
TADA! Simple guidelines to improve code sharing  1 

 2 

Edward R. Ivimey-Cook1@, Antica Culina2, Shreya Dimri3, Matthew J. Grainger4, Fonti Kar5,6,  3 

Malgorzata Lagisz6,7, Nicholas P. Moran8, Shinichi Nakagawa7, Dominique G. Roche9, Alfredo 4 

Sánchez-Tójar3, Saras M. Windecker10, Joel L. Pick11 5 

 6 

1 School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK; 2 Ruder Boskovic 7 

Institute, Croatia; 3 Department of Evolutionary Biology, Bielefeld University, Germany; 4 Norwegian Institute for 8 

Nature Research, Trondheim, Norway; 5 Research School of Finance, Actuarial Studies & Statistics, The Australian 9 

National University, Canberra, Australia. 6 School of Biological, Earth & Environmental Sciences, University of 10 

New South Wales, Sydney, Australia; 7 Department of Biological Sciences, University of Alberta, Edmonton, 11 

Canada; 8 Centre of Excellence for Biosecurity Risk Analysis, Biosciences, University of Melbourne, Parkville, 12 

Victoria, Australia; 9 Institut de Biologie, Université de Neuchâtel, NE, Switzerland 10 The Kids Research Institute 13 

Australia, Nedlands, WA, Australia; 11 Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, 14 

UK;  15 

 16 

@corresponding author: e.ivimeycook@gmail.com; authors aside from the first and last are ordered 17 

alphabetically.  18 

  19 

 20 

 21 

 22 

 23 

 24 

mailto:e.ivimeycook@gmail.com


Abstract 25 

Code sharing is important for transparency and facilitates computational reproducibility of 26 

published research. However, even as the number of journals that encourage or mandate code 27 

sharing continues to increase, the prevalence of open code remains low. Furthermore, even when 28 

shared, code is often non-functional, which hinders computational reproducibility. One reason 29 

for low levels of code sharing is uncertainty around how to prepare functional (i.e., the ability to 30 

run code without error) and reproducible (i.e., the ability to reproduce the analysis and results 31 

using the same data, code, and computational conditions) code as existing principles for best 32 

coding practices are both complex and primarily developed for software. To improve code 33 

sharing, there is an urgent need for clear and simple guidance on how to prepare functional and 34 

reproducible code for sharing. To address this, we provide simple code sharing guidelines: 35 

TADA (Transferable, Accessible, Documented and Annotated). TADA details the minimum 36 

requirements necessary for a researcher to produce functional and reproducible code for sharing 37 

that directly supports open science best practices and the FAIR (Findable, Accessible, 38 

Interoperable, Reusable) principles for code. TADA aims to streamline the process of depositing 39 

and sharing functional code for researchers with all levels of coding experience, with the 40 

ultimate goal of increasing the transparency, reproducibility, and reliability of research results 41 

across ecology and evolution, and more broadly. 42 
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Introduction 48 

Public sharing of code (i.e., open code) offers numerous benefits for researchers. It enhances the 49 

transparency of methods and the overall research process (Goldacre et al., 2019; Fernández-50 

Juricic, 2021; Ivimey-Cook et al., 2023), increases the citation rates of associated articles 51 

(Vandewalle, 2012; Maitner et al., 2024), enables other researchers to build upon published work 52 

(Barnes, 2010; Eglen et al., 2017), and can provide future career advantages for early career 53 

researchers (McKiernan et al., 2016; Allen & Mehler, 2019; König et al., 2025). Furthermore, 54 

code, alongside data, is essential for ensuring computational reproducibility - the ability to 55 

reproduce the analysis and results using the same data, code, and computational conditions 56 

(National Academies of Sciences et al., 2019) - a key part of the scientific process that promotes 57 

reliability and builds trust in research (Fidler et al., 2017; Powers & Hampton, 2019). As 58 

awareness of these benefits grows amongst researchers and the wider scientific community 59 

(Eynden et al., 2016; Cadwallader & Hrynaszkiewicz, 2022; Ferguson et al., 2023), an 60 

increasing number of journals are promoting open code by implementing code sharing policies 61 

(from 15% in 2015 to 88% in 2024, Mislan et al., 2016; Culina et al., 2020; Ivimey-Cook et al., 62 

2025), where authors are encouraged or required to share code following manuscript acceptance, 63 

or in some cases, upon first submission.  64 

 65 

To date, several recommendations exist for how to prepare and archive code to facilitate review 66 

and computational reproducibility (Sandve et al., 2013; Cooper, 2017; Filazzola & Lortie, 2022; 67 

Ivimey-Cook et al., 2023; Abdill et al., 2024; Rokem, 2024; Sharma et al., 2024; Hillemann et 68 

al., 2025). These guidelines aim to follow the FAIR principles, which were published for data in 69 

2016 (Wilkinson et al., 2016) and later adapted for Research Software in 2022 (FAIR4RS; 70 



Barker et al., 2022). FAIR stands for Findable: the ability for both machines and humans to 71 

easily find digital assets (including metadata, data, and code); Accessible: digital assets are 72 

retrievable via their identifier, and every user must understand how they can be accessed which 73 

may or may not require additional authorisation or authentication; Interoperable: digital assets 74 

must be able to interoperate with other digital assets and be readable using standard documented 75 

formats; and lastly, Reusable: digital assets must be described sufficiently to enable reuse and 76 

attributed alongside an appropriate licence (see Wilkinson et al., 2016; Barker et al., 2022). 77 

 78 

Despite these guidelines and progress towards more transparent and reproducible research (Cao 79 

et al., 2023), there are still clear limitations with code sharing. First, the proportion of articles 80 

with open code remains alarmingly low. For example, in ecology and evolution, rates range from 81 

between 5 - 32% (Culina et al., 2020; Kimmel et al., 2023; Kambouris et al., 2024; Maitner et 82 

al., 2024; Kellner et al., 2025; Sánchez-Tójar et al., 2025). Second, even when code is provided, 83 

its functionality (i.e., the ability to run code without error) is often low (Trisovic et al., 2022; 84 

Kellner et al., 2025). In a recent study examining R code in research articles about species 85 

distribution and abundance, the authors had to abandon the reproducibility aspect of their 86 

analysis due to the overwhelmingly high proportion of code that did not run or ran with errors 87 

(93% of coding scripts; Kellner et al., 2025). Similarly, a recent review of over 9000 unique R 88 

files archived in the Harvard Dataverse found that 74% of code failed to complete without error, 89 

which decreased to 56% after code cleaning was applied (e.g., removal of local file paths and 90 

ensuring libraries and dependencies were properly installed and loaded; Trisovic et al., 2022). 91 

Finally, even if code is present and functional, computational reproducibility is not always 92 

achieved (Campbell et al., 2023; Kambouris et al., 2024; Kellner et al., 2025). For instance, the 93 



ability to reproduce the results of meta-analyses has been shown to range from 26.9% (all results 94 

within an article exactly matched) to 73.1% (50% of results within an article were within 10% of 95 

the original value) when data and code were shared and available (Kambouris et al., 2024). 96 

Putting these three components together (the low rates of code archiving, low functionality of 97 

archived code, and low computational reproducibility of functional archived code) presents a 98 

dismal picture, and suggests that many of the benefits of code sharing for both authors and the 99 

scientific community more broadly are not being achieved.  100 

 101 

It has been suggested that a major reason for the limited functionality of code and, therefore, low 102 

rates of computational reproducibility is a lack of knowledge on how to prepare code with 103 

transparency and reproducibility in mind (Gomes et al., 2022). We suggest that complete 104 

guidelines, such as the FAIR4RS principles (Barker et al., 2022), are too broad in scope and 105 

largely focused towards software developers, which may explain why they have not been widely 106 

adopted by the research community. Furthermore, analytical code is typically far more unique 107 

and tailored to a specific dataset as opposed to software code. The main goal of producing and 108 

sharing code in this case is not for reuse and provision of general analytical tools, but rather to 109 

produce a transparent and reproducible record of the analysis for a particular study. Therefore, 110 

we contend that there is a significant distinction between guidelines developed to ensure code 111 

reuse and those designed to ensure code transparency and reproducibility. Generating code for 112 

reuse is a far more complicated process than “simply” ensuring reproducibility, as code needs to 113 

be written in a generalised way to provide analytical tools that can run on any system with any 114 

appropriate data as input. Although extremely useful and important in ensuring best practices for 115 

data sharing and open-source software, current principles are thus likely setting too high a bar for 116 



analytical research code that does not need to meet the level of reusable software. Therefore, an 117 

important first step to increase the rate and quality of code sharing is to lower this bar and to 118 

establish best practices for code to meet the minimum standards for transparency and 119 

computational reproducibility. This increase in transparency will help to build trust in published 120 

results, which should be the norm for all open analytical code. Here, we provide simplified and 121 

easy-to-follow guidelines built with the FAIR4RS principles in mind but tailored for sharing 122 

analytical code for research. We call these guidelines, TADA (Transferable, Accessible, 123 

Documented, Annotated) and believe it will help research coders of all levels to prepare 124 

functional, transparent, and reproducible code.125 



Figure 1. An example of the TADA guidelines (Transferable, Accessible, Documented, and Annotated) applied to analytical code 126 

written in R. Showing a pre-TADA script (left) and a post-TADA script (right). Coloured letters correspond to Transferable (red), 127 

Accessible (dark green), Documented (purple), and Annotated (blue). The code shown is generic and designed to showcase the TADA 128 

guidelines. Figure by EIC. 129 



 130 

TADA! 131 

We outline below four easy-to-follow steps to help researchers share transparent and 132 

reproducible code. By following the TADA (Figs. 2-5) guidelines, a researcher can produce 133 

analytical code that follows open science best practices, aligns with the FAIR and FAIR4RS 134 

principles (Wilkinson et al., 2016; Barker et al., 2022), increases transparency, and facilitates 135 

computational reproducibility. We discuss each component in detail below. Whilst our advice is 136 

tailored mainly to R and Python, as these open-source languages are widely used, particularly in 137 

ecology and evolution (Mislan et al., 2016; Lai et al., 2019; Gao et al., 2025), the basic 138 

principles of these guidelines can be widely applied to other coding languages. Furthermore, 139 

whilst we provide guidance from an ecology and evolution perspective, these guidelines can be 140 

applied broadly across other disciplines. For a checklist of the TADA guidelines, see Figure S1. 141 

 142 

Transferable 143 

Transferability refers to the ability for anyone to open the file, view the code, and run the script 144 

without conversion or alteration (Fig. 2). Ensuring transferability greatly increases the 145 

computational reproducibility of research code. First, code must be saved in a file extension that 146 

can be opened by any text editor or integrated development environment (IDE; e.g., RStudio, 147 

VSCode, PyCharm). In Figure 1, the non-transferable, pre-TADA code is in the form of a .PDF 148 

or Word file. These files can be viewed but cannot be opened and edited within an IDE without 149 

using additional libraries (or software) or converting to a different file extension. Furthermore, 150 

copying and pasting code directly from these file extensions may result in changing characters 151 

(e.g., apostrophes) or white spaces, or the inclusion of other additional unwanted characters (e.g., 152 



line numbers, headers), which can easily result in code errors that are sometimes difficult to spot. 153 

We suggest saving any script in a transferable (often referred to as interoperable) file extension, 154 

such as .txt, .R or .py, as these can be readily viewed, edited and saved using any text editor or 155 

IDE.  156 

  157 

Second, to ensure code runs on different computers and operating systems, file paths must be 158 

written in a way that is not specific to the user’s local environment or directory structure (i.e., 159 

absolute file paths). This is also inherently related to appropriate folder organisation, where data, 160 

code, and all necessary materials are organised in a single project directory. To avoid local (or 161 

absolute) file paths, one can use an RStudio project, which automatically sets the working 162 

directory to the appropriate location (e.g., a project folder), alongside packages such as here 163 

(Müller & Bryan, 2020) or pyrpojroot  (pyprojroot 2023), which creates file paths relative to any 164 

project directory regardless of operating system (i.e., relative file paths). By doing so, this will 165 

ultimately avoid the use of the setwd() function (in R) or the os.chdir() (in Python), which set 166 

both operating system and user-specific file paths that can cause other users to encounter errors 167 

when running the code. For other software, simply opening the project folder (in VSCode) or 168 

launching R (when standalone without an IDE) within the project directory performs a similar 169 

action to using an RStudio project. In Figure 1, the use of local and user-specific file paths in the 170 

pre-TADA code will cause all other users to encounter errors when importing the required data 171 

file. In contrast, the post-TADA panel is operating system and user-agnostic and allows anyone 172 

to load the necessary data file.  173 



 174 

Figure 2. Summary of advice on making code sharing Transferable. Figure by ML.  175 

 176 

How to (Fig. 2): When writing code in R or Python, be sure to save and share each script as 177 

a .txt, .R, or .py file extension. Avoid providing code within supplementary files or Word 178 

documents and PDFs. If the coding language or IDE does not use or save scripts or code 179 

syntax in the previously stated file extensions, check to see if the resulting file can be 180 

opened by a text editor (e.g., SPSS syntax .sps files can be readily viewed in a text editor).  181 

  182 

There are several options to prevent the use of local file paths in your scripts. RStudio 183 

users can simply create a new RStudio project (File --> New Project; see 184 

https://docs.posit.co/ide/user/ide/get-started/), which eliminates the need for user-specific 185 

file paths. This can be used in combination or separately from using packages such as here. 186 

We recommend using both to maximise transferability across operating systems. 187 

Additional methods include navigating to the project file and opening it within VSCode or 188 

running an instance of R or Python within the specific project folder. The latter will 189 

remove the need for local file paths that may lead to errors when other users try to run the 190 

https://docs.posit.co/ide/user/ide/get-started/


code on different systems. Whichever method is chosen should be in the repository’s 191 

documentation (see below). 192 

 193 

Accessible 194 

Accessibility refers to the act of publicly archiving the code in a way that provides access to any 195 

external user (Fig. 3). Code must be stored in an open and easily accessible manner with an 196 

associated globally unique persistent identifier (e.g., a DOI), which must be cited in the 197 

corresponding manuscript to enable others to find and access the code. Whilst GitHub might be a 198 

commonly used repository for developing code and provides a transparent platform for version 199 

control during the development phase (Braga et al., 2023; Kang et al., 2023), it does not readily 200 

provide a DOI and files can be changed (or even deleted) after archiving (i.e., GitHub is not 201 

immutable). As such, GitHub is not suitable for archiving analytical code used in a particular 202 

publication. Repositories such as Zenodo (which can connect to a GitHub repository), and 203 

Figshare are immutable and can provide both a base project-level DOI that never changes and 204 

version-specific DOIs, created whenever a new version of the code is released by the owner. In 205 

Figure 1, the lack of archived code and associated DOI in the pre-TADA code limits code 206 

sharing and prevents permanent, uneditable, and citable storage of the code.  207 

 208 



 209 

Figure 3. Summary of advice on making code sharing Accessible. Figure by ML.  210 

 211 

How to (Fig. 3):  Upload your code to Zenodo (https://zenodo.org/) or Figshare 212 

(https://figshare.com/) or any other repository that assigns a DOI and guarantees 213 

immutability and long-term persistence. A unique DOI will be created when the repository 214 

goes live, and a new one whenever it is subsequently updated (known as DOI versioning). 215 

Assigning a DOI facilitates citing and linking in the related manuscript. We do not 216 

recommend using GitHub as a standalone repository because it is not immutable and does 217 

not create a DOI. Instead, users can create a release version on GitHub and link to Zenodo 218 

(see https://help.zenodo.org/docs/profile/linking-accounts/ for more information regarding 219 

linking accounts). 220 

 221 

Documented 222 

Documentation refers to providing accurate and detailed metadata files that describe the code 223 

files and their usage (Fig. 4). This documentation is often provided as an additional .txt file 224 

(typically a README.txt). Documentation could be provided as a combined README 225 

containing both code- and data-specific metadata, or as two separate READMEs, one for code 226 

https://zenodo.org/
https://figshare.com/
https://help.zenodo.org/docs/profile/linking-accounts/


and one for data. Figure 1 provides additional essential information that should be contained 227 

within a README file. This includes information on the computational environment used, such 228 

as software version (e.g., R v4.3.3), packages with associated versions (e.g., ggplot v2.3.2), 229 

licences (e.g., MIT licence), and the data-specific DOI or other important information as to 230 

where the relevant data is located (e.g., doi.org/12345; see below), alongside any additional 231 

information needed to run the files (e.g., what each file contains, the order in which to run them 232 

and whether the code takes a long time to run). 233 

  234 

The documentation must specify an appropriate licence detailing how others can use, modify and 235 

share the code. Licences can take many forms, such as the Massachusetts Institute of Technology 236 

(MIT) or General Public Licence (GPL), and can differ in their permission levels and conditions. 237 

For instance, the licence details if attribution is required (i.e., whether you are required to cite the 238 

creator of the code), whether code can be modified, and/or used for commercial purposes. A 239 

researcher should carefully consider what form of code-specific licence is needed or whether the 240 

repository they choose to use has a default repository-wide licence (e.g., Dryad has a generic 241 

CC0 licence on all its repositories that is not suitable for code). Websites such as 242 

choosealicence.com provide detailed guidance on how to assign a licence to a repository 243 

(although, in essence, it can simply involve copying the respective license text and saving the file 244 

to the repository). Licences can range from completely open and permissive, such as MIT, which 245 

has little to no restrictions on use, to more restrictive, such as GPL, which has several conditions 246 

that must be met. For instance, applying the same licence to any derivative works and listing any 247 

changes made from the source code. Many factors will influence what licence to choose and how 248 

open you want your code to be, including who the audience is (i.e., is it intended for commercial 249 



applications), whether you want the option for collaboration (i.e., can others modify or extend 250 

your code), and how this aligns with journal, institutional and funding policies. For instance, 251 

some journals require the use of a specific licence upon archiving (e.g., GPL in the Journal of 252 

Statistical Software). In Figure 1, the pre-TADA code has no associated licence, which restricts 253 

its use as other users are not legally permitted to use, share, or modify the archived script.  In 254 

contrast, the post-TADA code has an associated MIT licence, which tells users explicitly that 255 

they are free to copy, modify, merge, publish, and share the archived script.  256 

 257 

 258 

Figure 4. Summary of advice on making code sharing Documented. Figure by ML.  259 

 260 

How to (Fig. 4):  External documentation can provide important information that internal 261 

code annotation lacks. A README.txt file describing the code should contain additional 262 

information on the manuscript that the code is associated with (title, abstract, and authors 263 

with corresponding emails, including who wrote the code; if necessary this can be 264 

anonymised during review to adhere to double-blind reviewing policies), software used 265 

(e.g., R or Python including version number), any important libraries used (with version 266 

numbers; this should also be provided alongside a text file which lists every loaded package 267 



and version number; given by sessionInfo() in R or session-info in Python), information 268 

about where relevant data is located (if appropriate), a mention of the code-specific licence, 269 

and any other important pieces of information such as the order the scripts should be used 270 

and whether the code takes long time to run. 271 

  272 

For licences, as mentioned above, there exists a multitude to choose from. Common licences 273 

that will suit code are MIT and GPL, but many more exist that differ in how permissive 274 

they are (see https://choosealicense.com/appendix/). We recommend consulting 275 

choosealicence.com, copying the relevant licence text, and producing a licence.txt file to add 276 

to your repository alongside your code. In some repositories, such as Zenodo, you can 277 

specify the licence when you choose to archive your code, which will then be attached to the 278 

specific repository without the need to create your own file. 279 

 280 

Annotated 281 

Annotation refers to the addition of comments within each script (e.g., denoted with a “#” in R 282 

and Python) or embedding code within an RMarkdown or Quarto document alongside 283 

descriptive text (Fig. 5; see also https://eivimeycook.github.io/TADA/). Annotation dramatically 284 

improves the ability for someone else to understand (transparency) and run the code 285 

(functionality and reproducibility). Annotation can include informative details such as what the 286 

section of code is doing (e.g., “# Run a Poisson generalised linear model…”), why it is needed 287 

(e.g., “…to analyse caterpillar abundance varying with habitat…”), and, provide signposting for 288 

the locations of specific results in the manuscript body (when applicable; e.g., “… Numeric 289 

results in "Caterpillar Abundance” ”). Although this could be line-by-line annotation, simply 290 

https://eivimeycook.github.io/TADA/


denoting and describing relevant sections in sufficient detail is often more helpful for tracking 291 

what code does and what it produces (Note, “#####” in RStudio or “#%%” in Python creates 292 

collapsible sections in your code that increase readability and facilitate structuring). In Figure 1, 293 

the pre-TADA code has no internal annotation, which means that it is unclear what is being run, 294 

why it might be run, and ultimately what it produces (i.e., no signposting). 295 

 296 

  297 

Figure 5. Summary of advice on making code sharing Annotated. Figure by ML.  298 

 299 

How to (Fig. 5):  Annotation in both R and Python is done by simply providing a # 300 

(hashtag) before writing text. We recommend that, rather than annotating every line of 301 

code, to annotate each code ‘chunk’, where multiple lines of code are described in sufficient 302 

detail. Each comment should briefly include a description of what the code is doing, why, 303 

and if it produces any results in the manuscript. An example annotation is given in Fig. 1. 304 

Alternatively, as mentioned above, a user could provide annotated code embedded within 305 

an RMarkdown or Quarto file, which could be shared.  306 

  307 

Conclusion 308 



By following these simple guidelines, which are both easy to understand, easy to remember, and 309 

which embody the FAIR principles, code creators of all experience levels will be better equipped 310 

to produce transparent and reproducible analytical code. Through the use of TADA, combined 311 

with improved editorial practices at journals (e.g., the presence of data editors at journals; 312 

(Ivimey-Cook et al., 2025; Pick et al., 2025), and pre-submission code reviews (Ivimey-Cook et 313 

al., 2023), we hope that the rate and quality of code sharing will continue to increase in ecology 314 

and evolution. Furthermore, while our advice for implementing TADA is tailored towards 315 

common practices in ecology and evolution, the core foundational goals of transparency, 316 

accessibility, documentation, and annotation are broadly applicable across research disciplines. 317 

We encourage researchers to adapt and apply these core principles beyond ecology and 318 

evolution, to support widespread adoption of open science practices. 319 
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