1.1 Key stakeholders and model users

¾ Preregistration Item

Identify relevant interest groups:
! Who is the model for?
! Who is involved in formulating the model?
! How will key stakeholders be involved in model development?
! Describe the decision-making context in which the model will be used (if relevant).
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1.1.2 Model purpose, context and problem context

¾ Preregistration Item

Briefly outline:
! the ecological problem,
! the decision problem (if relevant), including the decision-trigger and any regulatory frameworks

relevant to the problem,
! how the model will address the problem, being clear about the scope of the model i.e. is the model

addressing the whole problem, or part of it? Are there any linked problems that your model should
consider?

! Ensure that you specify any focal taxa and study objectives.

1.1.3 Analytical objectives

Ĺ Explanation

How will the model be analysed, what analytical questions will the model be used to answer? For example,
you might be using your model in a scenario analysis to determine which management decision is associated
with minimum regret or the highest likelihood of improvement. Other examples from ecological decision-
making include: to compare the performance of alternative management actions under budget constraint
(Fraser et al., 2017), to search for robust decisions under uncertainty (McDonald-Madden et al., 2008), to
choose the conservation policy that minimises uncertainty (McCarthy et al., 2011). See other examples
in (Moallemi et al., 2019).

¾ Preregistration Item

Provide detail on the analytical purpose and scope of the model:
! How will the model be analysed and what analytical questions will the model be used to answer?
! Candidate decisions should be investigated and are specified a priori. Depending on the modelling

context, they may be specified by stakeholders, model users or the analyst (Moallemi et al., 2019).
! Describe the method used to identify relevant management actions and
! specify management actions to be considered included in the model.
! Are there potentially unacceptable management or policy outcomes identified by stakeholders

that should be captured in the model, i.e. as constraints?
! Are there scenarios that model inputs or outputs that must accommodated? Scenarios should be

set a priori, (i.e. before the model is built, Moallemi et al., 2019) and may be stakeholder-defined or
driven by the judgement of the modeller or other experts (Mahmoud et al., 2009).
! If relevant, describe what processes you will use to elicit and identify relevant scenarios, e.g. lit-

erature review, structured workshops with stakeholders or decision-makers.
! Specify scenarios under which decisions are investigated.

1.1.4 Logistical Constraints

¾ Preregistration Item

! What degree of flexibility is required from the model? Might the model need to be quickly reconfig-
ured to explore new scenarios or problems proposed by clients / managers / model-users?

! Are there any limitations on model development analysis and flexibility, such as time or budget
constraints, for example, does a model need to be deployed rapidly?
! When must the model be completed by, e.g. to help make a decision?
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1.1.5 Model Scope, Scale and Resolution

¾ Preregistration Item

! The choice of a model’s boundaries is closely linked to the choice of how finely to aggregate the
behaviour within the model (Jakeman et al., 2006) - what is the intended scale, and resolution of
the model (temporal, spatial or otherwise)?

! Where is the boundary of the modelled system? Everything outside beyond the boundary and not
crossing it is to be ignored within the domain of the model, and everything crossing the boundary
is to be treated as external forcing (known/unknown), or else as model outputs (observed, or not,
Jakeman et al., 2006).

1.1.6 Intended application of results

Ĺ Explanation

Preregistration Items in this section are relevant to model transferability (Yates et al., 2018) and con-
straints on generality in model analysis interpretation. How far do can the results be extrapolated based
on the study design (data + model + analysis)? For instance, if there are many confounding variables
and not enough spatial / environmental replication, then making broader more general claims beyond the
stated boundaries of the model (Section 1.1.3) may not be warranted. However, larger generalisations
about results may be acceptable if the data comes from experimentally manipulated or controlled systems.

¾ Preregistration Item

! What is the intended domain in which the model is to be applied? Are there any reasonable
extrapolation limits beyond which you expect the model should not be applied (Grimm et al.,
2014)?

1.2 Scenario Analysis Operationalisation

¾ Preregistration Item (delete as necessary)

! How will you operationalise any scenarios identified in Section 1.1.3? For example, how will you
operationalise any qualitative changes of interest, such as ‚ ‘deterioration’ or ‘improvement’?

! Describe how you will evaluate and distinguish the performance of alternative scenario outcomes
! Justify or otherwise explain how you chose these measures and determined performance criteria in

relation to the analytical objectives, model purpose and modelling context, such as the risk attitudes
of decision-makers and stakeholders within this system

2 Define Conceptual Model

Ĺ Explanation

Conceptual models underpin the formal or quantitative model (Cartwright et al., 2016). The conceptual
model describes the biological mechanisms relevant to the ecological problem and should capture basic
premises about how the target system works, including any prior knowledge and assumptions about system
processes. Conceptual models may be represented in a variety of formats, such as influence diagrams,
linguistic model block diagram or bond graphs, and these illustrate how model drivers are linked to both
outputs or observed responses, and internal (state) variables (Jakeman et al., 2006).
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2.1 Choose elicitation and representation method

¾ Preregistration Item

! Describe what method you will use to elicit or identify the conceptual model. Some common methods
include interviews, drawings, and mapping techniques including influence diagrams, cognitive maps
and Bayesian belief networks (Moon et al., 2019). It is difficult to decide and justify which method
is most appropriate, see Moon et al. (2019) for guidance addressing this methodological question.

! Finally, how do you intend on representing the final conceptual model? This will likely depend on
the method chosen to elicit the conceptual model.

2.2 Explain Critical Conceptual Design Decisions

¾ Preregistration Item

List and explain critical conceptual design decisions (Grimm et al., 2014), including:
! spatial and temporal scales,
! selection of entities and processes,
! representation of stochasticity and heterogeneity,
! consideration of local versus global interactions, environmental drivers, etc.
! Explain and justify the influence of particular theories, concepts, or earlier models against alternative

conceptual design decisions that might lead to alternative model structures.

2.3 Model assumptions and uncertainties

¾ Preregistration Item

Specify key assumptions and uncertainties underlying the model design, describing how uncertainty and
variation will be represented in the model (Moallemi et al., 2019). Sources of uncertainty may include:

! exogenous uncertainties affecting the system,
! parametric uncertainty in input data and
! structural / conceptual nonparametric uncertainty in the model.

2.4 Identify predictor and response variables

Ĺ Explanation

The identification and definition of primary model input variables should be driven by scenario definitions,
and by the scope of the model described in the problem formulation phase (Mahmoud et al., 2009).

¾ Preregistration Item

Identify and define system system variables and structures, referencing scenario definitions, and the scope
of the model as described within problem formulation:

! What variables would support taking this action or making this decision?
! What additional variables may interact with this system (things we can’t control, but can hopefully

measure)?
! What variables have not been measured, but may interact with the system (often occurs in field or

observational studies)?
! What variables are index or surrogate measures of variables that we cannot or have not measured?
! In what ways do we expect these variables to interact (model structures)?
! Explain how any key concepts or terms within problem or decision-making contexts, such as reg-

ulatory terms, will be operationalised and defined in a biologically meaningful way to answer the
research question appropriately?
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2.5 Define prior knowledge, data specification and evaluation

Ĺ Explanation

This section specifies the plan for collecting, processing and preparing data available for parameterisation,
determining model structure, and for scenario analysis. It also allows the researchers to disclose any prior
interaction with the data.

2.5.1 Collate available data sources that could be used to parameterise or structure the model

¾ Preregistration Item

For pre-existing data (delete as appropriate):
! Document the identity, quantity and provenance of any data that will be used to develop, identify

and test the model.
! For each dataset, is the data open or publicly available?
! How can the data be accessed? Provide a link or contact as appropriate, indicating any restrictions

on the use of data.
! Date of download, access, or expected timing of future access.
! Describe the source of the data - what entity originally collected this data? (National Data Set,

Private Organisational Data, Own Lab Collection, Other Lab Collection, External Contractor, Meta-
Analysis, Expert Elicitation, Other).

! Codebook and meta-data. If a codebook or other meta-data is available, link to it here and / or
upload the document(s).

! Prior work based on this dataset - Have you published / presented any previous work based on this
dataset? Include any publications, conference presentations (papers, posters), or working papers
(in-prep, unpublished, preprints) based on this dataset you have worked on.

! Unpublished Prior Research Activity - Describe any prior but unpublished research activity using
these data. Be specific and transparent.

! Prior knowledge of the current dataset - Describe any prior knowledge of or interaction with the
dataset before commencing this study. For example, have you read any reports or publications about
this data?

! Describe how the data is arranged, in terms of replicates and covariates.
Sampling Plan (for data you will collect, delete as appropriate):

! Data collection procedures - Please describe your data collection process, including how sites and
transects or any other physical unit were selected and arranged. Describe any inclusion or exclusion
rules, and the study timeline.

! Sample Size - Describe the sample size of your study.
! Sample Size Rationale - Describe how you determined the appropriate sample size for your study.

It could include feasibility constraints, such as time, money or personnel.
! If sample size cannot be specified, specify a stopping rule - i.e. how will you decide when to terminate

your data collection?

2.5.2 Data Processing and Preparation

¾ Preregistration Item

! Describe any data preparation and processing steps, including manipulation of environmental layers
(e.g. standardisation and geographic projection) or variable construction (e.g. Principal Component
Analysis).
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2.5.3 Describe any data exploration or preliminary data analyses.

Ĺ Explanation

In most modelling cases, it is necessary to perform preliminary analyses to understand the data and check
that assumptions and requirements of the chosen modelling procedures are met. Data exploration prior
to model fitting or development may include exploratory analyses to check for collinearity, spatial and
temporal coverage, quality and resolution, outliers, or the need for transformations (Yates et al., 2018).

¾ Preregistration Item

For each separate preliminary or investigatory analysis:
! State what needs to be known to proceed with further decision-making about the modelling proce-

dure, and why the analysis is necessary.
! Explain how you will implement this analysis, as well as any techniques you will use to summarise

and explore your data.
! What method will you use to represent this analysis (graphical, tabular, or otherwise, describe)
! Specify exactly which parts of the data will be used
! Describe how the results will be interpreted, listing each potential analytic decision, as well as the

analysis finding that will trigger each decision, where possible.

2.5.4 Data evaluation, exclusion and missing data

Ĺ Explanation

Documenting issues with reliability is important because data quality and ecological relevance might be
constrained by measurement error, inappropriate experimental design, and heterogeneity and variability
inherent in ecological systems (Grimm et al., 2014). Ideally, model input data should be internally
consistent across temporal and spatial scales and resolutions, and appropriate to the problem at hand
(Mahmoud et al., 2009).

¾ Preregistration Item

! Describe how you will determine how reliable the data is for the given model purpose. Ideally, model
input data should be internally consistent across temporal and spatial scales and resolutions, and
appropriate to the problem at hand

! Document any issues with data reliability.
! How will you determine what data, if any, will be excluded from your analyses?
! How will outliers be handled? Describe rules for identifying outlier data, and for excluding a site,

transect, quadrat, year or season, species, trait, etc.
! How will you identify and deal with incomplete or missing data?

2.6 Conceptual model evaluation

¾ Preregistration Item

! Describe how your conceptual model will be critically evaluated. Evaluation includes both the
completeness and suitability of the overall model structure.

! How will you critically assess any simplifying assumptions (Augusiak et al., 2014)?
! Will this process will include consultation or feedback from a client, manager, or model user.
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3 Formalise and Specify Model

Ĺ Explanation

In this section describe what quantitative methods you will use to build the model/s, explain how they
are relevant to the client/manager/user’s purpose.

3.1 Model class, modelling framework and approach

Ĺ Explanation

Modelling approaches can be described as occurring on a spectrum from correlative or phenomenological
to mechanistic or process-based (Yates et al., 2018); where correlative models use mathematical functions
fitted to data to describe underlying processes, and mechanistic models explicitly represent processes and
details of component parts of a biological system that are expected to give rise to the data (White &
Marshall, 2019). A model ‘class,’ ‘family’ ’ or ‘type’ is often used to describe a set of models each of which
has a distinct but related sampling distribution (C. C. Liu & Aitkin, 2008). The model family is driven
by choices about the types of variables covered and the nature of their treatment, as well as structural
features of the model, such as link functions, spatial and temporal scales of processes and their interactions
(Jakeman et al., 2006).

¾ Preregistration Item

! Describe what modelling framework, approach or class of model you will use to implement your model
and relate your choice to the model purpose and analytical objectives described in Section 1.1.2 and
Section 1.1.3.

3.2 Choose model features and family

Ĺ Explanation

All modelling approaches require the selection of model features, which conform with the conceptual
model and data specified in previous steps (Jakeman et al., 2006). The choice of model are determined
in conjunction with features are selected. Model features include elements such as the functional form
of interactions, data structures, measures used to specify links, any bins or discretisation of continuous
variables. It is usually difficult to change fundamental features of a model beyond an early stage of
model development, so careful thought and planning here is useful to the modeller (Jakeman et al., 2006).
However, if changes to these fundamental aspects of the model do need to change, document how and
why these choices were made, including any results used to support any changes in the model.

3.2.1 Operationalising Model Variables

¾ Preregistration Item

! For each response, predictor, and covariate, specify how these variables will be operationalised in the
model. This should relate directly to the analytical and/or management objectives specified during
the problem formulation phase. Operationalisations could include: the extent of a response, an
extreme value, a trend, a long-term mean, a probability distribution, a spatial pattern, a time-series,
qualitative change, such as a direction of change or, the frequency, location, or probability of some
event occurring. Specify any treatment of model variables, including whether they are lumped /
distributed, linear / non-linear, stochastic / deterministic (Jakeman et al., 2006).

! Provide a rationale for your choices, including why plausible alternatives under consideration were
not chosen, and relate your justification back to the purpose, objectives, prior knowledge and or
logistical constraints specified in the problem formulation phase (Jakeman et al., 2006).
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3.2.2 Choose model family

¾ Preregistration Item

! Specify which family of statistical distributions you will use in your model, and describe any trans-
formations, or link functions.

! Include in your rational for selection, detail about which variables the model outputs are likely
sensitive to, what aspects of their behaviour are important, and any associated spatial or temporal
dimensions in sampling.

3.3 Describe approach for identifying model structure

Ĺ Explanation

This section relates to the process of determining the best/most efficient/parsimonious representation of
the system at the appropriate scale of concern (Jakeman et al., 2006) that best meets the analytical objec-
tives specified in the problem formulation phase. Model structure refers to the choice of variables included
in the model, and the nature of the relationship among those variables. Approaches to finding model struc-
ture and parameters may be knowledge-supported, or data-driven (Boets et al., 2015). Model selection
methods can include traditional inferential approaches such as unconstrained searches of a dataset for
patterns that explain variations in the response variable, or use of ensemble-modelling methods (Barnard
et al., 2019). Ensemble modelling procedures might aim to derive a single model, or a multi-model average
(Yates et al., 2018). Refining actions to develop a model could include iteratively dropping parameters
or adding them, or aggregating / disaggregating system descriptors, such as dimensionality and processes
(Jakeman et al., 2006).

¾ Preregistration Item

! Specify what approach and methods you will use to identify model structure and parameters.
! If using a knowledge-supported approach to deriving model structure (either in whole or in part),

specify model structural features, including:
– the functional form of interactions (if any)
– data structures,
– measures used to specify links,
– any bins or discretisation of continuous variables (Jakeman et al., 2006),
– any other relevant features of the model structure.

3.4 Describe parameter estimation technique and performance criteria

Ĺ Explanation

Before calibrating the model to the data, the performance criteria for judging the calibration (or model
fit) are specified. These criteria and their underlying assumptions should reflect the desired properties of
the parameter estimates / structure (Jakeman et al., 2006). For example, modellers might seek parameter
estimates that are robust to outliers, unbiased, and yield appropriate predictive performance. Modellers
will need to consider whether the assumptions of the estimation technique yielding those desired properties
are suited to the problem at hand. For integrated or sub-divided models, other considerations might
include choices about where to disaggregate the model for parameter estimation; e.g. spatial sectioning
(streams into reaches) and temporal sectioning (piece-wise linear models) (Jakeman et al., 2006).
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3.4.1 Parameter estimation technique

¾ Preregistration Item

! Specify what technique you will use to estimate parameter values, and how you will supply non-
parametric variables and/or data (e.g. distributed boundary conditions). For example, will you
calibrate all variables simultaneously by optimising fit of model outputs to observations, or will
you parameterise the model in a piecemeal fashion by either direct measurement, inference from
secondary data, or some combination (Jakeman et al., 2006).

! Identify which variables will be parameterised directly, such as by expert elicitation or prior knowl-
edge.

! Specify which algorithm(s) you will use for any data-driven parameter estimation, including super-
vised, or unsupervised machine learning, decision-tree, K-nearest neighbour or cluster algorithms (Z.
Liu et al., 2018).

3.4.2 Parameter estimation / model fit performance criteria

¾ Preregistration Item

! Specify which suite of performance criteria you will use to judge the performance of the model. Ex-
amples include correlation scores, coefficient of determination, specificity, sensitivity, AUC, etcetera
(Yates et al., 2018).

! Relate any underlying assumptions of each criterion to the desired properties of the model, and
justify the choice of performance metric in relation

! Explain how you will identify which model features or components are significant or meaningful.

3.5 Model assumptions and uncertainties

¾ Preregistration Item

! Specify assumptions and key uncertainties in the formal model. Describe what gaps exist between
the model conception, and the real-world problem, what biases might this introduce and how might
this impact any interpretation of the model outputs, and what implications are there for evaluating
model-output to inform inferences or decisions?

3.6 Specify formal model(s)

Ĺ Explanation

Once critical decisions have been made about the modelling approach and method of model specification,
the conceptual model is translated into the quantitative model.

¾ Preregistration Item

! Specify all formal models
! Note, For data-driven approaches to determining model structure and or parameterisation, it

may not be possible to respond to this preregistration item. In such cases, explain why this is
the case, and how you will document the model(s) used in the final analysis.

! For quantitative model selection approaches, including ensemble modelling, specify each model used
in the candidate set, including any null or full/global model.
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4 Model Calibration, Validation & Checking
4.1 Model calibration and validation scheme

Ĺ Explanation

This section pertains to any data calibration, validation or testing schemes that will be implemented. For
example, the model may be tested on data independent of those used to parameterise the model (external
validation), or the model may be cross-validated on random sub-samples of the data used to parameterise
the model (Barnard et al., 2019; internal cross-validation Yates et al., 2018). For some types of models,
hyper-parameters are estimated from data, and may be tuned on further independent holdouts of the
training data (“validation data”).

¾ Preregistration Item

! Describe any data calibration, validation and testing scheme you will implement, including any
procedures for tuning or estimating model hyper-parameters (if any).

4.1.1 Describe calibration/validation data

Ĺ Explanation & Rationale

The following items pertain to properties of the datasets used for calibration (training), validation, and
testing.

¾ Preregistration Item

If partitioning data for cross-validation or similar approach (delete as needed):
! Describe the approach specifying the number of folds that will be created, the relative size of each

fold, and any stratification methods used for ensuring evenness of groups between folds and between
calibration / validation data?

If using external / independent holdout data for model testing and evaluation (delete as needed):
! Which data will be used as a the testing data? What method will you be used for generating training

/ test data subsets?
! Describe any known differences between the training/validation and testing datasets, the relative

size of each, as well as any stratification methods used for ensuring evenness of groups between data
sets?

! It is preferable that any independent data used for model testing remains unknown to modellers
during the process of model development, please describe the relationship modellers have to model
validation data, will independent datasets be known or accessible to any modeller or analyst?

4.2 Implementation verification

Ĺ Explanation & Examples

Model implementation verification is the process of ensuring that the model has been correctly imple-
mented, and that the model performs as described by the model description (Grimm et al., 2014). This
process is distinct from model checking, which assesses the model’s performance in representing the system
of interest (Conn et al., 2018).

• Checks for verification implementation should include i) thoroughly checking for bugs or program-
ming errors, and ii) whether the implemented model performs as described by the model description
(Grimm et al., 2014).

• Qualitative tests could include syntax checking of code, and peer-code review (Ivimey et al., 2023).
Technical measures include using unit tests, or in-built checks within functions to prevent potential
errors.
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¾ Preregistration Item

! What Quality Assurance measures will you take to verify the model has been correctly implemented?
Specifying a priori quality assurance tests for implementation verification may help to avoid selective
debugging and silent errors.

4.3 Model checking

Ĺ Rationale & Explanation

“Model Checking” goes by many names (“conditional verification”, “quantitative verification”, “model
output verification” ), and refers to a series of analyses that assess a model’s performance in representing
the system of interest (Conn et al., 2018). Model checking aids in diagnosing assumption violations, and
reveals where a model might need to be altered to better represent the data, and therefore system (Conn
et al., 2018). Quantitative model checking diagnostics include goodness of fit, tests on residuals or errors,
such as for heteroscedascity, cross-correlation, and autocorrelation (Jakeman et al., 2006).

4.3.1 Quantitative model checking

¾ Preregistration Item

During this process, observed data, or data and patterns that guided model design and calibration, are
compared to model output in order to identify if and where there are any systematic differences.

! Specify any diagnostics or tests you will use during model checking to assess a model’s performance
in representing the system of interest.

! For each test, specify the criteria that will you use to interpret the outcome of the test in assessing
the model’s ability to sufficiently represent the gathered data used to develop and parameterise the
model.

4.3.2 Qualitative model checking

Ĺ Explanation

This step is largely informal and case-specific, but requires‚ ‘face validation’ with model users / clients
/ managers who aren’t involved in the development of the model to assess whether the interactions and
outcomes of the model are feasible an defensible (Grimm et al., 2014). This process is sometimes called
a “laugh test” or a “pub test” and in addition to checking the model’s believability, it builds the client’s
confidence in the model (Jakeman et al., 2006). Face validation could include structured walk-throughs,
or presenting descriptions, visualisations or summaries of model results to experts for assessment.

¾ Preregistration Item

! Briefly explain how you will qualitatively check the model, and whether and how you will include
users and clients in the process.

4.3.3 Assumption Violation Checks

¾ Preregistration Item

The consequences of assumption violations on the interpretation of results should be assessed (Araújo et
al., 2019).

! Explain how you will demonstrate robustness to model assumptions and check for violations of model
assumptions.

! If you cannot perform quantitative assumption checks, describe what theoretical justifications would
justify a lack of violation of or robustness to model assumptions.
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! If you cannot demonstrate or theoretically justify violation or robustness to assumptions, explain
why not, and specify whether you will discuss assumption violations and their consequences for
interpretation of model outputs.

! If assumption violations cannot be avoided, explain how you will explore the consequences of as-
sumption violations on the interpretation of results (To be completed in interim iterations of the
preregistration, only if there are departures from assumptions as demonstrated in the planned tests
above).

5 Model Validation and Evaluation

Ĺ Explanation

The model validation & evaluation phase comprises a suite of analyses that collectively inform inferences
about whether, and under what conditions, a model is suitable to meet its intended purpose (Augusiak et
al., 2014). Errors in design and implementation of the model and their implication on the model output
are assessed. Ideally independent data is used against the model outputs to assess whether the model
output behaviour exhibits the required accuracy for the model’s intended purpose. The outcomes of these
analyses build confidence in the model applications and increase understanding of model strengths and
limitations. Model evaluation including, model analysis, should complement model checking. It should
evaluate model checking, and consider over-fitting and extrapolation. As the proportion of calibrated
or uncertain parameters increases, so does the risk that the model seemingly works correctly, but for
the wrong mechanistic reasons (Boettiger, 2022). Evaluation thus complements model checking because
we can rule out the chance that the model fits the calibration data well, but has not captured the
relevant ecological mechanisms of the system pertinent to the research question or the decision problem
underpinning the model (Grimm et al., 2014). Evaluation of model outputs against external data in
conjunction with the results from model checking provide information about the structural realism and
therefore credibility of the model (Grimm & Berger, 2016).

5.1 Model output corroboration

Ĺ Explanation

Ideally, model outputs or predictions are compared to independent data and patterns that were not
used to develop, parameterise, or verify the model. Testing against a dataset of response and predictor
variables that are spatially and/or temporally independent from the training dataset minimises the risk
of artificially inflating model performance measures (Araújo et al., 2019). Although the corroboration of
model outputs against an independent validation dataset is considered the ‘gold standard’ for showing
that a model properly represents the internal organisation of the system, model validation is not always
possible because empirical experiments are infeasible or model users are working on rapid-response time-
frames, hence, why ecologists often model in the first place (Grimm et al., 2014). Independent predictions
might instead be tested on sub-models. Alternatively, patterns in model output that are robust and
seem characteristic of the system can be identified and evaluated in consultation with the literature or by
experts to judge how accurate the model output is (Grimm et al., 2014).

¾ Preregistration Item

! State whether you will corroborate the model outputs on external data, and document any indepen-
dent validation data in step.

! It is preferable that any independent data used for model evaluation remains unknown to modellers
during the process of model building (Dwork et al., 2015), describe the relationship modellers have to
model validation data, e.g. will independent datasets be known to any modeller or analyst involved
in the model building process?

! If unable to evaluate the model outputs against independent data, explain why and explain what
steps you will take to interrogate the model.
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5.2 Choose performance metrics and criteria

Ĺ Explanation

Model performance can be quantified by a range of tests, including measures of agreement between predic-
tions and independent observations, or estimates of accuracy, bias, calibration, discrimination refinement,
resolution and skill (Araújo et al., 2019). Note that the performance metrics and criteria in this section are
used for evaluating the structured and parameterised models (ideally) on independent holdout data, so this
step is additional to any performance criteria used for determining model structure or parameterisation
(Section 3.4.2).

¾ Preregistration Item

! Specify what performance measures you will use to evaluate the model and briefly explain how each
test relates to different desired properties of a model’s performance.

! Spatial, temporal and environmental pattern of errors and variance can change the interpretation
of model predictions and conservation decisions (Araújo et al., 2019), where relevant and possible,
describe how you will characterise and report the spatial, temporal and environmental pattern of
errors and variance.

! If comparing alternative models, specify what measures of model comparison or out-of-sample per-
formance metrics will you use to find support for alternative models or else to optimise predictive
ability. State what numerical threshold or qualities you will use for each of these metrics.

5.3 Model analysis

Ĺ Rationale & Explanation

Uncertainty in models arises due to incomplete system understanding (which processes to include, or which
interact), from imprecise, finite and sparse data measurements, and from uncertainty in input conditions
and scenarios for model simulations or runs (Jakeman et al., 2006). Non-technical uncertainties can also be
introduced throughout the modelling process, such as uncertainties arising from issues in problem-framing,
indeterminicies, and modeller / client values (Jakeman et al., 2006).
The purpose of model analysis is to prevent blind trust in the model by understanding how model outputs
have emerged, and to ‘challenge’ the model by verifying whether the model is still believable and fit for
purpose if one or more parameters are changed (Grimm et al., 2014).
Model analysis should increase understanding of the model behaviour by identifying which processes
and process interactions explain characteristic behaviours of the model system. Model analysis typically
consists of sensitivity analyses preceded by uncertainty analyses (Saltelli et al., 2019), and a suite of
other simulation or other computational experiments. The aim of such computational experiments is to
increase understanding of the model behaviour by identifying which processes and process interactions
explain characteristic behaviours of the model system (Grimm et al., 2014). Uncertainty analyses and
sensitivity analyses augment one another to draw conclusions about model uncertainty.
Because the results from a full suite of sensitivity analysis and uncertainty analysis can be difficult to
interpret due to the number and complexity of causal relations examined (Jakeman et al., 2006), it is
useful for the analyst to relate the choice of analysis to the modelling context, purpose and analytical
objectives defined in the problem formulation phase, in tandem with any critical uncertainties that have
emerged during model development and testing prior to this point.

5.3.1 Uncertainty Analyses

Ĺ Explanation

Uncertainty can arise from different modelling techniques, response data and predictor variables (Araújo
et al., 2019). Uncertainty analyses characterise the uncertainty in model outputs, and identify how
uncertainty in model parameters affects uncertainty in model output, but does not identify which model
assumptions are driving this behaviour (Grimm et al., 2014; Saltelli et al., 2019). Uncertainty analyses
can include propagating known uncertainties through the model, or by investigating the effect of different
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model scenarios with different parameters and modelling technique combinations (Araújo et al., 2019),
for example. It could also include characterising the output distribution, such as through empirical
construction using model output data points. It could also include extracting summary statistics like the
mean, median and variance from this distribution, and perhaps constructing confidence intervals on the
mean (Saltelli et al., 2019).

¾ Preregistration Item

! Please describe how you will characterise model and data uncertainties, e.g. propagating known
uncertainties through the model, investigating the effect of different model scenarios with different
parameters and modelling technique combinations (Araújo et al., 2019), or empirically constructing
model distributions from model output data points, and extracting summary statistics, including
the mean, median, variance, and constructing confidence intervals (Saltelli et al., 2019).

! Relate your choice of analysis to the context and purposes of the model described in the problem
formulation phase. For instance ‚ discrepancies between model output and observed output may
be important for forecasting models, where cost, benefit, an risk over a substantial period must
be gauged, but much less critical for decision-making or management models where the user may
be satisfied with knowing that the predicted ranking order of impacts of alternative scenarios or
management options is likely to be correct, with only a rough indication of their sizes” (Jakeman et
al., 2006).

! Briefly describe how you will summarise the results of these in silico experiments with graphical,
tabular, or other devices, such as summary statistics.

! If the chosen modelling approach is able to explicitly articulate uncertainty due to data, measure-
ments or baseline conditions, such as by providing estimates of uncertainty (typically in the form of
probabilistic parameter covariance, Jakeman et al., 2006), specify which measure of uncertainty you
will use.

5.3.2 Sensitivity analyses

Ĺ Explanation

Sensitivity analysis examines how uncertainty in model outputs can be apportioned to different sources
of uncertainty in model input (Saltelli et al., 2019).

¾ Preregistration Item

! Describe the sensitivity analysis approach you will take: deterministic sensitivity, stochastic sensi-
tivity (variability in the model), or scenario sensitivity (effect of changes based on scenarios).

! Describe any sensitivity analyses you will conduct by specifying which parameters will be held
constant, which will be varied, and the range and intervals of values over which those parameters
will be varied.

! State the primary objective of each sensitivity analysis, for example, to identify which input variables
contribute the most to model uncertainty so that these variables can be targeted for further data
collection, or alternatively to identify which variables or factors contribute little to overall model
outputs, and so can be ‘dropped’ from future iterations of the model (Saltelli et al., 2019).

5.3.3 Model application or scenario analysis

¾ Preregistration Item

! Specify any input conditions and relevant parameter values for initial environmental conditions and
decision-variables under each scenario specified in Section 1.

! Describe any other relevant technical details of model application, such as methods for how you will
implement any simulations or model projections.

! What raw and transformed model outputs will you extract from the model simulations or projections,
and how will you map, plot, or otherwise display and synthesise the results of scenario and model
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analyses.
! Explain how you will analyse the outputs to answer your analytical objectives. For instance, describe

any trade-off or robustness analyses you will undertake to help evaluate and choose between different
alternatives in consultation with experts or decision-makers.

5.3.4 Other simulation experiments / robustness analyses

¾ Preregistration Item

! Describe any other simulation experiments, robustness analyses or other analyses you will perform
on the model, including any metrics and their criteria / thresholds for interpreting the results of the
analysis.
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1 Problem Formulation

Ĺ Rationale & Explanation

This section specifies the decision-making context in which the model will be used or the intended scope
and context of conclusions. Important components include the decision maker and stakeholders (including
experts) and their view on: i) the nature of the problem or decision addressed and how the scope of the
modelling tool fits within the (broader) context (i.e. model purpose; ii) the spatial and temporal scales
relevant to the decision context; iii) specified desired outputs; iv) role and inclusion in model development
and testing; v) whether they foresee unacceptable outcomes that need to be represented in the model
(i.e. as constraints), and; vi) what future scenarios does the model need to account for (noting this may
be revised later). It should also provide a summary of the domain of applicability of the model, and

1



reasonable extrapolation limits (Grimm et al., 2014).

1.1 Model Context and Purpose

Ĺ Rationale & Explanation

Defining the purpose of the model is critical because the model purpose influences choices at later stages of
model development (Jakeman et al., 2006). Common model purposes in ecology include: gaining a better
qualitative understanding of the target system, synthesising and reviewing knowledge, and providing
guidance for management and decision-making (Jakeman et al., 2006). Note that modelling objectives are
distinct from the analytical objectives of the model.
The scope of the model includes temporal and spatial resolutions, which should also be defined here
(Mahmoud et al., 2009). Any external limitations on model development, analysis and flexibility should
also be outlined in this section (Jakeman et al., 2006).

1.1.1 Key stakeholders and model users

¾ Preregistration Item

Identify relevant interest groups:
!" Who is the model for?
!" Who is involved in formulating the model?
!" How will key stakeholders be involved in model development?
!" Describe the decision-making context in which the model will be used (if relevant).

This preregistration document relates to the data analysis of a study on vegetation responses to environmental
flows. The study forms one component of a larger set of studies within Stage 6 of the Victorian Environmental
Flows Monitoring and Assessment Program (VEFMAP) managed by DELWP and delivered through the Arthur
Rylah Institute (ARI). The study is funded by the state of Victoria, with a hierarchy of clients ranging from
the Premier, to the Water Minister, Dep. Secretary, and program managers within the DELWP Water and
Catchments division. The project is also co-funded through the Murray Darling Basin Plan, with corresponding
requirements to contribute findings to Basin Plan reporting outputs. Other key stakeholders for this work
are the Victorian Environmental Water Holder (VEWH) who manage the environmental water entitlements
throughout the state, and the Victorian Catchment Management Authorities (CMAs) that manage the delivery
of environmental water along individual waterways. Findings from this research can then be used to directly
influence: management decisions through the CMAs; water allocation through the VEWH; and water investment
through DELWP, the State Government and the Murray Darling Basin Authority. Other stakeholders, including
the public, water authorities and institutions such as Parks Victoria (among many others) have a minor active
role within the study.
The model formulation is developed by the researchers at ARI, with guidance from the program managers
at DELWP, external researchers and an Independent Review Panel of external researchers for VEFMAP. The
general model structure was proposed by the ARI researchers, which was initially interrogated, modified and
validated with the program manager and external input. A more formal development of the model formulation
was conducted in a collaboration between ARI researchers and external researchers with specific statistical
expertise.
The model outputs, including recommendations, will be shared with decision makers (funders and managers) to
guide their respective decisions. Decisions will require multiple inputs, such as the outcomes of this study and
others, regulatory frameworks, funding availability, physical and practical constraints, and others. This study
does not contribute to those decisions outside of providing the study outputs.
The three primary users of the model outputs are: 1) funders of environmental water (i.e. state and federal
governments) to understand the magnitude of the outcomes of their investment, and the limitations or barriers
to benefits; 2) managers of environmental water (i.e. CMAs) to guide and improve management decisions
for environmental benefits; and 3) other researchers working in the field of waterway flow management and
environmental flows locally and internationally.
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1.1.2 Model purpose, context and problem context

¾ Preregistration Item

Briefly outline:
!" the ecological problem,
!" the decision problem (if relevant), including the decision-trigger and any regulatory frameworks

relevant to the problem,
!" how the model will address the problem, being clear about the scope of the model i.e. is the model

addressing the whole problem, or part of it? Are there any linked problems that your model should
consider?

!" Ensure that you specify any focal taxa and study objectives.

The ecological problem is related to river regulation. Natural flow regimes are major drivers of ecological
processes within waterways. Natural flow regimes are altered by water storage and extraction, i.e. regulation.
Environmental flows aim to provide flow components in a waterway to replace natural components that have
been removed from the flow regime, specifically to provide ecological benefit to multiple taxa and physical
processes. The decision problem relates to maximising the effectiveness of the environmental water deliveries
to achieve their objectives. Decision triggers can occur for the funding of environmental water, i.e. whether
the outcomes are worth the investment or if the investment needs to be altered. Decision triggers can also
occur for the management of environmental water, i.e. whether the outcomes suggest changes to the current
management process. For this study, the evidence is provided for others to address those decisions. There are
various regulatory frameworks that are relevant to the funding and delivery of environmental water, but they
are not within the scope of this assessment as they are in the hands of the decision makers.
The model itself within this study aims to provide clear evidence of the influence of environmental flows, and
other factors (particularly exotic vegetation and livestock grazing), on native vegetation (cover and diversity)
within regulated river channels. Outputs will aim to give practical evidence and the implications of responses
to directly improve and guide the management of environmental water delivery for native vegetation benefit.
Given that the model will incorporate data from across a number of waterways across a large part of Victoria,
the model applications will speak to each of those waterways, as well as potential extrapolation to waterways not
surveyed. The models will not aim to provide explicit predictions within the waterways surveyed, or to specific
un-surveyed waterways, but extension of these models for prediction will be highlighted for future investigation
beyond this study.

1.1.3 Analytical objectives

Ĺ Explanation

How will the model be analysed, what analytical questions will the model be used to answer? For example,
you might be using your model in a scenario analysis to determine which management decision is associated
with minimum regret or the highest likelihood of improvement. Other examples from ecological decision-
making include: to compare the performance of alternative management actions under budget constraint
(Fraser et al., 2017), to search for robust decisions under uncertainty (McDonald-Madden et al., 2008), to
choose the conservation policy that minimises uncertainty (McCarthy et al., 2011). See other examples
in Moallemi et al. [(2019)].

¾ Preregistration Item

Provide detail on the analytical purpose and scope of the model:
!" How will the model be analysed and what analytical questions will the model be used to answer?
! Candidate decisions should be investigated and are specified a priori. Depending on the modelling

context, they may be specified by stakeholders, model users or the analyst (Moallemi et al., 2019).
! Describe the method used to identify relevant management actions and
! specify management actions to be considered included in the model.
! Are there potentially unacceptable management or policy outcomes identified by stakeholders

that should be captured in the model, i.e. as constraints?
!" Are there scenarios that model inputs or outputs that must accommodated? Scenarios should be

set a priori, (i.e. before the model is built, Moallemi et al., 2019) and may be stakeholder-defined or
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driven by the judgement of the modeller or other experts (Mahmoud et al., 2009).
! If relevant, describe what processes you will use to elicit and identify relevant scenarios, e.g. lit-

erature review, structured workshops with stakeholders or decision-makers.
! Specify scenarios under which decisions are investigated.

The model objectives for this study are to provide evidence for vegetation responses to environmental flow
delivery over short (<1yr) to medium (<5yr) term with consideration of additional significant factors, such as
exotic vegetation cover and livestock grazing. These objectives can be captured in the following questions: what
is the short-term vegetation response to a single environmental flow event? what is the vegetation response to
repeated flow events that have been delivered in recent years? how much is the native vegetation response to
environmental flows limited by the abundance of exotic vegetation or livestock grazing?
The models will aim to quantify vegetation responses (indicated by the level or change in plant cover or diversity)
to environmental flows and to quantify the effect of exotic vegetation cover or livestock grazing presence on these
responses. Vegetation cover data that will be the response variables to models (and exotic vegetation covariates)
are collected on the individual species level but will likely be grouped into relevant response classes. These data
also enable evaluation of vegetation diversity within relevant response classes. The specific groupings are yet to
be determined. More information on these groupings is provided below in Section 2.4.
The models themselves will be analysed by assessing the model fit and parameters indicating suitability of
model structure given the data. The specific tests to be used will depend on the model structure used. More
information is provided in Section 3.2 and Section 2.3. Future study will investigate the predictive capacity of
the models within and between different waterways to enable transferability of the data, but this is beyond the
scope of the current piece of work and is not described further here.
Future research will involve testing scenarios of different flow regimes to what we have observed. This includes
estimating the expected data we would have collected if the flows that were delivered were not delivered - thus
effectively modelling a control or counterfactual dataset to the observed data. It also includes testing various
future scenarios with different hypothetical future regimes in the medium (<5yr) or long (>5yr) term. However,
again this is likely to be beyond the scope of the current study which will focus solely on the collected data.

1.1.4 Logistical Constraints

¾ Preregistration Item

!" What degree of flexibility is required from the model? Might the model need to be quickly reconfig-
ured to explore new scenarios or problems proposed by clients / managers / model-users?

!" Are there any limitations on model development analysis and flexibility, such as time or budget
constraints, for example, does a model need to be deployed rapidly?
!" When must the model be completed by, e.g. to help make a decision?

The models will require a certain amount of flexibility to be able to change the time frames over which data are
compared and the set of predictor variables that will change depending on the time frames selected. Funding
constraints and client objectives may also require changes to the modelling process or purpose at any point.
Currently there are no significant limitations on model development - sufficient time and funding resources -
but this may change.

1.1.5 Model Scope, Scale and Resolution

¾ Preregistration Item

! The choice of a model’s boundaries is closely linked to the choice of how finely to aggregate the
behaviour within the model (Jakeman et al., 2006)

– what is the intended scale, and resolution of the model (temporal, spatial or otherwise)?
! Where is the boundary of the modelled system? Everything outside beyond the boundary and not

crossing it is to be ignored within the domain of the model, and everything crossing the boundary
is to be treated as external forcing (known/unknown), or else as model outputs (observed, or not,
Jakeman et al., 2006).

Each of the models described in this preregistration is aggregated differently depending on the response variable
and depending on the particular model specification.
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Vegetation Cover Models
• Full Model: Models vegetation cover for any given transect
• Simplified Model 1: “flow regime model”
• Simplified Model 2: “flow events model”

Species Richness Models

1.1.6 Intended application of results

Ĺ Explanation

Preregistration Items in this section are relevant to model transferability (Yates et al., 2018) and con-
straints on generality in model analysis interpretation. How far do can the results be extrapolated based
on the study design (data + model + analysis)? For instance, if there are many confounding variables
and not enough spatial / environmental replication, then making broader more general claims beyond the
stated boundaries of the model (Section 1.1.3) may not be warranted. However, larger generalisations
about results may be acceptable if the data comes from experimentally manipulated or controlled systems.

¾ Preregistration Item

!" What is the intended domain in which the model is to be applied? Are there any reasonable
extrapolation limits beyond which you expect the model should not be applied (Grimm et al.,
2014)?

The models developed in this study will be applied to only the river systems for which data was collected and
used to fit these models. However, improved understanding about the ecological responses to environmental
flows for the modelled systems may inform future conceptual models and statistical models based thereon.
Given that the primary goal of this study is to improve understanding about the effects of environmental flows
on vegetation, these models resulting from this preregistration should not be directly used to inform predictions
on which to base decisions about the management of environmental flows. The models developed in this study
will instead be appropriately refined for use within a predictive modelling context.

2 Define Conceptual Model

Ĺ Explanation

Conceptual models underpin the formal or quantitative model (Cartwright et al., 2016). The conceptual
model describes the biological mechanisms relevant to the ecological problem and should capture basic
premises about how the target system works, including any prior knowledge and assumptions about system
processes. Conceptual models may be represented in a variety of formats, such as influence diagrams,
linguistic model block diagram or bond graphs, and these illustrate how model drivers are linked to both
outputs or observed responses, and internal (state) variables (Jakeman et al., 2006).

2.1 Choose elicitation and representation method

¾ Preregistration Item

!" Describe what method you will use to elicit or identify the conceptual model. Some common methods
include interviews, drawings, and mapping techniques including influence diagrams, cognitive maps
and Bayesian belief networks (Moon et al., 2019). It is difficult to decide and justify which method
is most appropriate, see Moon et al. (2019) for guidance addressing this methodological question.

!" Finally, how do you intend on representing the final conceptual model? This will likely depend on
the method chosen to elicit the conceptual model.
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We have developed a series of relevant conceptual models for this work over the past four years that build on
previous published work by other researchers, as well as our own research, observations and many discussions.
These conceptual models are described in text within program reports and are summarised in diagrams. The
models are biological/ecological only and do not include links to decision makers or values as these constraints
are not within our capability to influence. Therefore, the models primarily summarise the dominant drivers of
vegetation attributes (cover, diversity, distribution, composition) within waterways. Not all important drivers
are included because it is impossible to account for everything within our study. Our final model for this
particular study will be described in text and summarised within one or more non-quantitative diagrams.

2.2 Explain Critical Conceptual Design Decisions

¾ Preregistration Item

List and explain critical conceptual design decisions (Grimm et al., 2014), including:
!" spatial and temporal scales,
!" selection of entities and processes,
!" representation of stochasticity and heterogeneity,
!" consideration of local versus global interactions, environmental drivers, etc.
!" Explain and justify the influence of particular theories, concepts, or earlier models against alternative

conceptual design decisions that might lead to alternative model structures.

This current study will focus on two different time frames: short term (months) in relation to before and after
event surveys; as well as long-term (years) in relation to patterns resulting from previous years of particular
flow regimes. The models therefore need to describe the short term responses of plants to events as well as the
cumulative responses of plants to multiple types of events within years repeated over several years, i.e. regimes.
The entities will be the vegetation response variables (cover, diversity, composition and perhaps distribution) as
well as various flow variables and other factors such as bank elevation, site, river system, rainfall and livestock
grazing. The flow variables will depend on the time frame. Short term responses will include the presence and
magnitude of a flow event and potentially the time of year and duration of the event. Long term responses will
include the presence of individual flow events over the previous years (number of years TBC) and categorisation
of the types of events that occurred, e.g. was a winter/spring flow natural or e-flow? Was it small or large?
Categories TBC.
The primary process included is the inundation of plants by river flow. Rainfall to provide water will be included
as a covariate rather than a process. Livestock grazing will also be evaluated as a damaging process through
various mechanisms (plant consumption, trampling, soil compaction, nutrient addition, pugging, etc.) but these
mechanisms are difficult to untangle so will most likely be combined if we can’t do so adequately.
There is a large amount of heterogeneity in vegetation patterns within and between sites as well as stochasticity
in the responses to events (and regimes). While both will play a large role in the modelling process of this
study, neither is substantially addressed in the conceptual models for responses. One key component that has
been considered though is the issue of habitat unsuitability for some plants in some areas, for example, there
are many locations on a bank (such as very steep banks) where it is very difficult for some or any plants to
occur, so these sites will have no or low cover or diversity regardless of flows. Because of this, we may consider
models that evaluate change in cover only where plants occur at a sample in at least one survey - i.e. excluding
sample locations with zeros through the whole dataset. This is defensible because locations where occupancy
is impossible are not effective for evaluating flow responses, however, the frequency and distribution of these
‘zero’ samples would need to be described as well.
There are clear local and global interactions within our study. Local interactions are dominated by the species
abundance and composition of plants within a sample area (plant interactions). Rainfall may also interact with
flow events and would influence sites or groups of sites separately. Global interactions include the effect of
season (time of year) on the responses, which is largely influenced by day length and temperatures.
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2.3 Model assumptions and uncertainties

¾ Preregistration Item

Specify key assumptions and uncertainties underlying the model design, describing how uncertainty and
variation will be represented in the model (Moallemi et al., 2019). Sources of uncertainty may include:

!" exogenous uncertainties affecting the system,
!" parametric uncertainty in input data and
!" structural / conceptual nonparametric uncertainty in the model.

Exogenous uncertainty
By ‘exogenous uncertainties’ I’m assuming this refers to uncertainties in any of the possible predictor variables
for the model that are not direct treatment variables, even those that may not be used. There are a large
number of potential exogenous uncertainties affecting the system because the surveys are done in the natural
environment. These include:

• The spatial variability of rainfall. For rainfall to be accessible to a plant it needs to fall on or very near
the plant in most cases. However, rainfall is spatially patchy and a rain event will affect different sites
in an area differently. So our rain gauge data will only be an approximation of the actual rainfall at a
specific site.

• Climate. Aside from rainfall, there are many climate elements that will influence plants, such as tempera-
ture, humidity and solar radiation (light). We can provide estimated values for some of these at sites but
this will not account for the spatial and temporal variation in these factors that may influence our results.

• Soil properties. We do not have accurate (or any in some cases) information on soil type at each site. Nor
do we have an expectation of how soils might influence plant attributes and responses to flows. We may
be able to obtain basic information from spatial mapping of soil types, but this would be at a very coarse
scale and would also not account for shallow surface soil deposits or variation through the soil profile. We
have some data on soil types at some sites from soil cores but not all.

• Funghi. Funghi may be considered exogenous or endogenous, but it may have a role in determining plant
patterns and responses to flows. We have no data on this, nor any specific expectations on how funghi
may influence results.

Parametric uncertainty
I think this is referring to the other predictor variables in the model that are directly associated with treatments.
These are primarily associated with flow but also grazing and potentially exotic plant cover.

• Flow elevation zones (if used). There is uncertainty in our GPS measurements of elevation of sub-transects
and quadrats. There is also uncertainty in the flow elevation through time. Also, the flow elevation peak
may only last for a brief period so the duration affected by the peak height may be very short. This means
that the flow elevation zones that combine all of this information are uncertain. Even if we do not use
zones, each of the input data listed here will be included and will be uncertain as indicated.

• Flow magnitude and duration. Flow magnitude (discharge) is recorded in most regulated streams at set
gauges. The data from these gauges is usually calibrated by the data manager at some point after the raw
data are entered. We have little idea of how much uncertainty there is in the uncorrected or corrected data
that we obtain from online resources. Also, it is assumed that the magnitude (and timing and duration of
flows) at the gauge is representative of the sites near that gauge, but we are unsure how much that may
vary spatially.

• Flow velocity. Flow velocity can have a significant impact on plants if it is fast enough to damage or
remove plants, or if it alters the soil. However the calculation of velocity at any given point on a river
is difficult and varies at all points throughout the river cross section depending on the flow magnitude,
flow height, channel form and obstacles. We do not have the capacity to calculate or even broadly
approximate velocities at different flows so this variable cannot be included. However, we have seen very
little field evidence of plant damage or removal from regulated flows on waterways and velocities during
most regulated flows are typically not high on the bank where the plants are.

• Livestock grazing is specified as present or absent only at each site, not the intensity or duration of grazing.
This adds a lot of uncertainty to this variable because the intensity (density of animals) and duration are
important factors for the impact. However, this information is difficult to obtain from landholders or
estimate from the site. We do have the animal ID though (cattle or sheep). Also, grazing impacts are
spatially patchy depending on the ease of access - livestock don’t impact steep slopes or inaccessible ledges
or obstacles much compared to flatter or gentler slopes. So within a grazed site, the grazing impact may
vary between transects.
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• We will consider models for native plant cover that include exotic plant cover as a predictor. The cate-
gorisation of native and exotic is fairly well recognised in Victoria and should not pose an issue, but the
categorisation of the plant group is variable (see Section 2.5.2). Also, the estimate of cover is uncertain.

Structural non-parametric uncertainty
Model uncertainty is a given. The models we will use will not fit the data perfectly but we will be able to quantify
this uncertainty in our model estimates. Uncertainty will be captured for our vegetation input data based on
the number of samples we have within our hierarchical data structure. Uncertainty will not be accounted
for in our uncertain variables such as rainfall or flow where we have no way of estimating this uncertainty.
Unknown uncertainty will be somewhat captured in random effects but this will be an approximation only.
More information about the model form and potential uncertainty is provided in Section 3 but is not contained
within our conceptual model.

2.4 Identify predictor and response variables

Ĺ Explanation

The identification and definition of primary model input variables should be driven by scenario definitions,
and by the scope of the model described in the problem formulation phase (Mahmoud et al., 2009).

¾ Preregistration Item

Identify and define system variables and structures, referencing scenario definitions, and the scope of the
model as described within problem formulation:

!" What variables would support taking this action or making this decision?
!" What additional variables may interact with this system (things we can’t control, but can hopefully

measure)?
!" What variables have not been measured, but may interact with the system (often occurs in field or

observational studies)?
!" What variables are index or surrogate measures of variables that we cannot or have not measured?
!" In what ways do we expect these variables to interact (model structures)?
!" Explain how any key concepts or terms within problem or decision-making contexts, such as reg-

ulatory terms, will be operationalised and defined in a biologically meaningful way to answer the
research question appropriately?

Response Variables
The response variables will be associated with plant cover and diversity, which are the most commonly specified
variables of interest within stated management objectives. These variables are also widely used within ecological
studies and are directly transferable/translatable to many other studies. The specific variables used are likely
to be:

• Plant cover (by species or species group) at a particular time
• Change in plant cover (by species or group) over a particular period of time relating to the occurrence of

one or more flow events
• Plant diversity (in relevant species response groups) at a particular time
• Change in plant diversity (in relevant species response groups) over a particular period of time relating

to the occurrence of one or more flow events
Predictor Variables
Based on our problem formulation, the expected predictor variables to use within our models are:

• Bank elevation (by zone or elevation measure GPS)
• Flow elevation, duration, time.
• Livestock grazing (likely presence or absence (but can provide approximate intensity category), potentially

by grazer type sheep/cattle)
• Rainfall (potentially, but need to be careful about what period of rainfall data is relevant to the responses)
• Site variables (random effects for hierarchical structure: sub-transects/quadrats < transects < site <

system/basin)
• Exotic vegetation cover or diversity (for models with native vegetation as the response)
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• Time/season (the period over which the event has occurred, for regimes this will be standardised to a set
number of years so will not be included as time but would be categorised into regime type TBC)

Each of these variables is important for influencing decisions about the use of environmental water to achieve
benefits for (native) riparian vegetation. Additional variables that may be useful but are difficult to obtain at
the appropriate spatial resolution (such as soils and funghi) are unlikely to be added. We expect there to be
interactions between flow and bank elevation, hence the need to incorporate the elevation in our models. There
may be interactions between bank elevation and livestock impacts due to the softer ground at the bank margin
being more susceptible to trampling. Exotic vegetation will also interact with bank elevation and flows. Rainfall
in summer is likely to be more influential than rainfall in winter.

2.5 Define prior knowledge, data specification and evaluation

Ĺ Explanation

This section specifies the plan for collecting, processing and preparing data available for parameterisation,
determining model structure, and for scenario analysis. It also allows the researchers to disclose any prior
interaction with the data.

2.5.1 Collate available data sources that could be used to parameterise or structure the model

¾ Preregistration Item

For pre-existing data (delete as appropriate):
!" Document the identity, quantity and provenance of any data that will be used to develop, identify

and test the model.
!" For each dataset, are the data open or publicly available?
!" How can the data be accessed? Provide a link or contact as appropriate, indicating any restrictions

on the use of data.
! Date of download, access, or expected timing offuture access.
!" Describe the source of the data - what entity originally collected these data? (National Data Set,

Private Organisational Data, Own Lab Collection, Other Lab Collection, External Contractor, Meta-
Analysis, Expert Elicitation, Other).

! Codebook and meta-data. If a codebook or other meta-data are available, link to it here and / or
upload the document(s).

!" Prior work based on this dataset - Have you published / presented any previous work based on this
dataset? Include any publications, conference presentations (papers, posters), or working papers
(in-prep, unpublished, preprints) based on this dataset you have worked on.

!" Unpublished Prior Research Activity - Describe any prior but unpublished research activity using
these data. Be specific and transparent.

!" Prior knowledge of the current dataset - Describe any prior knowledge of or interaction with the
dataset before commencing this study. For example, have you read any reports or publications about
these data?

!" Describe how the data are arranged, in terms of replicates and covariates.

For this section, I have used the relevant points above from both of the options above given that we have
collected the data ourselves.

• The data were collected over a four year period (2016-2020) as part of the Victorian Environmental Flows
Monitoring and Assessment Program. The program outline and the methods are outlined in reports found
at this website: https://www.ari.vic.gov.au/research/rivers-and-estuaries/assessing-benefits-of-water-for-
the-environment

• Data were collected from 44 sites across Victoria with sampling year and number of surveys varying
between sites, from 3 times in one ‘water year’ to 11 times in four ‘water years’. Each site had 5-10
permanent transects established and each of those transects had a series of sub-transects at increasing
bank elevations at which data were collected each survey. More detail on how the data were collected is
available in the manual.

• The data are not yet publicly available but will be available from an online database at a later date as a
requirement of publicly funded data. There will be standard conditions of use for the data respecting IP
and research contributions.
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• A metadata file has not yet been produced for all of the relevant data files, but the column names have
been intuitively labelled. A file will be produced and stored with the data or in an accessible repository.
Task/issue to create metadata file

• There have been many unpublished client reports produced based on small subsets of these data but with
very limited data analysis. There have also been many oral presentations and various summary documents
(flyers etc.) shared with relevant stakeholders. A summary including some preliminary analysis of these
data is provided in this published client report, available at the above website (Tonkin et al., 2020). There
are other published papers in development based on this program but not on this dataset.

• Existing knowledge of the data comes from collecting it ourselves, conducting thorough data checking
and cleaning, producing output summaries (species lists, sample sizes, etc.) and conducting a preliminary
analysis on a small subset of the data for the report highlighted above and a separate study on one time
period from one river: Sutton, N., Houghton, J., Vietz, G., Jones, C., Mole, B., Morris, K., Gower, T.
2020. Influence of Intervalley Transfers (IVT) on the Riverbanks and Bank Vegetation of the Goulburn and
Campaspe Rivers. Report by Streamology and Arthur Rylah Institute for the Department of Environment,
Land, Water and Planning. June, 2020.

2.5.2 Data Processing and Preparation

¾ Preregistration Item

!" Describe any data preparation and processing steps, including manipulation of environmental layers
(e.g. standardisation and geographic projection) or variable construction (e.g. Principal Component
Analysis).

This analysis is relatively complex, due to the large dataset and the integration of different data sources (veg-
etation data, flow, transect elevation, site attributes). Each of these data sources requires some careful data
processing and preparation for use within the models. Here we outline the major actions - listed within issue
#23 in our repository.
GPS data correlation The specific relevance of this issue for flow elevation is detailed below, but here we
summarise the general issues with GPS correlation. High-accuracy GPS points are required for three parts of
this study: 1) vegetation sampling locations, 2) flow elevation (data loggers), 3) bank profiles and soil moisture
loggers. In this study, there were various sources of these GPS points, with each source not corresponding
exactly to the others. A calibration is then used to align all points at a site for each source. The data sources
include:

• Points for flow loggers on Campaspe: Unimelb
• Points for veg survey locations on Campaspe: ARI using UPG equipment
• Points for all other veg survey locations: ARI using ARI equipment (equiv to UPG)
• Zero grade heights for permanent water loggers: Ventia

In all cases, we will calibrate to the levels of the vegetation survey locations, so that the flow data and vegetation
data align.
Flow data correlation with site elevation Flow data in this study was processed externally by a hydrology
consultant with data and site information provided by the ARI team. For each site surveyed, flow data were
compiled and an output of flow level (elevation in AHD) was produced at regular intervals (interval time
depending on data inputs). While all vegetation survey sites were attempted to have matching flow data, some
data were impossible to acquire due to the lack of critical flow information at the specific site and we are unable
to evaluate full flow hydrology levels for these sites. The full hydrology data processing procedure is outlined
in a separate document provided by the consultant and is not replicated here. It is critically important for
our study that the flow elevations correlate with measured elevations of each vegetation sub-transect. The sub-
transect elevations were obtained by ARI staff at the exact locations of the sub-transects, using GPS devices and
processing software that was tested and proven sufficiently accurate for the study. While the relative elevation
among sub-transect points appears to be accurate, the comparative elevation to the flow levels was in some
cases misaligned. This is however a relatively easy fix, once the difference between the transect and flow data
elevations is determined, that value is simply added or subtracted from either dataset for calibration. The
differences were possible due to water level elevations recorded at each site that could compare flow levels with
sub-transect levels directly. A second issue is that the river channels typically decline in elevation from upstream
to downstream within a site, resulting in a decline in elevation across the transect locations within a site. This
is particularly true for sites further upstream, whereas lowland reaches can be very flat. This means that a
single flow level for each site will be inaccurately indicating flow heights at some transect locations. Again, this

10



can be addressed through data calibration for each site so that the flow level speaks to each transect location
within a site. This transect-specific calibration is required for all transects within the study with flow data
available. This is then a three step process: 1) determine any discrepancy between sub-transect elevations and
flow elevations for each site, 2) determine the within-site variation in elevation across transects, 3) provide a
calibration value for all transects at all sites with flow data to enable rapid calibration.
Determination of flow events/timelines for evaluation Once accurate and fully aligned data are produced
via the processes indicated above, it is important to carefully consider the flow variables to be used within models.
Our conceptual understanding of vegetation responses to flows suggests that the depth, duration and timing
(season) are important attributes of flow that dictate responses. These variables can be extracted from the flow
data that we have for each site.
Important considerations for flow depth The most important aspect of flow depth is where or not a plant is fully
submerged or not by the flow. Our VEFMAP Stage 6 experimental research has shown us that a plant that is
only partly submerged is likely to be much less affected than a plant fully submerged. This is the case for most
non-aquatic species. Therefore, when we consider the impacts of flow level, the flow elevation is very important,
for example, the threshold of plant responses my not occur at the maximum elevation of a flow event but instead
at around 40cm below the peak level where most plants will have been fully submerged. However, this impact
may vary between species based on their height, growth form, and physiological responses to inundation.
Important considerations for flow duration Flow duration is important because vegetation responses vary dra-
matically with duration. Our VEFMAP Stage 6 experimental research has shown us that most plants are
tolerant of short periods of inundation (and there may be some positive effects at very short durations depend-
ing on climate attributes and soil). But as submergence duration increases, most non-aquatic plants will decline
in health until they eventually reach a survival threshold. The specific duration of a non-lethal flow may not
be critical in evaluating the effect of a flow, but that is critical information for a lethal flow.
Important considerations for flow timing Flow timing is important because vegetation responses vary with flow
timing. Our VEFMAP Stage 6 experimental research has shown us that many plants are more negatively affected
(more rapidly) by submergence in warmer seasons. Separating winter/spring flow events from summer/autumn
events appears to be the most important distinction from this point of view and we don’t expect vegetation
responses to be equivalent in these periods.
Important considerations for flow regimes When considering flow regimes, we firstly will need to determine a
time range that is relevant, e.g. the last 3 years, 5 years,…prior to surveys. We will also probably need to
categorise or otherwise quantify waterways with particular regimes to indicate the set of regime components
that will influence vegetation patterns. For example, a ‘full’ regime might have baseflows and/or low-flows as
well as at least one spring fresh and summer/autumn fresh. A ‘summer’ regime might have all but the spring
fresh/high-flow, while a ‘spring’ regime might have all but the summer/autumn fresh. There may also be a
category for ‘variable’ regime within recent years. For categorical regimes, the regime also needs to be consistent
across the relevant set of years. Depending on the variability between sites and between years, we might need
to consider multiple options for evaluating the regime. Each of the sites needs to be assessed to list the regime
within recent years to determine the best options - which has not been done yet.
Determining the variables to use Initially, we will use the most simple flow variables that directly relate to
management of e-flows. The most commonly delivered e-flows are baseflows and spring freshes. These events are
usually consistently delivered each year at the same flow magnitude. This allows us to evaluate the cumulative
effect of those flow levels on vegetation, as well as the effects of a single flow event. This can be done by
determining the mean baseflow level and mean peak fresh level from our flow data and using those levels
as indicators to compare vegetation trends above and below those elevations. This will be our first point of
evaluation for flow. As we progress the analysis and determine how closely or loosely vegetation patterns
align with these levels, we will explore alternative approaches and variables for use in the evaluation, such as
the number of days inundated by a certain depth over a given period. Importantly, the usefulness of these
evaluations depends a lot on the vegetation species or groupings that are evaluated in the models against these
flow metrics.
Vegetation categorisation into functional/response groups Different species respond to the environment
differently. The same is true for flow responses. This is why all of our vegetation surveys are initially done at the
individual species level. However, individual species distributions and abundances are spatially and temporally
patchy, so there can be great value in aggregating data from similar species to produce larger data pools. This
is the norm for many ecological studies. The critical step is how species are aggregated. There is a balance
between too refined groups (with little benefit from increased data pools as the pools increase by small amounts)
and too broad groups (there is a large amount of species variation within a group meaning that responses are
unclear). One well-established grouping system for wetland plants is by Brock and Casanova (1997) that groups
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plants by their affinity for different water regimes - called wetland plant functional groups (WPFG). In many
cases, the species and the responses are directly equivalent to riparian systems, however there are some notable
variations. There are also many different WPFGs, which are impractical to evaluate separately in many cases.
In this study, we do not have a pre-determined approach for how vegetation groups will be used. We have
compiled all of the relevant WPFG assignments for each species recorded and have determined our own classes
in which these groups are nested (with variation required in few cases where the riparian response is expected
or observed to be different from the wetland responses). We will initially conduct our analyses using the three
hierarchical levels of data aggregation: species < WPFG < broad classes. Based on these initial explorations,
we will progress the final evaluation approach. This exploratory approach is important for a study like this
where there is not a clear precedent in the published literature for the most appropriate vegetation groupings.
Determination of grazing covariate The most simple form of grazing covariate is a binary score of present
or absent. However, as described in Section 2.3, there is a lot of variation in the effect of grazing relating to the
intensity (density of animals) and the timing (season of grazing). While we do not have this information, we
can roughly categorise the grazing intensity based on site observations, which may be informative. Additionally,
we have data on grazer animal (sheep or cattle) which may be important for some or all questions. We need to
consider these options and develop candidate variables to test in our models.
Determination of exotic vegetation covariate The exotic vegetation covariate is relatively straightforward
in one sense because it will be simple cover and/or diversity estimates that we have collected. However, there
is a likely interaction between the impact of exotic species and the terrestrial/riparian grouping, for example, it
is possible that terrestrial exotics are less of a problem than riparian ones even with the same amount of cover
because they occupy the same habitat and seasonal niches as native riparian species. So this comes back to the
vegetation groupings described above which need to be resolved to determine the variables used.

2.5.3 Describe any data exploration or preliminary data analyses

Ĺ Explanation

In most modelling cases, it is necessary to perform preliminary analyses to understand the data and check
that assumptions and requirements of the chosen modelling procedures are met. Data exploration prior
to model fitting or development may include exploratory analyses to check for collinearity, spatial and
temporal coverage, quality and resolution, outliers, or the need for transformations (Yates et al., 2018).

¾ Preregistration Item

For each separate preliminary or investigatory analysis:
!" State what needs to be known to proceed with further decision-making about the modelling proce-

dure, and why the analysis is necessary.
!" Explain how you will implement this analysis, as well as any techniques you will use to summarise

and explore your data.
!" What method will you use to represent this analysis (graphical, tabular, or otherwise, describe)
!" Specify exactly which parts of the data will be used
!" Describe how the results will be interpreted, listing each potential analytic decision, as well as the

analysis finding that will trigger each decision, where possible.

Given the complex nature of this analysis and the uncertainties in the data structure due to the data processing
that needs to occur, there are many preliminary checks that may need to be conducted. For example, depending
on the vegetation groupings that we decide to use, and how we account for ‘zero samples’ (see Section 2.2) there
may be very different amounts of skew or zero-inflation in the response or predictor variables. Initially, we
will need to do simple tests of data distributions within hierarchies to check for data spread and prevalence
of zeros or outliers. We will also need to assess the collinearity or interactions between candidate predictor
variables to ensure relevant interactions are captured and to reduce model overfitting. Our data are spatially
and temporally variable with a relatively large spatial coverage but the data density is not equal across space
and time, i.e. some sites have been surveyed more than others and in different years. Random effects for site
should account for the spatial bias but we will need to carefully consider the interpretation of the outputs and
explore options for accounting for temporal variability.
We will conduct a pilot analysis of a subset of the full data-set in order to develop an initial set of candidate
models. This pilot data will consist of both hydrological and vegetation data for a single System, Campaspe. Al-
though the last three years of data are missing from the current Campaspe dataset, it still contains observations
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from multiple years which will facilitate setting up a multi-year model. The pilot analysis aims to address un-
certainties in how best to specify the candidate models, including how some variables should be operationalised,
and which variables should be included given issues like multicolinearity. The analysis aims to identify any
major issues that we might need to address within our modelling of the full dataset.
Some questions we will investigate are:

• How do we classify best flow regime based on inundation data?
• What is the relevant regime time-frame to consider for quantifying the regime? 3 / 5 years, something

else?
• Are there any outliers?
• What distributional assumptions do we need to make in our models?
• Will there be issues with zero-inflated count data?
• Do the available data support the desired model structures, or do these require simplification?

To resolve these uncertainties we will conduct some exploratory data analyses. Specifically, we will visually assess
distributions of the response variables, test correlations between all pairs of numerical (non-categorical) predictor
variables, and calculate counts of non-zero observations within each category of any categorical variables included
in the analysis (accounted for nested structures and interactions).
We will also fit two initial models to the pilot dataset, one for each key response variable (richness, cover):
library(glmmTMB)

# autoregressive model for cover
cover_ar_model <- glmmTMB(
# specify an autoregressive model structure to model change in plant cover
plant_hits ~ log_plant_hits_tm1 +
# assess group- and origin-specific impacts of broad flow "regimes"
wpfg * origin * (days_above_baseflow + days_above_springfresh) +
# fixed effects for functional group, zone (bank elev.), period (before/after),
# and origin (with interactions)
wpfg * zone * period * origin +
# fixed effect for grazing impacts (binary variable)
grazing +
(1 | site / transect) + # random effects for transects nested within sites
(1 | metres) + # random effect for location of site up the streambank
(1 | survey_year) + # random effect for survey year
family = poisson, # assume count distribution of plant_hits
ziformula = ~ wpfg, # allow zero-inflation, with functional group-specific parameters
data = veg_cover_ar

)

# model for species richness
richness_model <- glmmTMB(
species_richness ~
# assess group- and origin-specific impacts of broad flow "regimes"
wpfg * origin * (days_above_baseflow + days_above_springfresh) +
# fixed effects for functional group, zone (bank elev.), period (before/after),
# and origin (with interactions)
wpfg * zone * period * origin +
# fixed effect for grazing impacts (binary variable)
grazing +
(1 | site / transect) + # random effects for transects nested within sites
(1 | metres) + # random effect for location of site up the streambank
(1 | survey_year) + # random effect for survey year
offset(npoint), # offset to account for number of points measured at each transect
family = poisson, # assume count distribution of plant_hits
ziformula = ~ wpfg, # allow zero-inflation, with functional group-specific parameters
data = veg_richness

)
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All models fitted to the pilot data set will undergo the same model checks as the candidate models fitted to the
full dataset. The primary focus of model checks for the pilot analysis is to identify appropriate model structures,
which has two main steps. First, assessing whether model converged and generated reliable parameter estimates,
which in the case of the proposed glmmTMB models is assessed internally and printed on model return. Second,
assessing whether the model structure (particularly the error distribution) is appropriate for the data, which is
supported by posterior predictive checks. The details of these steps are provided in Section 4.3.1.
It is important to note that models fitted to the pilot dataset may not translate directly to the final analysis
due to differences in the data structure. These differences will change the distribution of observations within
categories, and will introduce a new random effect for water body (or system), which is not required for the
single-water body pilot analysis. Due to these changes, the final analysis still requires model checking and may
require changes to the model structure.

2.5.4 Data evaluation, exclusion and missing data

Ĺ Explanation

Documenting issues with reliability is important because data quality and ecological relevance might be
constrained by measurement error, inappropriate experimental design, and heterogeneity and variability
inherent in ecological systems (Grimm et al., 2014). Ideally, model input data should be internally
consistent across temporal and spatial scales and resolutions, and appropriate to the problem at hand
(Mahmoud et al., 2009).

¾ Preregistration Item

!" Describe how you will determine how reliable the data are for the given model purpose. Ideally,
model input data should be internally consistent across temporal and spatial scales and resolutions,
and appropriate to the problem at hand

!" Document any issues with data reliability.
!" How will you determine what data, if any, will be excluded from your analyses?
!" How will outliers be handled? Describe rules for identifying outlier data, and for excluding a site,

transect, quadrat, year or season, species, trait, etc.
!" How will you identify and deal with incomplete or missing data?

Data reliability At this stage I am unsure about how we will quantitatively evaluate how reliable the data are
for the questions being addressed. Qualitatively, one of the most important considerations will be to assess how
logical the outcomes are in relation to our observations and conceptual understanding. We have a very good
mental model of these systems due to the large amounts of fieldwork in various areas over the years collecting
the dataset used in this study as well as relevant data for other studies. As for data quality, there are likely to
be minor errors in such a large dataset that we cannot detect with our quality checking procedures, however,
we are very confident that the data have been consistently collected (almost every survey was led by the same
individual with the other surveyors being from a consistent set of experienced individuals), in the same places
(all transects were permanently marked and relocated at each survey), and the data checking process has been
extremely thorough (documented in git). All this considered, we believe that this is one of the most reliable
vegetation datasets available anywhere in Victoria for its size and complexity.
Data exclusions Data will only be excluded if we believe it is incorrect, and it can’t be corrected, it is irrelevant
to a particular model/assessment, or it precludes model fitting. For example, if evaluating survey intervals
relating to spring fresh delivery, we can only include years and sites where such a delivery actually occurred.
Incorrect data are easily detected where values lie outside possible or plausible ranges, but in other cases they
can be very difficult to identify - we are confident that the former have been well accounted for in the datasets
but the latter is only partially accounted for and there may be some minor errors that we cannot isolate. All
species will be included, but unknown species that have no possible grouping identifier, e.g. native/exotic or life
form, may not be possible to include. The vast majority of these occurrences are for seedlings that are too small
to be identified. In most cases seedlings had minimal impact on plant cover, so this would have few implications
for evaluation of cover, but this may have a greater impact on species richness. Decisions will need to be made
for certain unknown species categories, particularly those that are more common in the dataset. At this stage
only species that can reliably assigned to a relevant group for a given model will be included. Furthermore, the
pilot analysis illustrated extreme zero-inflation for several groups, which prevented model fitting. Consequently
these groups were excluded from the pilot study modelling and they may or may not be included in the full
dataset analysis, depending on whether the models can be successfully fit.
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Plant functional groups "Atl_native", "Ate_native", "Tda_unknown" are removed for all models because
these wpfg are thought to be incorrectly specified (typos).
Missing data There are a small number of cases where we have incomplete or missing data due to various
circumstances in the surveys. Currently these are indicated as NA in the dataset and form a small proportion
of the overall dataset.

2.6 Conceptual model evaluation

¾ Preregistration Item

!" Describe how your conceptual model will be critically evaluated. Evaluation includes both the
completeness and suitability of the overall model structure.

!" How will you critically assess any simplifying assumptions (Augusiak et al., 2014)?
! Will this process include consultation or feedback from a client, manager, or model user?

Model analysis results will be used to update the existing conceptual model (described in Section 2). Specifically,
model results will be used to inform understanding about the short-term (flow models) and long-term (regime
models) impacts of environmental flows combined with grazing and exotic vegetation on native vegetation (cover
and density) within regulated river channels monitored in this dataset.

3 Formalise and Specify Model

Ĺ Explanation

In this section describe what quantitative methods you will use to build the model/s, explain how they
are relevant to the client/manager/user’s purpose.

3.1 Model class, modelling framework and approach

Ĺ Explanation

Modelling approaches can be described as occurring on a spectrum from correlative or phenomenological
to mechanistic or process-based (Yates et al., 2018); where correlative models use mathematical functions
fitted to data to describe underlying processes, and mechanistic models explicitly represent processes and
details of component parts of a biological system that are expected to give rise to the data (White &
Marshall, 2019). A model ‘class,’ ‘family’ or ‘type’ is often used to describe a set of models each of which
has a distinct but related sampling distribution (C. C. Liu & Aitkin, 2008). The model family is driven
by choices about the types of variables covered and the nature of their treatment, as well as structural
features of the model, such as link functions, spatial and temporal scales of processes and their interactions
(Jakeman et al., 2006).

¾ Preregistration Item

!" Describe what modelling framework, approach or class of model you will use to implement your model
and relate your choice to the model purpose and analytical objectives described in Section 1.1.2 and
Section 1.1.3.

We will use a correlative model approach for this analysis, where we will attempt to detect and describe patterns
in recorded vegetation data in relation to a series of covariates. Specifically, the analysis aims to provide clear
evidence of the influence of environmental flows, and other factors (particularly exotic vegetation and livestock
grazing), on native vegetation (cover and diversity) within regulated river channels (Section 1.1.3). We will
initially use generalised linear mixed effects models (GLMM) with zero-inflated Poisson family distribution for
cover data and species richness (counts). The exact model family will be determined based on an iterative
process of model fitting and model checking (with posterior predictive checks) to ensure that the fitted model
family is appropriate for the data being modelled (see Section 3.2, below). We believe that GLMMs are a
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robust approach for our objectives and data structure, with a key feature of the random effects allowing for the
hierarchical sampling design and repeated measures.
Although alternative distributions may be suitable for cover data (e.g., binomial, beta), these distributions
introduce link functions that complicate the specification of an autoregressive model structure. For this reason,
a Poisson distribution was used to model cover data, noting that the Poisson approximates the binomial in the
limit of a large number of trials. The Poisson distribution, specified with an offset, still models proportional
cover but does not constrain values to sit below an upper bound (values must still be non-negative).

3.2 Choose model features and family

Ĺ Explanation

All modelling approaches require the selection of model features, which conform with the conceptual
model and data specified in previous steps (Jakeman et al., 2006). The choice of model are determined
in conjunction with features are selected. Model features include elements such as the functional form
of interactions, data structures, measures used to specify links, any bins or discretisation of continuous
variables. It is usually difficult to change fundamental features of a model beyond an early stage of
model development, so careful thought and planning here is useful to the modeller (Jakeman et al., 2006).
However, if changes to these fundamental aspects of the model do need to change, document how and
why these choices were made, including any results used to support any changes in the model.

3.2.1 Operationalising Model Variables

¾ Preregistration Item

!" For each response, predictor, and covariate, specify how these variables will be operationalised in the
model. This should relate directly to the analytical and/or management objectives specified during
the problem formulation phase. Operationalisations could include: the extent of a response, an
extreme value, a trend, a long-term mean, a probability distribution, a spatial pattern, a time-series,
qualitative change, such as a direction of change or, the frequency, location, or probability of some
event occurring. Specify any treatment of model variables, including whether they are lumped /
distributed, linear / non-linear, stochastic / deterministic (Jakeman et al., 2006).

!" Provide a rationale for your choices, including why plausible alternatives under consideration were
not chosen, and relate your justification back to the purpose, objectives, prior knowledge and or
logistical constraints specified in the problem formulation phase (Jakeman et al., 2006).

The two primary response variables are plant cover and species richness (see Section 2.4), which will be opera-
tionalised in slightly different ways depending on the time frame:

1. short term-in response to a single event (i.e. before and after); and
2. medium term (2-10 years) in relation to typical flow regimes (flow elevation/duration/timing) over that

period.
Both will be using the extent of a response of particular groups of plants at particular bank elevations in relation
to flow events (factor condition of before or after an specific event) or flow values (e.g. days of flow to a specific
elevation within a year/season), as well as the additional covariates of exotic plant cover and livestock grazing.
This will enable an evaluation of variation in plant responses at different elevations in relation to the primary
management action (flow) as well as identify the relative impacts of flow and the covariates of exotic plants
(interacting with flow) and livestock grazing.

3.2.2 Choose model family

¾ Preregistration Item

!" Specify which family of statistical distributions you will use in your model, and describe any trans-
formations, or link functions.

!" Include in your rational for selection, detail about which variables the model outputs are likely
sensitive to, what aspects of their behaviour are important, and any associated spatial or temporal
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dimensions in sampling.

Posterior predictive checks from the pilot analysis indicated high levels of zero-inflation with some over-
dispersion. The final models in the pilot analysis allowed for zero-inflation parameters to differ among plant
functional groups (ziformula = ~ wpfg) to account for different proportions of zeros among functional
groupings, but did not account for over-dispersion. Over-dispersion is commonly accounted for by using
negative binomial models, which we could potentially fit using groups-specific dispersion parameters using the
glmmTMB argument dispformula = ~ wpfg. However, all attempts to fit negative binomial models resulted
in non-convergence in our pilot analysis. Despite some degree of over-dispersion, given that the zero-inflated
Poisson models converged and reliably captured the proportion of zeros in the pilot dataset, we propose using
this approach for all models fitted to the full dataset, including any simplified models.
The two key vegetation response variables have Poisson and binomial families (distributions) as indicated in
Section 3.3, but will both be modelled as zero-inflated Poisson distributions for the reasons outlined in Section 3.1.
All models will use a log link function. These distributions have been selected based on the type of data and
the expected data distributions, particularly the fact that observations of richness and cover are both recorded
as counts but include many zero values. There may be unexpected issues with these approaches due to actual
data distributions not matching our expectations, such as an unaccounted for over-dispersion of the data.
Should either over-dispersion or zero-inflation be identified in any fitted model, we will try alternative distribu-
tions.
Should over dispersion in any model be identified, we will re-fit the models using a negative binomial distribution.
However, the models re-fitted using the negative binomial distribution will only be accepted over the Poisson
models if they both improve over-dispersion and do not decline in model performance, particularly model fit,
zero-inflation, and posterior predictive checks.
While we are unable to a priori precisely weight these criteria in determining the final distribution, the final
decision will be guided by the model’s overall ability to capture key associations reliably. This is especially likely
to occur when there is no ‘perfect model’ and there is no dominant alternative choice of model distribution.

3.3 Describe approach for identifying model structure

Ĺ Explanation

This section relates to the process of determining the best/most efficient/parsimonious representation of
the system at the appropriate scale of concern (Jakeman et al., 2006) that best meets the analytical objec-
tives specified in the problem formulation phase. Model structure refers to the choice of variables included
in the model, and the nature of the relationship among those variables. Approaches to finding model struc-
ture and parameters may be knowledge-supported, or data-driven (Boets et al., 2015). Model selection
methods can include traditional inferential approaches such as unconstrained searches of a dataset for
patterns that explain variations in the response variable, or use of ensemble-modelling methods (Barnard
et al., 2019). Ensemble modelling procedures might aim to derive a single model, or a multi-model average
(Yates et al., 2018). Refining actions to develop a model could include iteratively dropping parameters
or adding them, or aggregating / disaggregating system descriptors, such as dimensionality and processes
(Jakeman et al., 2006).

¾ Preregistration Item

!" Specify what approach and methods you will use to identify model structure and parameters.
!" If using a knowledge-supported approach to deriving model structure (either in whole or in part),

specify model structural features, including:
– the functional form of interactions (if any)
– data structures,
– measures used to specify links,
– any bins or discretisation of continuous variables (Jakeman et al., 2006),
– any other relevant features of the model structure.

Structure estimation: model structure specification is knowledge-driven rather than data-driven, with further
refinement and simplification guided by the results of the pilot analysis (Section 2.5.3).
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Interactions are expected within the proposed models, such as those between elevation and flow, as well as flow,
livestock grazing and weeds. For some model options, flow data may not be required, and elevation may be used
as a surrogate for flow (e.g. x elevation represents x flow). In this case, a three-way interaction between elevation,
grazing and weeds may be used to evaluate vegetation responses. Event-based (short term) models evaluating
changes before and after an event would require a fourth interacting term for period (before or after event).
Isolating the effects of elevation, flow or period could then be done using post-hoc tests. Data structures are
broadly defined in Section 2.2 and Section 2.4 for the different variables proposed for the study. Plant richness
data are counts, cover data are hits (successes) from points (trials, where n=40 for all sub-transects) (modelled
as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛, see Section 3.1), flow data may take a range of forms indicated earlier, elevation is provided in
mAHD but is likely to be input into the model as an ordinal categorical factor with bins based on known
elevation of flow events (e.g. freshes), grazing at this stage may be a binomial indicator of presence or absence,
or alternatively as a categorical factor indicating the presence/absence of cattle or sheep.
The model structure will be refined through the pilot analysis (described in Section 2.5.3.), one aspect of which
will be to assess model convergence with different levels of interactions (model convergence checks are described
in Section 4.3.1). If models do not converge with the above-specified interactions, higher order interactions will be
progressively removed from the model (i.e., three way interactions will be removed, then two-way interactions).
The following terms will be included as random effects: transects nested within sites, point location (metres up
the streambank), and survey year.

3.4 Describe parameter estimation technique and performance criteria

Ĺ Explanation

Before calibrating the model to the data, the performance criteria for judging the calibration (or model
fit) are specified. These criteria and their underlying assumptions should reflect the desired properties of
the parameter estimates / structure (Jakeman et al., 2006). For example, modellers might seek parameter
estimates that are robust to outliers, unbiased, and yield appropriate predictive performance. Modellers
will need to consider whether the assumptions of the estimation technique yielding those desired properties
are suited to the problem at hand. For integrated or sub-divided models, other considerations might
include choices about where to disaggregate the model for parameter estimation; e.g. spatial sectioning
(streams into reaches) and temporal sectioning (piece-wise linear models) (Jakeman et al., 2006).

3.4.1 Parameter estimation technique

¾ Preregistration Item

!" Specify what technique you will use to estimate parameter values, and how you will supply non-
parametric variables and/or data (e.g. distributed boundary conditions). For example, will you
calibrate all variables simultaneously by optimising fit of model outputs to observations, or will
you parameterise the model in a piecemeal fashion by either direct measurement, inference from
secondary data, or some combination (Jakeman et al., 2006).

!" Identify which variables will be parameterised directly, such as by expert elicitation or prior knowl-
edge.

!" Specify which algorithm(s) you will use for any data-driven parameter estimation, including super-
vised, or unsupervised machine learning, decision-tree, K-nearest neighbour or cluster algorithms (Z.
Liu et al., 2018).

Initially, our model structure will be based on our conceptual model of the system/response that has also guided
our data collection. In this case, we do not have a very large set of potential environmental variables to select
from that may or may not be influential. Instead, we have selected variables and monitoring approaches to
collect data that reflect our expectations of correlation/causation. Given this, there is unlikely to be a large
need for a model selection process where variables are added or removed sequentially to evaluate relative model
performance. However, there will be critical evaluation of all model components to determine their value to the
model, such as the hierarchical nature of the data and the need (or not) to include all levels of the hierarchy in
the final models. The model selection process is an important part of the study in itself and will be described in
the resulting paper, particularly where it relates to relative effects of different variables and relative importance
of spatial and temporal scales. Additionally, there will be some investigation of the effectiveness/appropriateness
of different forms of certain variables, such as: bank elevation (continuous or categorical), vegetation groupings,
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and flow variables (Section 2.4). The primary focus of the model is to evaluate the relative impacts of the key
variables in line with the conceptual model and hypotheses, so model performance will align with that objective,
including model fit parameters of residual plots, model uncertainty, unexplained variation, degrees of freedom,
and fit statistics. Evaluating the model performance for predictive capacity within and beyond the dataset may
not be required in the current study as it is likely beyond the scope, but this would involve testing predictive
capacity within and between waterways using e.g. a cross-validation approach.
Parameterisation: Parameter estimation will be data-driven, and implemented with the glmmTMB R package
(Brooks et al., 2017), which uses Template Model Builder software to fit flexible GLMM-type models, amongst
other model types. glmmTMB uses maximum likelihood to estimate parameters for both parametric and non-
parametric factor data (nominal or ordinal) variables (e.g. categorised elevation and/or flow data, as well as
binary or categorical grazing variables). We will optimise the model by comparing fit of model outputs to
observations (residuals versus fitted values).

3.4.2 Parameter estimation / model fit performance criteria

¾ Preregistration Item

!" Specify which suite of performance criteria you will use to judge the performance of the model. Ex-
amples include correlation scores, coefficient of determination, specificity, sensitivity, AUC, etcetera
(Yates et al., 2018).

!" Relate any underlying assumptions of each criterion to the desired properties of the model, and
justify the choice of performance metric in relation

!" Explain how you will identify which model features or components are significant or meaningful.𝑅2, a measure of agreement between fitted and observed values, is the primary performance criterion we will
use to evaluate the performance of each model, coupled with posterior predictive checks to assist the suitability
of normal structures (Section 4) . When comparing among alternative models, models with a higher 𝑅2 will be
preferred over those with lower 𝑅2. As an approximate guide for judging model fit, we will use the following
thresholds 𝑅2 in the absence of cross-validation:

• < 0.25 is poor,
• 0.25 - 0.5 is moderate,
• 0.5 - 0.75 is good,
• 0.75 - 1.0 is excellent, but probably indicates overfitting.

3.5 Model assumptions and uncertainties

¾ Preregistration Item

!" Specify assumptions and key uncertainties in the formal model. Describe what gaps exist between
the model conception, and the real-world problem, what biases might this introduce and how might
this impact any interpretation of the model outputs, and what implications are there for evaluating
model-output to inform inferences or decisions?

Poisson and negative binomial models all assume linearity in model parameters, independence between individual
observations, as well as the multiplicative effects of independent variables.
Zero-inflation
Based on the results of the pilot study (Section 2.5.3), all Poisson models allow for zero-inflation parameters to
differ among plant functional groups (using glmmTMB:: argument ziformula=~ wpfg).
Over-dispersion
Should over-dispersion (where the conditional variance of the outcome variable is greater than the conditional
mean) be detected in models specified with a Poisson distribution, negative-binomial models will be fitted
because they allow for over-dispersion by estimating the mean and variance independently (Kruppa & Hothorn,
2021) and assume that extra-Poisson variance is a quadratic function of the mean (Lindén & Mäntyniemi, 2011).
Negative binomial models may allow for group-specific dispersion parameters using the glmmTMB:: argument
dispformula = ~ wpfg.
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Issues of over-dispersion are not expected to be fully resolved by the model specifications outlined in Section 3,
however proposed model specifications were a compromise between ideal specification and the limitations of our
data.
Other Model Assumptions & Sources of Uncertainty
For each specified model we may fit, further assumptions are described below in Section 3.
A formal sensitivity analysis has not yet been completed and so we are unaware of what variables the model
outputs are most sensitive to. The many potential forms of flow and/or elevation data is a key area of possible
variation in the variable behaviour, which is currently unknown. There are also many spatial and temporal
dimensions associated with the data, such as the hierarchical scales of sub-transect, transect, site, reach, wa-
terway, basin, and State. There will be spatial autocorrelation within the data at each of these levels, such as
northern waterways or river basins being more similar to southern counterparts due to climate and geomorphol-
ogy differences. The extent of the variation among the different spatial scale is currently unknown and is an
important aspect of the study to evaluate. Temporal patterns are also important due to the longitudinal nature
of the data collection and different seasons of survey (i.e. different proximity to different flow/climate periods).
Careful consideration of these aspects will be important in the model design, as per Section 2.4.

3.6 Specify formal model(s)

Ĺ Explanation

Once critical decisions have been made about the modelling approach and method of model specification,
the conceptual model is translated into the quantitative model.

¾ Preregistration Item

!" Specify all formal models
! Note, for data-driven approaches to determining model structure and/or parameterisation, it

may not be possible to respond to this preregistration item. In such cases, explain why this is
the case, and how you will document the model(s) used in the final analysis.

!" For quantitative model selection approaches, including ensemble modelling, specify each model used
in the candidate set, including any null or full/global model.

Vegetation Cover Models
Based on the pilot analysis (Section 2.5.3) we have derived three additional model structures to be fitted on
the full dataset that are simplified versions of the full models specified in Section 2.5.3. While these simplified
models are not ideal, the full models with three-way interactions were too complex given the data, and failed
to converge and generate reliable parameter estimates on the pilot dataset. Consequently, the full models will
be fitted again to the full dataset.
Full Model, full dataset, GitHub Issue 64
We will attempt to fit a single full model using all data, and adding a random effect for waterbody to account
for variation between river systems.
Should the full model fit to all data be computationally feasible and converge, we will add the three-way
interaction zone * period * wpfg back into the full model specification (discarded in the pilot analysis). If
this converges it will be used as the basis for final outputs, if not, the simplified models listed below will be
used.
Should the full model fitted to the full dataset not be computationally feasible or converge, we will follow a
similar strategy for the pilot-study modelling, working from the full model towards simplified models, as there is
potential for the full dataset to support a model of intermediate complexity (more complex than the simplified
models, but not as complex as the full model). We will fit the following simplified models in the case that the
full model fitted to the full dataset does not converge:
Simplified model 1: “flow regime” model, GitHub Issue 65
The aim of this simplified model is to examine how past flow conditions influence vegetation cover while capturing
the average effects of flows at different levels over multiple years. The model does not consider zone or period
and identifies functional group-specific impacts of days above baseflow or spring fresh levels.
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This model includes two flow predictors (days_above_baseflow_std, days_above_spring_fresh_std), and
the full suite of random effects.
cover_ar_TMBmod_1 <- glmmTMB::glmmTMB(

hits ~ log_hits_tm1 +
days_above_baseflow_std * wpfg * origin +
days_above_springfresh_std * wpfg * origin +

# days_above_baseflow_std^2 + days_above_springfresh_std^2 +
# zone * period +

# zone + period +
# grazing + wpfg +
(1 | site / transect) +
#(1 | site / period) +
(1 | metres) +
(1 | survey_year),

# offset(npoint),
family = poisson,
ziformula=~ wpfg,
#dispformula =~ wpfg ,
data = veg_cover_ar_sum |>
filter(!wpfg_ori %in% c("Atl_native",

"Ate_native",
"Tda_unknown"))

)

Simplified model 2a: “flow events” Model, version 1, GitHub Issue 66
The aim of the ‘flow events’ models (2a,2b) is to examine how vegetation cover changes in specific zones before
and after key flow events (spring and summer freshes). Model 2a seeks to examine the effects on vegetation
before and after specific flow events assuming that different plant functional groups (wpfgs) have different cover
levels but similar responses to flows.
In the pilot analysis, model results indicated that vegetation cover differed in its responses to spring and
summer freshes in each zone (below baseflow, baseflow to spring fresh, above spring fresh). Below baseflow
level, vegetation increased following the spring fresh and remained high following the summer event (Figure
5, Appendix S7). In the baseflow-to-spring fresh zone, vegetation increased following the spring fresh but
returned to pre-spring levels following the summer fresh (Figure 5, Appendix S7). In the above-spring fresh
zone, vegetation level declined following both the spring and the summer fresh (Figure 5, Appendix S7).
Consequently, this model includes several categorical predictors as independent fixed effects (origin, wpfg,
grazing, and a zone-by-period interaction) and the full suite of random effects, but no days_above_ predictors.)
This first version of the flow event model allows functional groups to have different levels of cover but assumes
that changes following flow events are similar in all groups within a zone. Although this is not an ideal model
structure, it is likely that functional groups are restricted to particular zones, in which case the zone-by-period
interaction may capture some of the variation attributable to functional groupings.
cover_ar_TMBmod_2 <- glmmTMB::glmmTMB(
hits ~ log_hits_tm1 +
# days_above_baseflow_std*wpfg*origin +
# days_above_springfresh_std*wpfg*origin +
# days_above_baseflow_std^2 +
# days_above_springfresh_std_sq +
zone * period +
origin + wpfg +
grazing +
(1 | site / transect) +
#(1 | site / period) +
(1 | metres) +
(1 | survey_year),

# offset(npoint),
family = poisson,
ziformula = ~ wpfg,
# dispformula =~ wpfg ,
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data = veg_cover_ar_sum |>
filter(!wpfg_ori %in% c("Atl_native", "Ate_native", "Tda_unknown"))

)

Simplified model 2b: “flow events” model, version 2, GitHub Issue 67
The aim is to examine how vegetation cover of each functional grouping changes before and after key flow
events (spring and summer freshes). This second version (Simplified model 2b) allows functional groups to have
different responses to flow events (spring and summer freshes) but assumes that vegetation in all zones changes
similarly following each flow event. As for simplified model 2a, this model structure is not ideal, but provides
a method to distinguish wpfg-specific responses to flow events.
This model includes several categorical predictors as independent fixed effects (origin, zone, grazing), a
wpfg-by-period interaction, as well as the full suite of random effects, and no days_above_ predictors.)
cover_ar_TMBmod_3 <- glmmTMB::glmmTMB(
hits ~ log_hits_tm1 +
# days_above_baseflow_std*wpfg*origin +
# days_above_springfresh_std*wpfg*origin +
# days_above_baseflow_std^2 +
# days_above_springfresh_std_sq +
zone + wpfg * period +
origin +
grazing +
(1 | site / transect) +
# (1 | site / period) +
(1 | metres) +
(1 | survey_year),

# offset(npoint),
family = poisson,
ziformula = ~ wpfg,
# dispformula =~ wpfg ,
data = veg_cover_ar_sum |>
filter(!wpfg_ori %in% c("Atl_native", "Ate_native", "Tda_unknown"))

)

Species Richness Models
Full Model, Full Dataset, GitHub Issue 68
Simplified Model 1: “Flow Regime” model, GitHub Issue 69
richness_ar_TMBmod_1 <- glmmTMB::glmmTMB(
richness ~
days_above_baseflow_std * wpfg * origin +
days_above_springfresh_std * wpfg * origin +
# days_above_baseflow_std^2 +
# days_above_springfresh_std^2 +
# zone * period +
#zone *period + zone*wpfg + wpfg*period +
# grazing + origin +
(1 | site / transect) +
#(1 | site / period) +
(1 | metres) +
(1 | survey_year),

# offset(npoint),
family = poisson,
#family = nbinom2,
#ziformula=~ wpfg,
# dispformula =~ wpfg ,
data = veg_richness |>
filter(!wpfg_ori %in% c("Atl_native",

"Ate_native",
"Tda_unknown"))

)
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Simplified Model 2: “Flow Events” model, GitHub Issue 70
Rather than splitting the flow events model into two different versions, as we did for the cover models, we have
combined these into a single model for richness.
richness_ar_TMBmod_2 <- glmmTMB::glmmTMB(
richness ~
#days_above_baseflow_std +
# days_above_springfresh_std +
# days_above_baseflow_std^2 +
# days_above_springfresh_std^2 +
# zone * period +
zone * period + zone * wpfg + wpfg * period +
grazing + origin +
(1 | site / transect) +
# (1 | site / period) +
(1 | metres) +
(1 | survey_year),

# offset(npoint),
family = poisson,
#family = nbinom2,
#ziformula=~ wpfg,
# dispformula =~ wpfg ,
data = veg_richness |>
filter(!wpfg_ori %in% c("Atl_native",

"Ate_native",
"Tda_unknown")) |>

filter(!wpfg %in% c("Sk", "Se"))
)

4 Model Calibration, Validation & Checking
4.1 Model calibration and validation scheme

Ĺ Explanation

This section pertains to any data calibration, validation or testing schemes that will be implemented. For
example, the model may be tested on data independent of those used to parameterise the model (external
validation), or the model may be cross-validated on random sub-samples of the data used to parameterise
the model (Barnard et al., 2019; internal cross-validation Yates et al., 2018). For some types of models,
hyper-parameters are estimated from data, and may be tuned on further independent holdouts of the
training data (“validation data”).

¾ Preregistration Item

! Describe any data calibration, validation and testing scheme you will implement, including any
procedures for tuning or estimating model hyper-parameters (if any).

4.1.1 Describe calibration/validation data

Ĺ Explanation & Rationale

The following items pertain to properties of the datasets used for calibration (training), validation, and
testing.
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¾ Preregistration Item

If using external / independent holdout data for model testing and evaluation (delete as needed):
!" Which data will be used as the testing data? What method will you be used for generating training

/ test data subsets?
!" Describe any known differences between the training/validation and testing datasets, the relative

size of each, as well as any stratification methods used for ensuring evenness of groups between data
sets.

!" It is preferable that any independent data used for model testing remains unknown to modellers
during the process of model development. Describe the relationship modellers have with model
validation data. Will independent datasets be known or accessible to any modeller or analyst?

Due to the complexity of the analysis, and the focus on inference, no data partitioning / testing on external
data will be used. However, we will use a subset of the data for exploratory pilot analysis that informs the final
model specifications (Campaspe catchment only, Section 2.5.3).

4.2 Implementation verification

Ĺ Explanation & Examples

Model implementation verification is the process of ensuring that the model has been correctly imple-
mented, and that the model performs as described by the model description (Grimm et al., 2014). This
process is distinct from model checking, which assesses the model’s performance in representing the system
of interest (Conn et al., 2018).

• Checks for verification implementation should include i) thoroughly checking for bugs or program-
ming errors, and ii) whether the implemented model performs as described by the model description
(Grimm et al., 2014).

• Qualitative tests could include syntax checking of code, and peer-code review (Ivimey et al., 2023).
Technical measures include using unit tests, or in-built checks within functions to prevent potential
errors.

¾ Preregistration Item

!" What Quality Assurance measures will you take to verify the model has been correctly implemented?
Specifying a priori quality assurance tests for implementation verification may help to avoid selective
debugging and silent errors.

Implementation verification will be assessed using a number of techniques, but will broadly follow the approach
proposed by Ivimey-Cook et al. (2023):

1. Code will be reviewed periodically using the GitHub flow model where code is submitted for independent
review by collaborators before being merged into the working copy of the code repository. Code will be
assessed either by attempting to reproduce the code in the pull-request, or by visual inspection.

2. Defensive programming techniques, in-line error checking, functionalisation, modularisation and docu-
mentation of analysis code will be used as preventative measures to catch bugs and ensure proper code
implementation (Ivimey et al., 2023),

3. Finally, the final analysis and results will be subjected to a more substantial peer-code review from
collaborators further removed from code writing and analysis implementation (likely CJ or EG), following
the 4R’s (Ivimey et al., 2023).

4.3 Model checking

Ĺ Rationale & Explanation

“Model Checking” goes by many names (“conditional verification”, “quantitative verification”, “model
output verification”), and refers to a series of analyses that assess a model’s performance in representing
the system of interest (Conn et al., 2018). Model checking aids in diagnosing assumption violations, and
reveals where a model might need to be altered to better represent the data, and therefore system (Conn
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et al., 2018). Quantitative model checking diagnostics include goodness of fit, tests on residuals or errors,
such as for heteroscedascity, cross-correlation, and autocorrelation (Jakeman et al., 2006).

4.3.1 Quantitative model checking

¾ Preregistration Item

During this process, observed data, or data and patterns that guided model design and calibration, are
compared to model output in order to identify if and where there are any systematic differences.

!" Specify any diagnostics or tests you will use during model checking to assess a model’s performance
in representing the system of interest.

!" For each test, specify the criteria that will you use to interpret the outcome of the test in assessing
the model’s ability to sufficiently represent the gathered data used to develop and parameterise the
model.

Posterior predictive checks will be conducted to assess the degree of zero-inflation and over-dispersion. Posterior
checks compare the distribution of observed data against a distribution simulated from the fitted model and
are assessed quantitatively or graphically (Conn et al., 2018). We will plot both distributions and visually
compare the distributions: close alignment of the two distributions indicates that the specified model structure
is appropriate, whereas deviations between the observed distribution and the model-generated distribution
indicate potential assumption violations and mismatches between the data and model.
For graphical posterior checks, there is no threshold but any disagreement, particularly in key aspects of the
model (zero inflation, and counts in the range of the majority of the data) would suggest an alternative distribu-
tion is worth considering. Often no distribution will be perfect, so it’s a choice between two imperfect options.
(in which case, we will take into consideration the balance between model balance simplicity, 𝑅2, and the “key
aspects” of model such as zero inflation and the bulk of the data).
Should over-dispersion and zero-inflation be present in the fitted models, alternative model families / structures
( Section 3.2) may be investigated and compared to the primary models outlined in Section 2.5.3.

4.3.2 Qualitative model checking

Ĺ Explanation

This step is largely informal and case-specific, but requires‚ ‘face validation’ with model users / clients
/ managers who aren’t involved in the development of the model to assess whether the interactions and
outcomes of the model are feasible an defensible (Grimm et al., 2014). This process is sometimes called
a “laugh test” or a “pub test” and in addition to checking the model’s believability, it builds the client’s
confidence in the model (Jakeman et al., 2006). Face validation could include structured walk-throughs,
or presenting descriptions, visualisations or summaries of model results to experts for assessment.

¾ Preregistration Item

!" Briefly explain how you will qualitatively check the model, and whether and how you will include
users and clients in the process.

In terms of qualitative assessment, model results will be checked by field experts Chris Jones & Lyndsey Vivian,
who will assess model-estimated associations for their plausibility given their expert knowledge of the underlying
target system.
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4.3.3 Assumption Violation Checks

¾ Preregistration Item

The consequences of assumption violations on the interpretation of results should be assessed (Araújo et
al., 2019).

! Explain how you will demonstrate robustness to model assumptions and check for violations of model
assumptions.

! If you cannot perform quantitative assumption checks, describe what theoretical justifications would
justify a lack of violation of or robustness to model assumptions.

! If you cannot demonstrate or theoretically justify violation or robustness to assumptions, explain
why not, and specify whether you will discuss assumption violations and their consequences for
interpretation of model outputs.

! If assumption violations cannot be avoided, explain how you will explore the consequences of assump-
tion violations on the interpretation of results. This step is to be completed in interim iterations
of the preregistration, only if there are departures from assumptions as demonstrated in the planned
tests above.

5 Model Validation and Evaluation

Ĺ Explanation

The model validation & evaluation phase comprises a suite of analyses that collectively inform inferences
about whether, and under what conditions, a model is suitable to meet its intended purpose (Augusiak et
al., 2014). Errors in design and implementation of the model and their implication on the model output
are assessed. Ideally independent data are used against the model outputs to assess whether the model
output behaviour exhibits the required accuracy for the model’s intended purpose. The outcomes of these
analyses build confidence in the model applications and increase understanding of model strengths and
limitations. Model evaluation, including model analysis, should complement model checking. It should
evaluate model checking, and consider over-fitting and extrapolation. As the proportion of calibrated
or uncertain parameters increases, so does the risk that the model seemingly works correctly, but for
the wrong mechanistic reasons (Boettiger, 2022). Evaluation thus complements model checking because
we can rule out the chance that the model fits the calibration data well, but has not captured the
relevant ecological mechanisms of the system pertinent to the research question or the decision problem
underpinning the model (Grimm et al., 2014). Evaluation of model outputs against external data in
conjunction with the results from model checking provide information about the structural realism and
therefore credibility of the model (Grimm & Berger, 2016).

5.1 Model output corroboration

Ĺ Explanation

Ideally, model outputs or predictions are compared to independent data and patterns that were not
used to develop, parameterise, or verify the model. Testing against a dataset of response and predictor
variables that are spatially and/or temporally independent from the training dataset minimises the risk
of artificially inflating model performance measures (Araújo et al., 2019). Although the corroboration of
model outputs against an independent validation dataset is considered the ‘gold standard’ for showing
that a model properly represents the internal organisation of the system, model validation is not always
possible because empirical experiments are infeasible or model users are working on rapid-response time-
frames, hence, why ecologists often model in the first place (Grimm et al., 2014). Independent predictions
might instead be tested on sub-models. Alternatively, patterns in model output that are robust and
seem characteristic of the system can be identified and evaluated in consultation with the literature or by
experts to judge how accurate the model output is (Grimm et al., 2014).
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¾ Preregistration Item

!" State whether you will corroborate the model outputs on external data, and document any indepen-
dent validation data in this step.

!" It is preferable that any independent data used for model evaluation remains unknown to modellers
during the process of model building (Dwork et al., 2015), describe the relationship modellers have to
model validation data, e.g. will independent datasets be known to any modeller or analyst involved
in the model building process?

!" If unable to evaluate the model outputs against independent data, explain why and explain what
steps you will take to interrogate the model.

Model evaluation and validation on external data will not be undertaken in this study due to the complexity
of the models (hierarchical structure combined with interactions) and data (potential for over-dispersion and
zero-inflation) and also due to the focus of the analysis on inference.
For the same reasons, we will not partition the data for model validation on independent data using cross-
validation or other data-partitioning approaches. Instead, in-sample model fit assessment will be conducted
(Section 3.4.2).
Models may be validated on newly collected independent data in the future, but external validation is outside
the scope of this study.
We have partitioned the data for pilot analysis, see Section 2.5.3 for details of this subsetting. Pilot analysis
was performed blind to the full dataset, and was performed only on the pilot data subset.

5.2 Choose performance metrics and criteria

Ĺ Explanation

Model performance can be quantified by a range of tests, including measures of agreement between predic-
tions and independent observations, or estimates of accuracy, bias, calibration, discrimination refinement,
resolution and skill (Araújo et al., 2019). Note that the performance metrics and criteria in this section are
used for evaluating the structured and parameterised models (ideally) on independent holdout data, so this
step is additional to any performance criteria used for determining model structure or parameterisation
(Section 3.4.2).

¾ Preregistration Item

! Specify what performance measures you will use to evaluate the model and briefly explain how each
test relates to different desired properties of a model’s performance.

! Spatial, temporal and environmental pattern of errors and variance can change the interpretation
of model predictions and conservation decisions (Araújo et al., 2019). Where relevant and possible,
describe how you will characterise and report the spatial, temporal and environmental pattern of
errors and variance.

! If comparing alternative models, specify what measures of model comparison or out-of-sample per-
formance metrics will you use to find support for alternative models or else to optimise predictive
ability. State what numerical threshold or qualities you will use for each of these metrics.

5.3 Model analysis

Ĺ Rationale & Explanation

Uncertainty in models arises due to incomplete system understanding (which processes to include, or which
interact), from imprecise, finite and sparse data measurements, and from uncertainty in input conditions
and scenarios for model simulations or runs (Jakeman et al., 2006). Non-technical uncertainties can also be
introduced throughout the modelling process, such as uncertainties arising from issues in problem-framing,
indeterminicies, and modeller / client values (Jakeman et al., 2006).
The purpose of model analysis is to prevent blind trust in the model by understanding how model outputs
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have emerged, and to ‘challenge’ the model by verifying whether the model is still believable and fit for
purpose if one or more parameters are changed (Grimm et al., 2014).
Model analysis should increase understanding of the model behaviour by identifying which processes
and process interactions explain characteristic behaviours of the model system. Model analysis typically
consists of sensitivity analyses preceded by uncertainty analyses (Saltelli et al., 2019), and a suite of
other simulation or other computational experiments. The aim of such computational experiments is to
increase understanding of the model behaviour by identifying which processes and process interactions
explain characteristic behaviours of the model system (Grimm et al., 2014). Uncertainty analyses and
sensitivity analyses augment one another to draw conclusions about model uncertainty.
Because the results from a full suite of sensitivity analysis and uncertainty analysis can be difficult to
interpret due to the number and complexity of causal relations examined (Jakeman et al., 2006), it is
useful for the analyst to relate the choice of analysis to the modelling context, purpose and analytical
objectives defined in the problem formulation phase, in tandem with any critical uncertainties that have
emerged during model development and testing prior to this point.

5.3.1 Uncertainty Analyses

Ĺ Explanation

Uncertainty can arise from different modelling techniques, response data and predictor variables (Araújo
et al., 2019). Uncertainty analyses characterise the uncertainty in model outputs, and identify how
uncertainty in model parameters affects uncertainty in model output, but does not identify which model
assumptions are driving this behaviour (Grimm et al., 2014; Saltelli et al., 2019). Uncertainty analyses
can include propagating known uncertainties through the model, or by investigating the effect of different
model scenarios with different parameters and modelling technique (Araújo et al., 2019), for example. It
could also include characterising the output distribution, such as through empirical construction using
model output data points. It could also include extracting summary statistics like the mean, median and
variance from this distribution, and perhaps constructing confidence intervals on the mean

¾ Preregistration Item

! Please describe how you will characterise model and data uncertainties, e.g. propagating known
uncertainties through the model, investigating the effect of different model scenarios with different
parameters and modelling technique combinations (Araújo et al., 2019), or empirically constructing
model distributions from model output data points, and extracting summary statistics, including
the mean, median, variance, and constructing confidence intervals (Saltelli et al., 2019).

! Relate your choice of analysis to the context and purposes of the model described in the problem
formulation phase. For instance‚ discrepancies between model output and observed output may
be important for forecasting models, where cost, benefit, an risk over a substantial period must
be gauged, but much less critical for decision-making or management models where the user may
be satisfied with knowing that the predicted ranking order of impacts of alternative scenarios or
management options is likely to be correct, with only a rough indication of their sizes” (Jakeman et
al., 2006).

! Briefly describe how you will summarise the results of these in silico experiments with graphical,
tabular, or other devices, such as summary statistics.

! If the chosen modelling approach is able to explicitly articulate uncertainty due to data, measure-
ments or baseline conditions, such as by providing estimates of uncertainty (typically in the form of
probabilistic parameter covariance, Jakeman et al., 2006), specify which measure of uncertainty you
will use.

Uncertainty analyses will not be conducted.
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5.3.2 Sensitivity analyses

Ĺ Explanation

Sensitivity analysis examines how uncertainty in model outputs can be apportioned to different sources
of uncertainty in model input (Saltelli et al., 2019).

¾ Preregistration Item

! Describe the sensitivity analysis approach you will take: deterministic sensitivity, stochastic sensi-
tivity (variability in the model), or scenario sensitivity (effect of changes based on scenarios).

! Describe any sensitivity analyses you will conduct by specifying which parameters will be held
constant, which will be varied, and the range and intervals of values over which those parameters
will be varied.

! State the primary objective of each sensitivity analysis, for example, to identify which input variables
contribute the most to model uncertainty so that these variables can be targeted for further data
collection, or alternatively to identify which variables or factors contribute little to overall model
outputs, and so can be ‘dropped’ from future iterations of the model (Saltelli et al., 2019).

No sensitivity analyses will be performed on any models developed in this study.

5.3.3 Model application or scenario analysis

¾ Preregistration Item

! Specify any input conditions and relevant parameter values for initial environmental conditions and
decision-variables under each scenario specified in Section 1.

! Describe any other relevant technical details of model application, such as methods for how you will
implement any simulations or model projections.

!" What raw and transformed model outputs will you extract from the model simulations or projections,
and how will you map, plot, or otherwise display and synthesise the results of scenario and model
analyses.

! Explain how you will analyse the outputs to answer your analytical objectives. For instance, describe
any trade-off or robustness analyses you will undertake to help evaluate and choose between different
alternatives in consultation with experts or decision-makers.

Model analysis
Model features will be identified using visual plots of estimates, i.e. forest plots of most coefficients, and marginal
effects plots (plots of predicted values of 𝑦 against values of 𝑥) under different combinations of of the key flow,
zone, and period predictor variables.
Forest Plots: For each fitted model we will extract both fixed-effect and random-effect coefficient estimates
and their 95% Confidence Intervals using parameters::model_parameters() (Lüdecke et al., 2020) or similar.
Estimates will then be visualised as forest plots in R.
Predicted Values Plots: We will use the effects::effect_plot() function (Fox & Hong, 2009), or similar, to
create marginal effects plots for each fitted model.
Scenario analysis will not be used in this study, but will be used in future predictive modelling studies based
on the models developed in this study.

5.3.4 Other simulation experiments / robustness analyses

¾ Preregistration Item

! Describe any other simulation experiments, robustness analyses or other analyses you will perform
on the model, including any metrics and their criteria / thresholds for interpreting the results of the
analysis.
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No further simulation experiments, robustness or other analyses will be performed on the model other than
analyses described above in this document.

References
Araújo, M., Anderson, R., Márcia Barbosa, A., Beale, C., Dormann, C., Early, R., Garcia, R., Guisan, A.,

Maiorano, L., Naimi, B., O’Hara, R., Zimmermann, N., & Rahbek, C. (2019). Standards for distribution
models in biodiversity assessments. Sci Adv, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858

Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging validation and evaluation of ecological models
to “evaludation”: A review of terminology and a practical approach. Ecological Modelling, 280, 117–128.
https://doi.org/10.1016/j.ecolmodel.2013.11.009

Barnard, D. M., Germino, M. J., Pilliod, D. S., Arkle, R. S., Applestein, C., Davidson, B. E., & Fisk, M. R.
(2019). Can’t see the random forest for the decision trees: Selecting predictive models for restoration ecology.
Restoration Ecology. https://doi.org/10.1111/rec.12938

Boets, P., Landuyt, D., Everaert, G., Broekx, S., & Goethals, P. L. M. (2015). Evaluation and comparison
of data-driven and knowledge-supported bayesian belief networks to assess the habitat suitability for alien
macroinvertebrates. 74, 92–103. https://doi.org/10.1016/j.envsoft.2015.09.005

Boettiger, C. (2022). The forecast trap. Ecol Lett. https://doi.org/10.1111/ele.14024
Brock, M. A., & Casanova, M. T. (1997). Frontiers in ecology; building the links (N. Klomp & I. Lunt, Eds.;

pp. 181–192). Elsevier Science.
Brooks, M. E., Kristensen, K., Benthem, J. ,. van, Koen, Magnusson, A., Berg, Casper,W., Nielsen, A.,

Skaug, Hans,J., Mächler, M., & Bolker, Benjamin,M. (2017). glmmTMB Balances Speed and Flexibility
Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal, 9(2), 378. https:
//doi.org/10.32614/RJ-2017-066

Cartwright, S. J., Bowgen, K. M., Collop, C., Hyder, K., Nabe-Nielsen, J., Stafford, R., Stillman, R. A.,
Thorpe, R. B., & Sibly, R. M. (2016). Communicating complex ecological models to non-scientist end users.
Ecological Modelling, 338, 51–59. https://doi.org/10.1016/j.ecolmodel.2016.07.012

Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. (2018). A guide to bayesian model
checking for ecologists. Ecological Monographs, 9, 341–317. https://doi.org/10.1002/ecm.1314

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth, A. (2015). The reusable holdout:
Preserving validity in adaptive data analysis. Science, 349(6248), 636–638. https://doi.org/10.1126/science.
aaa9375

Fox, J., & Hong, J. (2009). Effect displays in R for multinomial and proportional-odds logit models: Extensions
to the effects package. Journal of Statistical Software, 32(1), 1–24. https://doi.org/10.18637/jss.v032.i01

Fraser, H., Rumpff, L., Yen, J. D. L., Robinson, D., & Wintle, B. A. (2017). Integrated models to support
multiobjective ecological restoration decisions. Conservation Biology, 31(6), 1418–1427. https://doi.org/10.
1111/cobi.12939

Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli,
M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support:
Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.
https://doi.org/10.1016/j.ecolmodel.2014.01.018

Grimm, V., & Berger, U. (2016). Structural realism, emergence, and predictions in next-generation ecological
modelling: Synthesis from a special issue. Ecological Modelling, 326, 177–187. https://doi.org/10.1016/j.
ecolmodel.2016.01.001

Ivimey, E. R., Pick, J. L., Bairos, K. R., Culina, A., Gould, E., Grainger, M., Marshall, B. M., Moreau, D.,
Paquet, M., Royauté, R., Sánchez, A., Silva, I., & Windecker, S. M. (2023). Implementing code review in
the scientific workflow: Insights from ecology and evolutionary biology. Journal of Evolutionary Biology.
https://doi.org/https://doi.org/10.1111/jeb.14230

Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation
of environmental models. Environmental Modelling & Software, 21(5), 602–614. https://doi.org/10.1016/j.
envsoft.2006.01.004

Kruppa, J., & Hothorn, L. (2021). A comparison study on modeling of clustered and overdispersed count
data for multiple comparisons. Journal of Applied Statistics, 48(16), 3220–3232. https://doi.org/10.1080/
02664763.2020.1788518

Lindén, A., & Mäntyniemi, S. (2011). Using the negative binomial distribution to model overdispersion in
ecological count data. Ecology, 92(7), 1414–1421. https://doi.org/10.1890/10-1831.1

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of
Mathematical Psychology, 52(6), 362–375. https://doi.org/10.1016/j.jmp.2008.03.002

Liu, Z., Peng, C., Work, T., Candau, J.-N., DesRochers, A., & Kneeshaw, D. (2018). Application of machine-
learning methods in forest ecology: Recent progress and future challenges. Environmental Reviews, 26(4),

30

https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1016/j.ecolmodel.2013.11.009
https://doi.org/10.1111/rec.12938
https://doi.org/10.1016/j.envsoft.2015.09.005
https://doi.org/10.1111/ele.14024
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1016/j.ecolmodel.2016.07.012
https://doi.org/10.1002/ecm.1314
https://doi.org/10.1126/science.aaa9375
https://doi.org/10.1126/science.aaa9375
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.1111/cobi.12939
https://doi.org/10.1111/cobi.12939
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1016/j.ecolmodel.2016.01.001
https://doi.org/10.1016/j.ecolmodel.2016.01.001
https://doi.org/10.1111/jeb.14230
https://doi.org/10.1016/j.envsoft.2006.01.004
https://doi.org/10.1016/j.envsoft.2006.01.004
https://doi.org/10.1080/02664763.2020.1788518
https://doi.org/10.1080/02664763.2020.1788518
https://doi.org/10.1890/10-1831.1
https://doi.org/10.1016/j.jmp.2008.03.002


339–350. https://doi.org/https://doi.org/10.1139/er-2018-0034
Lüdecke, D., Ben-Shachar, M., Patil, I., & Makowski, D. (2020). Extracting, computing and exploring the

parameters of statistical models using r. Journal of Open Source Software, 5(53), 2445. https://doi.org/10.
21105/joss.02445

Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., Stewart, R., Gupta, H.,
Dominguez, D., Dominguez, F., Hulse, D., Letcher, R., Rashleigh, B., Smith, C., Street, R., Ticehurst,
J., Twery, M., Delden, H. van, Waldick, R., … Winter, L. (2009). A formal framework for scenario develop-
ment in support of environmental decision-making. Environmental Modelling & Software, 24(7), 798–808.
https://doi.org/10.1016/j.envsoft.2008.11.010

McCarthy, M. A., Thompson, C. J., Moore, A. L., & Possingham, H. P. (2011). Designing nature reserves in
the face of uncertainty. Ecology Letters, 14(5), 470–475. https://doi.org/10.1111/j.1461-0248.2011.01608.x

McDonald-Madden, E., Baxter, P. W. J., & Possingham, H. P. (2008). Making robust decisions for conservation
with restricted money and knowledge. Journal of Applied Ecology, 45(6), 1630–1638. https://doi.org/10.
1111/j.1365-2664.2008.01553.x

Moallemi, E. A., Elsawah, S., & Ryan, M. J. (2019). Strengthening “good” modelling practices in robust decision
support: A reporting guideline for combining multiple model-based methods. Mathematics and Computers
in Simulation. https://doi.org/10.1016/j.matcom.2019.05.002

Moon, K., Guerrero, A. M., Adams, Vanessa. M., Biggs, D., Blackman, D. A., Craven, L., Dickinson, H., &
Ross, H. (2019). Mental models for conservation research and practice. Conservation Letters, 12(3), e12642.
https://doi.org/10.1111/conl.12642

Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., & Wu, Q. (2019). Why so
many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ-
mental Modelling & Software, 114, 29–39. https://doi.org/10.1016/j.envsoft.2019.01.012

Tonkin, Z., Jones, C., Clunie, P., Vivian, L., Amtstaetter, F., Jones, M., Koster, W., Mole, B., O’Connor,
J., Brooks, J., Caffrey, L., & Lyon, J. (2020). Victorian Environmental Flows Monitoring and Assessment
Program.

White, C. R., & Marshall, D. J. (2019). Should we care if models are phenomenological or mechanistic. Trends
in Ecology & Evolution, 34(4), 276–278. https://doi.org/10.1016/j.tree.2019.01.006

Yates, K., Bouchet, P., Caley, M., Mengersen, K., Randin, C., Parnell, S., Fielding, A., Bamford, A., Ban, S.,
Barbosa, A., Dormann, C., Elith, J., Embling, C., Ervin, G., Fisher, R., Gould, S., Graf, R., Gregr, E.,
Halpin, P., … Sequeira, A. (2018). Outstanding challenges in the transferability of ecological models. Trends
Ecol. Evol. (Amst.), 33(10), 790–802. https://doi.org/10.1016/j.tree.2018.08.001

31

https://doi.org/10.1139/er-2018-0034
https://doi.org/10.21105/joss.02445
https://doi.org/10.21105/joss.02445
https://doi.org/10.1016/j.envsoft.2008.11.010
https://doi.org/10.1111/j.1461-0248.2011.01608.x
https://doi.org/10.1111/j.1365-2664.2008.01553.x
https://doi.org/10.1111/j.1365-2664.2008.01553.x
https://doi.org/10.1016/j.matcom.2019.05.002
https://doi.org/10.1111/conl.12642
https://doi.org/10.1016/j.envsoft.2019.01.012
https://doi.org/10.1016/j.tree.2019.01.006
https://doi.org/10.1016/j.tree.2018.08.001


 

OFFICIAL 

Appendix S7: Case Study Pilot Analysis 
Summary Report 
Pilot analysis of VEFMAP riparian vegeta6on surveys 
2024-01-24 
 
Overview 
A pilot study was conducted to iden;fy model structures that were es;mable (i.e., 
generated reliable parameter es;mates) and captured key features of the data (e.g., many 
zeros). The details are outlined in the pre-registra;on document. In short, the process began 
with a preferred model structure and refined this by removing interac;ons un;l a suitable 
model was iden;fied. 
 
The preferred model structure was (in high-level, R nota;on): 

Veg. response ~ wpfg * origin * flow predictors + 
 wpfg * origin * zone * period + 
 grazing + 
 (1 | site / transect) + 
 (1 | transect / metres) + 
 (1 | survey_year) + 
 (1 | species) + 
 offset(npoints) 

 
The model for vegeta;on cover included an addi;onal term for the previous cover in the 
previous survey, which made this an autoregressive model (i.e., modelling the change in 
cover rather than absolute cover). 
 
The flow predictors were simple metrics intended to capture broad features of the flow 
regime at a site. The two metrics were the number of days in which discharge was above 
baseflow levels, and the number of days in which discharge was above spring fresh levels. 
Values were calculated for each water year, and a 3-year rolling mean was used to represent 
broad changes in the mul;-year flow regime (cf. varia;on within or among individual years). 
Quadra;c transforms of these metrics were also included in the model. 
 
Models for cover and species richness were fiRed with zero-inflated Poisson distribu;ons, 
with nega;ve binomial distribu;ons as an alterna;ve to address over-dispersion. For cover, 
this differs from the (generally preferred) use of a bounded distribu;on (e.g., binomial or 
beta). However, parameters of bounded distribu;ons are challenging to es;mate when 
many values are near the bounds (lower or upper), and typically introduce link func;ons 
that do not allow straighVorward specifica;ons of autoregressive models. For this reason, 
the Poisson distribu;on was used in models of cover, no;ng that this approximates the 
binomial distribu;on in the limit of large numbers of trials. 
 
Ini;al models aimed to include data at the level of species. This was infeasible for two 
reasons. First, data resolved to the level of species required an extremely large data set (due 
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to the many species recorded), which made model es;ma;on computa;onally challenging. 
Second, the large data set (with all species) comprised mostly zero observa;ons, resul;ng in 
extreme zero-infla;on that affected model convergence. The final models were fiRed to 
cover summed over all species within a plant func;onal grouping, no;ng that these summed 
cover es;mates some;mes (but rarely) exceeded 100% due to species overlap. 
 
Key decisions and final model structures 

1. High-level interac;ons are too challenging to es;mate. Instead proposed three 
models for vegeta;on cover: 

a. A flow regime model that examines flow predictors only (with random 
effects). 

b. A flow event model (version 1) that examines zone-by-period interac;ons but 
assumes that all func;onal groups have similar paRerns (within a zone and 
period). 

c. A flow event model (version 2) that examines func;onal group-by-period 
interac;ons but assumes that all zones respond similarly. 

2. Species richness model is s;ll being finalised, but should at least be able to 
encompass versions 1 and 2 of the cover model in a single analysis. 

3. These models ask high-level ques;ons about the effects of flows (and flow events) on 
vegeta;on cover and species richness and provide generalisable insight into how 
flows could be delivered to influence vegeta;on outcomes. 

4. Quadra;c flow effects too complex to fit: removed. 
5. Metres within transect too complex to include: replaced with a random effect for 

metres, which assumes that the distance up the bank might influence vegeta;on 
outcomes but in similar ways among sites. 

6. Zero-infla;on specified as a func;on of plant func;onal group to allow for different 
propor;ons of zeros among groupings. 

7. Over-dispersion present but not resolved by nega;ve binomial model (even with 
wpfg-specific dispersion parameters): zero-inflated Poisson model retained, 
acknowledging lingering issues of over-dispersion. 

8. Offset removed because all observa;ons were based on the same number of points. 
 
Decision points for full analysis 
Several decisions will need to be made prior to the full analysis (which should begin ASAP). 

1. Assess whether the full zone-by-period-by-wpfg interac;on is possible with the full 
data set. If not, use simplified models outlined above. 

2. Decide whether to fit a single model to all waterbodies or separate models for each 
(decision based on model convergence and posterior checks – a single model is 
preferable if feasible). 

3. Decide on how to visualise model outputs. 
 

Vegeta6on cover: regime model 
 
This model includes two flow predictors (days above baseflow, days above spring fresh) and 
the full suite of random effects. The aim is to examine how past flow condi;ons influence 
vegeta;on cover. The model does not consider zone or period. 
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The model iden;fies func;onal group-specific impacts of days above baseflow or spring 
fresh levels. Interpreta;ons here are based on the predicted associa;ons (Figures 2 and 3) 
because interpre;ng forest plots of coefficients (Figure 1) is challenging in models with many 
interac;ons. Posi;ve effects of baseflows are clearest for na;ve ATl and ATe and exo;c Tdr 
and Tda, all of which have higher cover under baseflows. Posi;ve effects of spring freshes 
are clearest for na;ve Sk, Tda, and Ate and exo;c ATe. Nega;ve effects of spring freshes are 
clearest for Tdr. 
 
Model structure 
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Figure 1.  

 
Figure 2. Model predicted plant cover for the three way interac;on between ‘Days above 
baseflow’, ‘func;onal group’ and ‘origin’. Points are raw data. 
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Figure 3. Model predicted plant cover for the three way interac;on between ‘Days above 
springfresh’, ‘func;onal group’ and ‘origin’. Points are raw data. 
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Vegeta6on cover: flow event model (version 1) 
 
This model includes several categorical predictors (origin, wpfg, grazing, and a zone-by-
period interac;on) and the full suite of random effects. The aim is to examine how 
vegeta;on cover changes in specific zones before and afer key flow events (spring and 
summer freshes). This first version allows func;onal groups to have different levels of cover 
but assumes that changes following flow events are similar in all groups within a zone. 
Although this is not an ideal model structure, it is likely that func;onal groups are restricted 
to par;cular zones, in which case the zone-by-period interac;on may capture some of the 
varia;on aRributable to func;onal groupings. 
 
The model indicated that vegeta;on cover differed in its responses to spring and summer 
freshes in each zone (below baseflow, baseflow to spring fresh, above spring fresh). Below 
baseflow level, vegeta;on increased following the spring fresh and remained high following 
the summer event (Figure 5). In the baseflow-to-spring fresh zone, vegeta;on increased 
following the spring fresh but returned to pre-spring levels following the summer fresh 
(Figure 5). In the above-spring fresh zone, vegeta;on level declined following both the spring 
and the summer fresh (Figure 5). 
 
Model structure 
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Figure 4. 
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Figure 5. Model predicted plant cover for the two way interac;on between ‘period’ and 
‘zone’. Points are raw data with the spread across x-axis represen;ng data density. 
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Vegeta:on cover: flow event model (version 2) 
 
This model includes several categorical predictors (origin, zone, grazing, and a wpfg-by-
period interac;on) and the full suite of random effects. The aim is to examine how 
vegeta;on cover of each func;onal grouping changes before and afer key flow events 
(spring and summer freshes). This second version allows func;onal groups to have different 
responses to flow events (spring and summer freshes) but assumes that vegeta7on in all 
zones changes similarly following each flow event. As for version 1, this is not an ideal model 
structure but provides an avenue to tease apart wpfg-specific responses to flow events. 
 
The model indicated that cover of each func;onal group differed in its response to spring 
and summer freshes (Figure 7). Key paRerns were as follows: 

• ARp: increased afer the spring fresh and again afer the summer fresh. 
• ATe: increased afer the spring fresh and returned to pre-spring levels afer the 

summer fresh. 
• ATl: as for ATe. 
• Se: increased afer the spring fresh and largely maintained this level afer the 

summer fresh. 
• Sk: no change following the spring fresh but large increases following the summer 

fresh. 
• Tda: no change following either flow event. 
• Tdr: reduced following spring fresh then recovered slightly following the summer 

fresh, but not to pre-spring levels. 
 
Model structure 
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Figure 6. 
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Figure 7. Model predicted plant cover for the two way interac;on between ‘period’ and ‘func;onal group’. Points are raw data with the spread across x-axis 
represen;ng data density. 
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Species richness model 
 
Species richness models are not fully determined yet. The below structure captures similar 
paRerns to version 1 and version 2 of the cover model. The model includes two-way 
interac;ons between zone and period, zone and plant func;onal group, and period and 
plant func;onal group. Together, these terms aim to iden;fy responses to flow events within 
a given zone or func;onal group, while accoun;ng for differences in species richness of each 
func;onal group among zones. 
 
The models illustrate a general paRern of rela;vely low temporal varia;on in species 
richness once accoun;ng for spa;al paRerns due to zone and func;onal grouping. Figure 9 
illustrates that total species richness does not change substan;ally within each zone 
following the spring or summer fresh. Similarly, Figure 11 shows that total species richness 
of each plant func;onal group does not change substan;ally following spring or summer 
freshes. By contrast, Figure 10 illustrates that the species richness of each plant func;onal 
group differs among zones. As expected, aqua;c groupings are more species-richness below 
the baseflow level, whereas terrestrial groupings are more species richness above the spring 
fresh level. 
 
Model structure 
Coauthor-3 comment: coauthor-4 to update, the dispformula is probably ignored for a 
Poisson model, use ziformula instead. Can flow metrics be included? 

 
Best fikng so far – the three way interac;on had convergence issues 
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Figure 8. Something funny here. Coauthor-3: suggest issue with the Sk func;onal grouping in 
that zone. Assess following model tweaks. 
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Figure 9. Model predicted species richness for the two way interac;on between ‘period’ and ‘zone’. Points are raw data with the spread across 
x-axis represen;ng data density. 
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Figure 10. Model predicted species richness for the two way interac;on between ‘zone’ and ‘func;onal group’. Points are raw data with the 
spread across x-axis represen;ng data density. 
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Figure 11. Model predicted species richness for the two way interac;on between ‘period’ and ‘func;onal group’. Points are raw data with the 
spread across x-axis represen;ng data density. 
 
 




