11
12
13
14
15
16
17
18

19

20

21

22

23

TADA! Simple guidelines to improve analytical code sharing

for transparency and reproducibility

Edward R. vimey-Cook!®, Antica Culina’, Shreya Dimri®, Matthew J. Grainger?, Fonti Kar$,
Malgorzata Lagisz%’, Nicholas P. Moran®, Shinichi Nakagawa’, Dominique G. Roche®, Sean

Tattan!, Alfredo Sanchez-Téjar>%!!, Saras M. Windecker'?, Joel L. Pick'’

1 University of East Anglia, Norwich, UK; 2 Ruder Boskovic Institute, Croatia; 3 Department of Evolutionary
Biology, Bielefeld University, Germany, 4 Norwegian Institute for Nature Research, Trondheim, Norway, 5
Research School of Finance, Actuarial Studies & Statistics, The Australian National University, Canberra,
Australia. 6 School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney,
Australia; 7 Department of Biological Sciences, University of Alberta, Edmonton, Canada; 8 Centre of Excellence
for Biosecurity Risk Analysis, Biosciences, University of Melbourne, Parkville, Victoria, Australia; 9 Institut de
Biologie, Université de Neuchdtel, NE, Switzerland; 10 CNC, Center for Neuroscience and Cell Biology, University
of Coimbra, Portugal; 11 CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra,
Portugal; 12 The Kids Research Institute Australia, Nedlands, WA, Australia; 13 Institute of Ecology and Evolution,

University of Edinburgh, Edinburgh, UK;

@corresponding author: e.ivimeycook@gmail.com; authors aside from the first and last are ordered

alphabetically.

mailto:e.ivimeycook@gmail.com

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract

Code sharing is essential to ensure transparency and computational reproducibility of published
research, which in turn increases trust in scientific results. However, despite the growing number
of journals that mandate code sharing, the prevalence of open code remains low, and
substantially lags behind that of open data. Furthermore, even when it is openly shared, code is
often non-functional, which hinders computational reproducibility. One reason for low levels of
code sharing is uncertainty around how to properly archive functional analytical code associated
with published research. Existing resources for best coding practices often do not sufficiently
address how to archive analytical code, do not adhere to the established FAIR (Findable,
Accessible, Interoperable, Reusable) principles, or are complex and primarily developed for
software. To address this gap, we provide simple code sharing guidelines: TADA (Transferable,
Available, Documented and Annotated). TADA details the minimum requirements necessary for
a researcher to produce functional code for sharing that directly supports best practices and
complements the FAIR principles. TADA aims to streamline the process of archiving and
sharing functional code for researchers across all levels of coding experience, with the goal of
increasing transparency, reproducibility, and the reliability of research results. Although these
guidelines were developed based on our experience in Ecology and Evolutionary Biology, we

believe they will be useful to researchers in other disciplines.

Keywords

Research integrity, Reliability, Replicability, Reproducibility, Research methods,

Methodological rigour

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Introduction

Publicly sharing code (i.e., open code) offers numerous benefits for researchers and the broader
scientific community. For authors, open code may increase citation rates of associated articles
(Vandewalle, 2012; Maitner et al., 2024) and can provide future career advantages (McKiernan
et al.,2016; Allen & Mehler, 2019; Konig ef al., 2025). For the broader community, open code
enhances the transparency of analytical methods and the overall research process (Goldacre et
al., 2019; Fernandez-Juricic, 2021; Ivimey-Cook et al., 2023) and enables other researchers to
more efficiently build upon published work (Barnes, 2010; Eglen et al., 2017). Furthermore,
code, alongside data, is essential for ensuring computational reproducibility - the ability to
reproduce analyses and results using the same data, code, and computational conditions
(National Academies of Sciences, 2019) - a key part of the scientific process that promotes
reliability and builds trust in research (Fidler et al., 2017; Powers & Hampton, 2019). As
awareness of these benefits grows amongst researchers and the wider scientific community
(Eynden et al., 2016; Cadwallader & Hrynaszkiewicz, 2022; Ferguson ef al., 2023), an
increasing number of journals in ecology and evolutionary biology are promoting open code by
implementing code sharing policies (from 15% in 2015 to 88% in 2024, Mislan et al., 2016;
Culina et al., 2020; Ivimey-Cook et al., 2025). These policies encourage or require authors to
share code before manuscript publication, or in some cases, upon first submission. Ideally, open
code should follow the FAIR principles, which were initially published for data in 2016
(Wilkinson et al., 2016) and later adapted for Research Software in 2022 (FAIR4RS; Barker et
al., 2022; Chue Hong et al., 2022). FAIR stands for Findable: the ability for both machines and
humans to easily find digital assets (including metadata, data, and code); Accessible: digital

assets are retrievable via their identifier, and can be accessed with or without the need for

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

additional authorisation or authentication; /nteroperable: digital assets must be able to
interoperate with other digital assets and be readable using standard documented formats; and
lastly, Reusable: digital assets must be described sufficiently to enable reuse and attribution,

ideally via a licence (see Wilkinson ef al., 2016; Barker et al., 2022; Chue Hong et al., 2022).

Despite incremental progress towards more transparent and reproducible research in ecology and
evolutionary biology (Cao et al., 2023), evidence suggests there appear to be significant barriers
to code sharing. First, the proportion of articles with open code in ecology and evolutionary
biology remains alarmingly low, with rates of code sharing ranging from between 5 and 33%
(Culina et al., 2020; Kimmel et al., 2023; Kambouris et al., 2024; Maitner et al., 2024; Kellner et
al., 2025; Sanchez-Tojar et al., 2025). Second, even when code is provided, its functionality (i.e.,
the ability to run code without error) is often low (Trisovic et al., 2022; Kellner et al., 2025). In a
recent study examining R code in research articles analysing species distribution and abundance,
the authors had to abandon the reproducibility aspect of their analysis due to the overwhelmingly
high proportion of code that did not run or ran with errors (93% of coding scripts; Kellner ef al.,
2025). Similarly, a recent review of over 9000 unique R files shared in the Harvard Dataverse
repository found that 74% of code failed to complete without error, which only decreased to 56%
after code cleaning was applied (e.g., removal of local file paths and ensuring libraries and
dependencies were properly installed and loaded; Trisovic ef al., 2022). Finally, even if code is
present and functional, computational reproducibility is not always achieved (Campbell et al.,
2023; Kambouris et al., 2024; Kellner et al., 2025). For instance, the ability to reproduce the
results of meta-analyses in ecology and evolutionary biology has been shown to range from 27%

(all results within an article exactly matched) to 73% (50% of results within an article were

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

within 10% of the original value) when data and code were shared and functional (Kambouris et
al., 2024). The low rates of code archiving, low functionality of archived code, and low
computational reproducibility of results when functional code is archived, paints a concerning
picture for ecology and evolutionary biology and suggests that many of the benefits of code

sharing are likely not being achieved.

A major reason for the limited availability and functionality of code and, therefore, low rates of
computational reproducibility, might be a lack of knowledge of how to share code with
transparency and reproducibility in mind (Gomes ef al., 2022). Whilst several interdisciplinary
resources have been created to help authors prepare and share code (Sandve et al., 2013; Cooper,
2017; Jiménez et al., 2017; Barker et al., 2022; Chue Hong et al., 2022; Filazzola & Lortie,
2022; Ivimey-Cook et al., 2023; Patel et al., 2023; Abdill et al., 2024; Rokem, 2024; Sharma et
al., 2024; Hillemann et al., 2025), these resources are not focused on how to practically archive
functional code used for analyses in research articles (analytical code). Few refer to FAIR
principles, and those that do, such as FAIR4RS (Barker et al., 2022; Chue Hong et al., 2022), are
too broad in scope and focused towards software developers, potentially explaining why they

have not been widely adopted.

The term ‘code reusability’ is often used in two different contexts. In the context of FAIR
principles, reusability involves sharing code in a way that clearly specifies what can be done with
it, for example, via a license and a README file. In a software development context, designing
code for reuse is a far more complicated process, as code needs to be written in a generalised and

modular way, and tested, enabling it to function across different systems and with various

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

compatible datasets as input (e.g., Hillemann et al., 2025). Current guidelines focus on the latter
context and although they are extremely useful and important in ensuring best practices for open-
source software, they likely set too high a bar for analytical code that does not need to meet the
standards of reusable software in order to achieve its intended benefits. Analytical code is
typically far more unique and tailored to a specific dataset than open-source software. The main
goal of producing and sharing analytical code is typically not to create tools or for broad reuse
but rather to produce a transparent and reproducible record of the analysis for a particular study.
Therefore, establishing simple best practices that enable code to align with FAIR principles and
minimum standards for transparency and computational reproducibility. is an important first step
towards increasing the rate and quality of analytical code sharing in ecology and evolutionary
biology. Here, we provide simplified and easy-to-follow guidelines built with the FAIR4RS
principles in mind but tailored to analytical code for research. We call these guidelines 74ADA!
(Transferable, Available, Documented, Annotated) and believe they will help researchers at all
coding levels prepare functional code that facilitates reproducible and transparent research which

will help to build trust in published results.

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

v ‘v ‘v

a4

library(dplyr)
library(ggplot2)

data <-
read.csv("C:/mycomputer/caterpillar_data/data.csv")

summary_data <- data %>%
group_by(habitat) %>%
summarise(
mean_count = mean(caterpillar_count),
sd = sd(caterpillar_count),

)

filtered_data <- data %>%
filter(habitat != “D”)

modell <- glm(caterpillar_count ~ habitat,
family = Poisson, data = filtered_data

)

figurel <- ggplot(

filtered_data,

aes(x = habitat, y = catperillar_count)
) +

geom_boxplot() +

theme_bw()

yCode.R

Load packages#i#it#
library(dplyr)
library(ggplot2)
library(here)

Load caterpillar abundance data (w/o local file paths)####H
data <- read.csv(here(“caterpillar_data”, "data.csv"))

summarise the mean number caterpillars with error##i##i#
summary_data <- data %>%
group_by(habitat) %>%
summarise(
mean_count = mean(caterpillar_count),
sd = sd(caterpillar_count),

)

Remove values from habitat D as these are an error#i#i#i
filtered_data <- data %>%
filter(habitat != “D”)

Run a Poisson general linear modeli###i#i## [Idl]

to analyse caterpillar abundance varying with habitat
numeric results in “Caterpillar Abundance”
modell <- glm(caterpillar_count ~ habitat,

family = Poisson, data = filtered_data

)

#create figure 1, caterpillar count against habitat#i#it#
figurel <- ggplot(

filtered_data,

aes(x = habitat, y = caterpillar_count)
) +

geom_boxplot() +

theme_bw()

T'ransferable

Awvailable
ocumented
nnotated

Authors: Ed Ivimey-Cook

Email: Ed@Ivimey-Cook.com

Title: Caterpillar abundance and habitat: A
story.

Funders: SORTEE

Code License: MIT License in
Code_License.txt

Code:

MyCode.R: Load packages, imports
caterpillar_data, runs a poisson glm on
filtered data. Produces Figure 1.

Software and Packages:
Rv4.33
ggplotv2.3.2

dplyr vi..4
herevi.o.o

Data located here:
doi.orgy/...

Figure 1. An example of the TADA guidelines (Transferable, Available, Documented, Annotated) applied to analytical code written
in R, showing a pre-TADA script (left) and a post-TADA script (right). Coloured letters correspond to Transferable (red), Available
(dark green), Documented (purple), and Annotated (blue). The code shown is generic and designed to showcase the TADA guidelines.

Figure by EIC.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

TADA!

We outline below four easy-to-follow steps to help researchers share functional and transparent
code. By following the TADA guidelines (Figures 2-5), a researcher can produce analytical code
that follows best practices, aligns with the FAIR and FAIR4RS principles (Wilkinson ef al.,
2016; Barker et al., 2022; Chue Hong et al., 2022), increases transparency, and facilitates
computational reproducibility. TADA is tailored mainly to R and Python, as these open-source
languages are widely used in ecology and evolutionary biology (Lai et al., 2019; Gao et al.,
2025); however, the basic principles of the guidelines can be widely applied to other coding
languages including workflow (e.g., Snakemake) and compiled languages (e.g., C++).
Furthermore, whilst we provide guidance in the context of research in ecology and evolutionary
biology, TADA can be applied broadly across other disciplines. For a checklist of the TADA

guidelines, see Figure S1.

Transferable

Transferability refers to the ability for anyone to open the file, view and run the code without
conversion or alteration (Figure 2). This includes the FAIR principle of interoperability (a simple
definition implies that anyone will be able to open and use your code) and extends it to allow
code to be run on different computers and operating systems. Ensuring transferability greatly
increases the computational reproducibility of results from analytical code. First, code must be
saved and encoded in a file type that can be opened by any text editor or integrated development
environment (IDE; e.g., RStudio, VSCode, PyCharm). In Figure 1, the non-transferable, pre-
TADA code is in the form of a .PDF file. This file can be viewed but cannot be opened and

edited within an IDE without using additional libraries or software, or without conversion to a

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

different file type. Importantly, copying and pasting code from certain file types (i.e., .PDF or
.docx) may lead to changes in characters (e.g., apostrophes) or white spaces, or the inclusion of
additional, unwanted characters (e.g., line numbers, headers), which can easily result in code
errors that are sometimes difficult to spot or time consuming to fix. We suggest saving code in an
interoperable file extension with appropriate encoding, such as .R, .py, or .cpp, as these can be
readily viewed, edited and saved using any text editor or IDE. Whilst a .txt file can be used to
share text in a manner that readily allows for copying and pasting without the aforementioned
issues, it can lead to issues with interpretation of the coding language in many IDEs (e.g.,
without the .R file extension, IDEs may not recognise and allow for execution of the R coding

language without saving the .txt file as a .R file).

Second, to ensure code runs on different computers and operating systems, file paths must be
written in a way that is not specific to the user’s local environment or directory structure (i.e., local
or user-specific file paths as opposed to relative file paths). Importantly, data, code, and all
necessary materials should be organised in a single project directory. To avoid local file paths, one
can use an RStudio project, which automatically sets the working directory to the appropriate
location (e.g., a project folder), alongside packages such as here (Miiller & Bryan, 2020) or
pyprojroot (Chen 2023), which create file paths relative to any project directory regardless of
operating system (i.e., relative file paths). This will ultimately avoid the use of the setwd() function
(in R), or the os.chdir() function (in Python), which set both operating system and user-specific
file paths that can cause other users to encounter errors when running the code. For other software,
simply opening the project folder (in VSCode) or launching R (when standalone without an IDE)

within the project directory performs a similar action to using an RStudio project. In Figure 1, the

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

use of local and user-specific file paths in the pre-TADA code will cause all other users to
encounter errors when importing the required data file. In contrast, the post-TADA panel is
agnostic of operating system and file paths, allowing prospective users to load the necessary data
file (assuming it exists). Although beyond the scope of this paper, reproducible analyses can also
be supported by containerisation and workflow managers. Containerisation platforms such as
Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) use images that encapsulate a
complete software environment, including all required programs and libraries. This helps ensure
environment reproducibility between systems to avoid the common “works on my computer”
problem (Mitra-Behura et al., 2021). Workflow managers such as Snakemake (Koster & Rahmann,
2012) and Nextflow (Di Tommaso et al., 2017) promote reproducibility by specifying the sequence
of scripts or computational steps in a pipeline and their dependencies. This ensures each step in

the pipeline executes in a defined and reproducible order (Di Tommaso et al., 2017).

Anyone can open the file, view the code, and run the script
without needing to convert the file or alter the code!

ransferable

Q file formats ~ —sx Use interoperable file formats

-
172
D
ol
Q
=
<
(0}
)
(1)
o)
o
>
w0
Q
S
Q
~+
o
O
wn

Q file paths

Figure 2. Summary of advice on making analytical code Transferable. Figure by ML.

Transferability How To (See also Figure 2): When sharing R or Python code, ensure that

each code file is appropriately saved and encoded as either a .R,. py, or .cpp, file (or other

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

standard format, as appropriate). Avoid sharing code within Word documents (.doc or
.docx) or PDFs. If the coding language or IDE does not use or save code in a standard file
type, check to see if the resulting file can be opened by a text editor (e.g., SPSS syntax .sps

files can be readily viewed in a text editor).

There are several options to specify relative file paths and avoid local file paths in your
code. RStudio users can simply create a new RStudio project (File --> New Project; see

https://docs.posit.co/ide/user/ide/get-started/), which eliminates the need for local file paths.

RStudio projects can be used in combination or separately from using packages such as
here. We recommend using both to maximise transferability across operating systems.
Additional methods include navigating to the project file and opening it within VSCode or
running an instance of R or Python within the specific project folder. The latter will
remove the need for local file paths that may lead to errors when other users try to run the
code on different systems. Whichever method is chosen should be in the code

documentation (see below).

Awvailable

Availability refers to the act of publicly archiving the code in a way that provides long-term to
any external user (Figure 3). Available, in this context covers the FAIR principles of both
Findable (provision of a unique identifier) and Accessible (code is retrievable via this identifier).
To store code in an open and easily available manner, code must have an associated globally
unique persistent identifier or PID (e.g., a DOI), which must be cited in the corresponding

manuscript. Whilst GitHub might be a commonly used platform for developing code and

https://docs.posit.co/ide/user/ide/get-started/

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

provides a transparent platform for version control during the development phase (Braga et al.,
2023; Kang et al., 2023), it does not readily provide a PID and files can be changed (or even
deleted) at any time, including after manuscript publication after archiving (i.e., GitHub is not
immutable). This limits reproducibility of published results if the exact code is no longer
available or is edited. As such, GitHub and similar platforms (e.g., Codeberg, Bitbucket, GitLab)
are not suitable for archiving analytical code used in a particular publication. Repositories such
as Zenodo (which can connect to a GitHub project) and Figshare are immutable and can provide
both a base project-level DOI that never changes and version-specific DOIs, created whenever a
new version of the code is released. Another useful resource is Software Heritage, which can
preserve GitHub projects for long-term storage and provides PIDs in the form of Software Hash
Identifiers (SWHIDs). In Figure 1, the lack of archived code and associated DOI in the pre-
TADA code limits code sharing and prevents permanent, immutable, and citable storage of the

code.

2 Anyone can find and access the publicly archived codel }

vailable

Associate file(s) with a globally unique persistent

S Q file identifier I
" identifier (e.g., DOI)
=
E a Q storage /\1/ Store files(s) in an online repository that is

. immutable and free to access (e.g. Zenodo)

Figure 3. Summary of advice on making analytical code Available. Figure by ML.

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

Availability How To (See also Figure 3): Upload your code to Zenodo (https://zenodo.org/)

or Figshare (https:/figshare.com/) or any other repository that assigns a DOI and

guarantees immutability and preservation. A unique DOI will be created for the code, and
a new one whenever it is subsequently updated (known as DOI versioning). Assigning a
DOI facilitates citing the code and linking to it in the related manuscript. GitHub is not
ideal to archive and share analytical code associated with a paper because it is not
immutable and does not generate a DOIL. Instead, users can create a release version on

GitHub and link to Zenodo (see https://help.zenodo.org/docs/profile/linking-accounts/ for

more information regarding linking projects).

Documented

Documentation refers to providing accurate and detailed metadata files that describe the code
files and their usage (Figure 4). This documentation is often provided as an additional .txt file or
.md file (typically a README.txt or markdown file). Documentation could be provided as a
combined README containing both code- and data-specific metadata, or as two separate
READMEs, one for code and one for data, if relevant. Figure 1 shows an example of essential
information that should be contained within a README file. This includes information related
to the author of the code along with some form of contact information, as well as the title of the
corresponding manuscript and any relevant funders. In addition, the computational environment
used, such as software version (e.g., R v.4.3.3), packages with associated versions (e.g., ggplot
v2.3.2; this could also be provided alongside a text file which lists every loaded package and
version number; given by sessionInfo() in R or session-info in Python), licences (e.g., MIT

licence), and the data-specific PID or other important information as to where the relevant data

https://zenodo.org/
https://figshare.com/
https://help.zenodo.org/docs/profile/linking-accounts/

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

are located alongside any additional information needed to run the code (e.g., what each file
contains, the order in which to run them, whether the code takes a long time to run, what it

requires data-wise to run and what it produces).

The documentation must specify an appropriate licence detailing how others can use, modify and
share the code. Licences can take many forms, such as the Massachusetts Institute of Technology
(MIT) or General Public Licence (GPL) and can differ in their permission levels and conditions.
For instance, the licence details if attribution is required (i.e., whether you are required to cite the
creator of the code), and whether code can be modified, and/or used for commercial purposes.
Licences can range from completely open and permissive, such as MIT, which has little to no
restrictions on use, to more restrictive, such as the GPL licences, which has several conditions
that must be met. For instance, applying the same licence to any derivative works and listing any
changes made from the source code (e.g., GPL v3.0). A researcher should carefully consider
what form of code-specific licence is needed or whether the repository they choose to use has a
default repository-wide licence (e.g., Dryad only supports the CCO licence, which is not best
suited for code). Websites such as choosealicence.com provide detailed guidance on selecting a
licence (although, in essence, it can simply involve copying the respective license text and saving
the file to the project). Many factors will influence what licence to choose and how open you
want your code to be, including who the audience is (i.e., is it intended for commercial
applications?), whether you want to allow others to modify or extend your code, and how this
aligns with journal, institutional and funder policies. For instance, some journals require the use
of a specific licence upon archiving (e.g., a GPL in the Journal of Statistical Software). Figure 1

illustrates the implications of licencing choices. The pre-TADA code lacks a licence, which

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

legally restricts others from using, sharing, or modifying the archived code. In contrast, the post-
TADA code has an MIT licence, explicitly granting users permission to copy, modify, merge,

publish, and share the archived code.

ocumented

Q descriptions —

= O licenses K and share the code (e.g. MIT, GPL)

Figure 4. Summary of advice on making analytical code Documented. Figure by ML.

Documented How To (See also Figure 4): Code documentation can provide important

information that code annotation lacks. A README.txt or .md file describing the code
should contain additional information on the manuscript that the code is associated with
(including the title of the manuscript, any relevant funders, and authors with emails for
correspondence; if necessary, this can be anonymised during peer review to adhere to
double-blind reviewing policies), software used (e.g., R or Python, including version
number), any important libraries or packages used (with version numbers), information
about where relevant data is located (if appropriate, with a PID), a mention of the code-
specific licence, and any other important pieces of information, such as the order in which
the code should be run, whether the code takes a long time to run (especially for computing

intensive processes), what data the code requires to run and what data it produces, if any.

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

For licences, as mentioned above, there exists a multitude to choose from. We recommend
consulting choosealicence.com and considering which license is most relevant to your
project, copying the relevant licence text, and producing a licence.txt file to add to your
project alongside your code. In some repositories, such as Zenodo, you can specify the
licence when you choose to archive your code, which will then be attached to the specific

project without the need to create your own file.

Annotated

Annotation refers to adding comments within each code file (e.g., denoted with a “#” in R and

Python) or embedding code within an RMarkdown or Quarto document alongside descriptive

text (Figure 5; see also https://eivimeycook.github.io/TADA/) and can dramatically improve the
ability for someone else to understand (transparency) and run archived code (functionality and
reproducibility). Logical sections of code can be broken into ‘chunks’, which can be annotated to
include informative details such as what the chunk is doing (e.g., “# Run a Poisson generalised
linear model...”), why it is needed (e.g., “...to analyse caterpillar abundance varying with
habitat...”), and provide signposting for the locations of specific results in the manuscript body
(when applicable; e.g., “Numeric results shown in Caterpillar Abundance section” or “Figure
5A”). Although annotation can be done line by line, simply denoting and describing relevant
code chunks in sufficient detail is often more helpful for tracking what code does and what it
produces (Note, “#####” in RStudio or “#%%” in Python creates collapsible sections in your
code that increase readability and facilitate structuring). In Figure 1, the pre-TADA code has no

internal annotation, and thus it remains unclear what is being run, why it is run, and what it

https://eivimeycook.github.io/TADA/

339 produces (i.e., there is no signposting). Several useful resources provide additional information

340 on producing clean, well annotated code (Filazzola & Lortie, 2022; Cooper & Hsing, 2025).

341
Comments within the code that explain what it does, why, how
and what it produces!
nnotated
Divide code into Iégic;I sections (chunks)
’ Q' code comments ’3'1‘15. and describe these sections

— :Embed code and textln markdown ﬁles

g/’ d markdownﬁ les v (e.g. Quarto, Jupyter Notebook)
sae e D

343 Figure 5. Summary of advice on making analytical code Annotated. Figure by ML.
344

345 Annotated How to (See also Figure S): Annotation in both R and Python is done by simply

346 providing a # (hashtag) before writing text. We recommend annotating code chunks

347 instead of every line of code. Each annotation should briefly include a description of what
348 the code is doing, why, and if it produces any results in the manuscript. An example

349 annotation is given in Figure 1. Alternatively, users could provide annotated code

350 embedded within a RMarkdown or Quarto file, or using IDEs such as a Jupyter Notebook.

351

352 Conclusion

353 By following the TADA guidelines, which are easy to understand, easy to remember, and which
354 embody the FAIR principles, researchers at all coding levels will be better equipped to produce
355 functional and transparent analytical code to support computational reproducibility. Through the

356 use of TADA, combined with improved editorial practices at journals (e.g., the presence of data

357 editors at journals; Ivimey-Cook et al., 2025; Pick et al., 2025, and pre-submission code reviews;
358 Ivimey-Cook et al., 2023), we hope that the rate and quality of code sharing will continue to

359 increase in ecology and evolutionary biology. Furthermore, while our advice for implementing
360 TADA is tailored towards common practices in ecology and evolutionary biology, the core

361 foundational goals of transparency, availability, documentation, and annotation are broadly

362 applicable across research disciplines. We encourage researchers to adapt and apply these core
363 principles beyond ecology and evolutionary biology, to support widespread adoption of open
364 science practices.

365

366 Acknowledgements

367 We thank Sarah Wilson Kemsley for discussion of the TADA guidelines in other coding

368 languages across disciplines.

369

370 Conflict of Interest

371 EIC, JLP, SN, ML, DGR, NPM, SD, and AS-T are members of the Society for Open, Reliable,
372 and Transparent Ecology and Evolutionary Biology (SORTEE). EIC is the Past-President. EIC,
373 AS-T are past board members. ML is a current board member.

374

375 Author contributions

376 EIC and JLP conceptualised the idea. EIC wrote the first draft. EIC, ML, and SD made figures.
377 All authors (EIC, AC, SD, MIG, FK, ML, NPM, SN, DGR, AS-T, SMW, and JLP) contributed
378 toreviewing and editing subsequent drafts.

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394
395

396
397

398
399

400
401
402
403

404
405

406
407

Al declaration

ChatGPT 4.0 was used to generate the dog and wizard used in the figures.

Data availability

No data was used in this paper.

Funding

AC was supported by the Croatian Science Foundation under the project number HRZZ-IP-
2022-10-2872. AST was partially supported by Portuguese national funds via Fundagdo para a
Ciéncia e a Tecnologia (FCT) under projects LA/P/0058/2020, UID/PRR/4539/2025 and
UID/04539/2025, and project EXCELScIOR, funded by the EU's Horizon Europe under Grant

Agreement No. 101087416.

References

Abdill, R.J., Talarico, E. & Grieneisen, L. 2024. A how-to guide for code sharing in biology. PLoS Biol 22:
€3002815.

Allen, C. & Mehler, D.M.A. 2019. Open science challenges, benefits and tips in early career and beyond. PLOS
Biology 17: €3000246. Public Library of Science.

Barker, M., Chue Hong, N.P., Katz, D.S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., et al. 2022.
Introducing the FAIR Principles for research software. Sci Data 9: 622. Nature Publishing Group.

Barnes, N. 2010. Publish your computer code: it is good enough. Nature 467: 753—753.
Braga, P.H.P., Hébert, K., Hudgins, E.J., Scott, E.R., Edwards, B.P.M., Sanchez Reyes, L.L., ef al. 2023. Not just
for programmers: How <scp>GitHub</scp> can accelerate collaborative and reproducible research in

ecology and evolution. Methods Ecol Evol 14: 1364—1380.

Cadwallader, L. & Hrynaszkiewicz, I. 2022. A survey of researchers’ code sharing and code reuse practices, and
assessment of interactive notebook prototypes. PeerJ 10: €13933. Peer] Inc.

Campbell, T., Dixon, K.W. & Handcock, R.N. 2023. Restoration and replication: a case study on the value of
computational reproducibility assessment. Restoration Ecology 31: e13968.

408
409

410
411

412
413

414
415

416
417
418

419
420
421

422
423

424
425

426
427

428
429

430
431

432
433

434
435
436

437
438

439
440
441

442
443

444
445

Cao, H., Dodge, J., Lo, K., McFarland, D.A. & Wang, L.L. 2023. The Rise of Open Science: Tracking the Evolution
and Perceived Value of Data and Methods Link-Sharing Practices. arXiv.

Chue Hong, N.P., Katz, D.S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F.E., ef al. 2022. FAIR
Principles for Research Software (FAIR4RS Principles). , doi: 10.15497/RDA00068. Zenodo.

Cooper, N. 2017. A Guide to Reproducible Code in Ecology and Evolution. British Ecological Society.
Cooper, N. & Hsing, P.-Y. 2025. Guide to Reproducible Code. British Ecological Society.

Culina, A., van den Berg, 1., Evans, S. & Sanchez-To6jar, A. 2020. Low availability of code in ecology: A call for
urgent action. PLoS Biol 18: €3000763. Public Library of Science.

Eglen, S.J., Marwick, B., Halchenko, Y.O., Hanke, M., Sufi, S., Gleeson, P., et al. 2017. Toward standard practices
for sharing computer code and programs in neuroscience. Nat Neurosci 20: 770-773. Nature Publishing
Group.

Eynden, V.V.D., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., ef al. 2016. Survey of Wellcome
researchers and their attitudes to open research. Wellcome Trust, doi: 10.6084/m9.figshare.4055448.v1.
Wellcome Trust.

Ferguson, J., Littman, R., Christensen, G., Paluck, E.L., Swanson, N., Wang, Z., et al. 2023. Survey of open science
practices and attitudes in the social sciences. Nat Commun 14: 5401.

Fernandez-Juricic, E. 2021. Why sharing data and code during peer review can enhance behavioral ecology
research. Behav Ecol Sociobiol 75: 103.

Fidler, F., Chee, Y.E., Wintle, B.C., Burgman, M.A., McCarthy, M.A. & Gordon, A. 2017. Metaresearch for
Evaluating Reproducibility in Ecology and Evolution. BioScience 67: 282—289.

Filazzola, A. & Lortie, C. 2022. A call for clean code to effectively communicate science. Methods Ecol Evol 13:
2119-2128.

Gao, M., Ye, Y., Zheng, Y. & Lai, J. 2025. A comprehensive analysis of R’s application in ecological research from
2008 to 2023. Journal of Plant Ecology 18: rtaf010.

Goldacre, B., Morton, C.E. & DeVito, N.J. 2019. Why researchers should share their analytic code. BMJ 367: 16365.
British Medical Journal Publishing Group.

Gomes, D.G.E., Pottier, P., Crystal-Ornelas, R., Hudgins, E.J., Foroughirad, V., Sanchez-Reyes, L.L., ef al. 2022.
Why don’t we share data and code? Perceived barriers and benefits to public archiving practices. Proc. R.
Soc. B. 289: 20221113. Royal Society.

Hillemann, F. [freddy], Burant, J.B., Culina, A. & Vriend, S.J.G. 2025. Code review in practice: A checklist for
computational reproducibility and collaborative research in ecology and evolution. EcoEvoRxiv.

Ivimey-Cook, E.R., Pick, J.L., Bairos-Novak, K.R., Culina, A., Gould, E., Grainger, M., ef al. 2023. Implementing
code review in the scientific workflow: Insights from ecology and evolutionary biology. Journal of
Evolutionary Biology 36: 1347—-1356.

Ivimey-Cook, E.R., Sanchez-Tojar, A., Berberi, 1., Culina, A., Roche, D.G., Almeida, R.A., ef al. 2025. From Policy
to Practice: Progress towards Data- and Code-Sharing in Ecology and Evolution. EcoEvoRxiv.

Jiménez, R.C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., et al. 2017. Four simple
recommendations to encourage best practices in research software. F1000Research.

446
447
448

449
450

451
452

453
454

455
456

457
458

459
460

461
462

463
464

465
466
467
468

469
470

471
472

473
474

475

476
477

478
479

480
481

Kambouris, S., Wilkinson, D.P., Smith, E.T. & Fidler, F. 2024. Computationally reproducing results from meta-
analyses in ecology and evolutionary biology using shared code and data. PLOS ONE 19: e0300333. Public
Library of Science.

Kang, D., Kang, T. & Jang, J. 2023. Papers with code or without code? Impact of GitHub repository usability on the
diffusion of machine learning research. Information Processing &, Management 60: 103477.

Kellner, K.F., Doser, J.W. & Belant, J.L. 2025. Functional R code is rare in species distribution and abundance
papers. Ecology 106: e4475.

Kimmel, K., Avolio, M.L. & Ferraro, P.J. 2023. Empirical evidence of widespread exaggeration bias and selective
reporting in ecology. Nat Ecol Evol 7: 1525-1536. Nature Publishing Group.

Konig, L., Gértner, A., Slack, H., Dhakal, S., Adetula, A., Dougherty, M., et al. 2025. How to bolster employability
through open science. OSF.

Lai, J., Lortie, C.J., Muenchen, R.A., Yang, J. & Ma, K. 2019. Evaluating the popularity of R in ecology. Ecosphere
10: e02567.

Maitner, B., Santos Andrade, P.E., Lei, L., Kass, J., Owens, H.L., Barbosa, G.C.G., et al. 2024. Code sharing in
ecology and evolution increases citation rates but remains uncommon. Ecology and Evolution 14: ¢70030.

McKiernan, E.C., Bourne, P.E., Brown, C.T., Buck, S., Kenall, A., Lin, J., et al. 2016. How open science helps
researchers succeed. eLife 5: e16800. eLife Sciences Publications, Ltd.

Mislan, K.A.S., Heer, J.M. & White, E.P. 2016. Elevating The Status of Code in Ecology. Trends in Ecology &
Evolution 31: 4-7.

Miiller, K. & Bryan, J. 2020. here: A Simpler Way to Find Your Files.

National Academies of Sciences, E., Affairs, P. and G., Committee on Science, E., Information, B. on R.D. and,
Sciences, D. on E. and P., Statistics, C. on A. and T., et al. 2019. Understanding Reproducibility and
Replicability. In: Reproducibility and Replicability in Science. National Academies Press (US).

Patel, B., Soundarajan, S., Ménager, H. & Hu, Z. 2023. Making Biomedical Research Software FAIR: Actionable
Step-by-step Guidelines with a User-support Tool. Sci Data 10: 557. Nature Publishing Group.

Pick, J.L., Bairos-Novak, K.R., Bachelot, B., Brand, J.A., Class, B., Dallas, T., ef al. 2025. The SORTEE Guidelines
for Data and Code Quality Control in Ecology and Evolutionary Biology.

Powers, S.M. & Hampton, S.E. 2019. Open science, reproducibility, and transparency in ecology. Ecological
Applications 29: e01822.

Chen. D., pyprojroot: Project-oriented workflow in Python. 2023.

Rokem, A. 2024. Ten simple rules for scientific code review. PLOS Computational Biology 20: ¢1012375. Public
Library of Science.

Sanchez-Tojar, A., Bezine, A., Purgar, M. & Culina, A. 2025. Code-sharing policies are associated with increased
reproducibility potential of ecological findings. Peer Community Journal 5.

Sandve, G.K., Nekrutenko, A., Taylor, J. & Hovig, E. 2013. Ten Simple Rules for Reproducible Computational
Research. PLOS Computational Biology 9: €¢1003285. Public Library of Science.

482
483

484
485

486
487

488
490

491

Sharma, N.K., Ayyala, R., Deshpande, D., Patel, Y., Munteanu, V., Ciorba, D., et al. 2024. Analytical code sharing
practices in biomedical research. PeerJ Comput. Sci. 10: €2066. Peer] Inc.

Trisovic, A., Lau, M.K., Pasquier, T. & Crosas, M. 2022. A large-scale study on research code quality and
execution. Sci Data 9: 60. Nature Publishing Group.

Vandewalle, P. 2012. Code Sharing Is Associated with Research Impact in Image Processing. Comput. Sci. Eng. 14:
42-47.

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., et al. 2016. The FAIR
Guiding Principles for scientific data management and stewardship. Sci Data 3: 160018. Nature Publishing
Group.

