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Abstract 23 

Understanding how species will respond to climate change is one of the current key challenges in 24 

ecology and nature conservation. The tempo-spatial variations of climate makes it more 25 

challenging to predict species responses to climate change across their entire ranges. Species 26 

distribution models have been widely used for identifying how species distributions respond to 27 

climatic drivers. Despite the spatial transferability of SDMs has been largely tested, validation of 28 

their temporal transferability is still rare. In addition, there is still no consensus regarding how 29 

integration of temporally independent data can improve the reliability of model predictions under 30 

different time. Here, we modelled the distribution of white oak (Quercus alba) across its entire 31 

range in the eastern United States for the 1900s and the current. We compared predictive 32 

performance, predicted suitability and distributions, and predictor’s importance of SDMs 33 

accordingly, and quantified climate novelty between the two time periods to assess the temporal 34 

transferability and predictive accuracy of SDMs. We found that the SDM fitted with the 1900s 35 

climate outperformed that calibrated with the current climate, suggesting its higher transferability 36 

from the 1900s to the current. Such difference in transferability between SDMs fitted with the 37 

1900s and current climates may be attributed to the climate novelty and change in limiting 38 

factors for white oak distributions during model transfer. Our results demonstrate the temporal 39 

transferability of SDMs on predicting temporally independent species distribution across its 40 

entire range. With the increased availability of historical species occurrences, incorporating such 41 

data into SDMs will increase the reliability of model predictions under future climate change. 42 
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Introduction 46 

Climate change has broadly influenced the growth rate, mortality, and geographic distributions 47 

of plant species worldwide (e.g. Scheffers et al., 2016), leading to changes in forest composition 48 

(Pederson et al., 2015). Underlying this overall pattern, a large amount of variation exists. For 49 

example, climate is not changing evenly across space (Prasad et al., 2020), neither over time. In 50 

the eastern United States, the last century has witnessed increased mean annual temperatures in 51 

the Midwest and Northeast while the Southeast had areas with not only increased but decreased 52 

temperature (Zhu et al., 2012). At the same time, climate shifts of more than 100 km across the 53 

Northeast and Upper Midwest in terms of spatial velocity have been observed (Loarie et al., 54 

2009). Most of this region experienced growing season temperatures during the 1971 to 2000 55 

period that were cooler than those during the 1911 to 1940 period (McEwan et al., 2011). In 56 

addition, changes in climate are not affecting all species equally as species may respond to 57 

different climatic drivers across their ranges (Bouchard et al., 2019; Matthews et al., 2019), 58 

which leads to a complexity of changes in species climatically suitable habitats (Iverson & 59 

McKenzie, 2013). Therefore, the tempo-spatial variations in climate makes it challenging to 60 

predict the responses of different species to climate change across space and time. 61 

The influence of climate change on range shifts of plant species has been identified through the 62 

rapid development of ecological niche models (ENMs), also termed species distribution models 63 

(SDMs) (Davis & Shaw, 2001; Rehfeldt et al., 2006; Iverson et al., 2008; Thuiller et al., 2008; 64 

Lavergne et al., 2010). SDMs, basically, build statistical associations between species occurrence 65 

and current climate, helping us understand how species respond to a full suite of climatic 66 

variables. SDMs are important tools for conservation biology and biogeography and have been 67 

used to project species responses under different climate scenarios (Pearson & Dawson, 2003; 68 
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Thuiller et al., 2005; Hijmans & Graham, 2006). Reliable predictions of species’ response will 69 

inform about potential climate-driven shifts in their suitable habitats and aid climate-smart 70 

conservation and management plans (Iverson et al., 2008; Iverson & McKenzie, 2013; Peterson 71 

et al., 2011; Guisan et al., 2013; Early & Sax, 2014). SDMs usually capture contemporary 72 

climate-distribution relationship and then predict current and future species distributions to new 73 

climates and geographic space under the assumption of niche conservatism (Peterson & Nyári, 74 

2008; Nogués-Bravo, 2009; Zimmerman et al., 2010; Peterson, 2011; Svenning et al., 2011). 75 

When SDMs are transferred across space and/or time to new environmental conditions (Guisan 76 

& Thuiller, 2005; Elith & Leathwick, 2009; Peterson et al., 2011), they assume that the 77 

suitability of climate conditions for species remains constant across time and space. However, 78 

the transferability of SDMs has been considerably discussed and criticized because of the 79 

assumption of niche conservatism (Elith & Leathwick, 2009; Wiens et al., 2009; Araújo & 80 

Peterson, 2012). 81 

The evaluation of SDM’s transferability is one of two main approaches to assess the dynamics of 82 

a species’ climate niche (Guisan et al., 2014). Some early justifications of conservatism 83 

theoretically aim at fundamental niches rather than realized niches (Wiens & Donoghue, 2004; 84 

Araújo & Peterson, 2012). Several studies have demonstrated that the fundamental niche, which 85 

is primarily determined on environmental conditions (Hutchinson, 1957), can remain unchanged 86 

across time and space (Peterson et al., 1999; Wiens & Graham, 2005) while both similarity and 87 

differences in estimated realized niches across different regions or times have been reported 88 

(Fitzpatrick et al., 2007; Warren et al., 2008; Hof et al., 2010; Medley, 2010). For example, 89 

Peterson (2003) found that the potential geographic range of invasive species can be precisely 90 

estimated by the realized ecological niche characteristics of their native range. Martínez-Meyer 91 
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& Peterson (2006) constructed SDMs for North American plants (mostly trees) based on present-92 

day and the Last Glacial Maximum (LGM) climatological summaries, demonstrating the 93 

transferability of SDMs across time by comparing model outputs with the independent 94 

occurrence data. Conversely, Broennimann et al. (2007) observed the difference in estimated 95 

realized niches between native and non-native ranges of invasive species, which may be 96 

evidence of a climate-driven niche shift. Likewise, Boiffin et al. (2017) argued that the niche 97 

conservatism is an erroneous assumption when modeling the realized niche because the SDMs 98 

calibrated in the native range of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) failed to 99 

predict the climate suitability in its introduced range in Europe where non-analogue climates 100 

occur. Most recently, a synthesis of 86 studies for 434 invasive species reported that most of the 101 

species largely conserve their realized climatic niche across time and space with a tendency to 102 

occupy similar climates in both native and introduced ranges even though the assumption of 103 

niche conservatism was not satisfied in most studies (Liu et al., 2020a). However, among those 104 

studies, the lowest rejection rate of the niche conservatism hypothesis was found when using 105 

SDM approaches (Liu et al., 2020a), which suggests that SDMs may be reliable when transferred 106 

to new geographic spaces and climates. In addition, Peterson (2011) reported that the 107 

characteristics of a species’ ecological niche seem to be highly conserved over short-to-moderate 108 

time spans. 109 

Despite the spatial transferability of SDMs has been largely tested, validation of their temporal 110 

transferability is still rare. The spatial transferability of SDM, the ability of projecting the 111 

modelled relationship of SDM to new space, has been well demonstrated (Randin et al., 2006; 112 

Peterson et al., 2007; Qiao et al., 2019; Feng et al., 2019). Although less attention has been paid 113 

to temporal transferability, the predictive ability of SDMs across time has been supported by 114 
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several empirical studies (Verela et al., 2009; Dobrowski et al., 2011; Tuanmu et al., 2011; 115 

Wogen, 2016). Based on the most recent evidence, whether SDMs are transferrable across time 116 

and space may depend on several factors such as climate novelty/dissimilarity (Elith et al., 2010; 117 

Fitzpatrick et al., 2018; Feng et al., 2019; Liu et al., 2020b), model calibration (Guevara, 118 

Gerstner, & Kass, 2017; Roberts et al., 2017; Norberg et al., 2019; Qiao et al., 2019), and 119 

taxonomic groups and species differences (Dobrowski et al., 2011; Liu et al., 2020b). Both 120 

simulations (Qiao et al., 2019) and empirical studies (Morán-Ordóñez, 2017) found better 121 

transferability of SDMs for areas with similar climate. Likewise, the decrease in predictive skill 122 

of SDMs was expected in response to climate novelty (Roberts et al., 2017; Fitzpatrick et al., 123 

2018). Model over-parameterization, fitting complex interactions between climatic variables, 124 

may lead to decreased accuracy when models are extrapolated to new space and climates 125 

(Roberts et al., 2017; Qiao et al., 2019). One appropriate way of reducing the influence of 126 

complexity is including the most likely limiting predictors for species distributions based on 127 

expert knowledge and biological justification, which may improve model transferability by 128 

producing more ecologically realistic predictions (Guevara, Gerstner, & Kass, 2017; Norberg et 129 

al., 2019). Within taxonomic group, species differences exerted great influence on the 130 

transferability of SDMs (Dobrowski et al., 2011; Rapacciuolo et al., 2012; Smith et al., 2013). 131 

SDMs for species with narrower niches had higher transferability than those with wider niches 132 

(Kharouba et al., 2009). 133 

SDMs have been widely used to understand the climatic response of tree species distributions in 134 

the eastern US and project potential changes in their suitable habitats under climate change 135 

(Iverson & Prasad, 1998; Iverson et al., 2008; Iverson et al., 2019). Most of them related tree 136 

species distributions to current climate and predicted potential suitable habitats under future 137 
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conditions (McKenney et al. 2007a, 2007b; McKenney et al., 2011). Many species distributions 138 

may be better calibrated with 20th century (or earlier) climates than those of the most recent 139 

decades because of their strong ecological memory (Fitzpatrick et al., 2018). The long-lived trees 140 

are likely to be in increasing disequilibrium with the current climate, thus fitting models using 141 

current climate may not fully reflect the limiting climatic factors for tree distributions (Goring & 142 

Williams, 2017). Although future climate novelty is within the range of values experienced in the 143 

past under the most extreme RCP forecast (Charney et al., 2016; Fitzpatrick et al., 2018), SDMs 144 

calibrated using climate from each 1,000-year time frame of the past 13,000 years have resulted 145 

in different climate suitability predictions for three tree species (Maiorano et al., 2013). Further, 146 

Maiorano et al. (2013) found that the predicted climate suitability to both current climate and 147 

future climate derived from SDMs fitted to one of the time frames was limited compared to the 148 

predictions by SDMs calibrated with data pooled through time. Therefore, without confirming 149 

temporal transferability, SDMs merely trained with current species distributions and climate may 150 

not reliably project the effects of future climate on tree species distributions. 151 

To overcome this limitation, we test the temporal transferability of SDMs using a temperate 152 

hardwood species, the white oak (Quercus alba), which is one of ecologically and commercially 153 

important species widely distributing across the eastern United States. Its current potential 154 

distribution and future suitable habitat has been well studied using SDMs with good model 155 

performance (Prasad et al., 2020). To our knowledge, no study has yet been done to test whether 156 

the SDM calibrated with its climate-distribution in the past is temporally transferable to current 157 

climate predicting suitable habitats of white oak. We propose a new approach for reconstructing 158 

the 1900s (i.e.1895-1920, t1) presence localities of white oak using tree cores collected by the 159 

U.S. Forest Inventory and Analysis (FIA) program in the eastern United States. We buffer those 160 
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localities to sample the closest presence localities from the current (i.e. 2000-2016, t2) presence 161 

localities to avoid the influence of land use history, biotic interactions, and other non-climatic 162 

factors that may impede white oak from occupying its suitable habitats leading to absence across 163 

time. We use the presence localities of two different time frames to build SDMs for the 1900s 164 

(SDMt1) and the current (SDMt2) distributions of white oak with their contemporaneous climate 165 

conditions. Finally, we interpolate and extrapolate SDMs to the withheld test data and to the 166 

entire geographic space within and beyond the time fames in which the models are developed, 167 

respectively. Our goals are to: 1) investigate how well the SDMs for white oak can be transferred 168 

across two different time frames by examining model predictive ability of SDMs and the 169 

predicted habitat suitability of white oak between two time frames, the 1900s vs. the current; 2) 170 

test if climate novelty could influence temporal transferability of SDMs by comparing the model 171 

predictive ability between interpolation and extrapolation; 3) test if incorporating historical 172 

species-climate association into SDMs could improve the reliability of SDMs when projecting 173 

effects of future climate change onto a species’ entire range. 174 

  175 
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Materials and Methods 176 

Species occurrence 177 

To test the transferability of SDMs across time, we focus on modeling potential distributions 178 

across the entire range for white oak at two different time frames: 1900s (t1) and current (t2). Its 179 

current distribution and projections of future suitable habitats have been well studied using 180 

SDMs with good model performance (Prasad et al., 2020). The localities of white oak for the 181 

1900s were approximated using site tree records in inventory plots from the U.S. Forest 182 

Inventory and Analysis (FIA) across the eastern United States. The cores of site trees can 183 

estimate tree age and thus indicate the time period the tree has been present in that locality. Cores 184 

of site trees have been recently used to understand annual growth and climate relations in states 185 

from Maine to Ohio (Canham et al., 2018). With the known age of site trees, we selected all plots 186 

with white oak as site trees already present around the 1900s (1895-1920) across its entire range 187 

to reconstruct the 1900s presence localities (Figure 1). This sample of presence-only plots was 188 

used to construct the SDMt1. To obtain the sample of presences for the SDMt2, we sampled the 189 

closest current presence locality to each of the1900s presence point to reduce problems caused 190 

by spatial sampling biases (Merow et al., 2013; Boria et al., 2014). This would ensure the same 191 

spatial coverage on both datasets and reduce the effects of land-use changes over the years (e.g. 192 

Chen & Leites, 2020), changes in biotic interactions due to anthropogenic effects (Liebhold et 193 

al., 2017), and the effects of other non-climatic factors. This sampling approach allowed us to 194 

focus on the suitable habitats defined by climatic conditions; this is, any potential difference in 195 

temporal transferability between SMDt1 and SDMt2 would be mainly attributed to the changed 196 

climatic conditions between the 1900s and the current. Even though this sampling approach 197 

ensures that both time periods have the same spatial extent, it may have the drawback of 198 
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restricting the current climates sampled if a spatial expansion of the white oak range had 199 

occurred between the 1900s and the present. However, such possibility is small given the slow or 200 

lack of migration in tree species in the last century (Zhu, Woodall, & Clark, 2012). In contrast, 201 

the effects of land-use change and other anthropogenic effects leading to the absence of white 202 

oak on present distribution are well-documented (Abrams 2003; Foster et al. 2003; Chen & 203 

Leites, 2020). To avoid any marginal presences or erroneous records, we removed one locality of 204 

white oak in North Dakota that was very far away from the boundary of white oak’s range 205 

(Little, 1971; black dashed line in Figure 1). A total of 1,765 presence records for both 1900s and 206 

current distributions of white oak comprised the final sample (Figure 1). 207 

 208 
Figure 1 The geographic extent of the study in the United States. The dashed line shows the Little’s range 209 
for white oak (Little, 1971). A total of 1,765 presence localities of white oak during 1895-1920 (the 210 
1900s, red circles) and 2000-2016 (current, blue dots) are shown with the 30-yr normal of mean annual 211 
temperature during 1970-2000 (Wang et al., 2016). 212 
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Climate data 213 

We obtained 30-yr climate normals at 1 km resolution from the AdaptWest database (AdaptWest 214 

Project, 2015; Wang et al., 2012) for the 1900s (1901-1930) and the current (1981-2010) time 215 

frames. A suite of 19 downscaled climatic variables was chosen as predictors for the two 216 

different time frames (Table 1). These variables represent four groups reflecting different aspects 217 

of climatic conditions for white oak including temperature, precipitation, moisture, and climate 218 

extremes. 219 

Table 1 The 19 Climatic variables used to develop the SDMs for white oak in two different time frames. 220 

Acronyms Variable 
Temperature-related variables 

MAT Mean annual temperature (°C) 
MWMT  Mean warmest month temperature (°C) 
MCMT   Mean coldest month temperature (°C) 
TD  Temperature difference between MWMT and MCMT, as a measure of continentality (°C) 
DD<0 Degree-days below 0°C, chilling degree-days 
DD>5 Degree-days above 5°C, growing degree-days 
DD<18 Degree-days below 18°C, heating degree-days 
DD>18 Degree-days above 18°C, cooling degree-days 
NFFD The number of frost-free days 
FFP Frost-free period 
bFFP The day of the year on which FFP begins 
eFFP The day of the year on which FFP ends 

Precipitation-related variables 
MAP  Mean annual precipitation (mm) 
MSP  May to September precipitation (mm) 
PAS Precipitation as snow (mm). For individual years, it covers the period between august in the previous 

year and July in the current year 
Moisture-related variables 

AHM   Annual heat-moisture index (MAT+10)/(MAP/1000)) 
SHM  Summer heat-moisture index ((MWMT)/(MSP/1000)) 

Temperature extremes 
EMT Extreme minimum temperature over 30 years 
EXT Extreme maximum temperature over 30 years 

For more details about the variables, see: Wang et al., 2012; Wang et al., 2016. 221 

  222 
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Model calibration, performance, and transferability 223 

The overall approach for model calibration and model transfer across time is illustrated in Figure 224 

2. For each time period, we developed a SDM using the MaxEnt algorithm linking the presence-225 

only data with their corresponding 19 climatic variables (SDMt1 and SDMt2). MaxEnt uses 226 

presence-only data to calibrate SDM, and thus it is suitable for modeling the 1900s distribution 227 

of white oak where confirmed absence data was not available. This algorithm estimates species’ 228 

relative occurrence rates by minimizing the relative entropy between the probability density of 229 

species’ presence data and the training background (Elith et al., 2010). We randomly selected 230 

10,000 background points (i.e. ‘pseudo-absences’) from within the geographic region across the 231 

eastern United States. All 19 climatic variables were used during model calibration without 232 

removing highly correlated variables. However, by default, MaxEnt reduces the number of 233 

variables in the final model using regularization to minimize over-parameterization (Phillips & 234 

Dudík, 2008; Elith et al., 2011). In addition, one of the most recent studies documented little 235 

impact of correlation on model training for MaxEnt algorithm (Feng et al., 2018). We used 236 

Maxent with default settings including default feature classes and the regularization multiplier 237 

(Elith et al., 2011; Phillips, Anderson, & Schapire, 2006), which have been demonstrated to work 238 

well by many empirical studies (Phillips & Dudík, 2008). Therefore, keeping the modelling 239 

approach and default settings consistent to develop the SDMs for the 1900s and the current 240 

distributions of white oak made model outputs comparable when testing their temporal 241 

transferability. 242 
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  243 
Figure 2 Outline of the analytical design. For each time frame, 75% of the presences and its 244 
contemporaneous climate layers were used to build species distribution models (SDMt1 and SDMt2, 245 
respectively). Each model was used to predict the withheld 25% test data and the entire geographic space 246 
of the study within the time frame (e.g. interpolation) and beyond the time frame (e.g., extrapolation) in 247 
which the models were developed to predict/hindcast habitat suitability, respectively. The temporal 248 
transferability was evaluated by comparing the predictions derived from SDMt1 and SDMt2 for time frame 249 
t1 and t2 separately, leading to four different scenarios. 250 

 251 

SDMt1 and SDMt2 were calibrated using 75% of the presence localities randomly split and their 252 

contemporaneous 19 climate variables. The remaining 25% of presence localities were withheld 253 

as test data for model evaluation and transfer. Each model was used to predict the withheld 25% 254 

test data and the entire geographic space of the study within the time frame (e.g. interpolation) 255 

and beyond the time frame (e.g., extrapolation) in which the models were developed. This 256 

approach resulted in two interpolative (hereafter ‘t1t1’ and ‘t2t2’) and two extrapolative 257 

scenarios (hereafter ‘t2t1’ and ‘t1t2’) (Figure 2): a) t1t1, 1900s interpolation for 1900s climate, 258 

using SDMt1 to predict suitability for the test data withheld when building SDMt1; b) t2t1, 259 

current extrapolation, using SDMt1 to hindcast suitability for the test data withheld when 260 

building SDMt1; c) t1t2, 1900s extrapolation, using SDMt1 to predict suitability for the test data 261 
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withheld when building SDMt2; d) t2t2, current interpolation, using SDMt2 to predict suitability 262 

for the test data withheld when building SDMt2. 263 

To evaluate model fit based on 75% training data, we used one threshold-independent evaluation 264 

metric - the area under the receiver operating characteristic curve (AUC), and two threshold-265 

dependent indices - minimum training presence omission rate (ORMTP) and 10% training 266 

omission rate (OR10). The ORMTP indicates the proportion of test data presences with predicted 267 

probability values lower than the threshold associated with the zero omission rates in the training 268 

data. The OR10 indicates the proportion of test data presences with predicted probability values 269 

lower than the threshold that arises from the training data and is equal to the probability value 270 

that leaves 10% of the training presences with the lowest predicted suitability below itself. 271 

ORMTP values > 0 or OR10 values > 10% indicates overfitting (Muscarella et al., 2014). We used 272 

both of ORMTP and OR10 because an over-fitted SDM could have an ORMTP of 0 but > 10% OR10 273 

when the predicted suitability had a long tail among the low predicted values for withheld test 274 

data. We also calculated the difference between AUCTRAIN and AUCTEST, with values > 0 275 

indicating over-parameterization. 276 

 To quantify model accuracy, the ability to predict potential species distributions within the time 277 

frame in which the model was developed, we calculated commonly used performance metrics 278 

such as AUC, true skill statistics (TSS), and sensitivity (proportion of correctly predicted 279 

presences; 0-1 values) on 25% withheld test data. The probabilities predicted by the SDMs were 280 

converted to presence/absence using the 10% omission rate threshold used for calculating OR10. 281 

AUC values range from 0 to 1 with values > 0.8 indicating good discriminative ability (Swets, 282 

1979); TSS values can range from -1 to 1, with values above 0 indicating models better than 283 

random (Allouche et al., 2006). 284 
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To evaluate the temporal transferability of the SDMs, i.e. their ability to predict potential species 285 

distributions in a different time frame, we calculated single-direction (TIt1t2 and TIt2t1) and 286 

overall transferability indices (TIoverall) based on AUC scores (Tuanmu et al., 2011) as: 287 

TIt1→t2=1- |AUCt1t1- AUCt1t2|
0.5

     (1) 288 

TIt2→t1=1- |AUCt2t2- AUCt2t1|
0.5

     (2) 289 

TIoverall=1- 0.5 ×	(TIt1→t2	+	TIt2→t1)
1 + |TIt1→t2	-	TIt2→t1|

     (3) 290 

where AUCt1t1 and AUCt2t2 are AUC values for interpolation of t1 and t2, respectively. And 291 

AUCt1t2 and AUCt2t1 are AUC values for extrapolation of t1 and t2, respectively. Their values 292 

range from 0 to 1, with values close to 1 indicating good transferability. In addition, we 293 

calculated Schoener’s D statistic, the most common measure of niche overlap (Schoener 1970; 294 

Broennimann et al., 2012), to test temporal transferability of the SDMs across the geographic 295 

space. Using scenario t1t2 as an example, the SDMt1 was extrapolated to map suitability under 296 

current climate. This extrapolated suitability map was compared with the interpolative suitability 297 

map generated by SDMt2 to calculate Schoener’s D statistic. Therefore, the Schoener’s D statistic 298 

evaluates the pairwise similarity between the extrapolation of SDMt1 and interpolation of SDMt2, 299 

reflecting the model transferability across the geographic space. The value ranges from 0 (no 300 

overlap) to 1 (identical predictions). Finally, we converted the predicted habitat suitability 301 

(probabilities) maps into binary species presence/absence maps based on the 10% omission rate 302 

threshold used for calculating OR10. A high level of agreement in predicted presence/absence 303 

between the two models indicates good transferability for a time frame. 304 
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Quantification of climate novelty and limiting factors 305 

Climate novelty may lead to decreased predictive skill of the SDMs when the models are 306 

transferred across time (Fitzpatrick et al., 2018). We quantified climate novelty between the 307 

training sample and its interpolative and extrapolative regions by calculating multivariate 308 

environmental similarity surfaces (Elith et al., 2010). This measure of similarity calculates, for 309 

each climate variable, the closeness of any given point in the interpolative or extrapolative 310 

regions to the probability distribution of the climate variables of the reference points (i.e. the 311 

points used to fit the model) (for more details about the method, see Appendix S3 in Elith et al. 312 

2010). We related the pattern of climate novelty to predicted suitability across geographic space 313 

for the four scenarios illustrated in Figure 2, and between climate novelty and transferability. 314 

When the SDMs are transferred beyond the time frame where the model was developed, the 315 

predicted suitability of areas with high level of climate novelty/dissimilarity should be 316 

interpreted with caution. To quantify whether the climate factors driving habitat suitability have 317 

changed across time frames, we generated maps showing the limiting factors for habitat 318 

suitability for SDMt1 and SDMt2. The limiting factor was defined as the most influential variable 319 

for the predicted suitability at each pixel based on the modeled response curves between the 320 

fitted functions and each predictor variable for SDMt1 and SDMt2 derived from the MaxEnt 321 

algorithm (Elith et al., 2010). 322 

Results 323 

Model accuracy and transferability 324 

Both SDMt1 and SDMt2 performed well for interpolation based on the threshold-independent and 325 

threshold-dependent metrics (Table 2). The negative AUCDIFF values, 0 ORMTP, and OR10 < 0.1 326 

suggest that both SDMt1 and SDMt2 were not over-parameterized. The AUCTRAIN scores were 327 
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both > 0.8 for SDMt1 and SDMt2. The AUCTEST values of two SDMs were both > 0.85 with 328 

sensitivity > 0.9 and TSS > 0.5, indicating a good discrimination ability in the test data within 329 

the respective time frames in which the SDMs were developed. 330 

Table 2 Evaluation metrics of MAXENT SDMs for white oak in two different time frames. 331 

Model Scenarios AUCTEST AUCTRAIN AUCDIFF ORMTP OR10 Sensitivity TSS 
SDMt1 t1t1 0.869 0.822 -0.046 0.000 0.091 0.909 0.576 
SDMt2 t2t2 0.863 0.817 -0.046 0.000 0.057 0.943 0.570 

SDMt1– SDM fitted with 1900s presence and climate. SDMt2– SDM for current presence and climate. Metrics were 332 
calculated using the 25% withheld test data. AUCTEST– AUC based on predicted values in the test data. AUCTRAIN - 333 
AUC based on predicted values in the training data. AUCDIFF– AUCTRAIN - AUCTEST. ORMTP– minimum training 334 
presence omission rate. OR10– 10% training omission rate. TSS– true skill statistic. 335 

 336 

Both SDMs developed for time frames t1 and t2 showed good temporal transferability when 337 

projecting across time frames (Table 3). The AUC values for scenario t1t2 and t2t1 were > 0.85, 338 

sensitivity values > 0.92, and TSS values > 0.56. However, there is a slight difference between 339 

the AUC, sensitivity, and TSS values for the two SDMs when transferring them across time 340 

frames. TI for t1t2 was slightly higher than that for t1t2. This suggests that SDMt1 was slightly 341 

more transferable than SDMt2. Likewise, Schoener’s D statistics indicates that SDMt1 predictions 342 

resulted in more similar habitat suitability maps across geographic space than SDMt2 when the 343 

two SDMs were transferred to different time frames. Nevertheless, the overall transferability of 344 

two SDMs across time frames was still good (TIoverall = 0.969), and so were two single-direction 345 

TI’s for SDMt1 and SDMt2, 0.933 and 0.926, respectively. Therefore, SDMs were transferable 346 

beyond the time frame in which the models were developed for predicting species occurrences in 347 

withheld test data of each time frame. 348 

  349 
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Table 3 Evaluation metrics of model temporal transferability for white oak between two frames. 350 

Scenarios AUC Sensitivity TSS TI Schoener's D statistic TIoverall 
t1t2 0.854 0.925 0.567 0.987 0.933 0.969 
t2t1 0.856 0.921 0.569 0.972 0.926  

Metrics were calculated based on the suitability values predicted by the model developed for time frame t1 (SDMt1) 351 
for test data in time frame t2 (scenario t1t2) and vice versa (scenario t2t1). 352 

 353 

Habitat suitability across the white oak geographic range 354 

In general, SDMt1 and SDMt2 had good ability for predicting white oak suitable habitats under 355 

their contemporaneous climate (i.e., the 1900s climate and current climate, respectively) across 356 

the geographic space. All high suitability areas were predicted within Little’s (1971) white oak 357 

range whereas relatively lower predicted suitability was outside of the species range (on-diagonal 358 

Figure 3a). Comparing the suitability maps between scenario t1t1 and t2t2, we found that the 359 

interpolative prediction for the 1900s and current climate were similar, suggesting that the 360 

distribution of white oak suitable habitats did not substantially shift across time frames (on-361 

diagonal Figure 3a). However, the models point to areas where suitability may have changed, 362 

particularly around the northern range of white oak and the lower mid-Atlantic region, with 363 

relatively higher suitability predicted by SDMt2 and lower suitability predicted by SDMt1. 364 
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 365 
Figure 3 Distribution of habitat suitability and predicted presence/absence of white oak in geographic 366 
space by SDMt1 and SDMt2. The black dashed line indicates Little’s range for white oak (Little, 1971). (a) 367 
Distribution of habitat suitability maps for each scenario: t1t1, t2t1, t2t2, and t1t2. (b) Spatial comparison 368 
of presence/absence predictions between two SDMs: gray = areas modeled as presence by the two 369 
models, red = presence only predicted by the ENMt1, blue = presence only predicted by the ENMt2, and 370 
white = absence. 371 

 372 

A great deal of agreement was found in the predictions of habitat suitability by SDMt1 and 373 

SDMt2 across the geographic space when the models predicted across time frames, indicating 374 

good overall transferability of SDMs across time frames (off-diagonal in Figure 3a). 375 

Accordingly, suitable habitats predicted by the two SDMs were consistent in most of regions in 376 

the southern U.S. 377 

However, the predicted suitability around the leading edge of white oak showed different 378 

patterns between the two models (upper panel of Figure 3a for t1, and lower panel of Figure 3a 379 
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for t2). The mapped agreement and disagreement in predictions of presence/absence for the four 380 

scenarios is presented in Figure 3b. Relatively higher disagreement between the two SDMs was 381 

found when hindcasting presence/absence onto the 1900s climate with SDMt2, as compared with 382 

predicting onto current climate with SDMt1 (Figure 3b), specifically in the northwest edge of the 383 

distribution in the 1900s where SDMt1 predicted presence while SDMt2 failed to do so. However, 384 

SDMt2 predicted more species presence in the lower bound of the Midwest. In addition, as can 385 

also be seen in Figure 4, SDMt2 predicted significantly smaller values of habitat suitability than 386 

SDMt1 for both t1 (paired t-test, t = 7.15 and p< 0.01) and t2 (paired t-test, t =2.63 and p< 0.01). 387 

Even though these differences were small in terms of predicted probability values, they may 388 

result in a great amount of difference in the binary prediction of presence/absence with a given 389 

threshold for thousands of pixels in the geographic space. Differences in habitat suitability values 390 

suggest that the climatic associations captured by two SDMs from their respective time frames 391 

were different. 392 

 393 
Figure 4 Box plot of predicted habitat suitability from two SDMs for the same withheld test data in two 394 
different scenarios: (a) t1t1 versus t2t1, comparison of predicted suitability between SDMt1 and SDMt2 for 395 
withheld test data of time fame t1, (b) t2t2 versus t12, predicted suitability between SDMt1 and SDMt2 for 396 
withheld test data of time fame t2. 397 

  398 
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Climate conditions and limiting factors 399 

Comparing the climate conditions between training data and interpolative projected regions for 400 

SDMt1 and SDMt2 (Figure 5a and 5d), we found that the climate conditions were not 401 

considerably different across the entire range of white oak. The most similar climate conditions 402 

were found in the focal part of white oak range for both interpolative scenarios t1t1 and t2t2. 403 

However, the climate conditions between training data and extrapolative projected region (t1t2 404 

and t2t1) was slightly less similar than the interpolative projected region (Figure 5b and 5c). This 405 

pattern confirmed the slightly lower predicted ability by the two models beyond the time frames 406 

where the models were developed (Figure 3a). When projecting onto the different time frame, 407 

the climate similarity for SDMt1 was generally higher than that for SDMt2 specifically in the 408 

northern range of white oak. This pattern was consistent with the slightly higher transferability of 409 

SDMt1 (Table 3). A notable difference existed in the predicted presence for white oak when 410 

SDMt2 was projected to the 1900s climate in the very upper corner of Midwest, which could be 411 

attributed to the dissimilarity of climate conditions (Figure 3b and Figure 5b). 412 
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 413 
Figure 5 Comparison of climate conditions between training data and projected regions using all 414 
variables and the multivariate environmental similarity surface (MESS) methods for four different 415 
scenarios: (a) t1t1, (b) t2t1, (c) t1t2, and (d) t2t2 overlaid with blue circles denoting the 1900s (t1) 416 
presence localities and blue stars denoting the current (t2) presence localities. Shading colors indicate 417 
values of MESS coded from blue (negative) to orange (positive) with more intense colors denoting higher 418 
absolute values. Negative values represent climate dissimilarity while positive values indicate climate 419 
similarity (Elith et al., 2010). The black dashed line indicates Little’s range for white oak (Little, 1971). 420 

 421 

To further look at what drove the habitat suitability at any given locality across the range of 422 

white oak, we generated the maps showing the limiting factors for each SDM (Figure 6). The 423 

spatial patterns of limiting factors for each model substantially varied between two the SDMs 424 

across the entire range, which suggests that the climate association captured by SDMs varied 425 

across space and time. As expected, high summer temperatures (MTWM, Figure 6), likely 426 

associated with moisture balance limitations, appeared limiting the southern part of the range for 427 
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both time periods. In the northern range, however, PAS (precipitation as snow), reflecting 428 

coldness/moisture in winter, appears limiting in the 1900s while heat/moisture balance (SHM) 429 

appears limiting for current climates, indicating a shift as climate warms. Comparing the maps 430 

for both time periods, it is noticeable that the geographic extent where MTWM is likely limiting, 431 

increased northward from the 1900s to the current climate period. 432 

 433 
Figure 6 Limiting factors of the predicted habitat suitability at every single pixel across the study area 434 
based on the underlying model and fitted functions for (a) SDMt1 and (b) SDMt2. The limiting factor was 435 
defined as the variable that most influenced the model prediction (for more details, see Elith et al. 2010). 436 
The climatic variables appeared in both (a) and (b) were coded with the same color. The black dashed line 437 
indicates Little’s range for white oak (Little 1971). See Table 1 for the acronyms of each variable and 438 
more details. 439 

 440 
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Discussion 441 

This study demonstrates the temporal transferability of SDMs for white oak across a 100-year 442 

scale for white oak. Both SDMs fitted with their contemporaneous climate layers were able to 443 

accurately predict habitat suitability and species presence/absence when projected onto the 1900s 444 

and current climate. Nonetheless, the accuracy of the interpolative projection was slightly higher 445 

than that of the extrapolative projection for both ENMs (Table 2 and 3). Of both models, SDMt1 446 

and SDMt2, SDMt1 had higher predicted skill when used to predict onto current climate (Table 447 

3). SDMt2 tended to produce a narrower range of habitat suitability values than SDMt1 regardless 448 

of the time frame onto which the model was transferred (Figure 4), and this may lead to 449 

considerable disagreement between SDMt2 and SDMt1 in predicting presence/absence over 450 

geographic space. One possible explanation to this pattern is that the multivariate climate 451 

conditions between the training data and projected regions were more similar for SDMt1 than 452 

SDMt2 (Figure 5). The latter likely extrapolated outside of climate conditions in the training data 453 

(current climate) when it was transferred to the 1900s climate. Overall, the spatial extent and 454 

distribution of suitable habitats for white oak did not change much with only a slight difference 455 

in the predicted values of habitat suitability across its geographic range over the last century 456 

(Figure 6). 457 

Temporal transferability of SDMs is increasingly studied when projecting modelled relationships 458 

to past or future climates to look at potential effects of climate change on species distributions 459 

(Guisan & Thuiller, 2005; Elith et al., 2006; Elith & Leathwick, 2009; Peterson et al., 2011). Our 460 

results support the findings of previous studies that tested the temporal transferability of SDMs 461 

across different time scales (Tingley et al., 2009; Varela et al., 2009; Rapacciuolo et al., 2012), 462 

and found evidence for the temporal transferability of SDMs within a century (Smith et al., 2013; 463 
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Yates et al., 2018). Our findings also indicate that the accuracy of interpolative projections was 464 

slightly higher than that of extrapolative projections for two SDMs (Table 2 and 3). This pattern 465 

is consistent with recent studies demonstrating the declined performance of SDMs when they 466 

were transferred to different time (Kharouba et al., 2009; Dobroski et al., 2011; Rubidge et al., 467 

2011; Rapacciuolo et al., 2012). 468 

The good temporal transferability of SDMs demonstrated in this study could be possibly 469 

attributed to the low level of climate novelty found in both the interpolative and extrapolative 470 

regions (Figure 3). The models should transfer well when they are projected to highly similar 471 

analogous environments (Wenger & Olden, 2012; Wogan, 2016). When projecting SDMt1 onto 472 

the 1900s and current climates, we found high level of climate similarity between its training 473 

data and the projected regions across the entire range of white oak (Figure 5a and 5c), suggesting 474 

that current climate was within the range of values experienced by the 1900s white oak 475 

distribution. 476 

The notable mismatch in the upper corner of Midwest between the 1900s interpolation and 477 

current extrapolation (upper-right panel Figure 3a and upper panel Figure 3b) we found could be 478 

explained by climate novelty or non-analogue climate in that region (Figure 5b). We found that 479 

Schoener's D statistic for scenario t2t1 was less than that for scenario t1t2, suggesting that SDMt2 480 

could not project suitable habitats as well as SDMt1 onto the 1900s climates because of the 481 

dissimilar climate conditions in the upper corner of Midwest were not captured by the SDMt2 482 

(Figure 5b). This trend in decreased transferability caused by climate novelty was also illustrated 483 

by Thuiller et al. (2004) and Fitzpatrick et al. (2018). Apart from the primary difference between 484 

model projections around the leading edge of white oak, we found regions with disagreement 485 

between SDMt1 and SDMt2 in predicted presence across the focal range of white oak (on-486 
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diagonal Figure 3a). This pattern could be induced by the novel combinations of climatic 487 

variables in extrapolative regions that were not captured by the models. Another possible 488 

explanation could be that the associations between species presence/absence and climate were 489 

different, which could be demonstrated by the spatially varying associations between climate 490 

limiting factors and habitat suitability for the two SDMs (Figure 6). 491 

Without doubt, high temporal transferability is likely to increase our confidence using SDMs to 492 

project habitat suitability into the future. However, it is notable that SDMt2 is less transferable 493 

than SDMt1 and hints to a potential increase in mismatch as climate continues to change. Our 494 

findings show that the 1900s climate captured by SDMt1 was more similar to the current climate 495 

(Figure 5). The less temporal transferability of SDMt2 was attributed to the dissimilarity between 496 

the training sample and predicted regions, suggesting that the multivariate climate surfaces 497 

instead of one single climate variable in the 1900s were outside of the range of those captured by 498 

SDMt1. As the dissimilarity between current and future climate is predicted to increase 499 

(Fitzpatrick et al., 2018), the transferability of SDMt2 is likely to further decrease. To project 500 

reliable habitat suitability under future climate, it would be better to pool the 1900s and current 501 

presences to increase the breadth of multivariate climate spaces captured by SDMs (Nogués-502 

Bravo et al., 2016). 503 

In the context of climate change, climate factors limiting habitat suitability could shift across 504 

geographic space, and this may lead to changes in habitat suitability for a given location across 505 

time. A variable might be important to species distributions at one time whilst not as important in 506 

a different time period (Broennimann et al., 2007; Monahan & Hijmans, 2008). Our results 507 

support this and suggest that the limiting factors for the white oak distribution were different 508 

between the 1900s and current (Figure 6), leading to difference in habitat suitability between 509 
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1990s and current climates across the range of white oak (Figure 3). Further, we found that the 510 

southern range of white oak was more determined by MWMT across periods while the limiting 511 

factors for its northern range shifted from variables reflecting the coldness of winter and 512 

moisture regime (PAS and DD0) to SHM and FFP reflecting summer moisture and length of 513 

growing seasons (Figure 6). Although the range-wide analysis that usually considers species 514 

distribution as homogenous across its entire range may not reflect variability in the response of 515 

different populations (Prasad et al., 2020), our results of the limiting factors for white oak range 516 

under current climate suggest that summer temperatures may be important drivers for the 517 

populations in the southern range while variables related to growing season length may 518 

determine its northern populations (Figure 6). This spatially varying pattern of climatic drivers 519 

for white oak distribution aligns with the fact that the response of different populations for 520 

widespread species to climate may vary across their ranges (Leites, Rehfeldt, & Steiner, 2019; 521 

Peterson, Doak, & Morris, 2019). 522 

Although we modeled the 1900s and current suitable habitats for white oak with all climatic 523 

variables using Maxent default settings, we did not observe over-fitting for SDMt1 and SDMt2 524 

(Table 2). Feng et al. (2019) found that Maxent can handle redundant variables in model training 525 

and removing correlated variables has little impact in Maxent model performance. However, 526 

reduced model complexity may contribute to improved model transferability (Norberg et al., 527 

2019). Tuning parameters in Maxent setting through different combinations of feature classes 528 

and regularization multipliers (Muscarella et al., 2014), and selecting predictor variables based 529 

on expert knowledge and biological plausibility may further improve the transferability of ENM 530 

to produce more ecologically realistic predictions of species distributions across time (Guevara, 531 

Gerstner, & Kass, 2017). 532 
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Conclusion 533 

In conclusion, with the reconstructed the 1900s presence localities of white oak inferred from 534 

tree ring data, we offered a new approach for testing the temporal transferability of SDM by 535 

projecting models onto different climates and examining the change in species-climate response 536 

across its range. By doing so, we pooled species presence localities from two time periods to 537 

better encompass the climatic niche of white oak experienced in the 1900s and current. We 538 

demonstrated the temporal transferability of SDM for white oak across its entire range in the 539 

eastern United States and found that the SDM fitted with the 1900s climates were more 540 

transferable to the current because it encompassed most of climate conditions experienced by the 541 

current species presences. The difference in transferability between SDMs fitted with the 1900s 542 

and current climates may be attributed to the climate novelty and change in limiting factors for 543 

white oak distributions. One of the main reasons for the growth of studies testing the temporal 544 

transferability of SDMs is the increase in the availability of historical distributions of species 545 

(Kharouba et al., 2009; Dobroski et al., 2011). Improved methods to project SDMs onto different 546 

time frames (past and future) are of great importance to better understanding the response of 547 

species distributions across time in the face of climate change. 548 
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