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1. Abstract 33 

Effective wildlife monitoring is essential for biodiversity conservation and sustainable 34 

management, particularly in the face of rapid environmental changes and human-wildlife 35 

interactions. Advances in camera trap technology and citizen science, here used to denote non-36 

professional involvement in scientific research, irrespective of citizenship status, have 37 

revolutionized ecological data collection, providing scalable and non-invasive methods for 38 

tracking species distribution, abundance and behaviour across large spatial and temporal scales. 39 

However, challenges in managing the vast datasets generated, ensuring user engagement and 40 

addressing privacy concerns persist. To address these issues, we introduce Trapper Citizen Science 41 

(Trapper CS), an open-source platform combining artificial intelligence-based data processing 42 

pipelines with citizen science to enhance wildlife monitoring efforts. Trapper CS supports 43 

automated data processing, provides user-friendly interfaces and real-time species identification, 44 

while promoting collaboration and data sharing through standardized protocols and data formats 45 

(Camtrap DP). With applications spanning research, management and citizen engagement, Trapper 46 

CS exemplifies a novel approach to integrate technology and public participation for addressing 47 

global wildlife challenges. This paper discusses the platform's architecture, functionality and 48 

applications, highlighting its potential to contribute to more effective wildlife monitoring and 49 

management. 50 

2. Introduction 51 

2.1. Wildlife monitoring in the digital age 52 

Wildlife plays essential ecological roles, supporting biodiversity and human well-being (Sandifer 53 

et al. 2015). However, anthropogenic pressures, such as urbanization, deforestation, and climate 54 

change, are accelerating biodiversity loss and disrupting population dynamics (Butchart et al. 55 
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2010; Townsend et al. 2008). Some species, such as ungulates and large carnivores in the northern 56 

hemisphere, have increased due to land use changes and conservation (Chapron et al. 2014; Linnell 57 

et al. 2020), intensifying human-wildlife interactions and requiring new management approaches 58 

(Roman et al. 2015). Effective management demands large-scale, long-term ecological monitoring 59 

(Steenweg et al. 2017; Stephens et al. 2015). 60 

Camera traps have proliferated in recent decades due to technological advances and the need for 61 

cost-effective, non-invasive monitoring (Ahumada et al. 2020; Delisle et al. 2021). They enable 62 

continuous observation across taxa and ecosystems without disturbing animals (Wearn and 63 

Glover-Kapfer 2019) , and support studies of behaviour, abundance, phenology, and community 64 

dynamics (Burton et al. 2024; Hofmeester et al. 2020; Steenweg et al. 2017; Veldhuis et al. 2020). 65 

This has transformed ecological research and enabled deployment in both terrestrial and marine 66 

systems (O’Brien and Kinnaird 2013; O’Connell et al. 2011). As climate-driven changes 67 

accelerate, real-time monitoring becomes critical. Yet, the volume of image data presents 68 

processing challenges (Norouzzadeh et al. 2018). Platforms like Trapper, Agouti, Wildlife 69 

Insights, Sentinel, TrapTagger, WildID, AddaxAI (formerly EcoAssist), and MammalWeb aim to 70 

improve data workflows and foster collaboration (Ahumada et al. 2020; Bubnicki et al. 2016; 71 

Conservation X Labs 2025; ENETWILD Consortium et al. 2022; Hsing et al. 2022; Lunteren 72 

2023; WildEye 2025; WildID 2021). Still, lack of interoperability and metadata standards limits 73 

integration and reuse. Recent work has highlighted that without centralized repositories and 74 

standardized metadata formats, even extensive investments in camera trap networks can fall short 75 

of their potential, due to limitations in collaborative analysis, image processing capacity and 76 

model-ready data outputs (Bruce et al. 2025). Camtrap DP addresses this by providing a 77 

standardized, flexible data model, comprising Deployments, Media and Observations tables, that 78 
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facilitates seamless data exchange and integration across systems (Bubnicki et al. 2024). As a 79 

community-developed standard under the Biodiversity Information Standards (TDWG), Camtrap 80 

DP is currently the most mature and widely supported proposal for harmonizing camera trap data. 81 

Citizen science, here defined as the involvement of non-professionals in scientific research and 82 

knowledge production, supported by advancements in technology and reduced costs, has become 83 

integral to ecological monitoring (Adam et al. 2021; Green et al. 2020; 2023). We acknowledge 84 

ongoing debate around the term ‘citizen science’, particularly in North America where ‘community 85 

science’ is increasingly preferred to avoid implications related to citizenship status (Cooper et al. 86 

2021). However, we use ‘citizen science’ here because it remains more widely used in Europe and 87 

is more specific in denoting voluntary participation in formal scientific inquiry. From here on, we 88 

use the term ‘citizen science’ to refer inclusively to all forms of non-professional involvement in 89 

scientific research, irrespective of participants’ legal citizenship status. Citizen science extends 90 

sampling across space and time and provides valuable data on species' responses to environmental 91 

change (Green et al. 2023; Willi et al. 2019; Jiguet et al. 2007). Camera traps uniquely engage both 92 

professionals (e.g. Snapshot USA; Rooney et al., 2025) and citizens (e.g. Candid Critters, Snapshot 93 

Serengeti, MammaleWeb), contributing to research and public engagement (McShea et al. 2016; 94 

Parsons et al. 2018; Swanson et al. 2015; Hsing et al. 2022; Lasky, Parsons, Schuttler, Hess, et al. 95 

2021). This inclusive approach does not only contribute to outcomes in science, but also creates a 96 

collaborative bridge between the general public, wildlife research and advanced technological 97 

applications (Jansen et al. 2024; Lasky, Parsons, Schuttler, Mash, et al. 2021; Swanson et al. 2015). 98 

While many citizens, such as naturalists and hunters, contribute to wildlife observation through 99 

camera traps, the lack of centralized open-source and citizen-science-oriented platforms that 100 

implement professional camera trap know-how and workflows for sharing and managing data 101 
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means much of its potential remains untapped. It is often crucial that such platforms are run by 102 

trusted regional organizations (Urbano et al. 2021), as not all participants are willing to share their 103 

data directly with large global repositories (as e.g. Wildlife Insights) due to legal and/or trust 104 

issues. To be effective, platforms must be customizable, support varying engagement levels, 105 

implement standards like Camtrap DP (Bubnicki et al. 2024), and be open-source to allow 106 

integration with other tools and services, including publicly available AI models for image and 107 

video processing. 108 

Thus, establishing accessible and user-friendly platforms that encourage citizens to contribute their 109 

data to coordinated monitoring programs, while supporting professional camera trap data 110 

management, processing and standardization in the backend, are foundational. Once established, 111 

they allow integration of deep learning, reducing human workload while maintaining classification 112 

accuracy (Willi et al. 2019). Given the rapid pace of AI development, open-source and modular 113 

design are essential to ensure platforms can efficiently incorporate new methods and stay at the 114 

forefront of analytical capability. This layered approach not only scales up monitoring efforts but 115 

also enables real-time data analysis, providing critical insights into ecological trends and 116 

facilitating timely conservation actions. 117 

2.2 Limitations faced by collectors and users of camera trap data 118 

Camera trap data collection by citizen scientists and its use by researchers and managers face 119 

several persistent barriers. A central challenge is the sheer volume of data generated (Fig. 1; 120 

Norouzzadeh et al., 2018), which remains time-consuming to process and often requires manual 121 

intervention (but see  Zampetti et al., 2024) despite advances in deep learning (e.g. CNNs, Vision 122 

Transformers, Vision Language Models) that enable automated species identification (Beery et al. 123 

2019; Dussert et al. 2024; Weinstein 2018). Most existing closed-source platforms are not AI-124 
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extensible, limiting integration of custom or regional models and preventing rapid adoption of new 125 

image recognition methods. 126 

Usability is another major issue, particularly in citizen science, where platforms often lack intuitive 127 

interfaces suited for non-expert users (Fig. 1). This can deter engagement and restrict the reach of 128 

participatory monitoring efforts (Ahumada et al. 2020; Hsing et al. 2022). Privacy concerns further 129 

complicate data sharing, especially for images containing humans or sensitive species. For 130 

instance, some contributors, such as hunting teams, may be unwilling to share data on animal 131 

densities or locations openly, though they may do so with trusted organisations, research bodies 132 

or agencies. Without flexible, customizable platforms, this kind of controlled sharing remains 133 

difficult. 134 

Moreover, many systems lack support for standardized data exchange, which hinders 135 

interoperability and scientific collaboration. Camtrap DP (https://camtrap-dp.tdwg.org), as the 136 

most advanced global standard, should be fully supported to enable streamlined sharing. Probably 137 

one of the most relevant aspects, however, is the easy extraction of population-level metrics for 138 

use by managers, enabling near-real-time decision-making and practical application of monitoring 139 

data.  140 

Together, these barriers underscore the need for integrated, open-source platforms that combine 141 

usability, privacy protection, extensibility and standardized data handling. While initiatives like 142 

MammalWeb and Wildlife Insights address some of these issues, a comprehensive, community-143 

oriented solution is still lacking.  144 

https://camtrap-dp.tdwg.org/
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2.3 A solution to overcome identified barriers: an open-source citizen science platform - Trapper 145 

CS 146 

To overcome the barriers outlined in Fig. 1, we present Trapper Citizen Science (Trapper CS), an 147 

open-source platform designed to promote citizen science engagement in ecological research and 148 

wildlife management using camera traps. Built on the flexible Trapper backend (Bubnicki et al. 149 

2016), Trapper CS allows extensive customization, including AI modules, making it suitable for a 150 

wide range of projects. The platform combines scalable deep learning-based image recognition 151 

with active citizen and stakeholder participation, enabling efficient data aggregation, processing 152 

and sharing (Fig. 2). A key strength is its accessible design: a user-friendly interface and 153 

personalized dashboards help engage non-experts while maintaining scientific utility. Project 154 

coordinators can configure data attributes for collection and analysis to match project-specific 155 

goals. 156 

Trapper CS’s Python-based backend enables integration of custom AI models and analytical tools, 157 

supporting advanced processing and visualization (e.g. via Jupyter Lab). It also provides 158 

programmatic access to annotated images via API, facilitating continuous model training to 159 

maintain high species identification accuracy (Fig. 2). By adopting the Camtrap DP standard for 160 

data exchange (Bubnicki et al. 2024), the platform ensures interoperability and supports 161 

collaborative workflows among researchers and stakeholders. This integrated, open-source 162 

approach not only improves data management but fosters broader engagement and data reuse, 163 

enhancing the impact and scalability of wildlife monitoring 164 
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3. Description of Trapper CS 165 

3.1 Trapper in the backend 166 

Trapper CS builds on the open-source database platform Trapper (Bubnicki et al. 2016), designed 167 

to standardize, organize and manage camera trap data. Originally developed to address the growing 168 

volume and complexity of multimedia data in ecological research, Trapper has since evolved into 169 

a scalable, multi-platform system supporting collaborative data access and integration of AI tools. 170 

It is regularly updated and maintained by the Open Science Conservation Fund and partners. 171 

The current beta release, Trapper 2.0, includes modules for citizen science (frontend), AI-based 172 

image processing (Trapper AI), and expert curation (Trapper Expert). Key features include open-173 

source licensing, support for image and video processing, customizable classification attributes, 174 

Camtrap DP compliance, and tools for advanced analysis. The platform can be deployed locally 175 

or on cloud infrastructure and is already in use across major European research institutions. A 176 

detailed technical summary of Trapper's architecture, installation options and data management 177 

capabilities is provided in Appendix S1, Text S1. 178 

3.2 AI model 179 

Trapper AI integrates deep learning into camera trap workflows for detecting animals and 180 

classifying species in camera trap data. It consists of two components: the Trapper AI Manager, 181 

which organizes and queues processing tasks and Trapper AI Worker, which processes images 182 

using AI models and supports flexible deployments from local machines to cloud servers 183 

(Appendix S2, Fig. S1). Trapper AI supports popular architectures (e.g., YOLOv8, RT-DETR, 184 

ViT) and includes pre-trained models like MegaDetector and the Trapper AI Species Classifier, 185 

achieving high accuracy in European mammal classification (F1-score 95%, mAP 93%) using a 186 

dataset of over 400,000 images from five countries. The system is extensible, allowing users to 187 



 
 
 

10 
 

configure new models and workflows with minimal effort. Full technical specifications, supported 188 

architectures, and deployment details are provided in Appendix S1, Text S2. 189 

3.3 Trapper CS 190 

The Trapper Citizen Science (CS) interface has been designed to support non-expert users in 191 

engaging with wildlife monitoring via camera trap data. The interface is currently accessible in 192 

multiple languages, including English, Swedish, German and Polish (with a possibility to add 193 

more), with a simple language-switching option in the top-right corner. Users can switch between 194 

different projects they have access to and access a comprehensive overview of each project. 195 

Projects can be designated as either public or private. Public projects are accessible to all registered 196 

users, who can view and contribute to them freely. In contrast, private projects are only visible to 197 

users who have been explicitly granted access. A left sidebar provides easy navigation to sections 198 

such as Dashboard, Upload, Images, Deployments, Classification View and Teams. 199 

The CS interface, an extension of the Trapper platform, aims to streamline complex data flow, 200 

organization, sharing and classification processes into a more simplified and intuitive experience 201 

for users on various devices, including PCs, laptops, tablets and phones (with currently limited 202 

mobile functionality). Core functionalities include a basic upload page, a carefully designed 203 

classification interface and a viewing area for classified images, with plans for future 204 

enhancements like data analysis and mapping tools (Fig. 3). The design prioritizes an attractive, 205 

modern and user-friendly layout, developed by UX/UI designers in collaboration with users 206 

(stakeholders, citizen scientists, and the community of Trapper users) to best meet their 207 

requirements. The following sub-sections give an overview of each component of the Trapper CS 208 

interface. Additional technical information and more detail along with user interface screenshots 209 

can be found in Appendix S2, Text S1 & Figure S1-S7.  210 



 
 
 

11 
 

3.3.1 Data upload 211 

Users can upload large batches of images and associate them with deployments using coordinates 212 

or an interactive map. Metadata such as camera model, bait type, and habitat can be added. Trapper 213 

CS automatically generates database objects and applies AI-based detection (via MegaDetector by 214 

default), anonymization of humans and vehicles, and species classification. Administrators can 215 

select different AI models available in Trapper AI Manager. 216 

3.3.2 Dashboard and user insights 217 

The dashboard displays project-wide and individual user statistics, including the number of 218 

deployments, images, camera trap days, and classification summaries. It visually differentiates 219 

user contributions and offers easy access to messages, settings, and navigation options, facilitating 220 

user engagement and oversight. 221 

3.3.3 Image and deployment view 222 

Trapper CS offers users a comprehensive interface for browsing and managing both images and 223 

deployments. The image view includes powerful filtering options that allow users to sort images 224 

by species, location, deployment, classification status and more. Metadata such as observation 225 

type, ownership, and AI versus human validation status are displayed alongside thumbnails, 226 

offering quick insight into image content. An image can be opened in detail to reveal full metadata 227 

and classification history, along with a map showing the camera trap's geographic location. 228 

The deployment view complements the image browser by giving users access to camera trap 229 

metadata, including coordinates, deployment periods and the number of recorded sequences. 230 

Deployments can be explored in list or map views and filtered by user or project-defined attributes. 231 

Users can edit or delete their own deployments and adjust timestamps in bulk to correct for 232 
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common field-based errors. These functionalities make it easier to manage large volumes of data 233 

while preserving accuracy and traceability within collaborative projects. 234 

3.3.4 Spatial visualization 235 

An integrated map-based GIS view shows deployment locations using Leaflet and 236 

OpenStreetMap. Users can explore spatial patterns, switch between map/list views, filter 237 

deployments, and preview associated media. Basemaps are customizable, and shared deployments 238 

can be viewed collaboratively. 239 

3.3.5 Classification interface 240 

The classification module is a comprehensive and visually appealing interface designed to 241 

facilitate the object-based and AI-assisted classification of camera trap images by users. It displays 242 

AI-filtered images (animal, blank, human, vehicle), allowing users to refine labels and attributes 243 

(e.g., species, behaviour, age, sex) at the object level using bounding boxes, with an easy way of 244 

creating, edition and managing bounding boxes. Forms are dynamic so that it adapts to project 245 

needs. Tools for classification include brightness/contrast filters and bulk classification functions. 246 

Users flagged as experts can approve or correct others’ classifications allowing a robust feedback 247 

mechanism for training new AI models. 248 

3.3.6 Teams and data sharing 249 

The Teams module supports collaborative classification efforts by allowing data sharing among 250 

defined user groups with geographic boundaries. Admins create teams, invite members, , define 251 

shared regions (via maps or GPX), and assign access permissions. Members can classify shared 252 

images while retaining control of their own contributions.  253 
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3.3.7 Export 254 

Data can be exported from the Trapper backend as CSV or in Camtrap DP format, including both 255 

tables and metadata. This facilitates integration with platforms like GBIF and reduces the burden 256 

of manual metadata preparation. 257 

3.4 Potential risks and concerns 258 

The use of camera trap data in citizen science initiatives presents potential risks, notably 259 

concerning privacy and data security. Location sharing of sensitive species or habitats can expose 260 

them to risks, including illegal targeting or human interference, necessitating strict measures to 261 

secure sensitive data. Privacy is another critical issue, particularly when images capture humans. 262 

These images must be handled carefully to protect identities, often through blurring or other 263 

anonymization techniques (Ahumada et al. 2020). Ensuring that privacy protocols are robust and 264 

meet legal and ethical standards is essential to build trust and encourage broader participation 265 

among citizen scientists and the general public. To address concerns around privacy and data 266 

security in citizen science, Trapper CS incorporates several protective measures. Human and 267 

vehicle anonymization is automatically applied during image processing to protect personal 268 

identities, supporting ethical standards and legal compliance. For sensitive species, Trapper CS 269 

offers a notification system that alerts project administrators to the presence of such data, which 270 

enables them to manage access appropriately. Additionally, when exporting data using the 271 

Camtrap DP format, administrators can choose to omit image URLs for designated species by 272 

marking them as private. This ensures that sensitive ecological information is not publicly exposed 273 

and enhances trust among contributors. 274 
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3.5 Open-source approach and customization possibilities 275 

Trapper CS, as an open-source platform, allows for significant customization, empowering users 276 

to develop additional functionalities suited to specific research or management needs. For 277 

example, users can create a custom landing page with an interactive analytical dashboard to 278 

visualize data in real time or design team-specific functionalities that support collaborative 279 

research workflows. This open-source model facilitates flexibility in design, enabling the 280 

integration of diverse analytical tools and modules, such as custom AI models and data analysis 281 

pipelines or unique data visualization options, thus enhancing the adaptability and applicability of 282 

the platform for diverse ecological and wildlife management contexts. 283 

4. Discussion: Challenges, wider lessons and future work 284 

This paper presents Trapper CS, an open-source platform that combines AI-based processing of 285 

large camera trap datasets with citizen science participation. It addresses major challenges in 286 

ecological monitoring, such as data management, real-time species identification, user engagement 287 

and data standardization, offering a promising model for integrating technology with public 288 

collaboration. Here, we outline key opportunities and challenges that inform its future 289 

development and broader application.  290 

A key challenge is ensuring the platform remains usable for diverse stakeholders. Outputs like 291 

density estimates must be both easy to access and relevant for wildlife managers, requiring 292 

alignment between model results and management needs. Interfaces also need to support users 293 

with limited technical skills. Currently, only administrators can export data, but allowing users to 294 

download their contributions (e.g., as .csv) could increase engagement. This could be part of a 295 

future module offering personal data exploration. Structured feedback from interviews, surveys 296 
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and testing will help improve functionality and integration into monitoring workflows. Iterative, 297 

stakeholder-driven development is essential for adoption and long-term impact 298 

Trapper CS must be adaptable across varied wildlife management contexts and countries. 299 

Although already used by the Swedish Association for Hunting and Wildlife Management, wider 300 

testing is needed to assess its relevance elsewhere. In regions where hunters and local stakeholders 301 

contribute to monitoring, the platform has strong potential. Promoting standardized data formats 302 

and cross-border collaboration can support international efforts to harmonize monitoring and 303 

improve data quality. 304 

Viltbild strongly motivated the collaboration between SLU, the Swedish Association for Hunting 305 

and Wildlife Management, the Open Science Conservation Fund and the Mammal Research 306 

Institute. Across Europe, hunters contribute to monitoring many taxa, especially ungulates and 307 

small game (Cretois et al. 2020). Their routinely collected data (e.g. hunting bag, carcass and non-308 

invasive sampling) offer insights on genetic composition, species population or traits and 309 

community composition (Cretois et al., 2020). n Sweden, with over 100,000 hunters using camera 310 

traps, these data are widespread but often remain local. Centralizing them could unlock significant 311 

potential for national monitoring. Moreover, hunter engagement can improve species monitoring 312 

beyond traditional programs, providing valuable insights into species' life history parameters and 313 

responses to environmental change. With their strong ecological knowledge, hunters can help with 314 

the identification of species in the images, increasing the human-annotated dataset. The 315 

involvement of hunters, who regularly observe and interact with nature, can bridge a vital gap 316 

between scientific research and practical management efforts. 317 

New camera technologies, such as models that transmit images via email, could greatly enhance 318 

Trapper CS by removing the need for manual SD card retrieval. This functionality would support 319 
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an automated early warning system for threats like African swine fever or invasive species, 320 

triggering real-time alerts from AI detection. Such tools align with existing systems like Sentinel 321 

or AddaxAI (Conservation X Labs 2025; Hack the Planet 2025; Lunteren 2023) and align closely 322 

with Trapper CS's mission to provide timely and actionable insights, further supporting proactive 323 

wildlife management strategies. The Trapper team has already developed a system architecture for 324 

such functionality, making this a realistic direction for future development. 325 

Integrating deep learning models that extract ecological information from images would reduce 326 

reliance on manual annotation and strengthen monitoring workflows. While tools like 327 

MegaDetector provide coarse filtering (animals, vehicles, humans, blank; Beery et al., 2019), 328 

tasks, such as distance estimation, individual tracking or behaviour classification, remain 329 

underdeveloped or require field-based calibration or reference imagery (Haucke et al. 2022; 330 

Henrich et al. 2024; Johanns et al. 2022). Emerging methods using CNNs, Vision Transformers 331 

and Visual Language Models show promise (Dussert et al. 2024; Graving et al. 2019). Developing 332 

new workflows that automate downstream steps, such as density estimation via the Random 333 

Encounter Model or Camera Trap Distance Sampling (Howe et al. 2017; Rowcliffe et al. 2008), 334 

would further enhance analytical capacity. Embedding these capabilities into platforms like 335 

Trapper CS would enable end-to-end automation from raw data to ecological inference, thereby 336 

supporting more efficient and scalable wildlife management. 337 

Citizen scientists are increasingly seen as full partners in wildlife research, contributing beyond 338 

data collection to project design and interpretation (Hinojosa et al. 2021; Pandya 2012). This 339 

transition, inspired by platforms like iNaturalist, highlights the need for well-designed user 340 

interfaces, intuitive workflows and a strong understanding of user motivations. Sustaining 341 

engagement requires meaningful feedback, letting users interact with data and understand how it's 342 
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used. Studies stress the importance of feedback loops, visualisation tools and communication that 343 

is two-way and rewarding (Truong and van der Wal 2024; van der Wal et al. 2016; Zhou et al. 344 

2020). These findings suggest that future platforms should prioritise attractive and accessible 345 

visualisations of collected data and may also benefit from integrating light gamification elements, 346 

such as achievement badges or team-based challenges, to support user commitment and data 347 

quality. 348 

 Ensuring international data standards will also be critical to maintaining data quality and 349 

comparability as citizen scientists increasingly take on more independent roles in initiating and 350 

managing wildlife monitoring projects. Without consistent structures, integrating data across 351 

platforms and regions becomes difficult, limiting reuse and large-scale ecological analysis. 352 

Standardised data frameworks are essential to enable investigations of ecological questions across 353 

broad spatial scales, for example along latitudinal gradients, where coordinated analyses can reveal 354 

macroecological patterns and responses to environmental change. In this context, the development 355 

and adoption of the Camtrap DP represent a major step forward (Bubnicki et al. 2024). Camtrap 356 

DP provides a standardized, machine-readable format now used by platforms like Trapper and 357 

Agouti and supported by GBIF and the Atlas of Living Australia (Bruce et al. 2025; Reyserhove 358 

et al. 2023; Robertson et al. 2014). As these standards become widely adopted, they offer a 359 

concrete foundation for building interoperable and scalable systems that support both local 360 

engagement and global synthesis. Promoting their use within platforms like Trapper (CS) is not 361 

just a technical necessity, but essential for keeping data usable over time.  362 

Maintaining open-source software over time is a substantial challenge, particularly in academia 363 

where funding is short-term and project-based (Easterbrook 2014; Prlić and Procter 2012). While 364 

important work has been done to develop tools for wildlife monitoring, these efforts frequently 365 
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remain isolated, with each research group building its own platform or application. This 366 

fragmentation limits long-term sustainability, reproducibility and the broader impact of software 367 

tools. A shift toward collaborative development, seen in fields like bioinformatics (Cock et al. 368 

2009), could improve long-term impact by stabilizing codebases and pooling expertise. Without 369 

it, ecological tech risks duplication and inefficiency. 370 

5. Acknowledgment 371 

We thank the test users who provided valuable feedback on the Trapper CS platform during its 372 

development phase. Their insights helped improve the interface's usability and ensure its suitability 373 

for a broad range of users. 374 

6. Author contributions 375 

Author contributions are described using the CRediT taxonomy. Magali Frauendorf (MF), Jakub 376 

W. Bubnicki (JWB), Piotr Tynecki (PT), Filip Ånöstam (FÅ), Łukasz Wałejko (LW), Joris P. G. 377 

M. Cromsigt (PGMC), Fredrik Widemo (FW), and Tim R. Hofmeester (TRH) contributed to this 378 

work as follows: Conceptualization - MF, JWB, FÅ, TRH; Funding acquisition - FÅ, TRH, 379 

JPGMC, FW; Project administration – TRH, FÅ; Software – JWB, PT, LW; Validation – MF, FÅ, 380 

THR; Visualization – MF; Writing original draft – MF; Writing review editing – MF, JWB, PT, 381 

FÅ, LW, JPGMC, FW, THR.  382 

7. Conflict of interest statement 383 

None to declare. 384 



 
 
 

19 
 

8. References 385 

Adam, Matyáš, Pavel Tomášek, Jiří Lehejček, Jakub Trojan, and Tomáš Jůnek. 2021. ‘The Role 386 

of Citizen Science and Deep Learning in Camera Trapping’. Sustainability 13 (18): 18. 387 

https://doi.org/10.3390/su131810287. 388 

Ahumada, Jorge A, Eric Fegraus, Tanya Birch, et al. 2020. ‘Wildlife Insights: A Platform to 389 

Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the 390 

Planet’. Envir. Conserv. 47 (1): 1–6. https://doi.org/10.1017/S0376892919000298. 391 

Beery, Sara, Dan Morris, and Siyu Yang. 2019. ‘Efficient Pipeline for Camera Trap Image 392 

Review’. arXiv:1907.06772. Preprint, arXiv, July 15. http://arxiv.org/abs/1907.06772. 393 

Bruce, Tom, Zachary Amir, Benjamin L. Allen, et al. 2025. ‘Large-Scale and Long-Term 394 

Wildlife Research and Monitoring Using Camera Traps: A Continental Synthesis’. 395 

Biological Reviews 100 (2): 530–55. https://doi.org/10.1111/brv.13152. 396 

Bubnicki, Jakub W., Marcin Churski, and Dries P. J. Kuijper. 2016. ‘Trapper: An Open Source 397 

Web-Based Application to Manage Camera Trapping Projects’. Methods Ecol Evol 7 398 

(10): 1209–16. https://doi.org/10.1111/2041-210X.12571. 399 

Bubnicki, Jakub W., Ben Norton, Steven J. Baskauf, et al. 2024. ‘Camtrap DP: An Open 400 

Standard for the FAIR Exchange and Archiving of Camera Trap Data’. Remote Sens Ecol 401 

Conserv 10: 283–95. https://doi.org/10.1002/rse2.374. 402 

Burton, A. Cole, Christopher Beirne, Kaitlyn M. Gaynor, et al. 2024. ‘Mammal Responses to 403 

Global Changes in Human Activity Vary by Trophic Group and Landscape’. Nat Ecol 404 

Evol 8 (5): 924–35. https://doi.org/10.1038/s41559-024-02363-2. 405 



 
 
 

20 
 

Butchart, Stuart H. M., Matt Walpole, Ben Collen, et al. 2010. ‘Global Biodiversity: Indicators 406 

of Recent Declines’. Science 328 (5982): 1164–68. 407 

https://doi.org/10.1126/science.1187512. 408 

Chapron, Guillaume, Petra Kaczensky, John D. C. Linnell, et al. 2014. ‘Recovery of Large 409 

Carnivores in Europe’s Modern Human-Dominated Landscapes’. Science 346 (6216): 410 

1517–19. https://doi.org/10.1126/science.1257553. 411 

Cock, Peter J. A., Tiago Antao, Jeffrey T. Chang, et al. 2009. ‘Biopython: Freely Available 412 

Python Tools for Computational Molecular Biology and Bioinformatics’. Bioinformatics 413 

25 (11): 1422–23. https://doi.org/10.1093/bioinformatics/btp163. 414 

Conservation X Labs. 2025. ‘Sentinel’. Sentinel - AI for the Frontlines of the Biodiversity Crisis. 415 

https://sentinel.conservationxlabs.com/#What-is-sentinel. 416 

Cooper, Caren B., Chris L. Hawn, Lincoln R. Larson, et al. 2021. ‘Inclusion in Citizen Science: 417 

The Conundrum of Rebranding’. Science 372 (6549): 1386–88. 418 

https://doi.org/10.1126/science.abi6487. 419 

Cretois, Benjamin, John D. C. Linnell, Matthew Grainger, Erlend B. Nilsen, and Jan Ketil Rød. 420 

2020. ‘Hunters as Citizen Scientists: Contributions to Biodiversity Monitoring in 421 

Europe’. Glob. Ecol. Conserv. 23. https://doi.org/10.1016/j.gecco.2020.e01077. 422 

Delisle, Zackary J., Elizabeth A. Flaherty, Mackenzie R. Nobbe, Cole M. Wzientek, and Robert 423 

K. Swihart. 2021. ‘Next-Generation Camera Trapping: Systematic Review of Historic 424 

Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation’. 425 

Front. Ecol. Evol. 9 (February). https://doi.org/10.3389/fevo.2021.617996. 426 

Dussert, Gaspard, Vincent Miele, Colin Van Reeth, Anne Delestrade, Stéphane Dray, and Simon 427 

Chamaillé-Jammes. 2024. ‘Zero-Shot Animal Behavior Classification with Image-Text 428 



 
 
 

21 
 

Foundation Models’. New Results. bioRxiv, April 9, 2024.04.05.588078. 429 

https://doi.org/10.1101/2024.04.05.588078. 430 

Easterbrook, Steve M. 2014. ‘Open Code for Open Science?’ Nature Geosci 7 (11): 779–81. 431 

https://doi.org/10.1038/ngeo2283. 432 

ENETWILD Consortium, Y. Liefting, J. Casaer, P. Desmet, J.m. Rowcliffe, and P.a. Jansen. 433 

2022. ‘Update on the Development of the Agouti Platform for Collaborative Science with 434 

Camera Traps and a Tool for Wildlife Abundance Estimation’. EFSA Supporting 435 

Publications 19 (5): 7327E. https://doi.org/10.2903/sp.efsa.2022.EN-7327. 436 

Graving, Jacob M, Daniel Chae, Hemal Naik, et al. 2019. ‘DeepPoseKit, a Software Toolkit for 437 

Fast and Robust Animal Pose Estimation Using Deep Learning’. eLife 8 (October): 438 

e47994. https://doi.org/10.7554/eLife.47994. 439 

Green, Siân E., Jonathan P. Rees, Philip A. Stephens, Russell A. Hill, and Anthony J. Giordano. 440 

2020. ‘Innovations in Camera Trapping Technology and Approaches: The Integration of 441 

Citizen Science and Artificial Intelligence’. Animals 10 (1): 1. 442 

https://doi.org/10.3390/ani10010132. 443 

Green, Sian E., Philip A. Stephens, Mark J. Whittingham, and Russell A. Hill. 2023. ‘Camera 444 

Trapping with Photos and Videos: Implications for Ecology and Citizen Science’. Remote 445 

Sens Ecol Conserv 9 (2): 268–83. https://doi.org/10.1002/rse2.309. 446 

Hack the Planet. 2025. ‘AI Camera Trap - Hack The Planet’. https://www.hack-the-447 

planet.io/project/ai-camera-trap. 448 

Haucke, Timm, Hjalmar S. Kühl, Jacqueline Hoyer, and Volker Steinhage. 2022. ‘Overcoming 449 

the Distance Estimation Bottleneck in Estimating Animal Abundance with Camera 450 

Traps’. Ecol. Inform. 68 (May): 101536. https://doi.org/10.1016/j.ecoinf.2021.101536. 451 



 
 
 

22 
 

Henrich, Maik, Mercedes Burgueño, Jacqueline Hoyer, et al. 2024. ‘A Semi-Automated Camera 452 

Trap Distance Sampling Approach for Population Density Estimation’. Remote Sens Ecol 453 

Conserv 10: 156–71. https://doi.org/10.1002/rse2.362. 454 

Hinojosa, Leighanna, Robbin Riedy, Joseph Polman, Rebecca Swanson, Tiffany Nuessle, and 455 

Nicole Garneau. 2021. ‘Expanding Public Participation in Science Practices Beyond Data 456 

Collection’. Citiz. Sci.: Theory Pract. 6 (1). https://doi.org/10.5334/cstp.292. 457 

Hofmeester, Tim R., Sherry Young, Sonya Juthberg, et al. 2020. ‘Using By-Catch Data from 458 

Wildlife Surveys to Quantify Climatic Parameters and Timing of Phenology for Plants 459 

and Animals Using Camera Traps’. Remote Sens Ecol Conserv 6 (2): 129–40. 460 

https://doi.org/10.1002/rse2.136. 461 

Howe, Eric J., Stephen T. Buckland, Marie-Lyne Després-Einspenner, and Hjalmar S. Kühl. 462 

2017. ‘Distance Sampling with Camera Traps’. Methods in Ecology and Evolution 8 (11): 463 

1558–65. https://doi.org/10.1111/2041-210X.12790. 464 

Hsing, Pen-Yuan, Russell A. Hill, Graham C. Smith, et al. 2022. ‘Large-Scale Mammal 465 

Monitoring: The Potential of a Citizen Science Camera-Trapping Project in the United 466 

Kingdom’. Ecol. Solut. Evid. 3 (4): e12180. https://doi.org/10.1002/2688-8319.12180. 467 

Jansen, Martin, Maya Beukes, Claus Weiland, et al. 2024. ‘Engaging Citizen Scientists in 468 

Biodiversity Monitoring: Insights from the WildLIVE! Project’. Citiz. Sci.: Theory Pract. 469 

9 (1). https://doi.org/10.5334/cstp.665. 470 

Jiguet, Frédéric, Anne-Sophie Gadot, Romain Julliard, Stuart E. Newson, and Denis Couvet. 471 

2007. ‘Climate Envelope, Life History Traits and the Resilience of Birds Facing Global 472 

Change’. Glob Chang Biol 13 (8): 1672–84. https://doi.org/10.1111/j.1365-473 

2486.2007.01386.x. 474 



 
 
 

23 
 

Johanns, Peter, Timm Haucke, and Volker Steinhage. 2022. ‘Automated Distance Estimation for 475 

Wildlife Camera Trapping’. Ecol Inform 70 (September): 101734. 476 

https://doi.org/10.1016/j.ecoinf.2022.101734. 477 

Lasky, Monica, Arielle W. Parsons, Stephanie G. Schuttler, George Hess, et al. 2021. ‘Carolina 478 

Critters: A Collection of Camera-Trap Data from Wildlife Surveys across North 479 

Carolina’. Ecology 102 (7): e03372. https://doi.org/10.1002/ecy.3372. 480 

Lasky, Monica, Arielle W. Parsons, Stephanie G. Schuttler, Alexandra Mash, et al. 2021. 481 

‘Candid Critters: Challenges and Solutions in a Large-Scale Citizen Science Camera Trap 482 

Project’. Citizen Science: Theory and Practice 6 (1). https://doi.org/10.5334/cstp.343. 483 

Linnell, John D. C., Benjamin Cretois, Erlend B. Nilsen, et al. 2020. ‘The Challenges and 484 

Opportunities of Coexisting with Wild Ungulates in the Human-Dominated Landscapes 485 

of Europe’s Anthropocene’. Biol. Conserv. 244 (April): 108500. 486 

https://doi.org/10.1016/j.biocon.2020.108500. 487 

Lunteren, Peter van. 2023. ‘AddaxAI: A No-Code Platform to Train and Deploy Custom 488 

YOLOv5 Object Detection Models’. J. Open Source Softw. 8 (88): 5581. 489 

https://doi.org/10.21105/joss.05581. 490 

McShea, William J., Tavis Forrester, Robert Costello, Zhihai He, and Roland Kays. 2016. 491 

‘Volunteer-Run Cameras as Distributed Sensors for Macrosystem Mammal Research’. 492 

Landscape Ecol 31 (1): 55–66. https://doi.org/10.1007/s10980-015-0262-9. 493 

Norouzzadeh, Mohammad Sadegh, Anh Nguyen, Margaret Kosmala, et al. 2018. ‘Automatically 494 

Identifying, Counting, and Describing Wild Animals in Camera-Trap Images with Deep 495 

Learning’. PNAS 115 (25): E5716–25. https://doi.org/10.1073/pnas.1719367115. 496 



 
 
 

24 
 

O’Brien, Timothy G., and Margaret F. Kinnaird. 2013. ‘The Wildlife Picture Index: A 497 

Biodiversity Indicator for Top Trophic Levels’. In Biodiversity Monitoring and 498 

Conservation, 1st ed., edited by Ben Collen, Nathalie Pettorelli, Jonathan E. M. Baillie, 499 

and Sarah M. Durant. Wiley. https://doi.org/10.1002/9781118490747.ch3. 500 

O’Connell, Allan F., James D. Nichols, and K. Ullas Karanth, eds. 2011. Camera Traps in 501 

Animal Ecology - Methods and Analyses. Springer. https://doi.org/10.1007/978-4-431-502 

99495-4. 503 

Pandya, Rajul E. 2012. ‘A Framework for Engaging Diverse Communities in Citizen Science in 504 

the US’. Front. Ecol. Environ. 10 (6): 314–17. https://doi.org/10.1890/120007. 505 

Parsons, Arielle Waldstein, Christine Goforth, Robert Costello, and Roland Kays. 2018. ‘The 506 

Value of Citizen Science for Ecological Monitoring of Mammals’. PeerJ 6 (March): 507 

e4536. https://doi.org/10.7717/peerj.4536. 508 

Prlić, Andreas, and James B. Procter. 2012. ‘Ten Simple Rules for the Open Development of 509 

Scientific Software’. PLOS Comput. Biol. 8 (12): e1002802. 510 

https://doi.org/10.1371/journal.pcbi.1002802. 511 

Reyserhove, Lien, Ben Norton, and Peter Desmet. 2023. ‘Best Practices for Managing and 512 

Publishing Camera Trap Data’. With Tanja Milotic and Pieter Huybrechts. GBIF 513 

Secretariat. https://docs.gbif.org/camera-trap-guide/en/. 514 

Robertson, Tim, Markus Döring, Robert Guralnick, et al. 2014. ‘The GBIF Integrated Publishing 515 

Toolkit: Facilitating the Efficient Publishing of Biodiversity Data on the Internet’. PLOS 516 

ONE 9 (8): e102623. https://doi.org/10.1371/journal.pone.0102623. 517 



 
 
 

25 
 

Roman, Joe, Meagan M. Dunphy-Daly, David W. Johnston, and Andrew J. Read. 2015. ‘Lifting 518 

Baselines to Address the Consequences of Conservation Success’. Trends Ecol. Evol. 30 519 

(6): 299–302. https://doi.org/10.1016/j.tree.2015.04.003. 520 

Rooney, Brigit, Roland Kays, Michael V. Cove, et al. 2025. ‘SNAPSHOT USA 2019–2023: The 521 

First Five Years of Data From a Coordinated Camera Trap Survey of the United States’. 522 

Glob. Ecol. Biogeogr. 34 (1): e13941. https://doi.org/10.1111/geb.13941. 523 

Rowcliffe, J. Marcus, Juliet Field, Samuel T. Turvey, and Chris Carbone. 2008. ‘Estimating 524 

Animal Density Using Camera Traps without the Need for Individual Recognition’. J. 525 

Appl. Ecol. 45 (4): 1228–36. https://doi.org/10.1111/j.1365-2664.2008.01473.x. 526 

Sandifer, Paul A., Ariana E. Sutton-Grier, and Bethney P. Ward. 2015. ‘Exploring Connections 527 

among Nature, Biodiversity, Ecosystem Services, and Human Health and Well-Being: 528 

Opportunities to Enhance Health and Biodiversity Conservation’. Ecosyst. Serv. 12 529 

(April): 1–15. https://doi.org/10.1016/j.ecoser.2014.12.007. 530 

Steenweg, Robin, Mark Hebblewhite, Roland Kays, et al. 2017. ‘Scaling-up Camera Traps: 531 

Monitoring the Planet’s Biodiversity with Networks of Remote Sensors’. Front Ecol 532 

Environ 15 (1): 26–34. https://doi.org/10.1002/fee.1448. 533 

Stephens, Philip A., Nathalie Pettorelli, Jos Barlow, Mark J. Whittingham, and Marc W. Cadotte. 534 

2015. ‘Management by Proxy? The Use of Indices in Applied Ecology’. J. Appl. Ecol. 52 535 

(1): 1–6. https://doi.org/10.1111/1365-2664.12383. 536 

Swanson, Alexandra, Margaret Kosmala, Chris Lintott, Robert Simpson, Arfon Smith, and Craig 537 

Packer. 2015. ‘Snapshot Serengeti, High-Frequency Annotated Camera Trap Images of 538 

40 Mammalian Species in an African Savanna’. Sci Data 2 (1): 150026. 539 

https://doi.org/10.1038/sdata.2015.26. 540 



 
 
 

26 
 

Townsend, C. R., M. Begon, and J. L. Harper. 2008. Essentials of Ecology. 3rd ed. Blackwell 541 

Publishing. 542 

Truong, Minh-Xuan A, and René van der Wal. 2024. ‘Exploring the Landscape of Automated 543 

Species Identification Apps: Development, Promise, and User Appraisal’. BioScience 74 544 

(9): 601–13. https://doi.org/10.1093/biosci/biae077. 545 

Urbano, Ferdinando, Francesca Cagnacci, and Euromammals Collaborative Initiative. 2021. 546 

‘Data Management and Sharing for Collaborative Science: Lessons Learnt From the 547 

Euromammals Initiative’. Front. Ecol. Evol. 9 (September). 548 

https://doi.org/10.3389/fevo.2021.727023. 549 

Veldhuis, Michiel P., Tim R. Hofmeester, Guy Balme, Dave J. Druce, Ross T. Pitman, and Joris 550 

P. G. M. Cromsigt. 2020. ‘Predation Risk Constrains Herbivores’ Adaptive Capacity to 551 

Warming’. Nat Ecol Evol 4 (8): 8. https://doi.org/10.1038/s41559-020-1218-2. 552 

Wal, René van der, Nirwan Sharma, Chris Mellish, Annie Robinson, and Advaith Siddharthan. 553 

2016. ‘The role of automated feedback in training and retaining biological recorders for 554 

citizen science’. Biol. Conserv. 30 (3): 550–61. https://doi.org/10.1111/cobi.12705. 555 

Wearn, Oliver R., and Paul Glover-Kapfer. 2019. ‘Snap Happy: Camera Traps Are an Effective 556 

Sampling Tool When Compared with Alternative Methods’. R. Soc. Open Sci. 6 (3). 557 

world. https://doi.org/10.1098/rsos.181748. 558 

Weinstein, Ben G. 2018. ‘A Computer Vision for Animal Ecology’. J Anim Ecol 87 (3): 533–45. 559 

https://doi.org/10.1111/1365-2656.12780. 560 

WildEye. 2025. ‘TrapTagger’. https://wildeyeconservation.org/traptagger/. 561 

WildID. 2021. ‘WildID’. https://userguide.wildid.app/welcome.html. 562 



 
 
 

27 
 

Willi, Marco, Ross T. Pitman, Anabelle W. Cardoso, et al. 2019. ‘Identifying Animal Species in 563 

Camera Trap Images Using Deep Learning and Citizen Science’. Methods Ecol Evol 10 564 

(1): 80–91. https://doi.org/10.1111/2041-210X.13099. 565 

Zampetti, Andrea, Davide Mirante, Pablo Palencia, and Luca Santini. 2024. ‘Towards an 566 

Automated Protocol for Wildlife Density Estimation Using Camera-Traps’. Methods 567 

Ecol. Evol. 15 (12): 2276–88. https://doi.org/10.1111/2041-210X.14450. 568 

Zhou, Xinxue, Jian Tang, Yuxiang (Chris) Zhao, and Tianmei Wang. 2020. ‘Effects of Feedback 569 

Design and Dispositional Goal Orientations on Volunteer Performance in Citizen Science 570 

Projects’. Computers in Human Behavior 107 (June): 106266. 571 

https://doi.org/10.1016/j.chb.2020.106266. 572 

9. Figure captions 573 

Figure 1: Overview of the barriers limiting use of camera trap data in combination with citizen 574 

science and the proposed solutions. Icons used in this figure were sourced from The Noun 575 

Project (licensed version). 576 

Figure 2: Key factors enhancing wildlife monitoring and management through Trapper CS. Icons 577 

used in this figure were sourced from The Noun Project (licensed version). 578 

Figure 3: Overview of the main components and functionalities of Trapper CS. Icons used in this 579 

figure were sourced from The Noun Project (licensed version).580 



 
 
 

28 
 

10. Figures 581 

Figure 1 582 

 583 



 
 
 

29 
 

Figure 2 584 

 585 



 
 
 

30 
 

Figure 3 586 

 587 

 588 

11. Supporting Information 589 

Appendix S1: Technical details 590 

Appendix S2: User interface and functional features of the Trapper Citizen Science platform 591 


