
TADA! Simple guidelines to improve code sharing 1

 2

Edward R. Ivimey-Cook1@, Antica Culina2, Shreya Dimri3, Matthew J. Grainger4, Fonti Kar5,6, 3

Malgorzata Lagisz6,7, Nicholas P. Moran8, Shinichi Nakagawa7, Dominique G. Roche9, Alfredo 4

Sánchez-Tójar3, Saras M. Windecker10, Joel L. Pick11 5

 6

1 School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK; 2 Ruder Boskovic 7

Institute, Croatia; 3 Department of Evolutionary Biology, Bielefeld University, Germany; 4 Norwegian Institute for 8

Nature Research, Trondheim, Norway; 5 Research School of Finance, Actuarial Studies & Statistics, The Australian 9

National University, Canberra, Australia. 6 School of Biological, Earth & Environmental Sciences, University of 10

New South Wales, Sydney, Australia; 7 Department of Biological Sciences, University of Alberta, Edmonton, 11

Canada; 8 Centre of Excellence for Biosecurity Risk Analysis, Biosciences, University of Melbourne, Parkville, 12

Victoria, Australia; 9 Institut de Biologie, Université de Neuchâtel, NE, Switzerland 10 The Kids Research Institute 13

Australia, Nedlands, WA, Australia; 11 Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, 14

UK; 15

 16

@corresponding author: e.ivimeycook@gmail.com; authors aside from the first and last are ordered 17

alphabetically. 18

 19

 20

 21

 22

 23

 24

mailto:e.ivimeycook@gmail.com

Abstract 25

Code sharing is important for transparency and facilitates computational reproducibility of 26

published research. However, even as the number of journals that encourage or mandate code 27

sharing continues to increase, the prevalence of open code remains low. Furthermore, even when 28

shared, code is often non-functional, which hinders computational reproducibility. One reason 29

for low levels of code sharing is uncertainty around how to prepare functional (i.e., the ability to 30

run code without error) and reproducible (i.e., the ability to reproduce the analysis and results 31

using the same data, code, and computational conditions) code as existing principles for best 32

coding practices are both complex and primarily developed for software. To improve code 33

sharing, there is an urgent need for clear and simple guidance on how to prepare functional and 34

reproducible code for sharing. To address this, we provide simple code sharing guidelines: 35

TADA (Transferable, Accessible, Documented and Annotated). TADA details the minimum 36

requirements necessary for a researcher to produce functional and reproducible code for sharing 37

that directly supports open science best practices and the FAIR (Findable, Accessible, 38

Interoperable, Reusable) principles for code. TADA aims to streamline the process of depositing 39

and sharing functional code for researchers with all levels of coding experience, with the 40

ultimate goal of increasing the transparency, reproducibility, and reliability of research results 41

across ecology and evolution, and more broadly. 42

 43

 Keywords 44

Research integrity, Reliability, Replicability, Reproducibility, Research methods, 45

Methodological rigour 46

 47

Introduction 48

Public sharing of code (i.e., open code) offers numerous benefits for researchers. It enhances the 49

transparency of methods and the overall research process (Goldacre et al., 2019; Fernández-50

Juricic, 2021; Ivimey-Cook et al., 2023), increases the citation rates of associated articles 51

(Vandewalle, 2012; Maitner et al., 2024), enables other researchers to build upon published work 52

(Barnes, 2010; Eglen et al., 2017), and can provide future career advantages for early career 53

researchers (McKiernan et al., 2016; Allen & Mehler, 2019; König et al., 2025). Furthermore, 54

code, alongside data, is essential for ensuring computational reproducibility - the ability to 55

reproduce the analysis and results using the same data, code, and computational conditions 56

(National Academies of Sciences et al., 2019) - a key part of the scientific process that promotes 57

reliability and builds trust in research (Fidler et al., 2017; Powers & Hampton, 2019). As 58

awareness of these benefits grows amongst researchers and the wider scientific community 59

(Eynden et al., 2016; Cadwallader & Hrynaszkiewicz, 2022; Ferguson et al., 2023), an 60

increasing number of journals are promoting open code by implementing code sharing policies 61

(from 15% in 2015 to 88% in 2024, Mislan et al., 2016; Culina et al., 2020; Ivimey-Cook et al., 62

2025), where authors are encouraged or required to share code following manuscript acceptance, 63

or in some cases, upon first submission. 64

 65

To date, several recommendations exist for how to prepare and archive code to facilitate review 66

and computational reproducibility (Sandve et al., 2013; Cooper, 2017; Filazzola & Lortie, 2022; 67

Ivimey-Cook et al., 2023; Abdill et al., 2024; Rokem, 2024; Sharma et al., 2024; Hillemann et 68

al., 2025). These guidelines aim to follow the FAIR principles, which were published for data in 69

2016 (Wilkinson et al., 2016) and later adapted for Research Software in 2022 (FAIR4RS; 70

Barker et al., 2022). FAIR stands for Findable: the ability for both machines and humans to 71

easily find digital assets (including metadata, data, and code); Accessible: digital assets are 72

retrievable via their identifier, and every user must understand how they can be accessed which 73

may or may not require additional authorisation or authentication; Interoperable: digital assets 74

must be able to interoperate with other digital assets and be readable using standard documented 75

formats; and lastly, Reusable: digital assets must be described sufficiently to enable reuse and 76

attributed alongside an appropriate licence (see Wilkinson et al., 2016; Barker et al., 2022). 77

 78

Despite these guidelines and progress towards more transparent and reproducible research (Cao 79

et al., 2023), there are still clear limitations with code sharing. First, the proportion of articles 80

with open code remains alarmingly low. For example, in ecology and evolution, rates range from 81

between 5 - 32% (Culina et al., 2020; Kimmel et al., 2023; Kambouris et al., 2024; Maitner et 82

al., 2024; Kellner et al., 2025; Sánchez-Tójar et al., 2025). Second, even when code is provided, 83

its functionality (i.e., the ability to run code without error) is often low (Trisovic et al., 2022; 84

Kellner et al., 2025). In a recent study examining R code in research articles about species 85

distribution and abundance, the authors had to abandon the reproducibility aspect of their 86

analysis due to the overwhelmingly high proportion of code that did not run or ran with errors 87

(93% of coding scripts; Kellner et al., 2025). Similarly, a recent review of over 9000 unique R 88

files archived in the Harvard Dataverse found that 74% of code failed to complete without error, 89

which decreased to 56% after code cleaning was applied (e.g., removal of local file paths and 90

ensuring libraries and dependencies were properly installed and loaded; Trisovic et al., 2022). 91

Finally, even if code is present and functional, computational reproducibility is not always 92

achieved (Campbell et al., 2023; Kambouris et al., 2024; Kellner et al., 2025). For instance, the 93

ability to reproduce the results of meta-analyses has been shown to range from 26.9% (all results 94

within an article exactly matched) to 73.1% (50% of results within an article were within 10% of 95

the original value) when data and code were shared and available (Kambouris et al., 2024). 96

Putting these three components together (the low rates of code archiving, low functionality of 97

archived code, and low computational reproducibility of functional archived code) presents a 98

dismal picture, and suggests that many of the benefits of code sharing for both authors and the 99

scientific community more broadly are not being achieved. 100

 101

It has been suggested that a major reason for the limited functionality of code and, therefore, low 102

rates of computational reproducibility is a lack of knowledge on how to prepare code with 103

transparency and reproducibility in mind (Gomes et al., 2022). We suggest that complete 104

guidelines, such as the FAIR4RS principles (Barker et al., 2022), are too broad in scope and 105

largely focused towards software developers, which may explain why they have not been widely 106

adopted by the research community. Furthermore, analytical code is typically far more unique 107

and tailored to a specific dataset as opposed to software code. The main goal of producing and 108

sharing code in this case is not for reuse and provision of general analytical tools, but rather to 109

produce a transparent and reproducible record of the analysis for a particular study. Therefore, 110

we contend that there is a significant distinction between guidelines developed to ensure code 111

reuse and those designed to ensure code transparency and reproducibility. Generating code for 112

reuse is a far more complicated process than “simply” ensuring reproducibility, as code needs to 113

be written in a generalised way to provide analytical tools that can run on any system with any 114

appropriate data as input. Although extremely useful and important in ensuring best practices for 115

data sharing and open-source software, current principles are thus likely setting too high a bar for 116

analytical research code that does not need to meet the level of reusable software. Therefore, an 117

important first step to increase the rate and quality of code sharing is to lower this bar and to 118

establish best practices for code to meet the minimum standards for transparency and 119

computational reproducibility. This increase in transparency will help to build trust in published 120

results, which should be the norm for all open analytical code. Here, we provide simplified and 121

easy-to-follow guidelines built with the FAIR4RS principles in mind but tailored for sharing 122

analytical code for research. We call these guidelines, TADA (Transferable, Accessible, 123

Documented, Annotated) and believe it will help research coders of all levels to prepare 124

functional, transparent, and reproducible code.125

Figure 1. An example of the TADA guidelines (Transferable, Accessible, Documented, and Annotated) applied to analytical code 126

written in R. Showing a pre-TADA script (left) and a post-TADA script (right). Coloured letters correspond to Transferable (red), 127

Accessible (dark green), Documented (purple), and Annotated (blue). The code shown is generic and designed to showcase the TADA 128

guidelines. Figure by EIC. 129

 130

TADA! 131

We outline below four easy-to-follow steps to help researchers share transparent and 132

reproducible code. By following the TADA (Figs. 2-5) guidelines, a researcher can produce 133

analytical code that follows open science best practices, aligns with the FAIR and FAIR4RS 134

principles (Wilkinson et al., 2016; Barker et al., 2022), increases transparency, and facilitates 135

computational reproducibility. We discuss each component in detail below. Whilst our advice is 136

tailored mainly to R and Python, as these open-source languages are widely used, particularly in 137

ecology and evolution (Mislan et al., 2016; Lai et al., 2019; Gao et al., 2025), the basic 138

principles of these guidelines can be widely applied to other coding languages. Furthermore, 139

whilst we provide guidance from an ecology and evolution perspective, these guidelines can be 140

applied broadly across other disciplines. For a checklist of the TADA guidelines, see Figure S1. 141

 142

Transferable 143

Transferability refers to the ability for anyone to open the file, view the code, and run the script 144

without conversion or alteration (Fig. 2). Ensuring transferability greatly increases the 145

computational reproducibility of research code. First, code must be saved in a file extension that 146

can be opened by any text editor or integrated development environment (IDE; e.g., RStudio, 147

VSCode, PyCharm). In Figure 1, the non-transferable, pre-TADA code is in the form of a .PDF 148

or Word file. These files can be viewed but cannot be opened and edited within an IDE without 149

using additional libraries (or software) or converting to a different file extension. Furthermore, 150

copying and pasting code directly from these file extensions may result in changing characters 151

(e.g., apostrophes) or white spaces, or the inclusion of other additional unwanted characters (e.g., 152

line numbers, headers), which can easily result in code errors that are sometimes difficult to spot. 153

We suggest saving any script in a transferable (often referred to as interoperable) file extension, 154

such as .txt, .R or .py, as these can be readily viewed, edited and saved using any text editor or 155

IDE. 156

 157

Second, to ensure code runs on different computers and operating systems, file paths must be 158

written in a way that is not specific to the user’s local environment or directory structure (i.e., 159

absolute file paths). This is also inherently related to appropriate folder organisation, where data, 160

code, and all necessary materials are organised in a single project directory. To avoid local (or 161

absolute) file paths, one can use an RStudio project, which automatically sets the working 162

directory to the appropriate location (e.g., a project folder), alongside packages such as here 163

(Müller & Bryan, 2020) or pyrpojroot (pyprojroot 2023), which creates file paths relative to any 164

project directory regardless of operating system (i.e., relative file paths). By doing so, this will 165

ultimately avoid the use of the setwd() function (in R) or the os.chdir() (in Python), which set 166

both operating system and user-specific file paths that can cause other users to encounter errors 167

when running the code. For other software, simply opening the project folder (in VSCode) or 168

launching R (when standalone without an IDE) within the project directory performs a similar 169

action to using an RStudio project. In Figure 1, the use of local and user-specific file paths in the 170

pre-TADA code will cause all other users to encounter errors when importing the required data 171

file. In contrast, the post-TADA panel is operating system and user-agnostic and allows anyone 172

to load the necessary data file. 173

 174

Figure 2. Summary of advice on making code sharing Transferable. Figure by ML. 175

 176

How to (Fig. 2): When writing code in R or Python, be sure to save and share each script as 177

a .txt, .R, or .py file extension. Avoid providing code within supplementary files or Word 178

documents and PDFs. If the coding language or IDE does not use or save scripts or code 179

syntax in the previously stated file extensions, check to see if the resulting file can be 180

opened by a text editor (e.g., SPSS syntax .sps files can be readily viewed in a text editor). 181

 182

There are several options to prevent the use of local file paths in your scripts. RStudio 183

users can simply create a new RStudio project (File --> New Project; see 184

https://docs.posit.co/ide/user/ide/get-started/), which eliminates the need for user-specific 185

file paths. This can be used in combination or separately from using packages such as here. 186

We recommend using both to maximise transferability across operating systems. 187

Additional methods include navigating to the project file and opening it within VSCode or 188

running an instance of R or Python within the specific project folder. The latter will 189

remove the need for local file paths that may lead to errors when other users try to run the 190

https://docs.posit.co/ide/user/ide/get-started/

code on different systems. Whichever method is chosen should be in the repository’s 191

documentation (see below). 192

 193

Accessible 194

Accessibility refers to the act of publicly archiving the code in a way that provides access to any 195

external user (Fig. 3). Code must be stored in an open and easily accessible manner with an 196

associated globally unique persistent identifier (e.g., a DOI), which must be cited in the 197

corresponding manuscript to enable others to find and access the code. Whilst GitHub might be a 198

commonly used repository for developing code and provides a transparent platform for version 199

control during the development phase (Braga et al., 2023; Kang et al., 2023), it does not readily 200

provide a DOI and files can be changed (or even deleted) after archiving (i.e., GitHub is not 201

immutable). As such, GitHub is not suitable for archiving analytical code used in a particular 202

publication. Repositories such as Zenodo (which can connect to a GitHub repository), and 203

Figshare are immutable and can provide both a base project-level DOI that never changes and 204

version-specific DOIs, created whenever a new version of the code is released by the owner. In 205

Figure 1, the lack of archived code and associated DOI in the pre-TADA code limits code 206

sharing and prevents permanent, uneditable, and citable storage of the code. 207

 208

 209

Figure 3. Summary of advice on making code sharing Accessible. Figure by ML. 210

 211

How to (Fig. 3): Upload your code to Zenodo (https://zenodo.org/) or Figshare 212

(https://figshare.com/) or any other repository that assigns a DOI and guarantees 213

immutability and long-term persistence. A unique DOI will be created when the repository 214

goes live, and a new one whenever it is subsequently updated (known as DOI versioning). 215

Assigning a DOI facilitates citing and linking in the related manuscript. We do not 216

recommend using GitHub as a standalone repository because it is not immutable and does 217

not create a DOI. Instead, users can create a release version on GitHub and link to Zenodo 218

(see https://help.zenodo.org/docs/profile/linking-accounts/ for more information regarding 219

linking accounts). 220

 221

Documented 222

Documentation refers to providing accurate and detailed metadata files that describe the code 223

files and their usage (Fig. 4). This documentation is often provided as an additional .txt file 224

(typically a README.txt). Documentation could be provided as a combined README 225

containing both code- and data-specific metadata, or as two separate READMEs, one for code 226

https://zenodo.org/
https://figshare.com/
https://help.zenodo.org/docs/profile/linking-accounts/

and one for data. Figure 1 provides additional essential information that should be contained 227

within a README file. This includes information on the computational environment used, such 228

as software version (e.g., R v4.3.3), packages with associated versions (e.g., ggplot v2.3.2), 229

licences (e.g., MIT licence), and the data-specific DOI or other important information as to 230

where the relevant data is located (e.g., doi.org/12345; see below), alongside any additional 231

information needed to run the files (e.g., what each file contains, the order in which to run them 232

and whether the code takes a long time to run). 233

 234

The documentation must specify an appropriate licence detailing how others can use, modify and 235

share the code. Licences can take many forms, such as the Massachusetts Institute of Technology 236

(MIT) or General Public Licence (GPL), and can differ in their permission levels and conditions. 237

For instance, the licence details if attribution is required (i.e., whether you are required to cite the 238

creator of the code), whether code can be modified, and/or used for commercial purposes. A 239

researcher should carefully consider what form of code-specific licence is needed or whether the 240

repository they choose to use has a default repository-wide licence (e.g., Dryad has a generic 241

CC0 licence on all its repositories that is not suitable for code). Websites such as 242

choosealicence.com provide detailed guidance on how to assign a licence to a repository 243

(although, in essence, it can simply involve copying the respective license text and saving the file 244

to the repository). Licences can range from completely open and permissive, such as MIT, which 245

has little to no restrictions on use, to more restrictive, such as GPL, which has several conditions 246

that must be met. For instance, applying the same licence to any derivative works and listing any 247

changes made from the source code. Many factors will influence what licence to choose and how 248

open you want your code to be, including who the audience is (i.e., is it intended for commercial 249

applications), whether you want the option for collaboration (i.e., can others modify or extend 250

your code), and how this aligns with journal, institutional and funding policies. For instance, 251

some journals require the use of a specific licence upon archiving (e.g., GPL in the Journal of 252

Statistical Software). In Figure 1, the pre-TADA code has no associated licence, which restricts 253

its use as other users are not legally permitted to use, share, or modify the archived script. In 254

contrast, the post-TADA code has an associated MIT licence, which tells users explicitly that 255

they are free to copy, modify, merge, publish, and share the archived script. 256

 257

 258

Figure 4. Summary of advice on making code sharing Documented. Figure by ML. 259

 260

How to (Fig. 4): External documentation can provide important information that internal 261

code annotation lacks. A README.txt file describing the code should contain additional 262

information on the manuscript that the code is associated with (title, abstract, and authors 263

with corresponding emails, including who wrote the code; if necessary this can be 264

anonymised during review to adhere to double-blind reviewing policies), software used 265

(e.g., R or Python including version number), any important libraries used (with version 266

numbers; this should also be provided alongside a text file which lists every loaded package 267

and version number; given by sessionInfo() in R or session-info in Python), information 268

about where relevant data is located (if appropriate), a mention of the code-specific licence, 269

and any other important pieces of information such as the order the scripts should be used 270

and whether the code takes long time to run. 271

 272

For licences, as mentioned above, there exists a multitude to choose from. Common licences 273

that will suit code are MIT and GPL, but many more exist that differ in how permissive 274

they are (see https://choosealicense.com/appendix/). We recommend consulting 275

choosealicence.com, copying the relevant licence text, and producing a licence.txt file to add 276

to your repository alongside your code. In some repositories, such as Zenodo, you can 277

specify the licence when you choose to archive your code, which will then be attached to the 278

specific repository without the need to create your own file. 279

 280

Annotated 281

Annotation refers to the addition of comments within each script (e.g., denoted with a “#” in R 282

and Python) or embedding code within an RMarkdown or Quarto document alongside 283

descriptive text (Fig. 5; see also https://eivimeycook.github.io/TADA/). Annotation dramatically 284

improves the ability for someone else to understand (transparency) and run the code 285

(functionality and reproducibility). Annotation can include informative details such as what the 286

section of code is doing (e.g., “# Run a Poisson generalised linear model…”), why it is needed 287

(e.g., “…to analyse caterpillar abundance varying with habitat…”), and, provide signposting for 288

the locations of specific results in the manuscript body (when applicable; e.g., “… Numeric 289

results in "Caterpillar Abundance” ”). Although this could be line-by-line annotation, simply 290

https://eivimeycook.github.io/TADA/

denoting and describing relevant sections in sufficient detail is often more helpful for tracking 291

what code does and what it produces (Note, “#####” in RStudio or “#%%” in Python creates 292

collapsible sections in your code that increase readability and facilitate structuring). In Figure 1, 293

the pre-TADA code has no internal annotation, which means that it is unclear what is being run, 294

why it might be run, and ultimately what it produces (i.e., no signposting). 295

 296

 297

Figure 5. Summary of advice on making code sharing Annotated. Figure by ML. 298

 299

How to (Fig. 5): Annotation in both R and Python is done by simply providing a # 300

(hashtag) before writing text. We recommend that, rather than annotating every line of 301

code, to annotate each code ‘chunk’, where multiple lines of code are described in sufficient 302

detail. Each comment should briefly include a description of what the code is doing, why, 303

and if it produces any results in the manuscript. An example annotation is given in Fig. 1. 304

Alternatively, as mentioned above, a user could provide annotated code embedded within 305

an RMarkdown or Quarto file, which could be shared. 306

 307

Conclusion 308

By following these simple guidelines, which are both easy to understand, easy to remember, and 309

which embody the FAIR principles, code creators of all experience levels will be better equipped 310

to produce transparent and reproducible analytical code. Through the use of TADA, combined 311

with improved editorial practices at journals (e.g., the presence of data editors at journals; 312

(Ivimey-Cook et al., 2025; Pick et al., 2025), and pre-submission code reviews (Ivimey-Cook et 313

al., 2023), we hope that the rate and quality of code sharing will continue to increase in ecology 314

and evolution. Furthermore, while our advice for implementing TADA is tailored towards 315

common practices in ecology and evolution, the core foundational goals of transparency, 316

accessibility, documentation, and annotation are broadly applicable across research disciplines. 317

We encourage researchers to adapt and apply these core principles beyond ecology and 318

evolution, to support widespread adoption of open science practices. 319

 320

Acknowledgements 321

We thank Sarah Wilson Kemsley for discussion of the TADA guidelines in other coding 322

languages across disciplines. 323

 324

Conflict of Interest 325

EIC, JLP, SN, ML, DGR, NPM, SD, and AS-T are members of the Society for Open, Reliable, 326

and Transparent Ecology and Evolutionary Biology (SORTEE). EIC is the acting President. EIC, 327

ML and AS-T are current board members. 328

 329

Author contributions 330

EIC and JLP conceptualised the idea. EIC wrote the first draft. EIC, ML, and SD made figures. 331

All authors (EIC, AC, SD, MJG, FK, ML, NPM, SN, DGR, AS-T, SMW, and JLP) contributed 332

to reviewing and editing of subsequent drafts. 333

 334

AI declaration 335

ChatGPT 4.0 was used to generate the dog and wizard used in the figures. 336

 337

References 338

Abdill, R.J., Talarico, E. & Grieneisen, L. 2024. A how-to guide for code sharing in biology. PLoS Biol 22: 339
e3002815. 340

Allen, C. & Mehler, D.M.A. 2019. Open science challenges, benefits and tips in early career and beyond. PLOS 341
Biology 17: e3000246. Public Library of Science. 342

Barker, M., Chue Hong, N.P., Katz, D.S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., et al. 2022. 343
Introducing the FAIR Principles for research software. Sci Data 9: 622. Nature Publishing Group. 344

Barnes, N. 2010. Publish your computer code: it is good enough. Nature 467: 753–753. 345

Braga, P.H.P., Hébert, K., Hudgins, E.J., Scott, E.R., Edwards, B.P.M., Sánchez Reyes, L.L., et al. 2023. Not just 346
for programmers: How <scp>GitHub</scp> can accelerate collaborative and reproducible research in 347
ecology and evolution. Methods Ecol Evol 14: 1364–1380. 348

Cadwallader, L. & Hrynaszkiewicz, I. 2022. A survey of researchers’ code sharing and code reuse practices, and 349
assessment of interactive notebook prototypes. PeerJ 10: e13933. PeerJ Inc. 350

Campbell, T., Dixon, K.W. & Handcock, R.N. 2023. Restoration and replication: a case study on the value of 351
computational reproducibility assessment. Restoration Ecology 31: e13968. 352

Cao, H., Dodge, J., Lo, K., McFarland, D.A. & Wang, L.L. 2023. The Rise of Open Science: Tracking the Evolution 353
and Perceived Value of Data and Methods Link-Sharing Practices. arXiv. 354

Cooper, N. 2017. A Guide to Reproducible Code in Ecology and Evolution. British Ecological Society. 355

Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. 2020. Low availability of code in ecology: A call for 356
urgent action. PLoS Biol 18: e3000763. Public Library of Science. 357

Eglen, S.J., Marwick, B., Halchenko, Y.O., Hanke, M., Sufi, S., Gleeson, P., et al. 2017. Toward standard practices 358
for sharing computer code and programs in neuroscience. Nat Neurosci 20: 770–773. Nature Publishing 359
Group. 360

Eynden, V.V.D., Knight, G., Vlad, A., Radler, B., Tenopir, C., Leon, D., et al. 2016. Survey of Wellcome 361
researchers and their attitudes to open research. Wellcome Trust, doi: 10.6084/m9.figshare.4055448.v1. 362
Wellcome Trust. 363

Ferguson, J., Littman, R., Christensen, G., Paluck, E.L., Swanson, N., Wang, Z., et al. 2023. Survey of open science 364
practices and attitudes in the social sciences. Nat Commun 14: 5401. 365

Fernández-Juricic, E. 2021. Why sharing data and code during peer review can enhance behavioral ecology 366
research. Behav Ecol Sociobiol 75: 103. 367

Fidler, F., Chee, Y.E., Wintle, B.C., Burgman, M.A., McCarthy, M.A. & Gordon, A. 2017. Metaresearch for 368
Evaluating Reproducibility in Ecology and Evolution. BioScience 67: 282–289. 369

Filazzola, A. & Lortie, C. 2022. A call for clean code to effectively communicate science. Methods Ecol Evol 13: 370
2119–2128. 371

Gao, M., Ye, Y., Zheng, Y. & Lai, J. 2025. A comprehensive analysis of R’s application in ecological research from 372
2008 to 2023. Journal of Plant Ecology 18: rtaf010. 373

Goldacre, B., Morton, C.E. & DeVito, N.J. 2019. Why researchers should share their analytic code. BMJ 367: l6365. 374
British Medical Journal Publishing Group. 375

Gomes, D.G.E., Pottier, P., Crystal-Ornelas, R., Hudgins, E.J., Foroughirad, V., Sánchez-Reyes, L.L., et al. 2022. 376
Why don’t we share data and code? Perceived barriers and benefits to public archiving practices. Proc. R. 377
Soc. B. 289: 20221113. Royal Society. 378

Hillemann, F. [freddy], Burant, J.B., Culina, A. & Vriend, S.J.G. 2025. Code review in practice: A checklist for 379
computational reproducibility and collaborative research in ecology and evolution. EcoEvoRxiv. 380

Ivimey-Cook, E.R., Pick, J.L., Bairos-Novak, K.R., Culina, A., Gould, E., Grainger, M., et al. 2023. Implementing 381
code review in the scientific workflow: Insights from ecology and evolutionary biology. Journal of 382
Evolutionary Biology 36: 1347–1356. 383

Ivimey-Cook, E.R., Sánchez-Tójar, A., Berberi, I., Culina, A., Roche, D.G., Almeida, R.A., et al. 2025. From Policy 384
to Practice: Progress towards Data- and Code-Sharing in Ecology and Evolution. EcoEvoRxiv. 385

Kambouris, S., Wilkinson, D.P., Smith, E.T. & Fidler, F. 2024. Computationally reproducing results from meta-386
analyses in ecology and evolutionary biology using shared code and data. PLOS ONE 19: e0300333. Public 387
Library of Science. 388

Kang, D., Kang, T. & Jang, J. 2023. Papers with code or without code? Impact of GitHub repository usability on the 389
diffusion of machine learning research. Information Processing & Management 60: 103477. 390

Kellner, K.F., Doser, J.W. & Belant, J.L. 2025. Functional R code is rare in species distribution and abundance 391
papers. Ecology 106: e4475. 392

Kimmel, K., Avolio, M.L. & Ferraro, P.J. 2023. Empirical evidence of widespread exaggeration bias and selective 393
reporting in ecology. Nat Ecol Evol 7: 1525–1536. Nature Publishing Group. 394

König, L., Gärtner, A., Slack, H., Dhakal, S., Adetula, A., Dougherty, M., et al. 2025. How to bolster employability 395
through open science. OSF. 396

Lai, J., Lortie, C.J., Muenchen, R.A., Yang, J. & Ma, K. 2019. Evaluating the popularity of R in ecology. Ecosphere 397
10: e02567. 398

Maitner, B., Santos Andrade, P.E., Lei, L., Kass, J., Owens, H.L., Barbosa, G.C.G., et al. 2024. Code sharing in 399
ecology and evolution increases citation rates but remains uncommon. Ecology and Evolution 14: e70030. 400

McKiernan, E.C., Bourne, P.E., Brown, C.T., Buck, S., Kenall, A., Lin, J., et al. 2016. How open science helps 401
researchers succeed. eLife 5: e16800. eLife Sciences Publications, Ltd. 402

Mislan, K.A.S., Heer, J.M. & White, E.P. 2016. Elevating The Status of Code in Ecology. Trends in Ecology & 403
Evolution 31: 4–7. 404

Müller, K. & Bryan, J. 2020. here: A Simpler Way to Find Your Files. 405

National Academies of Sciences, E., Affairs, P. and G., Committee on Science, E., Information, B. on R.D. and, 406
Sciences, D. on E. and P., Statistics, C. on A. and T., et al. 2019. Understanding Reproducibility and 407
Replicability. In: Reproducibility and Replicability in Science. National Academies Press (US). 408

Pick, J.L., Bairos-Novak, K.R., Bachelot, B., Brand, J.A., Class, B., Dallas, T., et al. 2025. The SORTEE Guidelines 409
for Data and Code Quality Control in Ecology and Evolutionary Biology. 410

Powers, S.M. & Hampton, S.E. 2019. Open science, reproducibility, and transparency in ecology. Ecological 411
Applications 29: e01822. 412

pyprojroot: Project-oriented workflow in Python. 2023. 413

Rokem, A. 2024. Ten simple rules for scientific code review. PLOS Computational Biology 20: e1012375. Public 414
Library of Science. 415

Sánchez-Tójar, A., Bezine, A., Purgar, M. & Culina, A. 2025. Code-sharing policies are associated with increased 416
reproducibility potential of ecological findings. Peer Community Journal 5. 417

Sandve, G.K., Nekrutenko, A., Taylor, J. & Hovig, E. 2013. Ten Simple Rules for Reproducible Computational 418
Research. PLOS Computational Biology 9: e1003285. Public Library of Science. 419

Sharma, N.K., Ayyala, R., Deshpande, D., Patel, Y., Munteanu, V., Ciorba, D., et al. 2024. Analytical code sharing 420
practices in biomedical research. PeerJ Comput. Sci. 10: e2066. PeerJ Inc. 421

Trisovic, A., Lau, M.K., Pasquier, T. & Crosas, M. 2022. A large-scale study on research code quality and 422
execution. Sci Data 9: 60. Nature Publishing Group. 423

Vandewalle, P. 2012. Code Sharing Is Associated with Research Impact in Image Processing. Comput. Sci. Eng. 14: 424
42–47. 425

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., et al. 2016. The FAIR 426
Guiding Principles for scientific data management and stewardship. Sci Data 3: 160018. Nature Publishing 427
Group. 428

 429

 430

 431

 432

Supplementary material 433

Figure S1. A checklist highlighting the key points of TADA: Transferable, Accessible, 434

Documented, and Annotated code. Figure by SD. 435

 436

