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Forest Carbon Diligence is a digital MRV system for map-
ping forest structure and forest carbon over time. This
manuscript describes the qualities of theDiligence datasets
— annual maps of canopy cover, canopy height, above-
ground carbon density, change detection, and their uncer-
tainties — and quantifies performance across multiple MRV
contexts. Canopy height and canopy cover regression met-
rics were high (height r 2 = 0.83, cover r 2 = 0.79 over
NEON), as were aboveground carbon metrics (GEDI L4A
r 2 = 0.64 at 30 m , GEDI L4B r 2 = 0.82 at 1 km). Carbon in-
tercomparisons found strong agreement among 8 indepen-
dent datasets. Agreement was highest with GEDI, show-
ing strong correlations at multiple scales (r = 0.92 for 1km
comparisons, and r = 0.98 for 1◦, ecoregion, and national
scales). Diligence and CCI were correlated in mid-latitude
(r = 0.89) and high-latitude ecoregions (r = 0.88). Country-
level agreement with FAO data was high (r = 0.76), as was
agreement with field- and project-based carbon estimates
from FIA (r = 0.86) and CARB (r = 0.76). Correlations
were lower in pixel-level comparisons at NEON field plots
(r = 0.58) and in Central Africa (r = 0.71), identifying a neg-
ative bias in carbon-dense forests. These results demon-
strate how Forest Carbon Diligence can support policy and
market needs by providing scientific, well-calibrated, and
consistent estimates of aboveground forest carbon stocks.
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1 | INTRODUCTION

Land use change accounts for 13-21% of global anthro-
pogenic greenhouse gas emissions, with deforestation
responsible for 45% of land use change emissions (IPCC,
2023). These emissions can be mitigated by prevent-
ing forest loss, restoring forests in previously degraded
landscapes, or altering land management practices, pri-
marily to increase carbon sequestration rates or reduce
the probability of high-severity wildfire (Griscom et al.,
2017; Marvin et al., 2023). Implementing these natu-
ral climate solutions (NCS) at scale requires large finan-
cial and institutional investments as well as tools for
monitoring their effectiveness. These investments can
originate from many sources: jurisdictions like state and
national governments; international lending institutions
like regional development banks or the World Bank; or
private sources like carbon project finance or philan-
thropic finance (Steckel et al., 2017; Bhandary et al.,
2021). In order to quantify both the climate and the fi-
nancial benefits of these investments, digital MRV tech-
nologies that remotely automate or enhance traditional
MRV will play a central role in how debtors, creditors,
and regulators alike evaluate and justify NCS.

Satellite data are well-positioned to address the pri-
mary design goals of digital MRV for NCS. These goals
include: 1) assessing the effects of NCS implementa-
tions, 2) comparing implementation outcomes across or-
ganizations and regions, 3) assessing aggregate action
towards shared goals, 4) evaluating alternative imple-
mentation designs, 5) facilitating cross-organizational
linking, and 6) enabling adaptive learning (Weiner, 2015).
Earth observation (EO) satellites provide repeat, spa-
tially continuous, and well-calibrated measurements of
the Earth’s surface, which can be processed to provide
globally consistent maps of the world’s forests, and how
they are changing. Although many satellite data prod-
ucts have been developed to quantify carbon stocks in
the world’s forests, few satisfy these MRV design goals.

Methods for mapping global forest structure and
aboveground forest carbon with satellites proliferated
around 2010 following the launch of ICESAT-GLAS, a
spaceborne LiDAR instrument (Wang et al., 2011; Lef-

sky, 2010; Saatchi et al., 2011; Baccini et al., 2012, 2017;
Santoro, 2018). The launches of the multi-modal Coper-
nicus constellation by ESA and of the NASA-GEDI in-
strument — another spaceborne LiDAR sensor — pro-
vided the foundation for the next generation of global
models, mapping forests with higher spatial resolution
and precision (Dubayah et al., 2020; Potapov et al.,
2021; Duncanson et al., 2022; Dubayah et al., 2022b;
Lang et al., 2023; Santoro et al., 2023). These newmeth-
ods have rapidly advanced the field by addressing fun-
damental technical challenges such as signal saturation,
model generalization, and uncertainty characterization
(Patterson et al., 2019; Mutanga et al., 2023; Lang et al.,
2022; Pauls et al., 2024).

Yet some key technical gaps limit the applicability
of these global datasets in MRV contexts. First, there
is often little consistency among datasets (Avitabile
et al., 2016; Zhang et al., 2019), and between satellite-
and field-derived datasets (Mitchard et al., 2014; Réjou-
Méchain et al., 2019). Some have interpreted this to sug-
gest that satellites provide near-null predictive power
for aboveground carbon mapping (Ploton et al., 2020),
while others suggest this represents a general challenge
for generating geographically out of distribution model
predictions (Meyer and Pebesma, 2022). Few model
performance benchmarks and intercomparison results
make it difficult to compare carbon stocks across regions
and reporters, which rely on an array of data sources
like field plots, national forest inventories, and global
datasets (Hunka et al., 2023). Second, these global
datasets rarely utilize multi-temporal observations to es-
timate changes in forest structure and carbon over time;
data are typically provided for a single time range. Yet,
quantifying project outcomes and climate benefits re-
quiresmeasuring change over time (Coffield et al., 2022).
This often requires users to reconcile continuous vari-
ables with categorical change products, which are pro-
duced with different assumptions (Harris et al., 2021).
Despite these technical hurdles, satellite data products
are still expected to be foundational building blocks for
NCS digital MRV (Weiner, 2015; Mitchell et al., 2017).

This manuscript describes a new data product — For-
est Carbon Diligence — that was designed to meet the
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F IGURE 1 Forest Carbon Diligence workflow diagram illustrating the flow of data from source to delivery.
Canopy cover, canopy height, and aboveground carbon density metrics used as response data. Multispectral optical
data, radar data, elevation data, and location embeddings were sourced as feature data. All datasets were spatially
resampled to a global grid. Geographically independent train, validation, and test splits were sampled across the
extents of each response dataset. Height and cover samples consist of square patches of data which, co-aligned
with satellite feature data, were the inputs to a 2-D U-Net model. AGBD models were fit using spaceborne LiDAR,
with modeled canopy cover, canopy height, elevation, and location embeddings as features. AGBD was modeled
using gradient boosting regression, then converted from biomass density to carbon density during inference.
Pixel-level (30 m) uncertainties were quantified for each metric using conformal inference.

digital MRV needs for NCS. Diligence data quantify the
density of carbon stored in trees, the area occupied
by trees, mean canopy height, and change detections
across the terrestrial land surface at a 30 m scale on
an annual cadence, starting in 2013. These estimates
were produced from machine learning models trained
on historical satellite observations, airborne LiDAR data,
and spaceborne LiDAR data. This manuscript demon-
strates the suitability of Diligence data products for juris-
dictional and voluntary carbon monitoring applications
by conducting a multiscale, multimethod quality assess-
ment using a combination of intercomparison and val-
idation approaches. This medium-resolution, historical
carbon product builds the foundation for the next gen-
eration of digital MRV technologies.

2 | METHODS

The Forest Carbon Diligence products were created us-
ing multiscale, publicly available EO data (Fig. 1). These
datasets were modeled in a stepwise process to balance
the strengths and limitations of each dataset.

Airborne LiDAR datawere used tomodel forest struc-
ture because the relationships between forest structure
and satellite feature data were expected to generalize
beyond the geographically limited training data. How-
ever, there are no globally general methods for esti-
mating woody biomass from airborne LiDAR, as some
form of local calibration is required. This means esti-
mating out-of-distribution biomass and its uncertainty
is not straightforward. Spaceborne LiDAR data, on
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F IGURE 2 Clustered counts of airborne LiDAR samples used in model training, where each sample represents a
128x128 pixel tile. Numerical labels represent the number of samples within a 2,000 km radius of the centroid.

the other hand, provide near-global estimates of above-
ground biomass, whichwere fit using region- and biome-
specific equations relating forest structure to biomass
(Dubayah et al., 2022b; Montesano et al., 2024).

This method — modeling forest structure from air-
borne LiDAR, optical, and radar satellite data, then us-
ing the estimated structure data to predict biomass —
retains the benefits of high-quality, labeled forest struc-
ture data and the simplicity of an allometry-informed ap-
proach to estimating biomass from structure.

2.1 | SOURCE DATA

2.1.1 | AIRBORNE LiDAR

Point cloud data were accessed from a series of open
data sources (Appendix A.1), reprojected to a consistent
coordinate system (EPSG:6933) and normalized in the Z
dimension to height above ground. Ground point clas-
sifications provided in the source data were used for
normalization. Buildings, bridges, noise, and other non-
vegetation classes were removed from processing us-

ing the point classifications provided in the source data,
when present. For datasets without prior classifications,
custom building and noise classifiers were used. Canopy
height and canopy cover were rasterized from the nor-
malized point cloud data at 1 m nominal resolution (see
Section 2.2 for grid details). Overall, 2,234,400 km2

of LiDAR data were processed and extracted for model
training and evaluation (Fig. 2).

Canopy height, measured in meters, was calculated
as the highest point within each grid cell using a mod-
ified pit free canopy height model algorithm (Khos-
ravipour et al., 2014). This calculation is not technically
restricted to trees as there is no height or size thresh-
old for inclusion. The height of the tallest vegetation at
each grid cell is recorded, be it grass, shrub, or tree.

Canopy cover, also referred to as canopy density in
LiDAR contexts, is measured in percent and is calcu-
lated as the number of LiDAR returns 5 m and above
divided by the total number of returns within each grid
cell. This threshold tracks overstory vegetation cover
and can be interpreted as a proxy for canopy closure;
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cover increases in proportion to overstory branch and
foliage volumes. It has also been interpreted as the com-
plement of the canopy gap fraction (CC = 1 − GF ;
Coomes et al. (2017)).

Canopy height and canopy cover rasters were av-
erage resampled to 30 m prior to model training, and
the pixel values represent the mean canopy height and
cover among all 1m pixels used in resampling. Average
resampling to a coarser resolution reduces the range of
values, narrowing the range of observed and predicted
canopy height values to approximately 0 − 40 m. It does
not represent the height of the tallest tree within a pixel,
and it can include bare ground observations in resam-
pling, meaning the values are typically lower on average
than metrics like RH98 or Lorey’s height (Fig. 3).

Mean canopy height was selected because it can be
consistently retrieved across LiDAR instruments and is
directly correlated with aboveground biomass (Asner
and Mascaro, 2014) (Section B.1). Metrics derived from
vertical profiles like RH80 ormean canopy profile height,
in contrast, are highly sensitive to laser power and re-
quire additional modeling to ensure consistency across
instruments (Lefsky et al., 2002; Ni-Meister et al., 2010;
Zhu et al., 2022). Mean canopy height also implicitly
weights subcanopy heightmeasurements by crown area,
and the combination of height and crown size is highly
correlated with aboveground biomass across ecosys-
tems (Jucker et al., 2017).

2.1.2 | SPACEBORNE LiDAR

AGBDestimates fromGEDI v2.1 (Dubayah et al., 2022b)
and ICESat-2 ATLAS (Montesano et al., 2024) were
downloaded, merged, and organized into a harmonized
dataset using a global equal area tile grid (see 2.2). These
two sources of AGBD estimates are complementary,
with overlap, as GEDI provides coverage over mid lati-
tudes (<51.6° N, >51.6° S) and ICESat-2 provides cover-
age for high latitudes (>44.4° N) (Appendix B.2).

Like all EO data, spaceborne LiDAR data include
noise and uncertainty, which vary based on instrument
hardware and observation conditions. Recently, meth-
ods for identifying the highest-quality GEDI observa-

tions have proliferated (Moudry et al. 2024). We ap-
plied a series of quality filters to the GEDI observations,
selecting observations from power beams, collected at
night, excluding steep slopes, and excluding orbits with
high geolocation error (Appendix B.2). The ICESat-2
datawere filtered for quality by the data providers (Mon-
tesano et al., 2024).

An additional outlier filter was applied to the GEDI
and ICESat-2 observations. The purpose of this filter
was to identify and remove anomalously tall RH98 ob-
servations, particularly in sparsely arbored areas.

Overall, 586 million GEDI observations and 15 mil-
lion ICESat-2 observations were retained after filtering
(30% and 99%of the original observations, respectively).
A final spatially balanced random sampling step yielded
81.6 million waveforms to be used for training and eval-
uation, reducing bias in oversampled regions and better
approximating a geographically uniform random sample
(Meyer and Pebesma, 2022).

2.1.3 | SURFACE REFLECTANCE

Multispectral surface reflectance data provided 6 of the
9 feature bands used for the forest structure models.
Surface reflectance is sensitive to vegetation growth
and structure patterns, with optical variation driven by a
combination of leaf-level and canopy-level growth and
structure metrics (Jordan, 1969; Knipling, 1970; Asner,
1998).

The full scene archives of Landsat-8, Landsat-9,
Sentinel-2A and Sentinel-2B were downloaded from
public cloud storage. Each scene was processed to nadir
BRDF-adjusted surface reflectance using the FORCE
atmospheric correction and normalization algorithm
(Frantz, 2019). FORCE produces a scene-level QA mask
classifying cloud, shadow, haze, water, and snow using
a modified version of FMask (Frantz et al., 2018; Skakun
et al., 2022). Sentinel-2 scenes were average resampled
to match Landsat’s resolution. To reduce false negative
cloud detections, a custom cloud and shadowmask was
applied to update each scene’s QA mask (Appendix B.3).
Only the six bands shared across instruments were re-
tained: [B, G, R, NIR, SWIR-1, SWIR-2].
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F IGURE 3 Canopy height histograms derived from three measurement approaches. Top: airborne
LiDAR-derived mean canopy height. Middle: field-derived Lorey’s height. Bottom: spaceborne LiDAR-derived RH98.
Mean canopy height values at 30 m resolution are lower than Lorey’s height and RH98 values on average. Mean
canopy height and RH98 show exponential distributions, representing a more uniform geographic distribution of
height values compared to Lorey’s height, as field plot locations are often biased towards intact forests (Marvin et al.,
2014; Réjou-Méchain et al., 2019). Histograms were computed for all locations with hei ght ≥ 2m to remove bare
ground. Source data used for the field plots and RH98 values is described in Appendices A.2 and B.2

Annual surface reflectance mosaics were created be-
ginning in 2013, which marks the launch of Landsat-
8 (Roy et al., 2014). These mosaics were created us-

ing a custom best-available-pixel compositing method,
adapted from (White et al., 2014), and described in de-
tail in Appendix B.4. Best-pixel methods show strong
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temporal consistency compared to percentile-based
composites, though this may come at the expense of
radiometric uniformity (Matasci et al., 2018; Qiu et al.,
2023).

The pixel composite method addressed three needs.
The first was to maximize consistency in the observa-
tion conditions for each pixel. The compositor included
scoring factors based on sun angle, expected time of
peak greenness, distance to clouds, aerosol density, and
instrument type. Pixel quality increased as solar eleva-
tion increased, at times closest to peak greenness, as
aerosol content decreased, and for Sentinel-2 observa-
tions over Landsat-8/9 observations. The second goal
of the compositor was to provide a quantitative flag for
observation quality. Pixel quality scores provide infor-
mation on the expected reliability of each observation,
allowing users to filter or weight observations based on
pixel quality. Finally, the compositor records the Julian
day of the best pixel, providing a timestamp for when
each observation occurred.

2.1.4 | L-BAND RADAR, WOOD
DENSITY, AND ELEVATION DATA

Dual polarizationmosaics fromALOS-PALSAR-2 L-band
SAR (HH and HV) comprised 2 of the 9 total predic-
tor bands used for the forest structure models. Ac-
tive microwave measurements are directly sensitive to
aboveground plant water content. L-band measure-
ments are typically sensitive to the water content of the
large woody components of biomass, like tree trunks
and branches, indirectly measuring key components of
stand-level vegetation structure (Konings et al., 2019;
Ottinger and Kuenzer, 2020). L-band backscatter data
— HV polarization in particular — are effective in esti-
mating patterns of basal area and aboveground biomass,
though the signal appears to saturate in high biomass
forests (Mitchard et al., 2009; Bouvet et al., 2018;
Williams et al., 2022).

Annual, radiometrically balanced ALOS-PALSAR-2
HH/HV mosaics were accessed directly from JAXA and
usedwithout additional transformation, aside from stan-
dardizing data types and harmonizing no data values

across tiles (Shimada et al., 2009). Years 2013 and 2014
were backfilled with 2015 observations since ALOS-2
was launched in 2014, and data were not provided until
2015.

A global map of wood density was the final predictor
for the forest structure models. This layer was included
as a metric representing plant community biogeogra-
phy, and is described in Appendix B.5. It was included
to model nonstationary relationships between satellite
data and forest structure data, which were expected to
vary as a function of vegetation type (Hawkins, 2012;
Takougoum Sagang et al., 2024). Although a static wood
density map was not expected to be a mechanistic pre-
dictor of forest structure, it derived a single, ecologically
meaningful metric from a series of soil, terrain, and cli-
mate variables that are known to drive global variation in
canopy height (Liu et al., 2025). Compressing these data
into one normalized variable provided contextual eco-
logical information while reducing overfitting risk and
reducing runtime.

Elevation data were used as a predictor for the
aboveground carbon density model. This allowed the
model to learn nonstationary carbon-topography rela-
tionships at local and regional scales, capturing fine-
scale topoedaphic drivers of carbon storage in slopes
and floodplains (Marvin et al., 2014; Taylor et al., 2015;
Jucker et al., 2018) and along elevation gradients (As-
ner et al., 2014a; Malhi et al., 2017; Marifatul Haq et al.,
2022). Elevation data were primarily sourced from the
Global 30 m Copernicus Digital Elevation Model (Eu-
ropean Space Agency and Airbus, 2022). Since this
dataset does not include data over Armenia and Azer-
baijan, values for those countries were derived from the
ALOS World-3D DEM (Tadono et al., 2014).

2.2 | GLOBAL GRIDDING

A multi-scale, hierarchical, global equal area grid system
was developed to standardize data storage, processing
and analysis. Every map projection includes some form
of geographic distortion — in shape, angle, distance, or
area — and selecting a global projection requires making
tradeoffs regarding which distortions are most tolerable
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Grid Level Decimation Pixel Size (m) Rows Columns
1 1 0.383 19683 19683
2 3 1.149 6561 6561
3 9 3.447 2187 2187
4 27 10.340 729 729
5 81 31.020 243 243
6 243 93.062 81 81
7 729 279.185 27 27
8 2187 837.555 9 9
9 6561 2512.664 3 3

10 19683 7537.991 1 1
TABLE 1 Hierarchical grid specification describing pixel and tile sizes at each level in the 3n -based nonary tree.

for a given use case. There were four design goals to
balance for Diligence:

• Minimize distortions relevant to forest structure and
forest carbon mapping

• Minimize data loss when resampling from commonly
used data products

• Minimize costs for processing and storage
• Minimize friction between user and data (i.e. does

not require bespoke tooling to use)

Following an analysis ofmultiple conformal and equal
area projections, the EASE-Grid 2.0 cylindrical equal
area projection projection was selected (Brodzik et al.,
2012). An equal area projection satisfied the first crite-
ria because the canopy cover, mean canopy height, and
aboveground carbon density datasets are all area-based.
Canopy cover estimates the percent area occupied by
canopy vegetation in each grid cell. Mean canopy height
estimates the average height of all vegetation in a grid
cell. The carbon model is area-based — not tree-based
(Coomes et al., 2017) — and is normalized to report car-
bon density in MgC · ha−1. Conserving area was more
important than preserving shape or distance.

A nonary tree layout was selected, which defines a
grid with a base decimation of 3n . This differs from
common quad tree layouts like Web Mercator that are
decimated with a base of 2n . The nonary layout sup-
ports hierarchical scale definitions that align with com-

mon global satellite data products (Table 1). This mini-
mizes data loss when reprojecting Landsat or GEDI data
to grid level 5, for example, and supports exact resam-
pling of LiDAR data from level 2 to level 5. The grid lay-
out specifications are as follows:

• CRS: EPSG:6933
• Projected extent: (-17367530, -27612800,

17367530, 7122260)
• Geographic extent: (-180, NaN, 180, 76)
• Tile shape: 4608x4608
• Internal tile shape: 512x512

The square grid extent was defined by the east-west
extent of the EASE-Grid projection. The extent was
shifted downward to snap the upper bound of the grid
to the 76◦ northern parallel to maximize the amount of
valid pixels (the northern bounds of viable tree cover).
The southern bound was extended beyond the valid ge-
ographic extent to form a perfect square since the geo-
graphic coordinate system represents a rectangular ex-
tent. Specifying coordinates south of −90◦ simply de-
fines a square grid; no data from these areas were pro-
duced or analyzed.

This global grid specification provides an efficient lay-
out for processing and storage, requiring 40% fewer
pixels than a comparable geographic grid (EPSG:4326),
and 50% fewer than a comparable World Mercator grid
(EPSG:3395), both of which highly distort area.



Anderson et al. 9

2.3 | MODEL TRAINING

Airborne LiDAR provides high-precision measurements
of forest structure and has been used to train models
from satellite data tomap national-scale forest structure
using multiscale frameworks (Asner et al., 2014b; An-
derson, 2018; Matasci et al., 2018; Takougoum Sagang
et al., 2024). Airborne LiDAR has also been used
to map aboveground biomass patterns within approxi-
mately 10% uncertainty relative to field measurements
at a 1 ha scale (Mascaro et al., 2011; Chen et al., 2016).
However, public LiDAR data coverage is geographically
sparse and biased: opportunistic collections do not rep-
resentatively sample the plant communities of theworld.
While there is evidence that a tropics-wide approach
to estimating biomass from LiDAR might emerge (Asner
et al., 2012), an out-of-distribution analysis found that
local calibrations are still required to estimate carbon
density from LiDAR (Jucker et al., 2018). This makes air-
borne LiDAR an untenable training dataset for a global
carbon estimation product.

Sparsely sampled but global aboveground biomass
data are now available from GEDI and ICESat-2, which
are an ideal training data source for a global product. Al-
though optical EO data are often used to directly es-
timate and upscale biomass predictions over large ar-
eas (Asner et al., 2014b; Baccini et al., 2017; Campbell
et al., 2021; Valle et al., 2025), others have questioned
the feasibility of directly estimating biomass from opti-
cal EO data in a way that generalizes geographically (Plo-
ton et al., 2020). The Diligence products address this
challenge by first estimating canopy height and canopy
cover from satellite data, which has a strongmechanistic
basis and a long history in the literature (Lefsky, 2010;
Kellndorfer et al., 2010; Simard et al., 2011; Hansen
et al., 2013; Potapov et al., 2021), then estimating car-
bon density as a function of forest structure and topog-
raphy from a global sample of biomass estimates.

The Diligence approach is therefore grounded in two
related assumptions: a) forest structure and topography
largely explain spatial patterns of biomass density, and b)
the relationships between forest structure, topography,
and biomass vary across ecosystems. Canopy height

is a critical input to biomass allometry, and model er-
ror is typically minimized when region-specific parame-
ters are estimated (Feldpausch et al., 2012; Jucker et al.,
2017). For canopy cover, Coomes et al. (2017) found
that the canopy gap fraction is highly correlated with
basal area. They also found that area-based allometry
using canopy height and gap fraction-derived basal area
minimized error and bias and outperformed tree-based
allometry. Since canopy cover is effectively the comple-
ment to gap fraction, it can serve as an effective proxy
for basal area and improve biomass predictions when
paired with canopy height (Li et al., 2014; Singh et al.,
2016).

2.3.1 | CANOPY HEIGHT AND
CANOPY COVER MODELS

Deep learning regressionmodels were trained to predict
mean canopy height and canopy cover independently
at 30 m nominal resolution using surface reflectance,
HH/VV backscatter, and wood density data as feature
variables, and airborne LiDAR data as response vari-
ables. The feature and response variables were normal-
ized to a common range using robust scaling. Forward
and inverse transformations were applied on the fly at
training and inference time, meaning the input and out-
put data are stored in their natural units.

U-Net convolutional neural network architectures
were selected for their robust performance in mapping
ecological patterns from EO data (Ronneberger et al.,
2015; Brodrick et al., 2019; Kattenborn et al., 2021;
Wagner et al., 2023). The base architecture was mod-
ified to include dense blocks, ResNet blocks, attention
blocks, and a series of network-in-network connections,
where each block contained 64 filters (Vaswani et al.,
2017; Zeng et al., 2019; Li et al., 2023). L2 kernel regular-
ization (α = 1e−4) and 2-D dropout layers (r at e = 0.25)
were used to improve generalization (Phaisangittisagul,
2016). Mean squared error loss was minimized using
the Nadam optimizer with a learning rate of 3e−4 for 30
epochs and a batch size of 32 tiles (Dozat, 2016). Mean
absolute error (MAE ), root mean squared error (RMSE )
and coefficient of determination (r 2) scores were calcu-
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lated as metrics at runtime, but were not used as loss
functions.

Training data were generated by randomly sampling
128x128 pixel tiles from regions with coincident air-
borne LiDAR data. The year of the satellite data closest
to the LiDAR acquisition was used for temporal match-
ing. A total of 1,099,559 samples were extracted at an
average sample density of 2 poi nt s ·km−2 using uniform
random geographic sampling. Samples were randomly
assigned to training/validation sets (67%) or interval
calibration/testing (33%) sets. The training/validation
data were then randomly split 70/30%, and the inter-
val calibration/testing data were randomly split 20/80%.
NEON data were withheld from these sets and used
instead for estimating time series model hyperparame-
ters.

Training data were used to fit model parameters. Val-
idation data were used to approximate out of sample
predictive performance during training. Interval calibra-
tion data were used in conformal inference to generate
90% prediction intervals. Finally, test data were used to
evaluate predictive performance.

2.3.2 | TIME SERIES MODELS

Time series analysis with EO data has rapidly evolved
in tandem with increased access to standardized data
products and cloud computing platforms (Gorelick et al.,
2017; Woodcock et al., 2020). Algorithms such as
LandTrendr and CCDC simplified change detection,
trend analysis, and land cover classification by directly
estimating these patterns from multispectral EO, al-
though the algorithms themselves are more general that
the multispectral use case (Kennedy et al., 2010; Zhu
andWoodcock, 2014; Pasquarella et al., 2022). The Dili-
gence time series model applies similar concepts — iden-
tifying trends and changes in forest structure — using
the forest structure maps as input instead of the raw EO
data. Estimating change parameters for these data, and
runtime cost considerations, merited the use of a simple
denoising model.

The Diligence U-net models predict height and cover
independently for each year, and these predictions con-

tain nonstructural variation related to phenology, illumi-
nation, and sensor calibration. This residual prediction
variation was minimized using statistical models (Fig. 4).
For each pixel, three models were fitted:

• A constant-in-time model, which represents stability
• A spline model, which represents gradual change
• A change point model, which represents fast change

The constant-in-time model assumes that all varia-
tion in the predictions is due to noise. This model is ex-
pected to perform well when height or cover remains
stable over time or when changes are minimal relative
to the noise in the predictions (e.g. slow growth that is
not detectable over a few years).

The spline and change point models were designed
to capture slow and fast changes, respectively. Regular-
ized β -splines were used to estimate nonlinear trends,
while the change point model included an additional dis-
crete change point parameter at the timestep with the
greatest change in predicted height or cover.

The preferred model for each pixel was selected us-
ing Akaike’s Information Criteria (AIC). An additional
heuristic was applied to reduce noise: if the coefficient
of variation (CV) over time for the selected model’s
predictions is below a threshold, the constant-in-time
model was selected. This CV threshold is a hyperpa-
rameter tuned along with the AIC threshold. Once a
preferred model was selected for each pixel, predictions
were generated and standard errors were used to quan-
tify pixel-level uncertainty for height and cover.

The hyperparameters of the time series model were
optimized using multiyear airborne LiDAR time se-
ries data from NEON DP1.30003.001 product (NEON,
2025). These hyperparameters — regularization λ, de-
grees of freedom, AIC threshold, and CV threshold —
were tuned via Bayesian optimization using Optuna (Ak-
iba et al., 2019). RMSE was minimized for both height
and cover, computed across all valid pixels within the
NEON time series. Although a categorical objective
function evaluating year-to-year change (e.g. cross-
entropy loss) would have maximized agreement with
fast changes, RMSE maximized agreement with contin-
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F IGURE 4 Statistical model for estimating canopy height and canopy cover over time. (A) First, a time series is
generated from the raw predictions for times t = 1, . . .T . (B) Three linear models are fit for each pixel: a constant
model to represent the mean (blue), a change point model to represent sudden change (red), and a spline model to
represent gradual change (orange). A model is selected for each pixel using AIC. (C) The preferred model for each
pixel is used to generate denoised predictions for each time step: expected values (green color ramp) and standard
errors (blue color ramp).

uous height and cover values over the full time series,
which is sensitive to loss, growth, and stability.

Time series outputs for each year are provided as
an additional data asset, with categorical classes map-
ping no change, fast change, and gradual change (classes
[0, 1, 2], respectively). The quality of the fast-change
assets for mapping forest loss is not evaluated in this
manuscript, but is described in Söthe et al. (in prep.).

2.3.3 | CANOPY HEIGHT AND
CANOPY COVER UNCERTAINTY

Standard errors from the height and cover time series
models were used to construct 90% prediction intervals:

[ypr ed − q̂ · σpr ed , ypr ed + q̂ · σpr ed ] (1)
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Where ypr ed is a predicted value from the time series
model, σpr ed is the standard error of the prediction, and
q̂ is a parameter estimated using withheld data via split
conformal inference (Eq. 1).

Split conformal inference uses disjoint partitions of a
dataset to produce well-calibrated prediction intervals.
These are 90% prediction intervals that contain the true
value approximately 90% of the time (Angelopoulos and
Bates, 2021).

Interval calibration data, which was 20% of the with-
held testing data, were used to estimate q̂ , a scalar quan-
tity that determines the width of the interval relative to
the standard error to achieve 90% coverage. After gen-
erating predictions with q̂ , empirical interval coverage is
quantified using the remaining withheld samples.

2.3.4 | ABOVEGROUND CARBON
DENSITY MODEL

Light gradient-boosting machine (LightGBM) regression
models were trained to predict GEDI L4A and ICESat-2
aboveground biomass as a function of predicted mean
canopy height, canopy cover, elevation, and location. Lo-
cation data was encoded using SatCLIP positional em-
beddings (Klemmer et al., 2025).

The relationships between forest structure and
aboveground biomass vary across plant communities,
biomes, and topographic gradients, and these shifting
relationships are explicitly encoded in the GEDI L4A
biomass algorithm (Jucker et al., 2018; Duncanson et al.,
2022; Ma et al., 2023; Kellner et al., 2023). Incor-
porating location features into a tree-based regression
model can represent multiple non-stationary relation-
ships: specifically, between predictors and both the
mean biomass density and its associated uncertainty
(Hawkins, 2012). This approach captures strong geo-
graphic variation in the relationships among vegetation
structure, elevation, and aboveground carbon density,
allowing region-specific biomass models to be empiri-
cally derived from a single global dataset.

10-fold spatial cross validation was used to assess
out-of-sample predictive performance, where each of
the 7,408 tiles containing GEDI or ICESat-2 biomass es-

timates was assigned to one of ten partitions (Wenger
and Olden, 2012; Meyer and Pebesma, 2022). Further-
more, for each fold, 5% of the training data was ran-
domly withheld for uncertainty calibration.

Model hyperparameters were evaluated using
Bayesian optimization of cross-validation RMSE on a
random 25% of data. The number of trees, the leaves
in each tree, as well as both L1 and L2 regularization
were modified. Final hyperparameter selection was
additionally informed by visual inspection of predictions
and external intercomparisons.

Uncertainty was quantified with conformalized quan-
tile regression, which yielded 90% prediction intervals
where interval widths vary nonlinearly as a function of
model predictors (Romano et al., 2019). In particular,
LightGBM quantile regressors were fit to estimate the
5% and 95%quantiles, then conformalized to obtain pre-
diction intervals with strong coverage guarantees on un-
seen data (Angelopoulos and Bates, 2021).

Conformalized quantile regression was selected for
two reasons. First, nonstationary errors were expected
to vary nonlinearly as a function of model inputs, in-
cluding location. Second, reported uncertainties for
footprint-level biomass estimates generally underesti-
mate on-orbit uncertainties that arise from error in rel-
ative height estimates (Duncanson et al., 2022). Predic-
tion intervals from conformal inference, in contrast, re-
flect the empirical distribution of on-orbit data, propa-
gating both measurement- and model-based sources of
uncertainty.

Finally, AGBD is converted to ACD by multiplying by
the global mean carbon concentration: 0.476 (Martin
et al., 2018).

2.3.5 | POST PROCESSING

Estimates of height, cover, and ACD were minimally
post-processed using simple heuristics. To reduce low
noise, cover < 5%were set to zero. If canopy cover was
zero at both the beginning and the end of the time series,
then all annual cover values were set to zero. Where
canopy cover was estimated as zero, canopy height and
ACD were also set to zero.
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2.4 | MODEL EVALUATION

The evaluation framework for this product includes two
primary components: withheld data evaluation, and in-
tercomparison. Withheld data evaluation refers to com-
parisons with samples of directly comparable observa-
tions, like airborne or spaceborne LiDAR data. Intercom-
parison evaluates modeled Diligence estimates against
modeled estimates from external sources, like field plots
and third party satellite observations. This distinction is
particularly important when comparing carbon density
or biomass density data.

2.4.1 | FOREST STRUCTURE
EVALUATION

One third of the samples from the forest structure train-
ing data were withheld from training and used for eval-
uation (n = 360, 853 tiles of shape 128x128). Model
performance was evaluated using r 2,MAE , and RMSE

scores. Because training data were generated using uni-
form random geographic sampling, and oversampled at
high spatial density (2 poi nt s · km−2), the testing sam-
ples were not always spatially independent of the train-
ing samples. These data are thus referred to as withheld
samples. Withheld performance metrics are therefore
best characterized as training data performance, not as
fully independent test validation.

Additionally, LiDAR data from NEON were withheld
from regression model training and used to evaluate
canopy height and canopy cover predictions. These in-
clude measurements over time and across a wide range
of forest types in North America (Musinsky et al., 2022).
These datawere prepared using the standard LiDAR pro-
cessing pipeline with some additional filtering. NEON
site-years with persistent noise were removed using
70m as a maximum height filter (removing PUUM 2019,
MOAB 2019, and REDB 2019 data). The resulting fil-
tered dataset included 55NEONsites, and 233 site-year
pairs. Though excluded from forest structure model
training, NEON data should also not be considered fully
independent validation data, as these data were used to
tune the time series model hyperparameters.

While computing r 2, RMSE , and MAE on the full
population of withheld data describes global model
performance, it may not necessarily describe local-
scale performance. This may conceal an effect re-
sembling Simpson’s Paradox, where global variance is
well-explained while local variance is not (Pearl, 2022).
To evaluate how Diligence estimates reflect fine scale
(30 m) local variation, we computed site-year level r 2
for canopy height and cover for each NEON site-year.
These r 2 values are “unpooled” in the sense that values
are computed based on pixels from a single site in a sin-
gle year. This is in contrast to “pooled” r 2 values, com-
puted using pixels from all NEON sites and years.

Furthermore, the temporal consistency of site-level
spatial averages were evaluated at sites with repeat li-
dar flights to characterize stability over time (Appendix
C.1.1).

2.4.2 | ABOVEGROUND CARBON
DENSITY EVALUATION

Out-of-sample predictive performance was evaluated
using 10-fold spatial cross validation with the spatially-
balanced GEDI L4A and ICESat-2 samples, preventing
any geographic overlap between the train/val splits.
The cross-validation mean and standard deviation of r 2,
RMSE , MAE , and bias scores were evaluated. For pre-
diction interval evaluation, the interval coverage per-
centage and mean interval width were evaluated.

ACD predictions were also average resampled and
compared to the GEDI L4B data product version 2.1
(Dubayah et al., 2023). The L4B product is a 1 km grid-
ded dataset that uses L4A point estimates as samples
to infer the mean and standard error of AGBD within
each grid cell. It used a hybrid estimation approach
designed to propagate uncertainty from a variety of
sources, including sampling density and model param-
eter variance, providing statistically unbiased estimates
of mean AGBD at scale (Patterson et al., 2019). Compar-
ingDiligence predictions to GEDI estimates at both 30m
and 1 km resolutions show how prediction variance can
be high at fine scales but decrease with spatial aggrega-
tion, matching the scaling dynamics of GEDI products.
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2.5 | MODEL INTERCOMPARISONS

Intercomparisons evaluate the level of agreement be-
tween Diligence estimates and external estimates of ei-
ther AGBD or ACD. Aboveground biomass is rarely di-
rectly measured, even in the field, and every biomass
estimation method includes large uncertainties (Réjou-
Méchain et al., 2019). Each method of biomass estima-
tion has its merits and demerits, providing distinct in-
sights into the drivers and distributions of aboveground
biomass that should be evaluated. To help users nav-
igate these complexities, a multi-scale, multi-method
intercomparison with eight independent, publicly avail-
able datasets was performed.

Two notes should frame these comparisons. First,
Diligence aboveground carbon estimates are propor-
tional to aboveground biomass estimates based on
a constant, the global mean carbon concentration of
0.476 (Martin et al., 2018). This simplifies conversions
between biomass and carbon, facilitating intercompar-
isons against external estimates. Second, these analy-
ses involve comparing two quantities that are both esti-
mated frommodels, and are both subject to uncertainty.
Consistency is primarily quantified using linear correla-
tions (Pearson’s r ), rather thanmetrics such as r 2 that re-
quire one of the two datasets to be an error-free source
of truth.

Some intercomparisons were designed to match re-
cent analyses evaluating the quality of NASA-GEDI
biomass predictions (Hunka et al., 2023; Dubayah et al.,
2022a; Bruening et al., 2023). This included match-
ing statistical analyses and figure styles. This satisfied
two design goals: to provide direct comparisons to high-
quality references, and to align the Forest Carbon Dili-
gence product with global efforts to harmonize carbon
MRV standards.

2.5.1 | SATELLITE PRODUCTS

Included are comparisons to two near-global, satellite-
derived biomass products. First is GEDI L4B, which es-
timates mean AGBD at a 1 km scale using a sample of
L4A waveforms (Patterson et al., 2019; Dubayah et al.,

2023). The second is from ESA CCI Biomass version 6.0,
using the 1 km resolution AGBD estimates from 2020
to align with the GEDI L4B spatial resolution and obser-
vation window of 2019-04 to 2023-03 (Santoro et al.,
2023).

Diligence estimates were first compared to GEDI L4B
and CCI data at the ecoregion-level, reproducing Hunka
et al. (2023). Ecoregions were defined by the Terres-
trial Ecoregions of theWorld dataset (Olson et al., 2001),
subset to the ecoregions within the GEDI orbit (51.6°N
to 51.6° S). Mean AGB estimates from GEDI L4B, CCI,
and Diligence were compared for each ecoregion, as
were the fraction of Diligence and CCI 1 km pixels that
fell within the GEDI L4B 95% confidence intervals.

This intercomparison was repeated using another
biomass dataset specifically calibrated to high-latitude
forests, whereGEDI does not provide coverage: a boreal
forest biomass dataset based on ICESat-2 ATLAS and
Harmonized Landsat/Sentinel data from 2020 (Duncan-
son et al., 2023). This comparison focuses exclusively
on estimates north of 44° N, which is the lower lati-
tude limit of the ICESat-2 estimates. Ecoregion averages
were compared between Diligence, CCI, and ICESat-2
estimates for ecoregions intersecting the spatial bounds
of the ICESat-2 product.

2.5.2 | NATIONAL FOREST
INVENTORIES

Mean AGBD was computed at the country level then
compared to the FAO Global Forest Resources Assess-
ment and to GEDI L4B (FAO, 2020; Bruening et al.,
2023; Armston et al., 2023). Diligence predictions were
compared with all countries represented in the FAO re-
port, though GEDI estimates were excluded for high
latitude countries. Diligence predictions were sourced
from 2020 tomatch the FAO estimates, while GEDI L4B
estimates incorporated observations from the period of
2019-04 to 2023-03.

National forest inventories estimate biomass stocks
using a variety of methods defined by each country, and
some discrepancies between data sources are expected.
These discrepancies can arise due to varying forest/non-
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forest definitions, sampling density, and the degree of
forest type representation in the GEDI training data, for
example (Dubayah et al., 2022a). Nevertheless, compar-
ing mean carbon density per country effectively evalu-
ates the calibration of Diligence carbon estimates to na-
tional reporting standards.

2.5.3 | CENTRAL AFRICA AND SOUTH
ASIA LiDAR ESTIMATES

Although airborne LiDAR is demonstrably sensitive to
AGB, calibrating LiDAR-basedmodels requires high den-
sity field sampling and careful error propagation (Réjou-
Méchain et al., 2019; Valle et al., 2025). Furthermore,
geographic LiDAR coverage is poor in many parts of the
world, particularly in the tropics, limiting insights into
biomass dynamics in undersampled regions.

Rodda et al. (2024) addressed these issues and re-
cently published a dataset of AGB estimates over 13
sites in Cameroon, Gabon, India, and Thailand. The Li-
DAR data cover a total of 1,11,650 ha in the humid and
dry tropics, and over 1,000 field plots were surveyed for
calibration. These data were selected as an intercompar-
ison target because these areas are poorly represented
in other evaluation datasets outside of national forest in-
ventories. Diligence data were resampled to 1 ha resolu-
tion and compared to the Rodda et al. estimates to eval-
uate biomass retrieval in the African and South Asian
tropics.

2.5.4 | NORTH AMERICA PLOT DATA

Intercomparisons with two networks of plot data in
North America — the U.S. FIA program and NEON
— were used to evaluate Diligence predictions against
dense field inventories of AGB at multiple spatial scales.

An aggregated FIA data product covering the conter-
minous U.S. combined field inventory data from 2009
to 2019, providing mean AGB estimates over a coarse,
tessellated grid of 64,000 ha hexagons (Menlove and
Healey, 2021). This product was analyzed because pre-
cise locations of FIA plots are withheld due to privacy
concerns, and because this product was developed to

support satellite- derived biomass validation (Wouden-
berg et al., 2010;Menlove andHealey, 2020). MeanDili-
gence AGB was computed over the years 2013 to 2019
tomatch the FIA time interval, and correlations between
Diligence and FIA were computed to match the hex grid
analyses by Dubayah et al. (2022a) and Bruening et al.
(2023).

To evaluate fine-scale biomass predictions, NEON
vegetation structure data were processed to provide
plot-level AGB estimates (NEON, 2024). The NEON
sampling design has plots of varying sizes — 20x20 m

or 40x40 m — with smaller nested subplots. Plots were
treated as the unit of analysis and only included large
live stems (≥ 10 cm DBH) mapped throughout the en-
tire plot footprint. The biomass of each large stem was
computed using allometric equations, summed across
the plot, and divided by plot area to estimate AGBD
(Gonzalez-Akre et al., 2022).

This analysis is considered an intercomparison be-
cause plot-level estimates are not error free, as stem-
level biomass values were estimated using allometric re-
gressionmodels. Furthermore, these allometries are not
necessarily the same as the allometries used in the GEDI
L4 data products. However, these data provide an im-
portant comparison to a series of high-quality, indepen-
dent, externally collected, precisely located field inven-
tory plots.

2.5.5 | VOLUNTARY CARBONMARKET
PROJECTS

Voluntary and jurisdictional carbon market standards
bodies have not yet aligned on how to adopt remote
sensing data for digital MRV. Field measurements are
currently required to estimate carbon stocks at the
project level; understanding whether remote sensing
data can provide similar estimates merits a comparison
of field and Diligence data in current offsets projects.

Project-level data was sourced from the California
improved forest management offset project database,
which includes inventory-derived estimates of initial car-
bon stocks for improved forest management projects
in the CARB cap-and-trade program (Badgely et al.,
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F IGURE 5 Model performance evaluated on withheld samples (n=360,853 tiles) for (A) mean canopy height and
(B) canopy cover at 30 m resolution. Performance metrics were computed using the full withheld datasets but the
plots were subset to 1 million random samples for visualization.

2021). The initial stock values are provided as esti-
mates of mean CO2 equivalent density (CO2e) for 73
unique projects in 21 U.S. states. Although the origi-
nal database contains 74 projects, one without a start
and end date for the initial carbon stock assessment was
excluded (ACR458). For each project, CO2e was esti-
mated from Diligence ACD values, and correlations be-
tween CARB and Diligence estimates from the same pe-
riod were estimated.

3 | RESULTS

3.1 | MODEL EVALUATION

Model evaluation results are summarized below.

3.1.1 | FOREST STRUCTURE
EVALUATION

The canopy height model has RMSE = 2.89m , MAE =

1.53m , bi as = 0.04m , and r 2 = 0.830. The canopy cover

model has RMSE = 14.30%, MAE = 8.25%, bi as =

0.4%, and r 2 = 0.791 (Fig. 5).
For uncertainty estimation, interval coverage of the

empirical test set was 90% prediction intervals was
90.12% for canopy height and 90.03% for canopy cover.
The q̂ parameter — a scaler that widens the standard
error of the prediction to ensure coverage — was 3.96
for canopy height and 4.10 for canopy cover. Overall,
the mean interval width for canopy height is 8.4m , and
39.5% for canopy cover.

For NEON, at the 30 m pixel scale, pooling across
all sites and years, canopy cover r 2 = 0.83 (Fig 6B),
and canopy height r 2 = 0.76 (Fig 6D). Spatially averag-
ing across sites reveals strong agreement between ob-
served and estimated mean canopy cover (r 2 = 0.93,
Fig 6A) and mean canopy height (r 2 = 0.89, Fig 6C).
Diligence estimates are systematically lower for pixels
with the highest values, and this negative bias persists
even when averaging spatially to compute mean canopy
height and mean canopy cover (Fig 6A, C).

On average, for any one site in any one year, a lower
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F IGURE 6 Site-level evaluation of mean canopy
cover and canopy height across all NEON site-years.

fraction of local variation is explained than what might
be expected based on pooled r 2 values. Mean un-
pooled canopy cover r 2 = 0.42, compared to a pooled
r 2 = 0.83 (Fig. 6B). The mean among site years of
unpooled canopy height r 2 = 0.36, compared to a
pooled r 2 = 0.76 (Fig. 6D). This analysis shows how
global metrics can diverge from local metrics, highlight-
ing that within-region variance is generally harder to ex-
plain than among-region variance (Meyer and Pebesma,
2022).

3.1.2 | ABOVEGROUND CARBON
DENSITY EVALUATION

Based on 10-fold geographic cross validation, the above-
ground biomass model has a mean RMSE = 55.27Mg ·
ha−1 (sd = 2.18), mean MAE = 24.2 Mg · ha−1
(sd = 0.87), mean bi as = −0.06 Mg · ha−1 (sd = 0.39),
and a mean r 2 = 0.638 (sd = 0.01). Uncertainty es-
timation showed empirical interval coverage on with-
held data was 92.07%, and the mean interval width is
100.9 Mg · ha−1.

Comparing mean aboveground biomass density at
1 km against GEDI L4B — which statistically aggregates

F IGURE 7 Aboveground biomass model
performance evaluated against GEDI L4B data at 1 km

resolution. A minimum of 20 points per grid cell were
used for visualization.

L4A footprints and is not independent from the training
data — reports model performance scores of RMSE =

30.77 Mg · ha−1, MAE = 13.49 Mg · ha−1, mean bi as =

−5.0 Mg · ha−1, and r 2 = 0.819 (Fig. 7). Further resam-
pling to 1◦ grid cells shows strong agreement between
Diligence andGEDI L4B (r = 0.98, bi as = −5.0Mg ·ha−1,
RMSE = 14.03 Mg · ha−1, MAE = 8.37 Mg · ha−1)
but maps spatial patterns of disagreement, particularly
in montane regions (Appendix C.1.3). These results
demonstrate the benefits of spatial aggregation, reduc-
ing noise in both themodel predictions and the L4A foot-
prints.

3.2 | MODEL INTERCOMPARISONS

Model intercomparison results are summarized below.

3.2.1 | SATELLITE PRODUCTS

At the ecoregion level, Diligence, CCI, and GEDI L4B
AGB estimates are all highly correlated (Fig. 8). Dili-
gence is positively correlated with CCI AGB (r = 0.89)
and with GEDI L4B (r = 0.98), and shows low over-
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F IGURE 8 Ecoregion-level correlation plots between Diligence, CCI, and GEDI L4B. Each point is an ecoregion.
Correlations are quantified as the Pearson correlation coefficient. The x and y variables change in each plot, and
mean bias is quantified as the mean of y − x . (A) CCI biomass estimates have a 1 Mg · ha−1 negative bias compared
to Diligence and (B) a 9 Mg · ha−1 negative bias compared to GEDI L4B. (C) This shows a positive bias in the GEDI
L4B data compared to both datasets (8 Mg · ha−1 compared to Diligence).

all bias compared to each dataset (−1 Mg · ha−1 for
CCI, 8 Mg · ha−1 for GEDI L4B). Geographically, both
Diligence and GEDI estimates are mostly higher than
CCI estimates in east and southeast Asia, the U.S., and
southern Mexico. They are lower than CCI estimates in
Canada and in the South American and Central African
tropics (Fig. 9A, 9B).

Diligence estimates are slightly lower than GEDI L4B
estimates in several regions, which is consistentwith the
slight negative overall bias (Fig. 8C). This trend is partic-
ularly apparent in montane ecoregions, likely due to ter-
rain filtering during training data preparation (Appendix
2.1.2), which reduces systematic bias on steep slopes
(Kutchartt et al., 2022).

Ecoregions with higher biomass tended to have a
higher fraction of Diligence and CCI biomass estimates
fallingwithin theGEDI L4B 95% confidence interval (Ap-
pendix C.1.2). However, overall a fairly small fraction of
Diligence and CCI values fell within the L4B 95%CI: just
28% for Diligence and 21% for CCI. Coverage was par-
ticularly low over non-forested regions. Thismay be due
to the relatively narrow confidence intervals of the L4B
product in grid cells with low sample density, or to the
lack of error propagation in the relative height estimates
(Patterson et al., 2019; Duncanson et al., 2022).

In high latitudes, both Diligence and CCI values were
higher on average than the ICESat-2 derived estimates
(Fig. 10). When evaluating the intersection of valid
pixels across datasets, ecoregion-level correlations be-
tween ICESat-2 derived estimates and Diligence and
CCI were both high (r = 0.84 and r = 0.80, respec-
tively). The Diligence and CCI ecoregion means were
also highly correlated (r = 0.88), such that the relative
ordering of high vs. low biomass ecoregions was simi-
lar across all three data products. In addition, Diligence
and ICESat-2 means were closer on average (RMSE =

32.95Mg · ha−1,MAE = 24.03Mg · ha−1) than CCI and
ICESat-2 means (RMSE = 40.66 Mg · ha−1, MAE =

26.51 Mg · ha−1).

3.2.2 | NATIONAL FOREST
INVENTORIES

At the country level, Diligence estimates are highly cor-
related with GEDI L4B estimates (r = 0.98 Fig. 11), and
both Diligence and GEDI L4B show similar correlations
with the FAO estimates for the year 2020 (r = 0.75 and
r = 0.76, respectively). A table with country-level esti-
mates is provided in Supplemental Table 4.

Four notable outliers are worth mentioning. Dili-
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F IGURE 9 Differences in ecoregion-average AGBD between Diligence, CCI, and GEDI L4B. CCI Biomass values
are systematically higher across the Amazon and Congo Basin ecoregions but lower in the Asian Paleotropics and
the Himalayas (A, B). Diligence predictions show high overall agreement with GEDI L4B (C), mapping lower
predictions that are consistent with the slight negative mean bias compared to L4B (Fig. 7).
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F IGURE 10 Differences in ecoregion-average AGBD between Diligence, CCI, and ICESat-2. (A) Difference
between Diligence and ICESat-2 derived estimates. (B) Difference between CCI and ICESat-2 biomass. Both
Diligence and CCI biomass estimates were higher in the high biomass regions of the Pacific Northwest, and lower in
very high latitudes.

F IGURE 11 Country-level mean AGBD for the year 2020. Each point represents one country. Correlations are
quantified as the Pearson correlation coefficient. The x and y variables change in each plot, and mean bias is
quantified as the mean of y − x . (A) FAO biomass estimates have a 1.28 Mg · ha−1 negative bias compared to
Diligence and (B) a 10.95 Mg · ha−1 negative bias compared to GEDI L4B. On average, Diligence and GEDI L4B
estimate slightly higher carbon stocks than FAO national inventories, which often exclude non-forest lands.

gence estimates are much higher than FAO estimates in
Indonesia, Papua New Guinea, and the Solomon Islands,
predicting around 75% higher than the national average.
This is consistent with the high residual differences be-
tween Diligence and GEDI and CCI in southeast Asia
(Figure 12). Diligence estimates are much lower than

FAO for the other two outliers, Guyana and Suriname.
These are dense, forested countries in the carbon-rich
Guyana shield region of the northern Amazon. Although
Diligence show this region is one of the most carbon-
dense in the world, the FAO AGBD estimates are more
than twice as dense as Diligence estimates.
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F IGURE 12 Differences in country-average AGBD between Diligence, FAO, and GEDI L4B. The direction of
differences with FAO estimates are often directionally consistent across Diligence and GEDI estimates (A, B). Canada
and Russia are notable anomalies, but these comparisons are incomplete because GEDI only makes measurements
over a small fraction of land area in these countries. Country-level Diligence estimates are lower than GEDI in most
cases, which is consistent with the finding that Diligence estimates have lower overall bias relative to FAO (C).
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F IGURE 13 Comparison of mean aboveground biomass estimates from Diligence (A) and from the difference
between Diligence and FIA (B). Estimates were aggregated to the FIA hexagon grid, where each hexagon is 64,000
ha in area. (C) Scatterplot of FIA vs. Diligence estimates, where each point represents one hexagon.

3.2.3 | CENTRAL AFRICA AND SOUTH
ASIA LiDAR ESTIMATES

Predictions across Central Africa and South Asia (Fig
14A) showed a strong negative bias compared to LiDAR-
derived estimates (Rodda et al., 2024). Site-level aver-
ages show strong positive correlation (r = 0.93) but a
systematic negative bias (bi as = −88.9 Mg ; Fig. 14B).
These patterns persist at the pixel scale, showing pos-
itive correlations when pooled among all pixels (r =

0.71; Fig. 14C) with systematic negative bias (bi as =

−87.3 Mg ). Site-level analysis found lower unpooled
correlations (r = 0.5), consistent with other results from
densely sampled high-resolution data (Fig. 6, Fig. 15).
Site-level correlations are explored in Appendix C.2.2.

The negative bias compared to LiDAR is consistent
with the CCI results (Fig. 9). Diligence predictions are
lower than CCI in Central Africa, where 8 of the 13
sites are located. This may also be consistent with the
FAO intercomparison results, whereDiligence estimates
(192.4 Mg · ha−1 mean AGBD) are lower than the na-
tional inventory estimates for Gabon (203.8 Mg · ha−1

mean AGBD). However, the differences compared to
FAO are much smaller, representing a −5.6% bias.

3.2.4 | NORTH AMERICAN PLOT DATA

Gridded FIA biomass estimates provide a dense, statisti-
cally representative sample of forests over a very large
area. Overall agreement between FIA and Diligence es-
timates was high (r = 0.86), showing a small positive
bias overall (bi as = 2.18Mg ·ha−1). Geographically, Dili-
gence estimates tended to be systematically higher than
FIA throughout much of the eastern U.S., particularly in
Appalachia, and lower inwesternmontane forests of the
Sierra Nevada and Cascades ranges (Figure 13). These
results are consistent with the findings in Bruening et al.
(2023), who reported similar correlations (r 2 = 0.81) and
a slightly higher mean bias (bi as = 10.48) when compar-
ing GEDI to FIA.

Diligence datawere also compared tomulti-year field
plot estimates of AGBD fromNEON, sourced from a net-
work of sites across the U.S. (Fig. 15A). Overall, there is
positive correspondence between plot-level estimates
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F IGURE 14 (A) Map of LiDAR collections in Cameroon, Gabon, India, and Thailand from Rodda et al. (2024). (B)
Site-level correlations for the 13 LiDAR sites with field-calibrated AGBD. Bias is quantified as the mean values of
Diligence minus LiDAR AGBD estimates. (C) Empirical cumulative distribution function for site-level correlations,
with dashed lines indicating the overall value computed by pooling all sites together (blue) and the mean of
unpooled site-level correlations (black)

.

F IGURE 15 Map of NEON field plot locations in the U.S. (blue dots). (B) Field-derived aboveground biomass
estimates (x-axis) and Diligence aboveground biomass estimates (y-axis), with a dashed 1:1 line. Each point is one
NEON vegetation plot. (C) Empirical cumulative distribution function for site-level correlations, with dashed lines
indicating the overall value computed by pooling all sites together (blue) and the mean of unpooled site-level
correlations (black).

of aboveground biomass and Diligence estimates (r =

0.59, bi as = −38.57Mg ·ha−1; Figure 15B). The average
site-level correlation between field-derived estimates
and Diligence estimates was weaker than the pooled
correlation among all sites (r = 0.41; Figure 15C), pro-

viding additional evidence that within-region variance is
generally harder to explain than among-region variance
(Fig. 6). Site-level correlations are further explored in
Appendix C.2.1.
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F IGURE 16 Map of CARB project centroids. (B) Project-level comparison of mean CO2e (Mg · acr e−1) between
field-derived initial stock CARB values (x-axis) and Diligence derived estimates (y-axis). (C) Comparison of
project-level initial stock CO2e in units millions of metric tons (MMT ) between CARB and Diligence derived
estimates.

3.2.5 | VOLUNTARY CARBONMARKET
PROJECTS

Diligence estimates are positively correlated with
inventory-derived, project-level estimates of mean
CO2e (r = 0.76) with a small positive bias. Account-
ing for the area of each project, Diligence and CARB to-
tal CO2e estimates are highly correlated (r = 0.91) and
mean bias remains low (bi as = 0.29MMT ).

Of the 73 Improved Forest Management projects,
22 projects (20.1%) of Diligence estimates were within
10% of the field-derived total stocks. Of those that fell
outside of the 10% threshold, 35 (47.9%) were overes-
timated and 16 (21.9%) were underestimated by Dili-
gence. There does not appear to be a pattern driven
by project size (as measured by total stocks) or geogra-
phy that determined whether Diligence overestimated
or underestimated total carbon stocks (Appendix C.2.3).

4 | DISCUSSION

4.1 | DESIGNING FOR DIGITAL MRV

Forest Carbon Diligence provides annual data on above-
ground carbon density, canopy cover, canopy height,
and change. This multisensor fusion approach to forest
mapping provides the central building blocks for forest

carbonMRV (Weiner, 2015; Griscom et al., 2017), using
multiple public EO missions to estimate forest carbon
stocks as a function of changes in forest structure.

While new EO instruments and data products will
continue to evolve and reduce measurement uncer-
tainty, historically available data are critical for evaluat-
ing baseline carbon stocks and expected change rates
over reference areas. Few upcoming products will cover
the full land surface, provide consistent measurements
over time with versioned releases, and with a 10+ year
historical window. Forest Carbon Diligence data meet
all of these requirements.

It will be critical to cross-calibrate novel carbon mon-
itoring systems — like the ESA Biomass mission or high-
resolution carbon estimates from nanosatellites — with
historical EO data in order to reduce uncertainties in
both past and future carbon estimates. The Diligence
multi-sensor fusion approach combines data from mul-
tispectral, radar, and LiDAR instruments, providing a
model for how to integrate technology systems to con-
tinuously improve spaceborne carbon estimations with
well-calibrated uncertainty.

4.2 | CALIBRATION & UNCERTAINTY

Estimating forest carbon stocks is an inherently uncer-
tain process for nondestructive methods, both in the
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field and from EO. Even a perfect volumetric reconstruc-
tion of a forest with exact species identifications for ev-
ery individual, an ill-posed problem itself (Mayr, 2004;
De Queiroz, 2007), will still include uncertainty from
variation in intraspecific wood density. Accepting imper-
fection means accepting that all field and EO methods
will include varying levels of uncertainty when estimat-
ing the core components of forest carbon — wood vol-
ume and wood density — since they all rely on proxy
variables like basal area, RH98, vegetation type, ormean
canopy height. Each method makes trade-offs between
precision, speed, cost, and scale. Terrestrial, airborne,
and spaceborne LiDAR measurements represent this
gradient, for example, with decreasing precision accom-
modated by increasing geographic coverage.

While spaceborne carbon estimation may have
higher uncertainty at fine spatial scales, this does not
mean that high uncertainty persists at all scales. Ag-
gregating pixels over larger areas — field plots, carbon
projects, protected areas, or states, for example — sys-
tematically decreases uncertainty when estimating the
standard error of the mean or of the sum of total car-
bon stocks. What ismost critical is that uncertaintymea-
surements are well-calibrated; that multiple sources of
uncertainty are propagated to the prediction intervals;
that the spatial distribution of errors is quantified; and
that any comparison between projects or between time
periods robustly tests for differences based on this ag-
gregated uncertainty.

Forest Carbon Diligence uses conformal inference
to estimate pixel-level prediction intervals since these
intervals reflect the empirical distribution of on-orbit
GEDI/ICESat-2 data, propagating both measurement-
and model-based sources of uncertainty. Prediction in-
tervals are typically wide as a result, with the mean in-
terval width estimated at 100.9 Mg · ha−1. High local
uncertainty should be expected. Diligence predicts car-
bon density based on a series of proxy variables —mean
canopy height and mean canopy cover, itself a proxy for
basal area — which are derived from optical and radar
satellite data. Precision will almost always be lower than
field or airborne LiDAR carbon estimates at fine scales.
Thus, estimates must be aggregated over larger areas

to defensibly test for differences in carbon stocks (Valle
et al., 2025).

Since there is no single error-free forest carbon esti-
mation method, and an array of different methods are
used in practice, another design goal for Diligence was
to develop a carbon product that has low overall bias but
high correlations amongmethods. Low overall bias does
notmean low bias everywhere— biasmay be high in any
given area, such as negative bias in Central Africa and
South Asia (−88Mg ·ha−1; Fig. 14) or positive bias com-
pared to CARB data (+5.4 Mg · ha−1; Fig. 16). However,
estimates of global carbon stocks and carbon fluxes are
likely well-calibrated and representative of the land sys-
tem as a whole. Areas with strong bias but high corre-
lations such as Central Africa (r = 0.71) indicate that
using local data to recalibrate Diligence estimates will
help align the global product to local contexts. This may
not address the problem of signal saturation in very high
biomass forests (Appendix C.2.2), but the high uncer-
tainty due to saturation will be empirically represented
by wider prediction intervals (Romano et al., 2019).

Since GEDI and ICESat-2were the calibration targets,
Diligence generally propagates the biases of these prod-
ucts. The FAO country-scale intercomparisons found
both Diligence and GEDI estimate higher carbon stocks
in Ecuador, Indonesia, and Papua New Guinea than na-
tional estimates, and lower carbon stocks in French
Guiana, Surinam, and New Zealand, for example (Fig.
12). This was also true for fine-scale patterns. Intercom-
parisons with NEON field plots found moderate corre-
lations (r = 0.58) and negative bias (−38.57 Mg · ha−1),
while another study performed the same analysis with
GEDI L4A data found a similar correlation (r = 0.65)
and negative bias (−31.65 Mg · ha−1) (Jia et al., 2024).
Correlations between Diligence and CCI/FAO matched
the correlations between GEDI and CCI/FAO, but over-
all bias was lower compared to these targets (Diligence
bi as = 1.0 to CCI, bi as = 1.8 Mg · ha−1 to FAO, while
GEDI bi as = 10.0 to CCI, bi as = 10.9Mg · ha−1 to FAO),
which is probably the result of filtering out noisy wave-
forms (Fig. 8, Fig. 11).

Spaceborne LiDAR data are valuable beyond provid-
ing a well-calibrated sample of forest carbon data across
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the terrestrial biosphere. These data are also freely avail-
able for users to independently verify the claims in this
manuscript, to recalibrate carbon models over specific
regions, or to estimate downstream regression coeffi-
cients (Lu et al., 2024). Furthermore, advances in forest
carbon science from new GEDI/ICESat-2 releases can
flow into future Diligence versions, providing version
provenance for each release. This level of transparency
and commitment to adhering to global standards will be
critical to advance interoperability among carbon moni-
toring systems.

4.3 | JURISDICTIONAL CARBON
REPORTING

The Intergovernmental Panel on Climate Change Green-
house Gas (IPCC GHG) inventory guidelines specify two
methods for estimating changes in terrestrial carbon
stocks from land use, land use change, and forestry (LU-
LUCF).

First is the gain-loss method, where the net carbon
stock change is estimated separately for emissions (car-
bon released to the atmosphere) and for removals (car-
bon sequestered by the biosphere). Emissions are es-
timated by multiplying activity data — the amount of
forest area lost, gained, or maintained (ha) — by emis-
sion or removal factors relevant to each activity type
(tC · ha−1). The net flux is the difference between to-
tal emissions and total removals. Second is the stock-
difference method, where carbon stocks are measured
by repeated inventories. The net flux is then estimated
as the difference in stocks between inventories (Eggle-
ston et al., 2006; Gibbs et al., 2025).

Forest Carbon Diligence data can support both gain-
loss and stock-difference accounting. Gain-loss ap-
proaches can estimate initial carbon stocks using the
ACD data, and the categorical change data —which esti-
mates canopy cover lost, gained, or maintained— can be
used to estimate annual activity data. Stock difference
approaches can compute the difference in total carbon
stocks between years after propagating uncertainties to
estimate fluxes.

Each approach has benefits and limitations, and it

is ultimately the prerogative of jurisdictions to select
the reporting method that best represents their na-
tionally determined contributions (NDCs) under IPCC
guidelines. Forest Carbon Diligence was developed to
support jurisdictional MRV by providing the founda-
tional building blocks of data that can be tailored to
the reporting requirements of each jurisdiction. How-
ever, IPCC-compliant flux estimates are not available
off-the-shelf. Gain-loss approaches, for example, re-
quire additional emissions and removals data, and stock-
difference methods would benefit from local calibration
with National Forest Inventories (Pascual et al., 2025).

Future work with Diligence will focus on translating
the core data sets to align with multiple jurisdictional
reporting methods. This includes the ART-TREES car-
bon accounting reporting standard, which credits emis-
sions reductions at the national and sub-national levels,
and provides technical guidelines for integrating remote
sensing data to estimate emissions and removals in ac-
cordance with IPCC GHG guidelines.

4.4 | VOLUNTARY OFFSET MARKETS

Directly estimating carbon stocks with EO technologies
is currently not well supported by major carbon project
developers or standards bodies. Proposals for integrat-
ing remote sensing typically require strong agreement
with field plots. But rigid accuracy thresholds, such as
requiring EO estimates to fall within 10% of field es-
timated carbon stocks, set a high bar for data produc-
ers to meet. It is not clear whether any current or fu-
ture satellite-derived carbon maps will reach this level
of agreement with field measurements. Even disagree-
ments between field-based allometric models can ex-
ceed 10%, meaning that different field-based plot es-
timation methods would not meet such strict require-
ments (Clough et al., 2017; Réjou-Méchain et al., 2019).

Considering the expected uncertainties and biases of
global carbon estimation — like geographic bias and pre-
diction uncertainty — how might a standard best sup-
port the use of direct carbon estimation from EO? Us-
ing field data to recalibrate a global product to local con-
ditions, quantifying the uncertainty of that calibration,
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then testing that carbon fluxes can be reliably estimated
net of uncertainty would be one straightforward solu-
tion. This was the basic approach of a recent proposal
released for public comment from carbon crediting pro-
gram ACR (ACR, 2025).

Establishing clear guidelines for quantifying project-
level uncertainty, and ensuring that net changes must
exceed prediction uncertainty, seems a promising and
generic approach that could support multiple carbon es-
timation methods from EO. Projects that quantify car-
bon stocks using high-precision measurements, like ter-
restrial or airborne LiDAR, will estimate stocks with
lower uncertainty, verify net fluxes over smaller areas,
and will likely issue more credits — with higher upfront
collection costs. Spaceborne estimation methods can
estimate carbon stocks with lower precision and higher
uncertainty, whichmeansmore area undermanagement
will be required and larger net gains will need to occur
for credits to be issued. But this will come at lower up-
front costs to developers.

The highly uncertain nature of forest carbon estima-
tion merits the inclusion of multiple methods for esti-
mating carbon stocks and fluxes. Credit issuance should
reward rigor and precision, and also acknowledge that
precision can change at different scales. Satellite carbon
estimates may not currently estimate statistically signifi-
cant carbon fluxes at the 30m scale, but it should indeed
be possible to detect significant changes with aggrega-
tion and thorough uncertainty quantification.

4.5 | ENVIRONMENTAL
REGULATIONS AND DEFORESTATION
MONITORING

Environmental regulations such as the EUDeforestation
Regulation (EUDR) require companies tomonitor and re-
port deforestation linked to the supply chains of seven
commodities, including mandated geolocation and for-
est status verification of source materials starting on
December 31, 2020. The Diligence products provide
key indicators for deforestation monitoring, including
canopy cover and canopy cover change detection data.
These products show strong alignment with reference

LiDAR data (canopy cover r 2 = 0.79 for withheld data,
r 2 = 0.83 for NEON data), making them valuable tools
for compliance and due diligence. Evaluating the Dili-
gence canopy cover change data was out of scope for
this manuscript, but shows strong change detection per-
formance compared tomultiple benchmarks (Söthe et al.
in prep.).

Diligence can support EUDR compliance by enabling
annual assessments of canopy cover within sourcing ar-
eas, even in mixed-use and high-risk landscapes (Berger
et al., 2025). Canopy height and carbon density es-
timates may also help differentiate forests from tree-
crop commodities in tropical regions, given their distinct
structural patterns, although this remains under explo-
ration. While pixel-level saturation may affect estima-
tions of the upper tails of canopy height and above-
ground carbon density, this effect is much weaker for
canopy cover (Fig. 5, Fig. 6). And while regional dis-
crepancies with inventory data (e.g., in Indonesia or the
Congo Basin) highlight the need for harmonized defini-
tions, Diligence’s consistent global coverage is ideal for
EUDR risk screening and enforcement, providing a scal-
able layer for environmental due diligence, though not
replacing field verification.

5 | CONCLUSIONS

Forest Carbon Diligence provides wall-to-wall maps of
forest structure, forest carbon, forest change, and un-
certainty at 30 m resolution annually over a 10+ year
period. It was designed to support digital MRV needs
for a variety of natural climate solutions, including ju-
risdictional carbon monitoring, voluntary carbon mar-
kets, environmental regulations, and deforestation mon-
itoring. Model intercomparisons showed that Diligence
data estimate carbon stocks with high correlations and
low bias when compared to eight independent datasets
from around the world.

Global, medium-resolution maps of forest structure,
forest carbon, and forest change were identified as es-
sential and aspirational products for global land surface
mapping, and Forest CarbonDiligence seeks tomeet the
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needs and vision articulated by Radeloff et al. (2024).
This paper advances the best practices for EO data
providers to benchmark forest carbon data products via
intercomparison, a critical need for aligning global car-
bon estimates (Hunka et al., 2023, 2024), and sets a new
standard for quality assessment of canopy structure and
forest carbon data products.
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Provider Total Area (km2)
USGS (3DEP) 1,791,493
ICSM (ELVIS) 612,435
INPE (Ometto et al., 2023) 372,231
Ontario (GeoHub) 330,481
Finland (NLS) 181,240
OpenTopography 155,956
NASA (GSFC; CMS; LVIS) 109,689
British Columbia (LidarBC) 75,874
New Brunswick (GeoNB) 66,981
Estonia (LSDB) 56,729
France (Geoservices) 55,372
Netherlands (GeoTiles) 47,676
Latvia (LGIA) 38,150
NEON 37,055
UK (DEFRA) 35,128
CEDA (Disney et al., 2018) 1,009

TABLE 2 Airborne LiDAR data sources used to develop the Forest Carbon Diligence forest structure and time
series models.

A | APPENDIX: SOURCE DATA

A.1 | AIRBORNE LiDAR DATA

Airborne LiDAR data were accessed from a variety of
publicly available sources, provided under open licenses
for use (Table 2). Area estimates represent the total area
of data processed and available in the processed LiDAR
data catalog.



Anderson et al. 41

Provider Wood density source Plot count Precise geolocation Size (m2)
USFS FIA Provided 339,247 No 672
France NFI BIOMASS 39,056 No 707
Italy NFI BIOMASS 6,893 No 531
NEON BIOMASS 6,198 Yes 100 to 400
Mexico NFI GWD Database 1,675 Yes 1600
Forest Observation System Provided 1,260 No 2500 to 10000
Barro Colorado Island 50ha BIOMASS 1,250 Yes 400
Para Brazil, CMS BIOMASS 756 Yes 400
SWAMP GWD Database 161 Yes 154 to 314
AfriSAR Provided 120 Yes 2500
TropSOC Provided 78 Yes 1600

TABLE 3 Sources of field estimates of wood density, Lorey’s height, AGB, and other plot-level measurements.

A.2 | FIELD PLOT DATA

Field inventory data on wood density (g · cm−3) were
compiled from a series of public sources with varying
levels of completeness. If plot-level means were pro-
vided, those values were used. When stem-level data
were available, plot-level basal area-weighted means
were calculated. When wood density was not provided
directly, stem-level wood densities were estimated via
species-specific or genus-specific values of wood den-
sity using the RBIOMASS package and theGlobalWood
Density (GWD) Database (Chave et al., 2009; Réjou-
Méchain et al., 2017).

US-FIA data were processed using the rFIA package
(Stanke et al., 2020). NEON data were processed using
the neonstore, geoNEON, and neonUtilities R packages
(Lunch et al., 2024; Boettiger et al., 2025; National Eco-
logical Observatory Network, 2025).
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F IGURE 17 Pair plots showing correlations between field- and LiDAR-derived metrics of forest structure over
the NEON field sites with coincident LiDAR coverage. Scatter plots in the lower left quadrants quantify correlations
with Person’s r . Each point represents one plot-year measurement, as plots can be re-surveyed in the field and with
LiDAR. Histograms along the diagonal show the distributions of each variable. The upper right quadrant shows
kernel density estimates for each pair of variables.
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B | APPENDIX: METHODS

B.1 | CANOPY HEIGHT ESTIMATION
METHODS

There are multiple methods for quantifying canopy
height at the plot level in the field and with airborne
LiDAR. In order to select which LiDAR derived metric
Diligence would report, correlations were evaluated be-
tween multiple canopy height metrics, basal area, and
aboveground biomass (Fig. 17). These data were ex-
tracted from temporally matched field and LiDAR obser-
vations from NEON, providing a dense collection of ob-
servations across ecological gradients in North America.

Mean canopy height was selected as the LiDAR met-
ric because it showed higher correlations with both
basal area (r = 0.61) and aboveground biomass (r = 0.66)
compared tomaximum canopy height (r = 0.47, r = 0.53

respectively). LiDAR mean canopy height and Lorey’s
height are comparable in their correlations to basal area
and biomass. This is mechanistically plausible because
high-resolution height rasters compute discrete height
estimates for every pixel in an area, including parts of
the crown outside of the peak, and computing the mean
over a plot implicitly weights by crown area.

B.2 | SPACEBORNE LiDAR
WAVEFORM PROCESSING

GEDI L4A observations were accessed from product
version 2.1 (Dubayah et al., 2022b). The following filters
were applied to the GEDI L4A observations:

• Low quality observations were removed using the fil-
ter l4_quality_flag = 1.

• Observations over persistent water were removed
using the filter landsat_water_persistence > 10.

• Non-degraded geolocations were retained, filtered
using degrade_flag = 0.

• Sun angle was used to retain nighttime observations,
as solar radiance increases noise in ground detec-
tions using the filter solar_elevation < 0 (Liu et al.,
2021).

• Only power beamswere retained, as coverage beams
underestimate canopy height on average (Fayad et al.,
2022).

• Terrain data was used to retain observations with
slope < 30, as canopy height is overestimated on
steep slopes (Kutchartt et al., 2022).

• Locations with high geolocation error were identified
and removed using temporal clustering (Tang et al.,
2023).
Additional tile-level, cluster-based filtering was ap-

plied to remove time periods with outliers. First, the
GEDI L2A RH98 value for each L4A shot was obtained.
Then, for each tile, shots were assigned a cluster ID
based on time differences between consecutive shots.
The first shot was assigned to cluster one. For the re-
maining shots in the tile, if the time difference between
shot i and shot i+1 was less than one hour, then shot i+1
was assigned to the same cluster as shot i . Otherwise
shot i+1 was assigned to a new cluster.

Next, Diligence canopy height values – produced in-
dependently of GEDI data – were extracted and the me-
dian RH98 was calculated for each 1 m vertical height
bin. A shot was considered an outlier if the RH98 value
was ten times greater than the median RH98 for the
canopy height bin, or if RH98 exceeded 100 m. Clus-
ters of shots containing three or more outliers were re-
moved, followed by filtering of outlier shots that exist in
retained clusters.

Altogether, GEDI filtering retained 30% of the 1,977
million ingested L4A shots, resulting in a dataset of just
over 586 million shots.

Estimates of aboveground biomass derived from
ICESat-2 were also ingested, providing spatial coverage
over high latitude forests outside of the bounds of GEDI
data (Montesano et al., 2024). ICESat-2 data do not con-
tain precise shot-level collection time information, so
we use independent point-wise outlier detection and
filtering, again removing RH 98 > 100 or RH 98 > 10x

median RH98 for a given canopy height with each tile.
Filtering retained the vast majority of ICESat-2 data, re-
moving only 1,000 of the 15 million ingested wave-
forms.
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F IGURE 18 Geographic coverage and tile counts for spaceborne LiDAR observations. Observations were
quality filtered and organized by tile ID and year. ICESat-2 data were provided for one year, overlapping in coverage
with GEDI in parts of North America and Asia. GEDI data provides coverage over multiple years, though some tiles
may not include data for every year due to quality filtering. Steep slopes and cloudy conditions reduced coverage in
the Himalayas, for example.

Finally, spatially balanced random sampling was used
to reduce the impact of over-sampled regions, retaining
up to 5,000 randomly selected waveforms per year per
tile for each dataset. This resulted in a final dataset size
of 81.6 million waveforms.

B.3 | CUSTOM CLOUDMASKING

All cloud classification models balance omission and
commission errors (Skakun et al., 2022). During data pre-
processing, the Landsat cloud masks from FMask were
qualitatively found to show higher omission rates than
the Sentinel-2 masks (i.e., more clouds were labeled as
clear). TheDiligence product prioritized amore inclusive
cloud mask, decreasing omission errors at the expense
of increasing commission errors. This was achieved by
creating an ensemble masking approach.

First, a series of spectral indices and thresholds de-
fined by Sun et al. (2016) were calculated. For each pixel,

11 threshold values were computed, and the pixel-wise
average of these binary threshold scores was used as a
cloud fraction score. Second, a customNaive Bayes clas-
sifierwas fitted using PCA-transformed reflectance data
and a series of manually labeled cloud spectra. These
labeled spectra were selected ad hoc from a series of
sceneswhere FMask omissions rateswere high. The bal-
anced accuracy and F1 scores for this model were 0.87
each, though this number should not be interpreted as
globally representative since the sample size was small
and not systematic. Third, the pixel-wise average of the
cloud fraction score and the classifier prediction proba-
bility score was calculated, and pixels with scores >0.5
were labeled as clouds in addition to the pixels labeled
by FMask.

Additional thresholds were used to remove cloud
shadows and atmospheric haze. Cloud shadows were
masked based on the overall brightness of a pixel.
Brightness was estimated by computing the average sur-
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F IGURE 19 Random geographic sample of 1 million RH98 observations.

face reflectance of the green, red, SWIR-1 and SWIR-
2 bands, and pixels with <3% average reflectance were
flagged as shadow. The blue band was excluded to min-
imize the influence of residual atmospheric haze. The
near infrared band was excluded to minimize strong
near infrared scattering from adjacent sunlit canopies
(Holben and Fraser, 1984). Haze was classified using
the aerosol optical depth (AOD) scores estimated by
FORCE, which is a unitless metric. Pixels with scores
>0.3 were flagged as moderate haze, and pixels with
scores >0.45 were flagged as high haze.

This multistep cloud classification method imposed
stricter pixel inclusion thresholds but greatly reduced
cloud, shadow, and haze coverage in the downstream
mosaics.

B.4 | BEST PIXEL COMPOSITE SCORES

Best pixel algorithms compute a series of pixel-level
quality metrics, which are used to rank which pixel will
be selected for the final mosaic. The algorithm for this
product ranked pixels to maximize similarity in obser-

vation conditions, preferring well-illuminated, leaf-on,
cloud-free measurements. These criteria were adapted
from (White et al., 2014), which established a scoring
method specific to Canada. These rules were modified
to match the sensors included in this analysis and to
better generalize across latitudes. The following scores
were computed for each pixel in each scene:

Solar elevation score. Canopy reflectance is highly in-
fluenced by observation and illumination geometry, and
normalizing solar elevation improves optical estimates
of forest structure (Dalagnol et al., 2023). Latitudes near
the poles also include days with very low sun angles
during satellite overpasses, which should be excluded
from analysis. The solar elevation score was calculated
by scaling the observed solar elevation to a 0-1 range,
normalized from 20° to 72.5°. Annual solar elevation
trends and their normalized scores are shown in Fig. 20.

Day of year score. The phenology of photosynthe-
sis roughly follows solar illumination patterns, where
growth rates typically increase with warming tempera-
tures in spring, driven in part by rising mid-day solar el-
evation (Kump et al., 2010). But ranking by solar eleva-
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F IGURE 20 Top: modeled solar elevation across latitudes in the (A) northern and (B) southern hemispheres.
Bottom: normalized solar elevation scores for these same collection latitudes in (C) northern and (D) southern
hemispheres. All plots were generated using a fixed longitude (−63◦) and during the nominal Sentinel-2 overpass
time (10:30 am Mean Local Solar Time)

tion alone does not necessarily guarantee leaf-on con-
ditions. Solar elevation trends are cyclical, meaning sun
angles can match during peak spring greenness and fall
senescence.

The day of year score represents a ranking for ex-
pected peak greenness, which varies by latitude. For
each latitude, a normal distribution is initialized, spec-
ifying the width of the distribution in days and the
peak start date. Distribution width increases closer
to the equator, specifying a longer period of expected
peak greenness since many tropical ecosystems are typ-
ically evergreen. The peak start date was specified to

match expected spring peak dates: March for the north-
ern hemisphere, October for the southern hemisphere.
These estimates are general heuristics, andwere not em-
pirically fitted to match observed green-up patterns. Ex-
ample day of year scores are shown in Fig. 21.

Sensor score. Sentinel-2 observations were ranked
higher than Landsat observations. Sentinel-2 data are
provided at higher nominal resolution and resampled
to 30m, which increases measurement signal (Campbell,
2011). Residual cross-track BRDF effectswere lower for
Sentinel-2 following normalization by FORCE (Frantz,
2019), and the quality of the cloud mask was found to
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F IGURE 21 (A) Day of year scores for a gradient of latitudes show the expected dates of peak greenness from
the northern to southern hemisphere. (B) The solar elevation score and day of year score for 30◦N are jointly plotted
to illustrate how these scores combine to prioritize consistent illumination conditions and leaf on conditions.

be higher (Frantz et al., 2018). Unmasked smoke and
haze was found to be more common in Landsat scenes.
The sensor score applied to Sentinel-2 scenes was 1.0,
while Landsat scenes were assigned a score of 0.25.

Clear observation mask. Pixels flagged as nodata,
cloud, cirrus, shadow, or high haze in the scene mask
were removed from analysis (Appendix 2.2). A radial
buffer of 60m was applied around cloud detections, and
a buffer of 120 m was applied around cirrus detections.
Pixels within these buffer radii were also masked from
the analysis.

Final score. The annual surface reflectance mosaics
were processed on a per-quad basis, which iterated over
all scenes that intersected a quad within that year. Pixel
scores for each scene were calculated as the average of
the solar elevation, day of year, and sensor scores. The
mosaic was populated with the surface reflectance data
from the highest ranking pixel scores as each scene was
processed. The pixel scores themselves, as well as the
day of year for the top ranked pixel, were both retained
as QA layers.

B.5 | WOOD DENSITY MODEL

Global estimates of wood density were generated at
1 km resolution via a gradient boosted regression
model. Field-estimated wood density was the response
variable, and principal component-transformed climate,
plant trait, topography, and soils data were the feature
variables.

396,694 publicly-accessible field inventory plots
were used for training, including data from national
forest inventories, ecological monitoring networks, re-
search consortiums, and open data repositories (Ap-
pendix A.2). Climate data were sourced fromWorldClim
2 (Fick and Hijmans, 2017). Plant functional trait data
were sourced from Moreno-Martinez et al. (2018). To-
pography data were sourced from the Copernicus GLO-
30 Height Above Nearest Drainage product (Johnson
et al., 2019). Soil data were sourced from SoilGrids
2.0 (Poggio et al., 2021). To address covariance within
the feature data, the inputs were normalized then trans-
formed using principal component analysis.

A gradient boosting regression tree model was fitted
using the PCA components and strong L2 regularization,
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F IGURE 22 Global map of community-level wood density. Predictions were generated for the full terrestrial
surface regardless of tree density, as these predictions best represent bioclimatic-driven wood density estimates
instead of species assembly-driven estimates.

techniques intended to minimize prediction bias and re-
duce overfitting (Bühlmann and Yu, 2003; ?). To reduce
the sample bias introduced by plot count differences
across datasets, inverse frequency sample weights were
computed based on the frequency of samples from each
source. This was designed to normalize the contribu-
tions from each field dataset. Models were fit using
spatially explicit leave-one-group-out cross validation,
where groups were specified using unique IDs from the
H3 hierarchical hexagonal grid system.

Cross-validation scores showmoderate performance
for local-scale prediction (r 2 = 0.06, RMSE = 0.21 g ·
cm3,MAE = 0.17 g · cm3). The low but positive r 2 score
indicates themodel can effectively predict themean but
not explain the variance in the response variable, result-
ing in generally plausible global performance (Fig. 22).
This might be interpreted to mean that 1 km features
are effective at capturing the macro-ecological drivers
of wood density variation, but not for capturing local-
scale variation. Nearby field plots often contain species
assemblages with large differences in wood density that
would not be locally explained by climate, soil, or to-

pography, but might be with finer-scale plant trait data
(Jucker et al., 2018).
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C | APPENDIX: RESULTS

C.1 | MODEL EVALUATION

C.1.1 | TEMPORAL CONSISTENCY

Repeat NEON LiDAR collections permit comparisons of
forest structure estimates over time. To qualitatively
evaluate how observed and estimated canopy height
varies over time, site-level averages were calculated
at NEON sites with repeat lidar coverage. Site level
mean height is shown in Figure 23. Some sites show
consistent values (MCRA, TEAK), whereas others show
higher year-to-year variation in Diligence predictions
(e.g., SOAP). For some sites, consistent biases can be
seen for all years where Diligence predictions are sys-
tematically low (SERC, UNDE), or systematically high
(RMNP, NIWO).

Similar relationships are observed between observed
and estimated mean canopy cover at the site level (Fig.
24). For instance, many time series align well with ob-
served values (WREF, SERC), whereas others show high
variation in Diligence predictions due to variation in the
satellite observation conditions (SJER). As with mean
height, some sites show biases in mean canopy cover,
such as systematically high (RMNP) and systematically
low estimates (UNDE).

C.1.2 | GEDI L4B CONFIDENCE
INTERVAL EVALUATION

TheGEDI L4B product provides an estimate of 95% con-
fidence intervals. Hunka et al. (2023) analyzed the frac-
tion of CCI pixels within these confidence intervals to
quantify the agreement between products. This analy-
sis was reproduced, finding higher agreement between
Diligence and GEDI (Figure 25).

C.1.3 | GEDI L4B ONE-DEGREE RMSE
EVALUATION

Although there is strong agreement between Diligence
and GEDI L4B at the 1◦ scale (r = 0.98, bi as = −5.0,
RMSE = 14.03, MAE = 8.37), there is also spatial

variation in agreement between the two datasets. The
greatest discrepancies betweenDiligence andGEDI L4B
AGB were observed in southeast Asia, particularly in
the island of Papua. Estimates also diverged over major
mountain ranges like the Himalayas and Andes, where
L4A footprints on steep slopes were filtered out for Dili-
gence but remain in the L4B data. Agreement is consis-
tently high over deserts and sparsely vegetated regions.

C.2 | MODEL INTERCOMPARISON

C.2.1 | NEON SITE-LEVEL
CORRELATIONS

Site level relationships between the NEON plots and
Diligence AGB values are visualized in Figure 27. Al-
though correlations are positive, most sites show con-
siderably more variation among the plot-level AGB es-
timates than among the corresponding Diligence AGB
estimates. These relationships highlight an important
challenge to fine-scale comparisons between field- and
satellite-derived AGB estimates. Although Diligence es-
timates are consistent over time, considerable variation
in field-measured carbon over successive visits reduces
the level of agreement at the site scale.

C.2.2 | REGIONAL LiDAR SITE-LEVEL
CORRELATIONS

Rodda et al. (2024) provided over 1 million ha of field
calibrated, LiDAR-derived aboveground biomass data.
These sites were selected from globally underrepre-
sented regions in Central Africa and South Asia. Correla-
tions for each site at 1 ha scale were plotted in Figure 28.
These panels showprediction saturation in high biomass
forests as well as a systematic negative bias (discussed
in Section 3.2.3).

C.2.3 | CARBON OFFSET PROJECT
UNCERTAINTY BOUNDS

Residual error rates for each CARB project plotted along
with total carbon stocks for each project to show the
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F IGURE 23 Time series of observed (black solid line) and predicted (blue dashed line) site-level mean canopy
height (m) by year. Values represent averages over the spatial footprint of each NEON site. Panels are labeled with
the four letter NEON site code.

F IGURE 24 Time series of observed (black solid line) and predicted (blue dashed line) site-level mean canopy
cover (%) by year. Values represent averages over the spatial footprint of each NEON site. Panels are labeled with
the four letter NEON site code.
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F IGURE 25 Fraction of Diligence (A) and CCI (B) data falling within the 95% CI at the ecoregion level. The
scatterplot on the left shows the relationship between ecoregion-mean GEDI L4B AGB (x-axis) and the fraction of
Diligence or CCI estimates within the 95% CI from GEDI L4B (y-axis). The right side of the plot shows a map of this
fraction, following the same color map.
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F IGURE 26 Root mean squared error of GEDI L4B aboveground biomass data for 1◦ grid cells. Pixel-level
squared errors were computed for each 1 km grid cell with L4B data, then the square root was computed after
average resampling the squared errors to 1◦.

fraction of projects within ±25% uncertainty (Fig. 29).
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F IGURE 27 Site-specific scatterplots showing relationships between plot-level AGBD estimates (x-axis) and
Diligence AGBD estimates (y-axis). Four letter NEON site codes are the subplot titles. A dashed 1:1 line, the Pearson
correlation coefficient, and mean bias are provided in each subplot.
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F IGURE 28 Site-specific 2D histograms showing relationships between pixel-level AGB estimates from airborne
LiDAR (x-axis; Rodda et al. 2024) and Diligence AGB at 1 ha resolution. Site names are the subplot titles. A dashed
1:1 line, the Pearson correlation coefficient, and mean bias are provided in each subplot.
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F IGURE 29 (A) Percent difference between Diligence and CARB field-derived total stocks for each project,
where negative percentages indicate an underestimate and positive percentages indicate an overestimate by
Diligence compared to CARB. Dashed blue lines denote a ±25% difference. (B) CARB field-derived total carbon
stocks for each project. Each bar is labeled with the project ID.
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Country ISO3 FAO AGBD
(Mg · ha−1)

DiligenceAGBD
(Mg · ha−1)

GEDI AGBD
(Mg · ha−1)

Forest
cover (%)

Area (km2)

Algeria DZA 0.24 0.49 0.97 0.8 2,308,010
Andorra AND 52.43 52.76 80.72 34 451
Angola AGO 16.19 29.48 29.28 53.4 1,246,896
Antigua and Bar-
buda

ATG 38.75 13.21 11.21 18.5 436
Argentina ARG 19.39 5.13 6.87 10.4 2,779,056
Australia AUS 14.65 12.45 14.2 17.4 7,688,097
Austria AUT 81.41 86.29 105.35 47.3 83,947
Bahamas BHS 20.27 4.7 3.94 50.9 13,377
Bangladesh BGD 9.09 31.8 35.62 14.5 139,370
Belarus BLR 67.43 68.56 75.85 43.2 207,069
Belize BLZ 118.13 82.12 83.73 56 22,041
Benin BEN 28.79 15.84 18.25 27.8 115,282
Bhutan BTN 192.53 180.89 205.78 71.5 38,762
Bolivia BOL 61.59 53.55 60.33 46.9 1,084,352
Botswana BWA 41.79 4.25 4.17 26.9 577,868
Brazil BRA 102.15 80.86 79.54 59.4 8,509,120
British Virgin Islands VGB 50.68 15.96 35.27 24.1 168
Brunei BRN 178.1 179.29 236.01 72.1 5,777
Bulgaria BGR 64.73 58.14 64.01 35.9 111,587
Burkina Faso BFA 10.86 6.23 9 22.7 272,948
Burundi BDI 13 31.05 33.16 10.9 26,933
Cabo Verde CPV 10.78 0.46 23.91 11.3 4,091
Cambodia KHM 31.68 44.8 50.26 45.7 181,694
Cameroon CMR 114.05 115.69 116.71 43 466,033
Canada CAN 34.5 25.26 49.43 38.2 9,954,758
Central African Re-
public

CAF 77.72 73.79 80.51 35.8 620,199
Chad TCD 3.12 2.86 4.34 3.4 1,269,951
Chile CHL 53.7 29.57 40.38 24.5 752,381
China CHN 15.11 30.96 32.37 23.3 9,349,124
Colombia COL 98.15 104.99 109.13 53.3 1,137,247
Comoros COM 11.68 66.24 88.51 17.7 1,674
Republic of the
Congo

COG 127.76 127.53 143.51 64.3 341,735
Costa Rica CRI 116.5 123.33 146.06 59.4 51,187
Côte d’Ivoire CIV 8.43 46.16 47.13 8.9 321,548
Croatia HRV 60.3 74.19 77.18 34.7 57,065
Cuba CUB 35.4 24.22 23.42 31.2 110,711
Curaçao CUW 0.12 8.09 5.28 0.2 437

TABLE 4 Country-level AGBD estimates from FAO, Diligence, and GEDI L4B. This table excludes countries
smaller than 150 km2. Countries with neither Diligence nor GEDI data were also excluded. If only one of Diligence or
GEDI was missing, that entry was left blank.
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Country ISO3 FAO AGBD
(Mg · ha−1)

DiligenceAGBD
(Mg · ha−1)

GEDI AGBD
(Mg · ha−1)

Forest
cover (%)

Area (km2)

Cyprus CYP 7.83 18.77 33.17 18.7 5,720
Czechia CZE 56.6 63.89 77.06 34.7 78,840
North Korea PRK 31.2 85.55 84.03 50.1 122,703
Democratic Repub-
lic of the Congo

COD 128.55 104.5 121.81 55.6 2,328,879
Denmark DNK 16.93 24.69 15 43,141
Djibouti DJI 0.22 0.02 2.23 0.3 22,371
Dominican Republic DOM 36.7 46.35 56.07 44.4 48,092
Ecuador ECU 89.08 117.86 150.34 50.3 256,348
Egypt EGY 0.05 0.1 0.34 0 983,791
El Salvador SLV 32.01 62.82 49.98 28.2 20,423
Equatorial Guinea GNQ 187.23 198.99 209.81 87.3 26,957
Eritrea ERI 7.58 0.35 9.54 10.4 120,453
Estonia EST 65 59.24 56.1 45,494
Swaziland SWZ 22 21.46 21.86 28.9 17,381
Ethiopia ETH 18.49 15.92 20.44 15.2 1,129,020
Falkland Islands FLK 0 0.02 7.71 0 12,390
Fiji FJI 126.54 127.05 133.05 62.4 18,952
Finland FIN 44.07 47.53 73.7 336,885
France FRA 42.69 50.78 62.3 31.5 549,518
French Guiana GUF 355.36 255.15 283.06 97.4 83,301
French Polynesia PYF 60.81 0 177.24 40.8 4,030
Gabon GAB 203.87 192.38 229.78 91.3 264,551
Gambia GMB 10.02 5.31 12.52 24 10,667
Georgia GEO 48.47 86.95 94.34 40.6 69,846
Germany DEU 60.6 64.2 84.07 32.7 357,822
Ghana GHA 33.92 30.83 28.3 35.1 239,475
Greece GRC 10.36 42.14 51.6 30.3 132,564
Grenada GRD 56.95 84.66 99.97 52.1 360
Guadeloupe GLP 147.67 70.54 71.34 42.6 1,649
Guatemala GTM 40.84 76.69 83.56 32.9 109,149
Guinea GIN 33.04 39.34 47.08 25.2 244,815
Guinea-Bissau GNB 59.15 30.4 42.13 70.4 33,879
Guyana GUY 466.78 177.91 192.56 93.6 209,743
Haiti HTI 11.91 21.48 36.64 12.6 27,113
Honduras HND 60.09 88.15 103.4 56.8 112,292
Hungary HUN 24.83 35.65 48.51 22.7 93,039
Iceland ISL 0.12 0.63 0.5 102,220
India IND 16.67 23.34 27.11 24.3 2,978,346
Indonesia IDN 87.81 188.8 199.82 49.1 1,890,085
Iran IRN 9.09 2.32 6.82 6.6 1,621,750
Iraq IRQ 0.97 0.63 2.55 1.9 436,474
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Country ISO3 FAO AGBD
(Mg · ha−1)

DiligenceAGBD
(Mg · ha−1)

GEDI AGBD
(Mg · ha−1)

Forest
cover (%)

Area (km2)

Ireland IRL 12.67 19.91 34.03 11.4 70,263
Italy ITA 35.97 50.09 62.51 32.5 300,729
Jamaica JAM 87.36 77.58 90.23 55.1 11,002
Jordan JOR 0.62 0.23 1.36 1.1 89,186
Kazakhstan KAZ 1.06 1.47 3.96 1.3 2,730,539
Kenya KEN 12.71 10.34 10.59 6.3 585,999
Kyrgyzstan KGZ 3.41 5.45 24.61 6.9 197,452
Laos LAO 87.36 122.21 137.03 71.9 229,869
Latvia LVA 70.28 62.3 54.9 64,710
Lebanon LBN 8.58 13.74 23.43 14 10,239
Lesotho LSO 0.84 3.5 18.36 1.1 30,547
Liberia LBR 162.44 138.81 144.86 79.1 95,920
Libya LBY 0.06 0.09 0.13 0.1 1,616,051
Liechtenstein LIE 101.51 78.44 104.22 41.9 160
Lithuania LTU 47.04 51.49 35.1 65,016
Luxembourg LUX 65.96 73.39 89.01 36.5 2,582
Madagascar MDG 34.87 29.74 28.72 21.4 591,443
Malawi MWI 18.71 22.78 20.99 23.8 117,924
Malaysia MYS 122.1 159.26 165.24 58.2 329,571
Maldives MDV 3.69 28.65 19.33 2.7 279
Mali MLI 5.05 2.05 3.39 10.9 1,251,200
Marshall Islands MHL 69 45.5 52.2 283
Martinique MTQ 150.95 73.88 77.59 49.3 1,118
Mauritania MRT 0.16 0.1 0.34 0.3 1,041,167
Mauritius MUS 23.72 48.71 35.91 19.1 2,026
México MEX 17.72 32.33 36.53 33.8 1,951,297
Mongolia MNG 5.01 3.98 7.62 9.1 1,566,259
Montenegro MNE 59.56 67.6 84.27 61.5 13,335
Morocco MAR 5.13 1.88 7.73 12.9 413,477
Mozambique MOZ 47.37 30.5 33.97 46.7 787,463
Myanmar MMR 54.87 108.56 122.02 43.7 669,268
Namibia NAM 5.44 2.29 4.15 8.1 824,056
Nepal NPL 71.63 86.41 103.07 41.6 147,661
Netherlands NLD 6.05 26.45 39.21 11 37,686
New Caledonia NCL 66.93 78.43 85.24 45.8 18,823
New Zealand NZL 110.7 73.98 87.15 37.6 268,727
Nicaragua NIC 25.77 63.05 63.46 28.3 128,180
Niger NER 0.33 0.26 0.67 0.9 1,183,664
Nigeria NGA 32 15.69 13.36 23.7 908,397
North Macedonia MKD 28.45 52.71 59.7 39.7 24,910
Norway NOR 25.7 23.48 40 325,064
Oman OMN 0.01 0.15 0.6 0 309,121
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Country ISO3 FAO AGBD
(Mg · ha−1)

DiligenceAGBD
(Mg · ha−1)

GEDI AGBD
(Mg · ha−1)

Forest
cover (%)

Area (km2)

Pakistan PAK 3.64 4.1 8.34 4.8 792,380
Panama PAN 82.25 130.65 130.25 56.7 75,447
Papua New Guinea PNG 139.35 295.86 272.14 79.2 463,590
Paraguay PRY 28.31 9.71 7.34 40.5 399,298
Peru PER 134.37 123.47 128.39 56.5 1,292,460
Philippines PHL 52.98 99.89 119.31 24.1 295,813
Poland POL 51.41 59.98 69.1 31 312,401
Puerto Rico PRI 45.07 61.36 70.14 56 8,970
Qatar QAT 0 0.27 0.46 0 11,583
South Korea KOR 84.96 98.64 89.81 64.5 100,519
Moldova MDA 10.97 15.08 30.54 11.8 33,906
Réunion REU 49.02 76.68 69.89 39.2 2,513
Romania ROU 62.49 58.77 71.46 30.1 238,340
Russia RUS 38.5 38.68 52.35 49.8 16,925,751
Rwanda RWA 16.34 27.06 28.73 11.2 25,279
Saint Kitts and Nevis KNA 88.85 41.43 36.91 42.3 267
Saint Lucia LCA 100.11 92.57 132.59 34 614
Saint Pierre and
Miquelon

SPM 1.39 11.75 15.46 5.3 227
Saint Vincent and
the Grenadines

VCT 160.36 83.45 130.65 73.2 398
São Tomé and
Príncipe

STP 87.85 140.2 219.36 54.1 1,002
Saudi Arabia SAU 0.12 0.09 0.45 0.5 1,923,052
Senegal SEN 18.54 4.35 10.84 41.9 196,893
Serbia SRB 48.87 59.84 68.8 31.1 78,232
Seychelles SYC 126.6 59.1 73.3 489
Sierra Leone SLE 28.8 54.84 58.02 35.1 72,600
Singapore SGP 29.76 42.51 47.23 21.9 695
Slovakia SVK 68.54 85.21 90.88 40.1 49,097
Slovenia SVN 155.56 121.17 132.57 61.5 19,956
Solomon Islands SLB 86.33 318.75 307.43 90.1 28,504
Somalia SOM 9.77 2.76 3.53 9.5 633,528
South Africa ZAF 12.04 5.45 8.11 14.1 1,219,705
Spain ESP 20.77 24.85 32.62 37.2 506,041
Sri Lanka LKA 26.67 56.75 56.61 33.7 65,839
Sudan SDN 5.51 1.36 2.42 9.8 1,872,133
Suriname SUR 353.49 219.54 235.34 97.4 146,426
Sweden SWE 49.78 45.86 68.7 449,999
Switzerland CHE 62 63.88 89.41 32.1 41,234
Syria SYR 1.42 1.07 2.25 2.8 186,929
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Country ISO3 FAO AGBD
(Mg · ha−1)

DiligenceAGBD
(Mg · ha−1)

GEDI AGBD
(Mg · ha−1)

Forest
cover (%)

Area (km2)

Thailand THA 55.43 74.99 82.6 38.9 513,926
Timor-Leste TLS 92.92 104.21 123.8 61.9 14,917
Togo TGO 26.89 20.09 22.67 22.2 56,906
Trinidad and Tobago TTO 40.11 121.97 141.12 44.5 5,160
Tunisia TUN 2.66 1.74 3.02 4.5 154,869
Turkey TUR 13.89 22.46 30.38 28.9 780,702
Turks and Caicos Is-
lands

TCA 14.65 1.87 1.52 11.1 991
Uganda UGA 11.19 19.26 23.95 11.7 241,421
Ukraine UKR 23.42 30.46 38.25 16.7 601,365
United Arab Emi-
rates

ARE 3.33 0.18 0.43 4.5 71,107
United Kingdom GBR 15.16 21.92 40.65 13.2 245,237
Tanzania TZA 25.09 29.64 28.51 51.6 940,533
United States USA 32.06 43.18 47.1 33.9 9,472,697
Virgin Islands, U.S. VIR 29.87 20.89 27.95 56.9 362
Uruguay URY 11.26 7.66 10.86 11.6 177,607
Venezuela VEN 107.3 84.95 82.33 52.4 912,365
Vietnam VNM 29.61 73.09 89.47 47.2 329,285
Western Sahara ESH 1 0 0 2.5 267,327
Zambia ZMB 26.52 29.91 30.01 60.3 751,176
Zimbabwe ZWE 42.83 17.63 15.04 45.1 390,039
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