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Abstract

Animal social network analysis has become central to behavioural ecology, offering powerful

tools to explore the links between social behaviour and ecological or evolutionary processes.

While rooted in the broader field of social network analysis, the methods used in animal stud-

ies have diverged from contemporary practices in the broader field. This divergence has led to5

conflicting guidance on best practices and in confusion among behavioural ecologists on how

to analyse animal network data. Here, we identify and resolve five key misunderstandings in an-

imal social network analysis. We start by tracing a brief history of the field. We then define each

misunderstanding, discuss the flaws in the methodology that they are premised on, and out-

line their consequences for scientific inference. Finally, we examine how these issues might be10

overcome by using models that reflect the generative mechanisms that underlay the structural

features of social network data—building upon tools and ideas from the wider social networks

literature. Our goal is to help bridge the gap between behavioural ecologists and the broader

social network analysis community, encouraging methodological realignment and facilitating

fundamental advances in how we understand the ecological and evolutionary foundations of15

animal social behaviour.
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Introduction

Social network analysis (SNA) is an approach within the behavioural sciences that encompasses

theoretical models and analytical tools centred on the study of groups, and the relations be-

tween units (e.g., individuals) within these groups (Wasserman & Faust, 1994). Emerging from40

advances around the 1930s in sociology, physics, and graph theory (e.g., Moreno, 1934), net-

work analysis is used today in multiple areas of academic inquiry, from studies of food webs

(Dunne et al., 2002) to brain connectivity (Bassett & Sporns, 2017), and from studies of work-

place dynamics (Kilduff & Brass, 2010) to online behaviour (Falkenberg et al., 2024)—the lat-

ter being examples of “social network analysis” (Hidalgo, 2016). The use of social network45

analysis has now become widespread in ecology and evolution. This has, for example, allowed

behavioural ecologists to examine the fitness benefits related to different types of sociality (e.g.,
Formica et al., 2012), to identify the routes through which cooperation is maintained within

and between populations (e.g., Samuni & Surbeck, 2023) and how the structure of such coop-

eration networks produces social and material inequalities (Redhead, 2024), and to determine50

the social strategies of individuals in the face of ecological upheaval (e.g., Testard et al., 2024),

across a broad range of taxa.

Animal social network analysis (ASNA) often uses “centrality” metrics to quantify an individ-

ual’s position within their social system, ratio indexes (e.g., Simple Ratio Index, Dyadic Social-

ity Index) to quantify dyadic structure, and permutation tests to assess statistical significance.55

These methodological traditions and practices set ASNA apart from the broader field of SNA,

which now largely focuses on the development and application of statistical models that di-

rectly, i.e., parametrically, estimate the structural features of social networks. We will refer to

such statistical models as generative network models throughout the manuscript. Here, the use

of the word generative reflects the ability of these statistical models to generate predictions (or60

pseudo-data) about a group or population from parameters that instantiate theoretical assump-

tions or constraints about the individuals that are situated within a network (see Epstein, 2012;

Kandler & Powell, 2018; Steglich & Snijders, 2022, for detailed outlines and approaches from

relevant fields). Such generative models can make explicit how measurement error, reporting

biases, sampling bias, and censoring affect the data that are ultimately recorded by practising65

scientists (e.g., Redhead et al., 2023b; Sosa et al., 2025), which permits researchers to make

scientific inferences that account for such factors.

In recent years, numerous studies have commented on the limitations of common statistical

practices in the field of ASNA, highlighting the need for methodological innovation in how

animal network data are analysed. Here, we identify five key misunderstandings in ASNA that70

underlie these methodological limitations. We first provide a brief history of ASNA, and struc-

ture our following sections by defining each misunderstanding—where each section title di-

rectly refers to the misunderstanding. We provide clarity on the inferential pitfalls of common

approaches, and review extant solutions to these analytical issues that exist in the wider social

networks literature—our subsection titles refer to these contributions. In doing this, we aim to75

help re-integrate ASNA into the broader field. Additionally, we aim to motivate important de-

velopments in statistical models for animal social networks, which will fundamentally advance

our ability to understand the structure of animal societies.

A brief history of animal social network analysis

Researchers studying behaviour in non-human animals first turned their attention to social80

network analysis (then typically referred to as “sociometry”) in the 1940s. In 1945, the prima-

tologist Charles Ray Carpenter stated that “Sociometric techniques are suggested as one means of
measuring changes that result from social conditioning and learning” (Carpenter, 1945, p. 61).

Carpenter was an early proponent of the study of the social behaviour of animals, founding one
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of behavioural ecology’s longest-running field stations in the world, Cayo Santiago (Clutton-85

Brock, 2016). It is perhaps no surprise that some of the first researchers to adopt ASNA had

ties to this Caribbean field station. In the 1970s and 80s, Donald Sade and Diane Chepko-

Sade published a series of papers on the social networks of the Cayo Santiago rhesus macaques

(Sade, 1972; Sade, 1989), including the quantification of grooming clusters in a group before

it fissioned (Chepko-Sade et al., 1989). E.O. Wilson, who was sat on Cayo Santiago when he90

had the eureka moment leading to his foundational 2000 book, Sociobiology, also promoted a

network approach to compare and contrast the structure of animal societies.

Around the same time of Sociobiology’s publication, the zoologist Robert Hinde published

a conceptual framework to consolidate the growing number of findings on animal societies

into a holistic theory (Hinde, 1976). Hinde’s framework posited that relationships between95

individuals emerge from the patterning of their interactions, and social structure emerges from

the patterning of relationships, with feedback loops existing between the three levels (Brent et

al., 2011; Hinde, 1976). Referencing the Sades, and work on human social networks, Hinde’s

framework sat squarely within the sociometric approaches that were applied by his contempo-

raries to the study of human and non-human animals.100

Although prominent early animal behaviour researchers, such as Tinbergen and Allee, wrote

about relations between actors and receivers (Allee, 1931; Tinbergen, 1939), early examples of

animal research that used social network analysis come from non-human primates. The so-

cial networks of non-human primates were quantified extensively in the 1970s-1990s, includ-

ing work on sex differences in the social behaviour of bonnet macaque monkeys (Simonds,105

1974), the social integration of high-ranking compared to low-ranking female baboons (Sey-

farth, 1976), and on the strength of weak ties in chimpanzees and gorillas (Maryanski, 1987).

It was after the turn of the 21st
century when studies of other types of animals began to adopt

social network analysis en masse (e.g., Krause et al., 2009; Wey et al., 2008; Whitehead, 2008).

Proffered reasons why social network research on other animals was not widely adopted sooner110

include limited computational power, and the perception of a lack of network descriptors deem-

ed “meaningful” to the study of animal behaviour (Krause et al., 2007; Whitehead, 2008).

Along with social network analysis’s increasing popularity in animal research, came regular use

of terms like “new” and “novel” to describe the approach. These descriptions are misleading,

as social networks have been fundamental in the study of behavioural ecology for over 40 years115

(Brent et al., 2011).

At the same time as the broadening taxonomic interest in ASNA came an increasing shift in the

methodological approaches being applied in ASNA and SNA. During this time, researchers

working in SNA began to increasingly develop and apply generative models to social network

data (e.g., Anderson et al., 1999; Snijders, 1996; Van Duijn et al., 2004), while ASNA remained120

focused on the computation of network metrics, permutation tests and the development of

solutions to sampling problems that were somewhat unique to the field (Whitehead, 2008).

This divergence might have been caused by a number of factors. First, behavioural ecologists

who first adopted a network approach were housed in anthropology, psychology, or sociology

departments because of their focus on non-human primates. The growing number of ecol-125

ogists studying non-primate social networks were housed in biology, ecology, and evolution

departments, and were less connected to human behavioural sciences, and therefore with the

methodological advances in the broader field of SNA (Brent et al., 2011; Haraway, 2023). The

divergence may further be explained by differences in the data that are collected when studying

the sociality of humans (e.g., through self-reports during surveys; De Bacco et al., 2023) com-130

pared to other animals (e.g., focal sampling protocols, biologgers). Such data types are typically

directly reflected in the statistical software used by analysts, meaning that the behavioural data

collected by animal behavioural ecologists was often incompatible with the software developed

in SNA. Regardless of its causes, the divide between SNA and ASNA has persisted, and even
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grown, to this day.135

Current practices in animal social network analysis

Today, ASNA is often associated with a set of specific methodological practices, which consist

of the following steps. First, researchers construct a social network from behavioural data—

typically either by following certain individuals and observing their behavioural interactions

(i.e., ‘focal follows’) or through observations of spatial or behavioural association between indi-140

viduals in a certain physical space (e.g., scan sampling, ‘gambit of the group’). Second, the net-

work is constructed by computing an adjacency- or socio-matrix, whose entries are obtained by

aggregating behavioural data collected over a given period of time into a number, quantifying

the social aspect of interest. If individual animals were not sampled equally (e.g., if some focal

individuals were observed more frequently than others), researchers may then, subsequently,145

divide the chosen social quantity by a measure of sampling effort, by computing a Simple Ratio

Index (SRI) or related measure, in an attempt to control for sampling imbalance (Whitehead,

1999; Whitehead, 2008). The typical methods used by behavioural ecologists subsequently

derive social network metrics from the adjacency matrix, which may describe individual-level

features (e.g., strength, degree, eigenvector centrality) or network-level properties (e.g., network150

density). Variation in these metrics is finally explained—usually through Null Hypothesis Sig-

nificance Testing—using permutation procedures and/or standard multiple regression (Farine,

2017).

Although these methods are widely used in the field of behavioural ecology (e.g., Earl et al.,

2025; Samuni & Surbeck, 2023), they have received growing critical attention in recent years155

from applied statisticians and social network analysts. One major issue is that these methods

assume that the social network of interest is directly observed (we will return to this point later).

Moreover, the biological processes that generate the social network data are often implicit in the

formal analysis, if not outright ignored. The only consistent focus on the actual process gener-

ating the data is through the tangential concept of dependent, or non-independent, social net-160

work data. However, such dependencies seem to create considerable confusion and are rarely

treated formally. Researchers using multiple regressions to study the causes or consequences of

social network structure rarely justify their statistical models using transparent causal assump-

tions about the process that generated the data. In addition, behavioural ecologists continue to

use permutation procedures (Farine, 2017). Although these tools were once popular in SNA165

in the 1980s (Krackhardt, 1988), they were critiqued on logical grounds shortly after their in-

troduction (Krackhardt, 1992), and have now largely been phased out outside of animal SNA

due to their limitations (e.g., Anderson & Robinson, 2001).

The statistical approaches often used in ASNA stand in contrast to contemporary methods in

the rest of SNA. Generally speaking, models and methods in contemporary SNA have switched170

to estimating the structure of social networks explicitly. They directly incorporate theoretically-

relevant social dependencies by including relevant parameters in the model (Robins et al., 2007a,

2007b; Snijders, 2017) or by specifying random-effects structures (Hart et al., 2023; Hoff et al.,

2002; Pillinger et al., 2024; Ross et al., 2023; Snijders & Kenny, 1999; Van Duijn et al., 2004).

These generative network models are rarely, if ever, applied in ANSA. Hesitance to apply such175

models remains no only due to a lack of awareness about these methodological developments

in SNA, but is in large-part a consequence of several misunderstanding about how to analyse

social interaction data. Here, we aim to clarify a number of these misunderstandings, and pro-

mote awareness of the methodological innovations made in SNA, bridging the gap between the

two disciplines.180
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Misunderstanding 1: “Dependencies as a nuisance”

Social network data are known to be highly inter-dependent. In SNA, like in the rest of applied

statistics, “dependent” simply means “statistically associated.” A pair of random variables is

dependent if knowing the value of one of them informs us about the value of the other. Sta-

tistical dependency is neither surprising nor unique to social network data: strong patterns of185

statistical associations are ubiquitous in nature.

A kind of dependency that has received a lot of attention in ASNA is the violation of a com-

mon statistical assumption: that data are independently and identically distributed (iid). This

assumption essentially states that observations were sampled at random from the stochastic

data-generating process implied by a statistical model (Lambert, 2018).
1

Social network data190

often violates the iid assumption baked into standard statistical models. This could be the case

if some individuals have propensities (e.g., like aggressiveness) that introduce correlations in be-

havioural outcomes (e.g., increasing the aggressiveness of individuals a increases the probability

of observing fighting events, yab, for all b), or if the network connections in one direction (the

edges yab) correlate with those in the opposite direction (yba, e.g., if there may be some form195

of reciprocity). When models that assume iid data are applied to data with dependencies, this

can lead to biased parameter estimates (Kenny & Judd, 1986; Robinson, 1955) and to incorrect

p-values (Anderson & Robinson, 2001). As a consequence, dependencies in animal social net-

work data have generally been perceived as a nuisance that needs to be, in one way or another,

eliminated (e.g., Farine, 2017; Farine & Whitehead, 2015).200

The problem with treating dependencies as a nuisance only is that dependencies in social net-

work data partly result from the biological phenomena of interest. For instance, the objective

of a study might be to investigate whether animals reciprocate behaviours in a population or to

estimate how variation in an individual-level factor (e.g., aggressiveness) affects social network

structure. Such processes create specific patterns of correlation in social network data, which205

are precisely what one attempts to capture and must not be controlled away (Hart et al., 2022,

2023; Pearl et al., 2016). This situation—where dependencies bear the dual status of statisti-

cal threat and target of biological inference—has generated confusion about how to properly

analyse animal social network data.

To solve this apparent conflict, it is useful to focus on two essential aspects of most social net-210

work analyses: (i) the target quantity of interest, the estimand, and (ii) the data-generating
process.

The estimand is the quantitative goal of an analysis—a theoretical quantity, often causal, that is

defined outside of any specific statistical model (Lundberg et al., 2021). Examples of estimands

are: the average causal effect of a phenotypic trait on the propensity of individuals to direct215

interactions toward others, the direct effect of gregariousness (controlling for a set of mediators)

on survival, or the causal effect of dyadic reciprocity (a dynamic process) on the pattern of

interactions observed in a cross-sectional sample. In any case, it is crucial to clearly define the

estimand when conducting an analysis of the causes or consequences of social structure, and to

1
For example, consider the following statistical model:

yab
iid∼ Poisson(λab = exp(α+ β ·Xab)).

The variable yab refers to the number of observed social interactions, y, given by individuals, a, to other individuals,

b. The

iid∼ symbol means: “is independently and identically distributed from.” λab is the mean rate of interactions

from a to b. It is described by a linear model that has been exponentiated to ensure that λab remains positive. α is the

intercept, and β is a slope describing the association between the log of λab and the dyad-level covariate Xab. The

equation in this simple example implies that the variation in social network data yab is explained by two factors: the

association with Xab, and the stochastic variation described by a Poisson distribution (Blitzstein & Hwang, 2019).

Any additional source of variation would result in a violation of the iid assumption.
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state it transparently when communicating it to the rest of the community (Grosz et al., 2020;220

Kawam et al., 2024; McElreath, 2020).

To produce a statistical estimate for the estimand, one needs to stipulate a model for the causal

process generating social network data. This model should instantiate assumptions about the

sampling and measurement on the one hand, and biological phenomena on the other. A data-

generating process implies a specific set of statistical dependencies—which can be thought of as225

symptoms of the underlying causal structure. In Figure 1A-E, we illustrate a number of simple

causal structures for social network data using causal diagrams, and show some of the depen-

dencies that they imply.
2

In addition, we have translated these causal diagrams into generative

simulations to illustrate how they create the association patterns shown in Figure 1—the sim-

ulation code can be found on our GitHub repository.230

Figure 1 highlights the lack of a one-to-one relationship between observable dependencies and

underlying causal structures. For instance, the causal diagrams in panels A, B, C, and D, all

imply an association between yab and yba. Now, suppose that we were interested in studying

dyadic reciprocity in a given population of animals. One may think that we can simply cap-

ture this process through the statistical relationship between yab and yba. However, we might235

observe a positive correlation between yab and yba even in the absence of dyadic reciprocity,

recalling that correlation does not imply causation. This could result from the sampling regime

(Figure 1A), or be because of individual-level features like age (Figure 1B). We might also ob-

serve a lack of association between yab and yba in the presence of reciprocity (causation does
not imply correlation), if dominance rank counteracts its effect—e.g., if we were to combine the240

causal structures of Figure 1C and 1D.

To deal with such potential confounding effects, researchers are required to combine the two

ingredients above—the estimand and causal assumptions about the data-generating process—

to build a custom-designed statistical model, whose role is to produce a statistical estimate for

the target estimand (Kawam et al., 2024; McElreath, 2020; Pearl et al., 2016). In the simplest245

case, it might be a standard regression, but it can often be more complex and specific. Fortu-

nately, social network data-generating processes share common characteristics across many data

sets, and the generative network models that have been developed in the field can be used as a

starting point for new analyses (Rawlings et al., 2023; Snijders, 2011). For instance, the Social

Relations Model is a statistical model for dyadic interactions, both directed and undirected,250

that estimates the true dyadic interaction rates from noisy data, and models the unobserved

causes at both the individual and dyadic levels (Kawam et al., 2024; McElreath, 2020; Red-

head et al., 2023b; Ross et al., 2023). Another example is the Stochastic Blockmodel, which

allows researchers to estimate the causal effects of categorical variables like kin groups, or the

combination of sexes and age classes, on dyadic interactions (Jang et al., 2024; Redhead et al.,255

2023a).

2
We have not included statistical dependencies that result from the aggregation of data. For instance, it is common

for researchers to compute node degree from binary edge data, before subsequently decomposing the variation in node

degree as functions of explanatory variables (Farine & Whitehead, 2015). Doing this—i.e. constructing individual-level

indices from dyad-level observations—creates dependencies between individual-level measures. We generally recom-

mend against using such indices as outcomes or predictors of statistical models, as doing so obscures the differential lev-

els of uncertainty that we might have due to sampling variation, and the resulting model will not appropriately account

for the dependencies in the data. Instead, we encourage researchers to model the data prior to its aggregation—analysts

who are interested in studying the causes of individual-level variation with binary data might, for instance, model edge

formation using a binomial model that estimates individual-level sender and receiver parameters using a varying-effect

structure (Ross et al., 2023).
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Figure 1– Five causal processes generating social network data, and the statistical dependencies that they create. Throughout the five panels, causal processes are

represented on the left using causal diagrams, and the resulting associations are shown on the right with idealised data (see our GitHub repository for simulated

data). As shown by the legend at the bottom, the variablesa and b are identifiers, which can take values 1 toN , whereN is the number of individuals in a social

group. Thus, variables that are indexed by a or b will take on the value that corresponds to the respective individuals, or dyad. For instance, yab represents

the variable {y1,2, y1,3, . . . }, where y1,2 is a measurement (e.g. a count) of social interactions (e.g. grooming, aggression) from individual 1 to individual

2. Similarly, yba represents {y2,1, y3,1, . . . }. Xa corresponds to the variable {X1, X2, . . . , XN}. Xb represents the variable {X1, X2, . . . , XN} as well,

but for the other individuals across dyads (see example with N = 3 at the bottom of the figure). We denote symmetric dyad-level variables using vertical bars

(S|ab| = S|ba|), and directed dyad-level variables without vertical bars (yab ̸= yba). A.The individual-level sampling effort Sa and Sb (e.g., number of hours

an individual has been observed during focal protocols) determine the dyad-level sampling effort S|ab| (e.g., number of hours the dyad has been observed).

In turn, S|ab| affects whether interactions are observed or not, i.e. it causes the observations yab and yba. The scatterplot shows an association between yab
and yba resulting from their common cause, S|ab|, forming an open path between them on the causal graph. B. On the top left of the panel, we represent

an individual-level feature X affecting how many interactions animals give to others (Xa → yab and Xb → yba), and how many interactions they receive

from others (Xa → yba and Xb → yab). X might, for instance, represent age if older individuals tend to withdraw from social activity, and thus, give and

receive fewer interactions. The resulting open paths between yab and yba create an association between them, as shown on the scatterplot on the top-right

of the panel. At the bottom left, we decompose the arrow going from Xa to yab. We show how Xa affects ya,1 to ya,N , where a ̸= b. It implies, for

instance, that X1 affects y1,2, y1,3, y1,4, etc.; that X2 affects y2,1, y2,3, y2,4, and so on. This diagram shows that the variables ya,1 to ya,N are influenced

by a common cause Xa, and thus, we know that these variables should be associated. In other words, an individual (a) should show some level of “stability,”

or “consistency” in how it interacts with other individuals (b). We represent this stability across individuals at the bottom-right panel of the panel, for three

individuals a (coloured lines and points), and for four individuals b (x-axis). See the next page for the rest of the caption.
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Figure 1 – Continued: C. The dominance rank of a (Ra) and the rank of b (Rb) together determine the difference in rank between them (∆R|ab| =
Rb−Ra). In turn, this dyad-level feature affects the observed interactionsyab andyba—suppose, for instance, that individual monkeys groom their dominants

more than their subordinates. The open path between yab and yba creates an association between them, as shown on the right of the panel. Note that from

the graph alone, we can read that yab and yba should be associated, but not whether this association should be positive or negative. D. The number of

interactions that a gives to b at time t is affected by how b interacted with a at time t− 1, yba(t− 1), because of reciprocity; and by yab(t− 1) because the

directed ties have some level of stability—and inversely for yba(t). Thus, at a given time unit t, there are two open paths between yab and yba: yab(t) ←
yab(t − 1) → yba(t), and yab(t) ← yba(t − 1) → yba(t), causing the association represented on the right-hand side. E. Consider all triads (a, b, c) in

a social network whose dyadic edges are non-directed and binary (y|a,b|, y|a,c|, y|b,c| ∈ {0, 1}). Suppose that if two of the three possible edges in a triad

exist at time t − 1, these two edges increase the probability that a third edge is formed at time t (e.g., y|bc|(t) = 1): “friends of friends become friends”—a

phenomenon known as triadic closure. This causal process gives rise to several dependency patterns, including the following: at any point in time t, if we know

that k(t) = y|ab|(t) · y|bc|(t) = 1, it is likely that the triad’s third edge exists as well: y|bc|(t) = 1. This pattern of dependence, shown on the right-hand

side, can be read from the causal diagram, since there are direct paths between k(t) and y|bc|(t) = 1.

Misunderstanding 2: “Statistical models for social network
structure require evenly sampled data”

As we have highlighted above (e.g., in Figure 1A), it is common for individuals and dyads to be

sampled unevenly in animal social network studies—in fact, it is probably the norm. Whether260

behaviour is recorded using continuous-time (e.g., focal sampling) or discrete-time sampling

procedures (e.g., scan sampling, gambit of the group), some individuals will generally be ob-

served more than others. As a consequence, the observed ties between animals are often unin-

terpretable without factoring in sampling effort, and thus, unadjusted downstream statistical

estimates can be noisy or confounded (Farine, 2017; Sosa et al., 2025).265

It has been argued in ASNA that statistical models for social network structure, as opposed to

permutation approaches, require that all study animals and dyads are evenly sampled (Farine,

2024). This is fortunately untrue. Statistical models designed in light of the social network

data-generating process can integrate variation in sampling effort—and, crucially, they can do

so while maintaining the associated levels of inferential uncertainty. In contrast, index variables270

like the Simple Ratio Index, the Interaction Index, or the Composite Dyadic Sociality Index

(CSI/DSI) divide out sample size in sampling effort and give sparsely-observed data-points dis-

proportionate leverage (see Hart et al., 2023; Sosa et al., 2025).

In Figure 2, we illustrate how we can think about sampling effort as an integral part of the

social network data-generating process. Imagine a hypothetical population of animals, where275

an individual-level trait,Xa, affects how many interactions an animal,a, gives to its conspecifics

(i.e., higher yab across partners b). Additionally, a high value for Xa leads a to be sampled

more frequently (i.e., higher dyad-level sampling effort, S|ab|). Suppose further that we wish

to estimate the causal effect of Xa on yab across dyads (a, b). From the structure of the causal

graph, we see that the estimate for the effect of interest will be biased if sampling effort is not280

accounted for (Figure 2A; for an introduction to Directed Acyclic Graphs, see Pearl et al., 2016).

Indeed, if individuals with high values of X are observed to interact a lot—that is, to have high

values of y—, it might not be due to a biological effect, but instead because individuals with

high X tend to be observed more often.

In this scenario, conditioning onS|a,b| is necessary to correct for the bias introduced by uneven285

sampling, and doing so allows us to recover the causal effect of interest (Figure 2B). If yab is a

count, it can be modelled using a Poisson distribution—a canonical choice for counts generated

under a fixed rate (Blitzstein & Hwang, 2019):

yab ∼ Poisson(λab · S|ab|),

Where λab represents the true rate of interactions from a to b per one time unit. Thus, the

number of observed interactions from a to b can be considered a random draw from a Poisson290

distribution, whose mean is simply the dyad-specific rate multiplied by the number of sampling

periods that the dyad has been observed for. The estimated true rate can then be described by
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Figure 2 – Integrating sampling effort into animal social network analysis. A. The causal graph is a

qualitative representation of the process generating social network data in a hypothetical population of

animals. An individual level trait, Xb (e.g., colouration), may affect the number of interactions that a
gives to b. This effect is our estimand, marked in blue. Xb might also affect the individual-level sampling

effort Sb (e.g., how many hours that b is observed for), if animals with less vibrant colouration are harder

for researchers to locate and observe. Sa, together with Sb (the sampling effort of the other individual

in the dyad), determine the dyad-level sampling effort, S|ab| (e.g., how many hours was one of the two

individuals in the dyad observed for). In turn, S|ab| affects the observed number of interactions from a
to b, yab. To identify the effect of interest, we must close the directed path going from Xa to yab that

passes through S|ab|. B. The panel represents idealised posterior estimates for the effect of interest, for

a model that is not stratified by S|ab| (top), and for a model that is stratified by S|ab| (bottom). In the

former case, the path going from X[a] to yab that passes through S|ab| is open, and thus, the estimate is

biased (it does not overlap with the true value, in blue). In the latter, the path is closed, and consequently,

the estimate is accurate (it perfectly overlaps the true value, in blue). We reproduce this pattern in our

GitHub repository, using data-simulations and Bayesian multilevel models.

a generalised linear model:

λab = exp(α+ β ·Xa + ...),

Where the slope β can recover the true, unbiased, causal effect of Xa on the rate of interaction

λab, now that S|a,b| has been conditioned on (Figure 2B). The ellipsis (...) is a placeholder for295

any other parameters that may be included in the model. Which parameters (e.g., covariate-

related predictors) to include in the generalised linear model will again depend on assumptions

about the data-generating process. They may, for instance, correspond to the varying-effect

(or random effects) structure of the Social relations Models, as we show in the full example

developed in our GitHub repository.300

Misunderstanding 3: “Network permutations are sufficient
to deal with dependencies in Social network data”

Current practices in ASNA almost exclusively treat dependencies within networks as an infer-

ential threat, and typically aim to control for such dependencies when performing hypothesis

tests (e.g., calculating p-values) through two common permutation procedures. Both proce-305

dures aim to generate null distributions (i.e., “null models”) by breaking the link between ob-

served data and hypothesized effects, such as the effect of a trait on social connectivity, while
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preserving some structural features of the data.

The first approach, “network permutation,” entails the random shuffling of the rows and colum-

ns of an adjacency matrix that has been constructed by aggregating all observed ties over a given310

study period to represent a network (i.e., through a quadratic assignment procedure (QAP); see

Krackhardt, 1987). Permutations (i.e., random shuffles) are repeated many times to produce a

distribution of values where the identity of an individual no longer matters, aiming to break

any statistical associations between, for example, a given attribute of the individual (e.g., their

sex) and their social ties (e.g., their weighted out-strength). The QAP randomisation proce-315

dure aims to preserve dyadic dependence structure by randomly shuffling rows and columns to-

gether, but may include custom constraints—such that only a set of data points (or ties/edges)

are permuted—in an attempt to represent certain social dependencies (e.g., Chodrow, 2020;

Fosdick et al., 2018).

Multiple regression quadratic assignment procedure (MRQAP) is an extension of QAP. MRQ-320

AP is adapted for linear regression models being applied to network data; it aims to estimate

the statistical significance of regression coefficients by using permutations that attempt to pre-

serve some of the dyadic structure of social networks. The most common MRQAP approach

in ASNA is “Double-Semi-Partialing”, which is a variation of a permutation test that helps

to account for overlap between a main variable of interest, X , and a confounding variable, Z325

(Dekker et al., 2007). This procedure first removes the shared influence of Z from X , then

entails permuting the residuals of X to test whether the adjusted X continues to explain an

outcome variable, Y , all while keeping the effects of Z constant.

The second approach, “data-stream permutations” or “pre-network data permutations” (Be-

jder et al., 1998) has been developed and applied to animal network data generated by several330

different sampling procedures—such as “gambit of the group” data (Franks et al., 2010), focal

follows (Altmann, 1974), and GPS data (He et al., 2023)—to correct for the unique depen-

dencies that these sampling procedures create. This approach involves the random shuffling of

rows or columns, but of a non-aggregated matrix that represents observed ties at a given point
of data collection. These permutations are also constrained in a way that attempts to reflect the335

non-social structuring features that they aim to control for. For example, for “gambit of the

group” data, individuals that are observed in a specific group are randomly reassigned to an-

other group (e.g., if individual i was originally observed in group 1, they would be re-assigned

to appear in group 2). By doing this, both permutation approaches are used for hypothesis

testing and attempt to produce null distributions for a given test statistic (e.g., a t-value and an340

associated p-value) where the “null hypothesis/model” is true, all while aiming to preserve some

of the important features of the network (e.g., the total number of observed ties, or the number

of times individuals were observed: Farine & Whitehead, 2015).

While some still consider permutation approaches to be flexible tools that account for all of

the measurement and sampling issues endemic to animal social network data (Farine, 2017),345

they have fallen out of favour in many other fields of network analysis. This move away from

permutation tests was ushered in by several fundamental flaws to the methodology, particularly

where well-specified parametric models have proven more effective (Sosa et al., 2025).

Network permutation methods cannot control for social de-

pendencies350

As previously noted, dependencies in social networks are often products of the social processes

that are the targets of inference and should rarely be considered a nuisance that needs to be con-

trolled away (Snijders, 2011). However, when dependencies are considered problems that need

to be eliminated in order to make inferences about a phenomenon of interest, evidence suggests

that some standard network permutation methods fail to appropriately correct for the biases355
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that such dependencies create. Research highlighting the pitfalls of permutation methods for

networks (in)famously brought about longstanding and heated debate among community ecol-

ogists in the 1970s (Connor & Simberloff, 1979; Diamond, 1975; Diamond & Gilpin, 1982).

This led to seminal figures within the field referring to permutation methods as being “charac-
terized by hidden structure, inefficiency, lack of common-sense and statistical weakness” (Gilpin &360

Diamond, 2014, p. 313), and stating that reading (even their own) permutation methods gave

the impression of “reading a book of magic spells” (de Bello, 2012, p. 313). A growing body

of work in community ecology has highlighted that permutation approaches do not do what

they are believed to do and that non-permutation approaches exhibit superior performance in

most settings (e.g., Gotelli & Ulrich, 2010; Harris, 2016; Veech, 2013). Similar conclusions365

were drawn in human SNA in the early 2000’s (Anderson & Robinson, 2001), which led to

the widespread proliferation of alternative, more effective statistical approaches for analysing

social network data (Back & Kenny, 2010).

A growing body of complementary evidence is emerging in ASNA. Several simulation stud-

ies have shown that network permutations (Hart et al., 2022) and data stream permutations370

(Weiss et al., 2021a) produce biased inferences due to the social and non-social dependence

structures that they were developed and applied to “control for” (Puga-Gonzalez et al., 2021).

Several issues associated with permutation methods are also caused by misspecification of the

constraints of the randomisation procedure being applied, which results in permutations that

do not appropriately capture the intended dependence structure (Hobson et al., 2021). Given375

the computational limitations of permutation methods, and the inability to specify converging

models that incorporate the many types of constraints as part of the randomisation procedure

that are necessary to preserve network structure, applications of common permutation meth-

ods may to produce misleading results and incorrect inferences (e.g., as the null model may as-

sume that there is no effect of X on Y and/or that such network structure or sampling feature380

is random; Hobson et al., 2021; Weiss et al., 2021a).

More fundamentally, common permutation methods in ASNA typically assume that any ran-

domisation of any given data is equally likely (i.e., that they are exchangeable; Good, 2013).

However, in the presence of any dependence structure in a given dataset that is not included

as a constraint in a randomisation procedure, the exchangeability assumptions of such permu-385

tation methods are broken (Winkler et al., 2015). This issue has been clearly demonstrated for

many MRQAP methods: simulation studies show that many MRQAP approaches (particu-

larly permutations of raw data) yield either inflated or overly conservative Type I error rates (i.e.,
false positive significant p-values) under conditions of collinearity and network autocorrelation

(Dekker et al., 2007). Across most conditions within the simulation studies, however, Double-390

Semi-Partialing was the most robust MRQAP approach. While the Double-Semi-Partialing

MRQAP procedure is approximately valid under the assumption that the aspects of the data

that cannot be explained by a statistical model (i.e., the residuals) should behave the same way

no matter how the data are randomly shuffled. If this assumption holds, the method can yield

reliable and meaningful tests of statistical significance (i.e., p-values). If, however, these resid-395

uals have patterns or structure that change when randomised (e.g., in the presence of higher

order features of a network, such as transitivity), or if the test is applied to highly skewed or

non-normal data distributions—which are common in social interaction data (e.g., where most

dyads have no, or very few, connections, but a few have very strong ties)—such permutation ap-

proaches are not robust (Dekker et al., 2007).400
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Misunderstanding 4: “Generative network models are not ap-
propriate for analysing animal social network data”

In this section, we outline several misunderstandings about the use of generative network mod-

elling frameworks in animal social networks analysis. These misconceptions are grouped into

three main issues and are elaborated on in reference to modelling strategies that some erro-405

neously believe offer more robust alternatives, namely permutation methods. In ASNA, analy-

sis approaches are often lumped into either being network “permutation approaches” or “regre-

ssion-based approaches,” with generative network models typically being referred to as being in

the regression category. An important point for clarification is that this dichotomy is in itself

a misunderstanding. Generative network models need not be typical regression models—and410

many are in fact not (e.g., Robins et al., 2007b; Snijders, 2017)—and many permutation meth-

ods (e.g., MRQAP) use regression models as part of their underlying algorithms. Here, we

further highlight the pitfalls of contemporary permutation approaches for ASNA and clarify

the utility of generative network models as viable solutions.

Generativenetworkmodelscanadjustforbiologicalconfounds415

A major goal of statistical analysis is to isolate the effect of a given variable, X , on another, de-

pendent variable, Y . Many researchers (including ourselves) have long avoided stating whether

a change inX directly causes a change inY —instead using terms such as “is associated with” or

“is related to” when reporting results (Grosz et al., 2020). In contrast, the analytical approach

employed by most researchers, and the ensuing discussion of findings, often attempt to do just420

that (Rohrer, 2018).

In behavioural ecology, researchers often ask questions about how a trait may impact an aspect

of sociality, typically operationalised as a centrality metric computed on a network. Researchers

know a lot about their study systems, devoting months or years to conducting fieldwork, and

will suspect that there are other factors (e.g., the sex of an individual) that structure sociality,425

or confound the effect of interest and must be controlled for. In an attempt to deal with these

perceived confounds, researchers may therefore try to incorporate this domain knowledge by

including any additional observed variables in their statistical models—be they simple linear

models with a centrality metric as the dependent variable, or better yet, dyadic models (e.g.,
Ross et al., 2023; Van Duijn et al., 2004) or models of network structure (e.g., Caimo & Friel,430

2011; Robins et al., 2007a; Snijders et al., 2010). Such an approach has received criticism from

some behavioural ecologists in ASNA, as it has been suggested that these generative network

models assume that networks are free of non-social drivers of structure (Farine, 2024). This

assertion is, fortunately, incorrect. Generative network models have been developed to not only

model social dependencies, but also to flexibly incorporate the effects of non-social variables—435

e.g., sampling bias and censoring processes (Sosa et al., 2025), or even purposeful misreporting

(Redhead et al., 2023b)—that impact apparent social network structure.

While there has been a general acknowledgment of the potential value of generative network

models in ASNA, skepticism is still perpetuated. For example, (Farine, 2024, p. 2) states that

“in theory, these [models] can be extended to also include confounding factors, [but] doing so would440

need to be specific to each study”. However, this point is not a valid critique of the generative

network modelling approach. There is no one-size-fits-all statistical analysis that is free from

making assumptions that are specific to the study, research question, and data at hand. Science

depends on scientists’ domain expertise, and statistical models similarly require this knowledge

to be carefully integrated into model design to produce meaningful inferences from data.445

Confusion persists in ASNA about how to integrate domain expertise into an analysis to deal

with non-social confounds. This confusion reflects a broader misconception that has been

12



expressed: that generative network models assume away confounding factors while network

permutation methods inherently avoid them (Farine, 2024). A source of this confusion may

perhaps be a mistaken belief that permutation methods resemble randomized controlled trials450

(RCTs), and therefore provide robust inference “out of the box.”

RCTs remove confounding by breaking effects from confounders to the treatment via random

assignment of the treatment, with the aim of ensuring that no confounding paths remain (Pearl

et al., 2016). Note that this aim of controlling for confounding is complicated even in RCTs,

as when a confounder is not independent from the treatment, the treatment effect can only455

then be considered a ‘marginal’ effect (over the confounder), which may or may not be what

the researcher is aiming for (see Greene, 2003, for further outline and explanation). Although

constrained permutations are often described as “controlling for confounding,” (Farine, 2024)

they only do so by attempting to preserve confounding in both the null distribution and the

estimator. Instead of removing confounding from the estimator, the null distribution permu-460

tations are constrained to also be confounded. This means that confounding is present in effect

sizes and may invalidate inferences. Additionally, this means that permutation regimes must be

constrained in a way that best reflects the target confounds, which can force unnecessary stratifi-

cation, inefficiency, and complexity. Isolating causal effects of interest is essential for addressing

ecological questions and producing statistical estimates with biological meaning, and in this re-465

spect, permutation methods may fail where generative network models succeed (Franks et al.,

2021; Sosa et al., 2025).

Generative network models provide a framework for behavioural ecologists to incorporate their

hard-earned knowledge of their system, and adjust for important confounds—be they biologi-

cal confounds, or aspects of the observation process that affect the recovered data distribution.470

This is not necessarily done through any modelling extension specific to this framework—in

many cases, it is simply the broad notion of “conditioning on” (which is the same as “stratifying

by” or “controlling for”) a variable in a regression. What is perhaps unique to many generative

network models is that the parameters that need to be estimated to control for certain biological

factors operate at inherently different levels of a network: they may capture effects at the level475

of the individual (e.g., X causes higher centrality), the dyadic level (e.g., similarity in X causes

individuals to interact reciprocally), or at a higher level of the network (e.g., complementarity in

X causes individuals to create transitive groups). In practical terms, coding models with these

parameters from scratch can be quite complicated, but there are several open-source software

packages that provide a platform for specifying a plethora of models containing such parame-480

ters (e.g., Hart et al., 2023; Hunter et al., 2008; Ripley et al., 2025; Ross et al., 2023; Snijders,

2017). While these advances open fruitful pathways for drawing inferences from well-specified

models, a great deal of care must be taken when incorporating covariates into these models.

As we have outlined earlier, this requires that researchers define the quantity that they wish

to estimate—i.e., their estimand—and that they flesh out assumptions describing the causal485

process that generated their social network data (for an introduction, see Franks et al., 2025;

Kawam et al., 2024; McElreath, 2020).

Generative network models have appropriate null models

As outlined in the sections above, common network permutation approaches in ASNA are

unlikely to appropriately deal with biological confounds. As a result, they are likely to not490

produce the appropriate null models (which we will refer to as “null distributions”) that they

are typically applied to generate. By null distributions, we refer to an expected distribution

that accurately represents the hypothesis being tested, especially the absence of the effect or

relationship of interest.

In frequentist hypothesis testing regimes, null models enable researchers to assess whether the495
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observed network pattern is unlikely to have arisen under the null distribution through compu-

tation of a given test statistic and associated p-value. Misunderstandings remain about whether

generative network models are able to produce appropriate null models. In a now seminal pa-

per on ASNA, it is claimed that such “test[s] could only determine whether the network metric
differs significantly from zero—a highly unsatisfactory null hypothesis” (Farine, 2017, p. 1310).500

Frequentist models can, however, have appropriate null hypotheses for social network data.

Generative network models enable researchers to model a network’s null distribution by ex-

plicitly defining structural and biological mechanisms that are both theoretically sound and

practically applicable. Through this approach, behavioural ecologists can delineate the key

structural features of a network (e.g., transitive group formation), and how such features in505

the data are generated when constructing a null distribution. To do this, we can draw from a

long history of theoretical and methodological developments on generative network models—

these include dyadic models, such as the stochastic block model and its extensions (Holland

et al., 1983; Peixoto, 2019), social relations models (Pillinger et al., 2024; Snijders & Kenny,

1999), latent space models (Hoff et al., 2002), and more complex networks models, such as510

exponential random graph models and stochastic actor-oriented models (Robins et al., 2007a;

Steglich et al., 2006). These generative models can specify null distributions that best reflect

how the data are structured and generated (See Hobson et al., 2021, for a guide on doing this

in behavioural ecology). This generally highlights that generative network models produce null

distributions that are not only appropriate but also meaningful.515

In Bayesian statistics, analysis regimes directly model the full probability distribution of pa-

rameters given the observed data. This may bypass the need for the construction of a null dis-

tribution for statistical testing, and instead produces a posterior distribution over possible pa-

rameter values. By combining Bayesian models with causal models, researchers can then make

probabilistic statements about the size and direction of effects, such as estimating the proba-520

bility that a phenotype of interest increases the number of social ties that an individual has by

a given amount, and quantifying the uncertainty around that estimate (Gelman et al., 1995).

Moreover, the flexibility of Bayesian hierarchical models also makes them well-suited to directly

estimate structural dependencies inherent in network data (McElreath, 2020).

As generative network models, be they frequentist or Bayesian, focus on modelling the data-525

generating process and integrating domain expertise. By doing this, they can offer rich and

often easily interpretable results—as opposed to relying solely on the interpretation of p-values,

which network permutation approaches necessitate—for making scientific inferences about

animal social networks.

You cannot estimate separate regression models for different530

network metrics

A critical limitation of permutation-based approaches in ASNA arises when network metrics

are treated as dependent variables. The analytical pipeline used for examining networks as de-

pendent variables typically entails separate, sequential estimation procedures for each metric

(e.g., Kaigaishi & Yamamoto, 2024; McMahon et al., 2024; Roatti et al., 2023). For example,535

to evaluate how hierarchical rank (i.e., dominance) influences sociality, researchers might com-

pute multiple individual-level metrics (e.g., eigenvector centrality, in-strength) and fit a separate

regression model for each. This leads to a set of isolated statistical tests, each examining a single

metric with the assumption that they are statistically independent. This practice ignores the

fact that many features of a network are jointly determined by the same underlying processes,540

and that these network metrics are thus statistically dependent (Boccaletti et al., 2006; Feld,

1991; Newman, 2018). The covariance structure among these metrics reflects latent structural

regularities that are lost when metrics are analysed separately. As a result, univariate regression
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models yield incomplete and potentially misleading inferences.

Generative network models aim at representing a network as a whole, which implies (as an545

implicit consequence) models for any network metric and, thus, bypasses the need for mod-

elling network metrics through separate regression models. More specifically, generative net-

work models can, and must, account for the dependence structure between network features

(e.g., an individual’s out-strength is associated with their tendency to reciprocate ties), as well as

any other important factors relating to measurement and sampling regimes that may bleed into550

the generation of animal network data. By integrating specialist knowledge about the system of

study and careful consideration of how the measurement or sampling design may fundamen-

tally bias estimates, researchers can construct multivariate or hierarchical models that jointly

model the multiple network features that may best characterise the structure of their network

of interest. This further captures the shared variance between such features, and enables more555

accurate inference about the biological processes that produce network structure (Kawam et al.,

2024; Redhead et al., 2023b; Sosa et al., 2025). This integrated approach cannot be approxi-

mated by permutation workflows, which lack the functionality to model multivariate depen-

dence or latent social structure.

Misunderstanding 5: “Interaction- and association-based net-560

works are comparable”

Studying social network structure depends fundamentally on how social ties are measured and

collected. Different data collection methods require different approaches to analysis, and a key

distinction exists between interaction-based and association-based data. Interaction data are

based on direct, observable behaviours such as grooming, aggression, mating, or food shar-565

ing (Altmann, 1974). These interactions typically occur between pairs of individuals and are

the level of social structure from which social relationships or “ties” emerge (Hinde, 1976).

In contrast, association data are usually gathered from patterns of spatial and temporal co-

occurrence—sometimes by observers (e.g., “gambit-of the-group”) but also often through meth-

ods such as GPS tracking (He et al., 2023), or RFID tagging (Sabol et al., 2018). Such spatio-570

temporal co-occurrence (Debetencourt et al., 2024; Franks et al., 2010; Ginsberg & Young,

1992; Whitehead, 2008) may also reflect emergent social relationships. However, the link be-

tween co-occurrence and social relationships is often weaker or noisier than for directly ob-

served interactions, due to the ambiguity surrounding the intended target of association (e.g.,
are animals a and b together because of mutual attraction to each other or because they both575

want to be with animal c?) and the valence of the association (e.g., are animals together to be

agonistic? affiliative? sexual?).

While both association and interaction data can provide useful information about animal social

networks, they entail different data generation processes, and thus, different modelling strate-

gies must be devised to study their structure. Traditional social network models (i.e., those that580

look at specific ties between pairs of individuals) are naturally applied to interactions between

pairs of individuals because these data are inherently dyadic. These models are designed to in-

fer the structure of relationships, together with their causes (Butts, 2008; Kawam et al., 2024;

Stadtfeld & Block, 2017). However, applying the same models to association data can be prob-

lematic, as association events often involve multiple individuals at any given time and are not585

truly pairwise. Converting these group events into pairwise links to answer questions pertain-

ing to dyadic social relationships may overestimate the number of social ties that individuals

have, and inflate network measures like degree distributions and centrality (Danaher-Garcia et
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Figure 3 – Mismatches between data generation and measurement processes can invalidate scientific conclusions. To demonstrate how conflat-

ing interactions and associations can alter research outcomes, we developed a simulation with three components: (i) an interaction network

generation process that determines the potential interactions we might measure, (ii) a group formation process that dictates which configu-

rations of animals can be observed on any given day, and (iii) an imperfect measurement process that generates interaction/association data

based on potential interactions and group memberships. While each component could be implemented in various ways, we made specific

choices for this illustrative example. A. Potential interactions emerge from a latent space network model. Animals occupy random positions

in a social trait space, with proximity between animals indicating stronger relational tendencies. For this example, we created three distinct

social niches by sampling centroids µr for each niche r = 1, 2, 3 from a Gaussian distribution in d = 2 dimensions. We randomly assigned

animals to niches and sampled each animal’s trait space location from a Gaussian distribution centered at its niche’s µr—the distribution

is shown in yellow. We then generated potential interactions probabilistically, with interaction likelihood increasing as the distance between

animals in trait space decreases.
3

B. To obtain associations, we randomly grouped animals while making sure that interacting pairs of animals

would likely appear together. The panel displays three random instances of this process (node color corresponds to groups), created by first

positioning animals in physical space, in close proximity to their interaction partners
4

, and then forming groups of animals based on physical

proximity.
5

C. Finally, we simulated the measurement process with association and interaction methods across seven days of data collection.

To generate association measurements, we assumed that pairs of animals found in the same group were likely connected. This produced a

matrix of connection probabilities WA, where each wij represents the proportion of days animals i and j were observed together. To gener-

ate interaction measurements, we translated the network of potential interactions into connection probabilities WI and added two processes

that capture experimental conditions. First, we only recorded ties between animals that were associating during measurement (the solid edges

in panel B.). Second, we allowed for false positive and false negative measurements (each occurring at a rate of 0.05 per pair of individuals per

day). As the results demonstrate, association-based methods misrepresent the interaction network. This misunderstanding can propagate to

network characteristics. Panels C4-C6 show the average number of animals having a certain degree (bars), and a 50% interval for this quantity

(error bars), with mean degree k̄ in the inset. The error bars were obtained by generating n = 100 networks compatible with the measure-

ments.
6

Association data completely mischaracterise the degree distribution of the interaction network.
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al., 2022; Weiss et al., 2021b). We illustrate this phenomenon in Figure 3.

An analytical approach that can reflect and preserve the complexity of association data is to use590

hypergraph models (Battiston et al., 2020) and hyper-event models for longitudinal analyses

(Lerner & Lomi, 2023). Unlike standard network models, hypergraphs allow researchers to

represent group-level events directly, by linking multiple individuals together in a single event

without breaking it down into dyadic ties (Chodrow & Mellor, 2020; Contisciani et al., 2022;

Torres et al., 2021). This means that researchers may analyse association data (or indeed interac-595

tion data for interactions that involve multiple partners) in a way that respects its original struc-

ture, and further incorporate their domain knowledge by specifying factors that they believe

to be important for generating such structure. For instance, hypergraph models are especially

useful for exploring questions about group dynamics, such as whether some individuals con-

sistently appear together in the same groups or similar physical spaces (Taramasco et al., 2010),600

or how group size influences the spread of information or disease (Iacopini et al., 2019; Silk et

al., 2022). By maintaining the group-based nature of association data, behavioural ecologists

can produce more accurate and biologically meaningful insights with hypergraph modelling

approaches than by applying traditional network models.

Ultimately, both interaction- and association-based data offer valuable insights into animal so-605

cial behaviour, but they are not interchangeable. This is not to argue that one type of net-

work data is better than another. Rather, the type of network data being collected should be

decided upon in direct relation to its utility in answering a motivating research question, in-

cluding whether that question requires the valence of network edges or the certainty of partner

choice to be known, while being cognisant of the logistical barriers and high temporal and/or610

monetary costs associated with collecting animal social network data. The key to directly and

accurately answering research questions in ASNA is to carefully match the analytical approach

to the way the data were collected. This alignment is crucial for examining theories of social

behaviour and drawing valid conclusions from empirical data. By developing and applying sta-

tistical models that best reflect the process through which data have been generated, behavioural615

ecologists can make the most of the diversity of available data and avoid the pitfalls associated

with mismatched, traditional approaches.

Concluding remarks

Animal social network analysis has become a central pillar of behavioural ecology, offering the-

ory and tools for understanding the complexity of animal societies and their ecological and620

evolutionary causes and consequences. In this paper, we have outlined five common misunder-

standings that have hindered progress in the field. These misunderstandings have collectively

contributed to a disconnect between ASNA and developments in the broader field of SNA.

Encouragingly, this is a moment for methodological transformation within the field. By revis-

iting foundational principles, such as defining clear estimands, modelling empirically plausi-625

ble and causally explicit data-generating processes, and embracing model-based statistical ap-

proaches that derive from generative assumptions, behavioural ecologists are increasingly well-

positioned to overcome these challenges. The application of methodological innovations made

3
We employed an exponentially decreasing connection probability, pij = e−β∆ij

, where ∆ij represents the

distance between animals i and j in trait space.

4
We implemented a repulsion-attraction model where potential interactions “pull” animals together while discon-

nected pairs are pushed apart, using the Fruchterman-Reingold Algorithm (Fruchterman & Reingold, 1991).

5
We applied an Affinity Propagation algorithm (Frey & Dueck, 2007) to cluster animals based on distance in phys-

ical space.

6
Edge (i, j) was included in each posterior sample with probability wij , where wij is derived from the measure-

ment process and treated as independent of others once conditioned on wij (Young et al., 2020).
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in the wider field of SNA makes this possible, as the combination of generative network models

and causal inference frameworks offers powerful alternatives to traditional permutation-based630

approaches. These tools not only provide greater inferential clarity but also allow researchers

to more directly integrate their expert knowledge about their system into their analytical pro-

cedures.

The use of generative network models provides a platform for future research to deepen the

connection between the predictions made by formal theoretical models in behavioural ecology635

and evolutionary biology, and the statistical estimates from empirical studies that aim to test

such predictions. Many classical models, from the formation of dominance hierarchies (Chase

et al., 2002) and theory on costly signalling (Gintis et al., 2001) to models of partner choice

(Fu et al., 2008) and reciprocity (Efferson et al., 2024), make explicit predictions about so-

cial dynamics that can be directly translated into statistical models of network structure. By640

grounding empirical analyses in such theoretical frameworks, researchers can conduct sharper

examinations of formal theory and further contribute to the refinement of theory itself. In addi-

tion, the increasing availability of high-resolution, long-term interaction and association data

opens the door to dynamic network analyses that capture how social structure emerges over

time. Rather than treating social networks as static snapshots, researchers now have the op-645

portunity to model the processes that bring about relationship formation, maintenance, and

decay (Snijders, 2009). This provides a fruitful avenue for future research to develop and bet-

ter integrate dynamic network models for understanding the mechanisms underlying animal

sociality.

In sum, embracing flexible generative network modelling approaches and aligning analytical650

strategies with those from the rest of SNA will bring ASNA and the broader interdisciplinary

field into closer conversation, enabling more precise, biologically meaningful insights into the

structure and function of animal societies.
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