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ABSTRACT 9 

 10 

Land cover strongly influences species distributions and ecological processes, yet global datasets 11 

often have insufficient spatial resolution to capture fine-scale heterogeneity. This limitation can 12 

reduce the accuracy of biodiversity and environmental modelling. 13 

We developed a new global land cover dataset at ~1 km resolution by aggregating the 10 m ESA 14 

WorldCover 2021 product to a 30-arcsecond grid. The original categorical map was processed to 15 

generate continuous layers representing the percentage cover of 11 land cover categories—trees, 16 

shrublands, grasslands, croplands, built-up, bare/sparse vegetation, snow/ice, permanent water 17 

bodies, herbaceous wetlands, mangroves, and mosses/lichens—plus a layer representing the 18 

proportion of emerged land. OpenStreetMap landmass boundaries were used to mask marine cells. 19 

The dataset covers the global land surface from 60°S to 84°N and 180°W to 180°E. It provides 20 

improved representation of fine-scale habitat heterogeneity compared to widely used coarser 21 

products. We demonstrate its utility by comparing species distribution models built with our dataset 22 

against models developed using an established global land cover dataset, showing higher predictive 23 

performance with the new data. 24 

By combining global extent with enhanced spatial detail, this dataset enables more accurate 25 

assessments of species–environment relationships, biodiversity patterns, and land-use impacts. It is 26 

intended for integration into ecological, macroecological, and conservation models. The dataset is 27 

openly available as GeoTIFF rasters for the year 2021. 28 

 29 

 30 

  31 



Background 32 

Land cover changes are reshaping global biodiversity: they can modify key habitats for threatened 33 

species (Cordier et al. 2021; Riva et al. 2023), favour the spread of invasive species (Ficetola et al. 34 

2010), concur in causing range shifts (Poniatowski et al. 2020), modify landscape connectivity 35 

(Leonard et al. 2017), and more broadly drive environmental suitability for organisms (Falaschi et 36 

al. 2025). To reconstruct and/or anticipate such effects, models assessing species probability of 37 

occurrence as a function of land cover gained momentum in the last decade, potentially providing 38 

powerful tools for macroecology and conservation science (Torres et al. 2018; Liu et al. 2020; Lo 39 

Parrino et al. 2023). 40 

Thus, global standardized maps are essential to develop Species Distribution Models 41 

(SDMs) and capture the relationships between environmental features and species' occurrence at 42 

large scales. While climatic maps are globally harmonized and constantly updated (e.g., CHELSA, 43 

WorldClim; Fick & Hijmans 2017; Karger et al. 2017), land cover maps are often more local. For 44 

instance, the CORINE Land Cover is a 100 m resolution map with several temporal updates, but it 45 

covers only European countries. Remote sensing has been widely used to map and characterize 46 

various landscape features, such as aquatic habitats (Wu et al. 2024), forests (Aziz et al. 2024), 47 

agricultural areas (Owusu et al. 2024), and urban environments (Chen et al. 2024). Despite recent 48 

progress, many global land cover datasets suffer from outdated temporal baselines, inconsistent 49 

classification schemes across regions, or low performance in heterogeneous landscapes such as 50 

tropical forests or montane areas. Moreover, data are collected by different satellite sensor systems 51 

at various spatial, temporal, and spectral resolutions and maps are generated with different 52 

classification approaches (Chen et al. 2017). Furthermore, land use maps often provide categorical 53 

outputs, masking intra-pixel variability, hence failing to represent spatially complex areas and 54 

offering limited insights into habitat mosaics that are ecologically crucial, particularly for edge 55 

species or generalists (Hansen et al. 2002; Blanco et al. 2013; Tuanmu & Jetz 2014). This causes 56 

the overrepresentation of dominant land cover types and false absences for less frequent land cover 57 



categories. Until recently, most global land cover maps were derived from satellite data at a coarse 58 

spatial resolution (300-1000 m; Ban et al. 2015). However, recent satellite missions provided data at 59 

a much finer resolution, such as 10 m (Xu et al. 2024). Incorporating accurate and detailed data 60 

enables better assessments of landscape heterogeneity, especially for landscape elements that are 61 

not mapped at coarse resolutions (e.g., small water bodies; Céréghino et al. 2008) and for species 62 

affected by small habitat patches (e.g., arthropods; Norhisham et al. 2024). Additionally, land cover 63 

often drives the distribution of species at a finer grain compared to climate and it is thus essential 64 

that it captures well the fine-scale heterogeneity (Nieto-Lugilde et al. 2015). 65 

Most widely used global datasets for bioclimatic variables, hydrography, and land cover 66 

have ~1 km resolution (Lehner et al. 2008; Tuanmu & Jetz 2014; Fick & Hijmans 2017; Karger et 67 

al. 2017). Here, we provide a ~1 km grid resolution global land cover dataset for 11 categories, 68 

derived from the very high-resolution (~10 m) ESA WorldCover 2021, a global land cover map 69 

based on Sentinel-1 and Sentinel-2 data (Zanaga et al. 2022). The dataset we propose bridges a key 70 

resolution gap between detailed but local 10–30 m products and coarse global maps (starting 71 

resolution >300 m), offering a harmonized, high-quality representation of global land cover. The 72 

present maps can be easily integrated with other widely used environmental layers in global-scale 73 

modeling, requiring minimal computational effort. The 1 km resolution is also compatible with the 74 

positional accuracy of most occurrence records in biodiversity repositories such as iNaturalist and 75 

the Global Biodiversity Information Facility (GBIF). By calculating land cover from very high-76 

resolution satellite data, we retain crucial information about habitat heterogeneity, reducing biases 77 

in downstream analyses such as SDMs or ecological niche estimates. 78 

Data acquisition and processing 79 

The original ESA WorldCover 2021 included the following categories, that we retained: "Tree 80 

cover", "Shrubland", "Grassland", "Cropland", "Built-up", "Bare/sparse vegetation", "Snow and 81 

Ice", "Permanent water bodies", "Herbaceous wetland", "Mangrove", and "Moss and lichen". All 82 



WorldCover maps were provided in the EPSG:4326 WGS84 coordinate reference system, that we 83 

also employed. The source dataset is divided into 18 macrotiles (60×60°), each composed of 84 

multiple 3×3° tiles at 0.3 arcseconds (~ 10 m) resolution. Each WorldCover pixel indicated the 85 

dominant land cover. The overall accuracy of the ESA WorldCover 2021, as detailed from the 86 

Product Validation Report (available at: https://worldcover2021.esa.int/), was 76.7%. 87 

Our goal was to generate global maps at 30 arcseconds (~1 km) for each category, where 88 

each pixel represents the percentage surface of the target land cover class (Fig. 1). To achieve this, 89 

we cropped each original 3×3° tile to the terrestrial areas using the landmass shapefile from 90 

OpenStreetMap (https://osmdata.openstreetmap.de/data/land-polygons.html) to avoid considering 91 

marine cells and to provide maps tailored for analyses on terrestrial ecosystems. Then, we 92 

aggregated the result by a factor of 100, creating a 30 arcseconds map where pixel values described 93 

the count of 10 m cells for each class. Lastly, we divided values by 100 to obtain the percentage 94 

cover per pixel. For the "Permanent waterbodies" class, marine cells were excluded using a negative 95 

internal buffer (~20 m, i.e., 2 times the resolution of the original raster) from the landmass 96 

shapefile. All tiles were then merged into a single global raster at 30 arcseconds resolution (~1 km) 97 

for each land cover class. Thus, the values of the pixels in the final maps represent the percentage of 98 

each land cover relative to the total surface of the pixel. Additionally, we created a global raster 99 

representing the percentage of landmass per pixel, enabling, when needed, the estimation of the 100 

percentage of each land cover relative to the surface of landmass per pixel. The analysis was 101 

developed using the ‘terra’ R package (Hijmans, 2023) and the workflow is summarized in Fig. 1. 102 

 103 

Comparison with an established land cover dataset 104 

We compared the new set of produced variables with the widely used EarthEnv Global 1 km 105 

consensus land cover (hereafter “EE”) of Tuanmu & Jetz 2014. We compared the performance of 106 

alternative species distribution models (SDMs) including climate from CHELSA (Karger et al. 107 

2017), while land cover was either from EE or the land cover presented here (termed “ESA”). The 108 

https://osmdata.openstreetmap.de/data/land-polygons.html


EE is one of the most used land cover datasets, with 384 citations on Scopus (accessed on 109 

04/07/2025). It is a consensus map derived from two different global land cover products, 110 

GlobCover (300 m grid resolution) and MODIS2005 (500 m). It provides global maps at ~1 km 111 

resolution for 12 land cover categories. This consensus is based on products that are now outdated 112 

and at a coarse resolution, limiting the ability to capture fine-scale heterogeneity. In contrast, the 113 

dataset we present is derived from a source with a higher resolution (10 m), more recent imagery 114 

(2021) and dual-sensor integration (Sentinel-1 and Sentinel-2). By aggregating to 1 km resolution, 115 

we ensure compatibility with widely used bioclimatic and hydrological layers, while retaining more 116 

accurate information on the fine-scale variation of land cover. 117 

We modelled habitat suitability for four species: Nepa cinerea (class Esapoda, phylum 118 

Arthropoda), Bufo bufo (Amphibia, Chordata), Dryas octopetala (Magnoliopsida, Magnioliophyta), 119 

and Sylvilagus floridanus (Mammalia, Chordata). These species belong to heterogeneous taxonomic 120 

groups and have variable geographic distributions and degrees of ecological specialization. We 121 

retrieved observations of the species from the GBIF website (https://www.gbif.org). Besides land 122 

cover variables either from EE or ESA, all models considered four fundamental climatic descriptors 123 

from CHELSA (Karger et al. 2017): annual mean temperature, temperature seasonality, annual total 124 

precipitation, and precipitation seasonality. SDMs were run using the Maxent algorithm (Phillips et 125 

al. 2004). A four-fold cross-validation consisting of spatially independent blocks was used to test 126 

model performance (Muscarella et al. 2014) and the performance on the withheld datasets was 127 

estimated using the Continuous Boyce Index (CBI, Hirzel et al. 2006) and the Area Under the 128 

receiver operating characteristic Curve (AUC, Fielding & Bell 1997). Each of the four blocks was 129 

used once for testing, while the remaining three blocks were used for model training (i.e., k-fold 130 

cross-validation). For each species, we performed two alternative SDMs, with the same model 131 

hyperparameters but different land cover sets (climate + EE, climate + ESA). Then, we assessed the 132 

performance metrics to assess the differences between the two datasets of land cover used. Lastly, 133 

https://www.gbif.org/


the permutation importance (i.e., the drop in AUC after the random permutation of a given variable; 134 

Smith & Santos 2020) was evaluated for each of the tested species and land cover dataset.  135 

We found a superior predictive performance of SDMs developed with the ESA land cover 136 

compared to EE for all species and both according to the CBI (Fig. 2) and the AUC (Fig. S1), with 137 

marked differences in three out of four species (Fig. 2; Fig. S1; Supplementary methods). 138 

Additionally, based on a priori expert-based knowledge on the environmental requirements of the 139 

selected species, permutation importance revealed a higher ecological realism of SDMs developed 140 

with the ESA land cover (Tables S1-S4). For instance, the permutation importance of water 141 

increased from 12.1% to 27.8% for N. cinerea (freshwater insect) and from 0% to 12.8% for B. bufo 142 

(freshwater-breeding amphibian). The importance of grassland for D. octopetala (a high-elevation 143 

flowering plant) increased from 0.7% to 29.7%, indicating a better ability of the ESA dataset to 144 

capture the spatial distribution of key proximal variables.  145 

 146 

Usage notes  147 

The final set of variables has an overall size of 2.22 GB. The downloaded rasters can be 148 

incorporated into coding frameworks in R by loading them with the ‘terra’ R package (Hijmans, 149 

2023) using the ‘rast’ function. Maps are provided in the WGS84 (EPSG:4326) coordinate 150 

reference system. When using these variables for SDMs, we recommend including only 151 

uncorrelated variables that are deemed relevant for the species ecology and to integrate them with 152 

further predictors (e.g., climatic) that capture other nuances of the modelled species’ niches 153 

(Dormann et al. 2013; Guisan et al. 2017; Fourcade et al. 2018). 154 

Discussion  155 

Our dataset contributes to bridging the gap between high-resolution remote sensing products and 156 

the standard resolution used in global biodiversity and environmental modelling, offering a more 157 



precise yet computationally tractable alternative to existing coarse resolution products. This product 158 

fills a critical gap for large-scale studies, especially those requiring integration with other 1 km 159 

environmental layers, and we showed that it can increase the predictive ability and ecological 160 

realism of SDMs.  161 

We acknowledge that the thematic resolution of the dataset should be expanded in future 162 

developments, for instance, discriminating the different forest and/or vegetation types. However, its 163 

capacity to represent sub-pixel heterogeneity offers an important advancement over currently 164 

available maps, enabling finer ecological inference in fragmented and transitional landscapes. In 165 

particular, the main novelties and advantages of our maps include: 166 

- Improved representation of small and heterogeneous features, such as riparian zones, 167 

wetlands, and urban mosaics. For instance, accurate representations of potential wildlife habitats 168 

within cities are needed to better assess urban biodiversity patterns (Gelmi-Candusso et al. 2024). 169 

Additionally, until now, the lack of fine resolution global maps of aquatic habitats hindered the 170 

reliability of niche modelling for freshwater species (Lo Parrino et al. 2023); 171 

- Availability of fractional cover information per class per pixel, avoiding the 172 

oversimplification of single-class assignments. Coarse characterizations may limit our 173 

understanding of biodiversity patterns across spatial scales (Gelmi-Candusso et al. 2024). Maps 174 

representing the proportion of the focal land use class within each cell likely provide a better 175 

representation of habitat availability in the context of niche modelling. Moreover, the basic maps 176 

here provided represent the proportion of each land class on the total cell surface (~1 km2). This 177 

approach may be relevant in certain contexts, making this dataset flexible and suitable for multiple 178 

applications; 179 

- Inclusion of a landmass mask and filtered water body layer to improve accuracy in 180 

coastal and aquatic contexts. This is particularly relevant for organisms exploiting inland waters 181 

close to the coast, as some maps classify seawater and freshwater under the same category (Xu et al. 182 

2020), leading to inaccurate approximations of habitat availability for freshwater species. 183 



This resource thus has the potential to support a wide range of macroecological and 184 

conservation applications, including habitat prioritization, protected area planning, and global 185 

biodiversity monitoring. As biodiversity faces increasing pressures from land use changes, global 186 

high-resolution tools, such as the maps presented here, are essential for informed decision-making 187 

and effective conservation planning.   188 



Figures 189 

Figure 1. Schematic representation of the workflow used to produce a set of global land cover maps 190 

at ~ 1 km grid resolution for macroecological and biogeographic applications, starting from the 191 

global ESA WorldCover 2021 10 m satellite-based land cover.  192 

  193 



Figure 2. Comparison of the predictive performance of species distribution models developed with 194 

climatic and land cover variables, the latter either from the Consensus Land Cover (EE) of Tuanmu 195 

& Jetz 2014, or from the set presented in this study and derived from the ESA WorldCover 2021. 196 

The metric used is the Continuous Boyce Index (CBI, ranging from -1 to 1). Points represent the 197 

performance on withheld test datasets across four spatially independent cross-validation replicates 198 

(indicated with different colours). See the text and the supplementary methods for further details 199 

and results according to another metric. Species silhouettes from PhyloPic 200 

(https://www.phylopic.org). 201 

  202 
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