

TADA! Simple guidelines to improve analytical code sharing 1

for transparency and reproducibility 2

Edward R. Ivimey-Cook1@, Antica Culina2, Shreya Dimri3, Matthew J. Grainger4, Fonti Kar5,6, 3

Malgorzata Lagisz6,7, Nicholas P. Moran8, Shinichi Nakagawa7, Dominique G. Roche9, Sean 4

Tattan1, Alfredo Sánchez-Tójar3,10,11, Saras M. Windecker12, Joel L. Pick13 5

 6

1 University of East Anglia, Norwich, UK; 2 Ruder Boskovic Institute, Croatia; 3 Department of Evolutionary 7

Biology, Bielefeld University, Germany; 4 Norwegian Institute for Nature Research, Trondheim, Norway; 5 8

Research School of Finance, Actuarial Studies & Statistics, The Australian National University, Canberra, 9

Australia. 6 School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, 10

Australia; 7 Department of Biological Sciences, University of Alberta, Edmonton, Canada; 8 Centre of Excellence 11

for Biosecurity Risk Analysis, Biosciences, University of Melbourne, Parkville, Victoria, Australia; 9 Institut de 12

Biologie, Université de Neuchâtel, NE, Switzerland; 10 CNC, Center for Neuroscience and Cell Biology, University 13

of Coimbra, Portugal; 11 CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 14

Portugal; 12 The Kids Research Institute Australia, Nedlands, WA, Australia; 13 Institute of Ecology and Evolution, 15

University of Edinburgh, Edinburgh, UK; 16

 17

@corresponding author: e.ivimeycook@gmail.com; authors aside from the first and last are ordered 18

alphabetically. 19

 20

 21

 22

 23

mailto:e.ivimeycook@gmail.com

Abstract 24

Code sharing is essential to ensure transparency and computational reproducibility of published 25

research, which in turn increases trust in scientific results. However, despite the growing number 26

of journals that mandate code sharing, the prevalence of open code remains low, and 27

substantially lags behind that of open data. Furthermore, even when it is openly shared, code is 28

often non-functional, which hinders computational reproducibility. One reason for low levels of 29

code sharing is uncertainty around how to properly archive functional analytical code associated 30

with published research. Existing resources for best coding practices often do not sufficiently 31

address how to archive analytical code, do not adhere to the established FAIR (Findable, 32

Accessible, Interoperable, Reusable) principles, or are complex and primarily developed for 33

software. To address this gap, we provide simple code sharing guidelines: TADA (Transferable, 34

Available, Documented and Annotated). TADA details the minimum requirements necessary for 35

a researcher to produce functional code for sharing that directly supports best practices and 36

complements the FAIR principles. TADA aims to streamline the process of archiving and 37

sharing functional code for researchers across all levels of coding experience, with the goal of 38

increasing transparency, reproducibility, and the reliability of research results. Although these 39

guidelines were developed based on our experience in Ecology and Evolutionary Biology, we 40

believe they will be useful to researchers in other disciplines. 41

 42

 Keywords 43

Research integrity, Reliability, Replicability, Reproducibility, Research methods, 44

Methodological rigour 45

 46

Introduction 47

Publicly sharing code (i.e., open code) offers numerous benefits for researchers and the broader 48

scientific community. For authors, open code may increase citation rates of associated articles 49

(Vandewalle, 2012; Maitner et al., 2024) and can provide future career advantages (McKiernan 50

et al., 2016; Allen & Mehler, 2019; König et al., 2025). For the broader community, open code 51

enhances the transparency of analytical methods and the overall research process (Goldacre et 52

al., 2019; Fernández-Juricic, 2021; Ivimey-Cook et al., 2023) and enables other researchers to 53

more efficiently build upon published work (Barnes, 2010; Eglen et al., 2017). Furthermore, 54

code, alongside data, is essential for ensuring computational reproducibility - the ability to 55

reproduce analyses and results using the same data, code, and computational conditions 56

(National Academies of Sciences, 2019) - a key part of the scientific process that promotes 57

reliability and builds trust in research (Fidler et al., 2017; Powers & Hampton, 2019). As 58

awareness of these benefits grows amongst researchers and the wider scientific community 59

(Eynden et al., 2016; Cadwallader & Hrynaszkiewicz, 2022; Ferguson et al., 2023), an 60

increasing number of journals in ecology and evolutionary biology are promoting open code by 61

implementing code sharing policies (from 15% in 2015 to 88% in 2024, Mislan et al., 2016; 62

Culina et al., 2020; Ivimey-Cook et al., 2025). These policies encourage or require authors to 63

share code before manuscript publication, or in some cases, upon first submission. Ideally, open 64

code should follow the FAIR principles, which were initially published for data in 2016 65

(Wilkinson et al., 2016) and later adapted for Research Software in 2022 (FAIR4RS; Barker et 66

al., 2022; Chue Hong et al., 2022). FAIR stands for Findable: the ability for both machines and 67

humans to easily find digital assets (including metadata, data, and code); Accessible: digital 68

assets are retrievable via their identifier, and can be accessed with or without the need for 69

additional authorisation or authentication; Interoperable: digital assets must be able to 70

interoperate with other digital assets and be readable using standard documented formats; and 71

lastly, Reusable: digital assets must be described sufficiently to enable reuse and attribution, 72

ideally via a licence (see Wilkinson et al., 2016; Barker et al., 2022; Chue Hong et al., 2022). 73

 74

Despite incremental progress towards more transparent and reproducible research in ecology and 75

evolutionary biology (Cao et al., 2023), evidence suggests there appear to be significant barriers 76

to code sharing. First, the proportion of articles with open code in ecology and evolutionary 77

biology remains alarmingly low, with rates of code sharing ranging from between 5 and 33% 78

(Culina et al., 2020; Kimmel et al., 2023; Kambouris et al., 2024; Maitner et al., 2024; Kellner et 79

al., 2025; Sánchez-Tójar et al., 2025). Second, even when code is provided, its functionality (i.e., 80

the ability to run code without error) is often low (Trisovic et al., 2022; Kellner et al., 2025). In a 81

recent study examining R code in research articles analysing species distribution and abundance, 82

the authors had to abandon the reproducibility aspect of their analysis due to the overwhelmingly 83

high proportion of code that did not run or ran with errors (93% of coding scripts; Kellner et al., 84

2025). Similarly, a recent review of over 9000 unique R files shared in the Harvard Dataverse 85

repository found that 74% of code failed to complete without error, which only decreased to 56% 86

after code cleaning was applied (e.g., removal of local file paths and ensuring libraries and 87

dependencies were properly installed and loaded; Trisovic et al., 2022). Finally, even if code is 88

present and functional, computational reproducibility is not always achieved (Campbell et al., 89

2023; Kambouris et al., 2024; Kellner et al., 2025). For instance, the ability to reproduce the 90

results of meta-analyses in ecology and evolutionary biology has been shown to range from 27% 91

(all results within an article exactly matched) to 73% (50% of results within an article were 92

within 10% of the original value) when data and code were shared and functional (Kambouris et 93

al., 2024). The low rates of code archiving, low functionality of archived code, and low 94

computational reproducibility of results when functional code is archived, paints a concerning 95

picture for ecology and evolutionary biology and suggests that many of the benefits of code 96

sharing are likely not being achieved. 97

 98

A major reason for the limited availability and functionality of code and, therefore, low rates of 99

computational reproducibility, might be a lack of knowledge of how to share code with 100

transparency and reproducibility in mind (Gomes et al., 2022). Whilst several interdisciplinary 101

resources have been created to help authors prepare and share code (Sandve et al., 2013; Cooper, 102

2017; Jiménez et al., 2017; Barker et al., 2022; Chue Hong et al., 2022; Filazzola & Lortie, 103

2022; Ivimey-Cook et al., 2023; Patel et al., 2023; Abdill et al., 2024; Rokem, 2024; Sharma et 104

al., 2024; Hillemann et al., 2025), these resources are not focused on how to practically archive 105

functional code used for analyses in research articles (analytical code). Few refer to FAIR 106

principles, and those that do, such as FAIR4RS (Barker et al., 2022; Chue Hong et al., 2022), are 107

too broad in scope and focused towards software developers, potentially explaining why they 108

have not been widely adopted. 109

 110

The term ‘code reusability’ is often used in two different contexts. In the context of FAIR 111

principles, reusability involves sharing code in a way that clearly specifies what can be done with 112

it, for example, via a license and a README file. In a software development context, designing 113

code for reuse is a far more complicated process, as code needs to be written in a generalised and 114

modular way, and tested, enabling it to function across different systems and with various 115

compatible datasets as input (e.g., Hillemann et al., 2025). Current guidelines focus on the latter 116

context and although they are extremely useful and important in ensuring best practices for open-117

source software, they likely set too high a bar for analytical code that does not need to meet the 118

standards of reusable software in order to achieve its intended benefits. Analytical code is 119

typically far more unique and tailored to a specific dataset than open-source software. The main 120

goal of producing and sharing analytical code is typically not to create tools or for broad reuse 121

but rather to produce a transparent and reproducible record of the analysis for a particular study. 122

Therefore, establishing simple best practices that enable code to align with FAIR principles and 123

minimum standards for transparency and computational reproducibility. is an important first step 124

towards increasing the rate and quality of analytical code sharing in ecology and evolutionary 125

biology. Here, we provide simplified and easy-to-follow guidelines built with the FAIR4RS 126

principles in mind but tailored to analytical code for research. We call these guidelines TADA! 127

(Transferable, Available, Documented, Annotated) and believe they will help researchers at all 128

coding levels prepare functional code that facilitates reproducible and transparent research which 129

will help to build trust in published results.130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

Figure 1. An example of the TADA guidelines (Transferable, Available, Documented, Annotated) applied to analytical code written 144

in R, showing a pre-TADA script (left) and a post-TADA script (right). Coloured letters correspond to Transferable (red), Available 145

(dark green), Documented (purple), and Annotated (blue). The code shown is generic and designed to showcase the TADA guidelines. 146

Figure by EIC. 147

TADA! 148

We outline below four easy-to-follow steps to help researchers share functional and transparent 149

code. By following the TADA guidelines (Figures 2-5), a researcher can produce analytical code 150

that follows best practices, aligns with the FAIR and FAIR4RS principles (Wilkinson et al., 151

2016; Barker et al., 2022; Chue Hong et al., 2022), increases transparency, and facilitates 152

computational reproducibility. TADA is tailored mainly to R and Python, as these open-source 153

languages are widely used in ecology and evolutionary biology (Lai et al., 2019; Gao et al., 154

2025); however, the basic principles of the guidelines can be widely applied to other coding 155

languages including workflow (e.g., Snakemake) and compiled languages (e.g., C++). 156

Furthermore, whilst we provide guidance in the context of research in ecology and evolutionary 157

biology, TADA can be applied broadly across other disciplines. For a checklist of the TADA 158

guidelines, see Figure S1. 159

 160

Transferable 161

Transferability refers to the ability for anyone to open the file, view and run the code without 162

conversion or alteration (Figure 2). This includes the FAIR principle of interoperability (a simple 163

definition implies that anyone will be able to open and use your code) and extends it to allow 164

code to be run on different computers and operating systems. Ensuring transferability greatly 165

increases the computational reproducibility of results from analytical code. First, code must be 166

saved and encoded in a file type that can be opened by any text editor or integrated development 167

environment (IDE; e.g., RStudio, VSCode, PyCharm). In Figure 1, the non-transferable, pre-168

TADA code is in the form of a .PDF file. This file can be viewed but cannot be opened and 169

edited within an IDE without using additional libraries or software, or without conversion to a 170

different file type. Importantly, copying and pasting code from certain file types (i.e., .PDF or 171

.docx) may lead to changes in characters (e.g., apostrophes) or white spaces, or the inclusion of 172

additional, unwanted characters (e.g., line numbers, headers), which can easily result in code 173

errors that are sometimes difficult to spot or time consuming to fix. We suggest saving code in an 174

interoperable file extension with appropriate encoding, such as .R, .py, or .cpp, as these can be 175

readily viewed, edited and saved using any text editor or IDE. Whilst a .txt file can be used to 176

share text in a manner that readily allows for copying and pasting without the aforementioned 177

issues, it can lead to issues with interpretation of the coding language in many IDEs (e.g., 178

without the .R file extension, IDEs may not recognise and allow for execution of the R coding 179

language without saving the .txt file as a .R file). 180

 181

Second, to ensure code runs on different computers and operating systems, file paths must be 182

written in a way that is not specific to the user’s local environment or directory structure (i.e., local 183

or user-specific file paths as opposed to relative file paths). Importantly, data, code, and all 184

necessary materials should be organised in a single project directory. To avoid local file paths, one 185

can use an RStudio project, which automatically sets the working directory to the appropriate 186

location (e.g., a project folder), alongside packages such as here (Müller & Bryan, 2020) or 187

pyprojroot (Chen 2023), which create file paths relative to any project directory regardless of 188

operating system (i.e., relative file paths). This will ultimately avoid the use of the setwd() function 189

(in R), or the os.chdir() function (in Python), which set both operating system and user-specific 190

file paths that can cause other users to encounter errors when running the code. For other software, 191

simply opening the project folder (in VSCode) or launching R (when standalone without an IDE) 192

within the project directory performs a similar action to using an RStudio project. In Figure 1, the 193

use of local and user-specific file paths in the pre-TADA code will cause all other users to 194

encounter errors when importing the required data file. In contrast, the post-TADA panel is 195

agnostic of operating system and file paths, allowing prospective users to load the necessary data 196

file (assuming it exists). Although beyond the scope of this paper, reproducible analyses can also 197

be supported by containerisation and workflow managers. Containerisation platforms such as 198

Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) use images that encapsulate a 199

complete software environment, including all required programs and libraries. This helps ensure 200

environment reproducibility between systems to avoid the common “works on my computer” 201

problem (Mitra-Behura et al., 2021). Workflow managers such as Snakemake (Koster & Rahmann, 202

2012) and Nextflow (Di Tommaso et al., 2017) promote reproducibility by specifying the sequence 203

of scripts or computational steps in a pipeline and their dependencies. This ensures each step in 204

the pipeline executes in a defined and reproducible order (Di Tommaso et al., 2017). 205

 206

 207

Figure 2. Summary of advice on making analytical code Transferable. Figure by ML. 208

 209

Transferability How To (See also Figure 2): When sharing R or Python code, ensure that 210

each code file is appropriately saved and encoded as either a .R,. py, or .cpp, file (or other 211

standard format, as appropriate). Avoid sharing code within Word documents (.doc or 212

.docx) or PDFs. If the coding language or IDE does not use or save code in a standard file 213

type, check to see if the resulting file can be opened by a text editor (e.g., SPSS syntax .sps 214

files can be readily viewed in a text editor). 215

 216

There are several options to specify relative file paths and avoid local file paths in your 217

code. RStudio users can simply create a new RStudio project (File --> New Project; see 218

https://docs.posit.co/ide/user/ide/get-started/), which eliminates the need for local file paths. 219

RStudio projects can be used in combination or separately from using packages such as 220

here. We recommend using both to maximise transferability across operating systems. 221

Additional methods include navigating to the project file and opening it within VSCode or 222

running an instance of R or Python within the specific project folder. The latter will 223

remove the need for local file paths that may lead to errors when other users try to run the 224

code on different systems. Whichever method is chosen should be in the code 225

documentation (see below). 226

 227

Available 228

Availability refers to the act of publicly archiving the code in a way that provides long-term to 229

any external user (Figure 3). Available, in this context covers the FAIR principles of both 230

Findable (provision of a unique identifier) and Accessible (code is retrievable via this identifier). 231

To store code in an open and easily available manner, code must have an associated globally 232

unique persistent identifier or PID (e.g., a DOI), which must be cited in the corresponding 233

manuscript. Whilst GitHub might be a commonly used platform for developing code and 234

https://docs.posit.co/ide/user/ide/get-started/

provides a transparent platform for version control during the development phase (Braga et al., 235

2023; Kang et al., 2023), it does not readily provide a PID and files can be changed (or even 236

deleted) at any time, including after manuscript publication after archiving (i.e., GitHub is not 237

immutable). This limits reproducibility of published results if the exact code is no longer 238

available or is edited. As such, GitHub and similar platforms (e.g., Codeberg, Bitbucket, GitLab) 239

are not suitable for archiving analytical code used in a particular publication. Repositories such 240

as Zenodo (which can connect to a GitHub project) and Figshare are immutable and can provide 241

both a base project-level DOI that never changes and version-specific DOIs, created whenever a 242

new version of the code is released. Another useful resource is Software Heritage, which can 243

preserve GitHub projects for long-term storage and provides PIDs in the form of Software Hash 244

Identifiers (SWHIDs). In Figure 1, the lack of archived code and associated DOI in the pre-245

TADA code limits code sharing and prevents permanent, immutable, and citable storage of the 246

code. 247

 248

 249

Figure 3. Summary of advice on making analytical code Available. Figure by ML. 250

 251

Available

Anyone can find and access the publicly archived code!

❑ file identifier

❑ storage

Associate file(s) with a globally unique persistent
identifier (e.g., DOI)

Store files(s) in an online repository that is
immutable and free to access (e.g. Zenodo)

Availability How To (See also Figure 3): Upload your code to Zenodo (https://zenodo.org/) 252

or Figshare (https://figshare.com/) or any other repository that assigns a DOI and 253

guarantees immutability and preservation. A unique DOI will be created for the code, and 254

a new one whenever it is subsequently updated (known as DOI versioning). Assigning a 255

DOI facilitates citing the code and linking to it in the related manuscript. GitHub is not 256

ideal to archive and share analytical code associated with a paper because it is not 257

immutable and does not generate a DOI. Instead, users can create a release version on 258

GitHub and link to Zenodo (see https://help.zenodo.org/docs/profile/linking-accounts/ for 259

more information regarding linking projects). 260

 261

Documented 262

Documentation refers to providing accurate and detailed metadata files that describe the code 263

files and their usage (Figure 4). This documentation is often provided as an additional .txt file or 264

.md file (typically a README.txt or markdown file). Documentation could be provided as a 265

combined README containing both code- and data-specific metadata, or as two separate 266

READMEs, one for code and one for data, if relevant. Figure 1 shows an example of essential 267

information that should be contained within a README file. This includes information related 268

to the author of the code along with some form of contact information, as well as the title of the 269

corresponding manuscript and any relevant funders. In addition, the computational environment 270

used, such as software version (e.g., R v.4.3.3), packages with associated versions (e.g., ggplot 271

v2.3.2; this could also be provided alongside a text file which lists every loaded package and 272

version number; given by sessionInfo() in R or session-info in Python), licences (e.g., MIT 273

licence), and the data-specific PID or other important information as to where the relevant data 274

https://zenodo.org/
https://figshare.com/
https://help.zenodo.org/docs/profile/linking-accounts/

are located alongside any additional information needed to run the code (e.g., what each file 275

contains, the order in which to run them, whether the code takes a long time to run, what it 276

requires data-wise to run and what it produces). 277

 278

The documentation must specify an appropriate licence detailing how others can use, modify and 279

share the code. Licences can take many forms, such as the Massachusetts Institute of Technology 280

(MIT) or General Public Licence (GPL) and can differ in their permission levels and conditions. 281

For instance, the licence details if attribution is required (i.e., whether you are required to cite the 282

creator of the code), and whether code can be modified, and/or used for commercial purposes. 283

Licences can range from completely open and permissive, such as MIT, which has little to no 284

restrictions on use, to more restrictive, such as the GPL licences, which has several conditions 285

that must be met. For instance, applying the same licence to any derivative works and listing any 286

changes made from the source code (e.g., GPL v3.0). A researcher should carefully consider 287

what form of code-specific licence is needed or whether the repository they choose to use has a 288

default repository-wide licence (e.g., Dryad only supports the CC0 licence, which is not best 289

suited for code). Websites such as choosealicence.com provide detailed guidance on selecting a 290

licence (although, in essence, it can simply involve copying the respective license text and saving 291

the file to the project). Many factors will influence what licence to choose and how open you 292

want your code to be, including who the audience is (i.e., is it intended for commercial 293

applications?), whether you want to allow others to modify or extend your code, and how this 294

aligns with journal, institutional and funder policies. For instance, some journals require the use 295

of a specific licence upon archiving (e.g., a GPL in the Journal of Statistical Software). Figure 1 296

illustrates the implications of licencing choices. The pre-TADA code lacks a licence, which 297

legally restricts others from using, sharing, or modifying the archived code. In contrast, the post-298

TADA code has an MIT licence, explicitly granting users permission to copy, modify, merge, 299

publish, and share the archived code. 300

 301

 302

Figure 4. Summary of advice on making analytical code Documented. Figure by ML. 303

 304

Documented How To (See also Figure 4): Code documentation can provide important 305

information that code annotation lacks. A README.txt or .md file describing the code 306

should contain additional information on the manuscript that the code is associated with 307

(including the title of the manuscript, any relevant funders, and authors with emails for 308

correspondence; if necessary, this can be anonymised during peer review to adhere to 309

double-blind reviewing policies), software used (e.g., R or Python, including version 310

number), any important libraries or packages used (with version numbers), information 311

about where relevant data is located (if appropriate, with a PID), a mention of the code-312

specific licence, and any other important pieces of information, such as the order in which 313

the code should be run, whether the code takes a long time to run (especially for computing 314

intensive processes), what data the code requires to run and what data it produces, if any. 315

 316

For licences, as mentioned above, there exists a multitude to choose from. We recommend 317

consulting choosealicence.com and considering which license is most relevant to your 318

project, copying the relevant licence text, and producing a licence.txt file to add to your 319

project alongside your code. In some repositories, such as Zenodo, you can specify the 320

licence when you choose to archive your code, which will then be attached to the specific 321

project without the need to create your own file. 322

 323

Annotated 324

Annotation refers to adding comments within each code file (e.g., denoted with a “#” in R and 325

Python) or embedding code within an RMarkdown or Quarto document alongside descriptive 326

text (Figure 5; see also https://eivimeycook.github.io/TADA/) and can dramatically improve the 327

ability for someone else to understand (transparency) and run archived code (functionality and 328

reproducibility). Logical sections of code can be broken into ‘chunks’, which can be annotated to 329

include informative details such as what the chunk is doing (e.g., “# Run a Poisson generalised 330

linear model…”), why it is needed (e.g., “…to analyse caterpillar abundance varying with 331

habitat…”), and provide signposting for the locations of specific results in the manuscript body 332

(when applicable; e.g., “Numeric results shown in Caterpillar Abundance section” or “Figure 333

5A”). Although annotation can be done line by line, simply denoting and describing relevant 334

code chunks in sufficient detail is often more helpful for tracking what code does and what it 335

produces (Note, “#####” in RStudio or “#%%” in Python creates collapsible sections in your 336

code that increase readability and facilitate structuring). In Figure 1, the pre-TADA code has no 337

internal annotation, and thus it remains unclear what is being run, why it is run, and what it 338

https://eivimeycook.github.io/TADA/

produces (i.e., there is no signposting). Several useful resources provide additional information 339

on producing clean, well annotated code (Filazzola & Lortie, 2022; Cooper & Hsing, 2025). 340

 341

 342

Figure 5. Summary of advice on making analytical code Annotated. Figure by ML. 343

 344

Annotated How to (See also Figure 5): Annotation in both R and Python is done by simply 345

providing a # (hashtag) before writing text. We recommend annotating code chunks 346

instead of every line of code. Each annotation should briefly include a description of what 347

the code is doing, why, and if it produces any results in the manuscript. An example 348

annotation is given in Figure 1. Alternatively, users could provide annotated code 349

embedded within a RMarkdown or Quarto file, or using IDEs such as a Jupyter Notebook. 350

 351

Conclusion 352

By following the TADA guidelines, which are easy to understand, easy to remember, and which 353

embody the FAIR principles, researchers at all coding levels will be better equipped to produce 354

functional and transparent analytical code to support computational reproducibility. Through the 355

use of TADA, combined with improved editorial practices at journals (e.g., the presence of data 356

editors at journals; Ivimey-Cook et al., 2025; Pick et al., 2025, and pre-submission code reviews; 357

Ivimey-Cook et al., 2023), we hope that the rate and quality of code sharing will continue to 358

increase in ecology and evolutionary biology. Furthermore, while our advice for implementing 359

TADA is tailored towards common practices in ecology and evolutionary biology, the core 360

foundational goals of transparency, availability, documentation, and annotation are broadly 361

applicable across research disciplines. We encourage researchers to adapt and apply these core 362

principles beyond ecology and evolutionary biology, to support widespread adoption of open 363

science practices. 364

 365

Acknowledgements 366

We thank Sarah Wilson Kemsley for discussion of the TADA guidelines in other coding 367

languages across disciplines. 368

 369

Conflict of Interest 370

EIC, JLP, SN, ML, DGR, NPM, SD, and AS-T are members of the Society for Open, Reliable, 371

and Transparent Ecology and Evolutionary Biology (SORTEE). EIC is the Past-President. EIC, 372

AS-T are past board members. ML is a current board member. 373

 374

Author contributions 375

EIC and JLP conceptualised the idea. EIC wrote the first draft. EIC, ML, and SD made figures. 376

All authors (EIC, AC, SD, MJG, FK, ML, NPM, SN, DGR, AS-T, SMW, and JLP) contributed 377

to reviewing and editing subsequent drafts. 378

 379

AI declaration 380

ChatGPT 4.0 was used to generate the dog and wizard used in the figures. 381

 382

Data availability 383

No data was used in this paper. 384

 385

Funding 386

AC was supported by the Croatian Science Foundation under the project number HRZZ-IP-387

2022-10-2872. AST was partially supported by Portuguese national funds via Fundação para a 388

Ciência e a Tecnologia (FCT) under projects LA/P/0058/2020, UID/PRR/4539/2025 and 389

UID/04539/2025, and project EXCELScIOR, funded by the EU's Horizon Europe under Grant 390

Agreement No. 101087416. 391

 392

References 393

Abdill, R.J., Talarico, E. & Grieneisen, L. 2024. A how-to guide for code sharing in biology. PLoS Biol 22: 394
e3002815. 395

Allen, C. & Mehler, D.M.A. 2019. Open science challenges, benefits and tips in early career and beyond. PLOS 396
Biology 17: e3000246. Public Library of Science. 397

Barker, M., Chue Hong, N.P., Katz, D.S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., et al. 2022. 398
Introducing the FAIR Principles for research software. Sci Data 9: 622. Nature Publishing Group. 399

Barnes, N. 2010. Publish your computer code: it is good enough. Nature 467: 753–753. 400

Braga, P.H.P., Hébert, K., Hudgins, E.J., Scott, E.R., Edwards, B.P.M., Sánchez Reyes, L.L., et al. 2023. Not just 401
for programmers: How <scp>GitHub</scp> can accelerate collaborative and reproducible research in 402
ecology and evolution. Methods Ecol Evol 14: 1364–1380. 403

Cadwallader, L. & Hrynaszkiewicz, I. 2022. A survey of researchers’ code sharing and code reuse practices, and 404
assessment of interactive notebook prototypes. PeerJ 10: e13933. PeerJ Inc. 405

Campbell, T., Dixon, K.W. & Handcock, R.N. 2023. Restoration and replication: a case study on the value of 406
computational reproducibility assessment. Restoration Ecology 31: e13968. 407

Cao, H., Dodge, J., Lo, K., McFarland, D.A. & Wang, L.L. 2023. The Rise of Open Science: Tracking the Evolution 408
and Perceived Value of Data and Methods Link-Sharing Practices. arXiv. 409

Chue Hong, N.P., Katz, D.S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F.E., et al. 2022. FAIR 410
Principles for Research Software (FAIR4RS Principles). , doi: 10.15497/RDA00068. Zenodo. 411

Cooper, N. 2017. A Guide to Reproducible Code in Ecology and Evolution. British Ecological Society. 412

Cooper, N. & Hsing, P.-Y. 2025. Guide to Reproducible Code. British Ecological Society. 413

Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. 2020. Low availability of code in ecology: A call for 414
urgent action. PLoS Biol 18: e3000763. Public Library of Science. 415

Eglen, S.J., Marwick, B., Halchenko, Y.O., Hanke, M., Sufi, S., Gleeson, P., et al. 2017. Toward standard practices 416
for sharing computer code and programs in neuroscience. Nat Neurosci 20: 770–773. Nature Publishing 417
Group. 418

Eynden, V.V.D., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., et al. 2016. Survey of Wellcome 419
researchers and their attitudes to open research. Wellcome Trust, doi: 10.6084/m9.figshare.4055448.v1. 420
Wellcome Trust. 421

Ferguson, J., Littman, R., Christensen, G., Paluck, E.L., Swanson, N., Wang, Z., et al. 2023. Survey of open science 422
practices and attitudes in the social sciences. Nat Commun 14: 5401. 423

Fernández-Juricic, E. 2021. Why sharing data and code during peer review can enhance behavioral ecology 424
research. Behav Ecol Sociobiol 75: 103. 425

Fidler, F., Chee, Y.E., Wintle, B.C., Burgman, M.A., McCarthy, M.A. & Gordon, A. 2017. Metaresearch for 426
Evaluating Reproducibility in Ecology and Evolution. BioScience 67: 282–289. 427

Filazzola, A. & Lortie, C. 2022. A call for clean code to effectively communicate science. Methods Ecol Evol 13: 428
2119–2128. 429

Gao, M., Ye, Y., Zheng, Y. & Lai, J. 2025. A comprehensive analysis of R’s application in ecological research from 430
2008 to 2023. Journal of Plant Ecology 18: rtaf010. 431

Goldacre, B., Morton, C.E. & DeVito, N.J. 2019. Why researchers should share their analytic code. BMJ 367: l6365. 432
British Medical Journal Publishing Group. 433

Gomes, D.G.E., Pottier, P., Crystal-Ornelas, R., Hudgins, E.J., Foroughirad, V., Sánchez-Reyes, L.L., et al. 2022. 434
Why don’t we share data and code? Perceived barriers and benefits to public archiving practices. Proc. R. 435
Soc. B. 289: 20221113. Royal Society. 436

Hillemann, F. [freddy], Burant, J.B., Culina, A. & Vriend, S.J.G. 2025. Code review in practice: A checklist for 437
computational reproducibility and collaborative research in ecology and evolution. EcoEvoRxiv. 438

Ivimey-Cook, E.R., Pick, J.L., Bairos-Novak, K.R., Culina, A., Gould, E., Grainger, M., et al. 2023. Implementing 439
code review in the scientific workflow: Insights from ecology and evolutionary biology. Journal of 440
Evolutionary Biology 36: 1347–1356. 441

Ivimey-Cook, E.R., Sánchez-Tójar, A., Berberi, I., Culina, A., Roche, D.G., Almeida, R.A., et al. 2025. From Policy 442
to Practice: Progress towards Data- and Code-Sharing in Ecology and Evolution. EcoEvoRxiv. 443

Jiménez, R.C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., et al. 2017. Four simple 444
recommendations to encourage best practices in research software. F1000Research. 445

Kambouris, S., Wilkinson, D.P., Smith, E.T. & Fidler, F. 2024. Computationally reproducing results from meta-446
analyses in ecology and evolutionary biology using shared code and data. PLOS ONE 19: e0300333. Public 447
Library of Science. 448

Kang, D., Kang, T. & Jang, J. 2023. Papers with code or without code? Impact of GitHub repository usability on the 449
diffusion of machine learning research. Information Processing & Management 60: 103477. 450

Kellner, K.F., Doser, J.W. & Belant, J.L. 2025. Functional R code is rare in species distribution and abundance 451
papers. Ecology 106: e4475. 452

Kimmel, K., Avolio, M.L. & Ferraro, P.J. 2023. Empirical evidence of widespread exaggeration bias and selective 453
reporting in ecology. Nat Ecol Evol 7: 1525–1536. Nature Publishing Group. 454

König, L., Gärtner, A., Slack, H., Dhakal, S., Adetula, A., Dougherty, M., et al. 2025. How to bolster employability 455
through open science. OSF. 456

Lai, J., Lortie, C.J., Muenchen, R.A., Yang, J. & Ma, K. 2019. Evaluating the popularity of R in ecology. Ecosphere 457
10: e02567. 458

Maitner, B., Santos Andrade, P.E., Lei, L., Kass, J., Owens, H.L., Barbosa, G.C.G., et al. 2024. Code sharing in 459
ecology and evolution increases citation rates but remains uncommon. Ecology and Evolution 14: e70030. 460

McKiernan, E.C., Bourne, P.E., Brown, C.T., Buck, S., Kenall, A., Lin, J., et al. 2016. How open science helps 461
researchers succeed. eLife 5: e16800. eLife Sciences Publications, Ltd. 462

Mislan, K.A.S., Heer, J.M. & White, E.P. 2016. Elevating The Status of Code in Ecology. Trends in Ecology & 463
Evolution 31: 4–7. 464

Müller, K. & Bryan, J. 2020. here: A Simpler Way to Find Your Files. 465

National Academies of Sciences, E., Affairs, P. and G., Committee on Science, E., Information, B. on R.D. and, 466
Sciences, D. on E. and P., Statistics, C. on A. and T., et al. 2019. Understanding Reproducibility and 467
Replicability. In: Reproducibility and Replicability in Science. National Academies Press (US). 468

Patel, B., Soundarajan, S., Ménager, H. & Hu, Z. 2023. Making Biomedical Research Software FAIR: Actionable 469
Step-by-step Guidelines with a User-support Tool. Sci Data 10: 557. Nature Publishing Group. 470

Pick, J.L., Bairos-Novak, K.R., Bachelot, B., Brand, J.A., Class, B., Dallas, T., et al. 2025. The SORTEE Guidelines 471
for Data and Code Quality Control in Ecology and Evolutionary Biology. 472

Powers, S.M. & Hampton, S.E. 2019. Open science, reproducibility, and transparency in ecology. Ecological 473
Applications 29: e01822. 474

Chen. D., pyprojroot: Project-oriented workflow in Python. 2023. 475

Rokem, A. 2024. Ten simple rules for scientific code review. PLOS Computational Biology 20: e1012375. Public 476
Library of Science. 477

Sánchez-Tójar, A., Bezine, A., Purgar, M. & Culina, A. 2025. Code-sharing policies are associated with increased 478
reproducibility potential of ecological findings. Peer Community Journal 5. 479

Sandve, G.K., Nekrutenko, A., Taylor, J. & Hovig, E. 2013. Ten Simple Rules for Reproducible Computational 480
Research. PLOS Computational Biology 9: e1003285. Public Library of Science. 481

Sharma, N.K., Ayyala, R., Deshpande, D., Patel, Y., Munteanu, V., Ciorba, D., et al. 2024. Analytical code sharing 482
practices in biomedical research. PeerJ Comput. Sci. 10: e2066. PeerJ Inc. 483

Trisovic, A., Lau, M.K., Pasquier, T. & Crosas, M. 2022. A large-scale study on research code quality and 484
execution. Sci Data 9: 60. Nature Publishing Group. 485

Vandewalle, P. 2012. Code Sharing Is Associated with Research Impact in Image Processing. Comput. Sci. Eng. 14: 486
42–47. 487

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., et al. 2016. The FAIR 488
Guiding Principles for scientific data management and stewardship. Sci Data 3: 160018. Nature Publishing 489
Group. 490

 491

