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Abstract 

Rapid changes in marine ecosystems highlight the need to account for time-varying productivity 
in stock assessment models used to support fisheries management. Common approaches 
incorporate annual variation or regress processes like recruitment, natural mortality, or growth on 
environmental covariates. While the latter represents a step towards biological realism, it often 
fails accounting for interactions among covariates and may yield biased inferences when key 
drivers are correlated or unmeasured. We introduce a novel framework, Structural Causal 
Enhanced Stock Assessment Modelling (SCEAM), that integrates a Dynamic Structural Equation 
Model (DSEM) into a state-space stock assessment. SCEAM encompasses and extends the full 
range of existing time-varying approaches within a single framework, enabling direct comparison 
among them. We applied SCEAM to walleye pollock in the Gulf of Alaska to improve recruitment 
forecasting. When we compared three causal models of increasing complexity to recruitment 
modelled as random deviations around a mean, a first order autoregressive process, or regressed 
on a single covariate, we found that a causal model with intermediate complexity best balanced 
fit, parsimony, and predictive skill. This configuration reduced unexplained variance of 
recruitment by 69% and improved one-year-ahead forecasts. Key predictors included juvenile 
body condition and juvenile and larval catch rates. Our study represents the first application of a 
structural causal model embedded within a fisheries population model. SCEAM offers a unified, 
hypothesis-driven approach to integrating multiple non-independent covariates. We therefore 
propose that SCEAM can serve as a general scientific and statistical framework for building next-
generation ecosystem- and climate-linked fisheries stock assessment models.  

Keywords: structural causal models; fisheries stock assessment; recruitment; walleye pollock; dynamic 
structural equation models 
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1. Introduction 1 

Stock assessments rely on modelling key biological (e.g., recruitment, growth, natural mortality, 2 

reproduction) and fishery processes (e.g., selectivity, fishing mortality) that determine population 3 

productivity. These processes form the foundation of modern stock assessments, which are 4 

traditionally implemented in a single-species framework. Although often treated as time-invariant, 5 

both biological and fishery processes frequently vary over time (Vert-pre et al., 2013; Thorson et 6 

al., 2015; Szuwalski and Hollowed, 2016). For example, variability in environmental and 7 

ecological conditions has been demonstrated to affect survival, growth, and reproductive output in 8 

marine populations (Miller and Hyun, 2018; Xu et al., 2018; Feng et al., 2025). Stock assessments 9 

can produce biased estimates of stock status, inaccurate projections, and less effective management 10 

advice when they ignore time-varying dynamics. Case studies for Pacific cod (Gadus 11 

macrocephalus) in the Gulf of Alaska (Barbeaux et al., 2020), Atlantic cod (Gadus morhua) in the 12 

Gulf of Maine (Pershing et al., 2015) and Baltic Sea (Lindegren et al., 2009), and Chilean jack 13 

mackerel (Trachurus murphyi) in the Southeastern Pacific Ocean (Arcos et al., 2001; Lima et al., 14 

2020) demonstrate the risks of not incorporating environmental and ecological signals into stock 15 

assessment and management frameworks. Accounting for time-varying productivity in assessment 16 

models will be essential to maintaining reliable stock estimates and precautionary management 17 

advice as variability in ecosystem processes intensifies (Szuwalski and Hollowed, 2016). 18 

Methods have been developed to account for time-variation in population processes and typically 19 

fall into two categories. The first, termed “empirical” by Punt et al. (2014), allows parameters to 20 

vary stochastically over time using structures such as independent and identically distributed (iid) 21 

or autoregressive (AR) processes (first two columns in Fig. 1). This approach captures variability 22 

from unobserved sources without explicitly modelling them and has been implemented in several 23 

modern stock assessment models (Nielsen and Berg, 2014; Cadigan, 2016; Stock and Miller, 24 

2021). Despite being very flexible, this approach requires caveats regarding which parameters are 25 

considered time-varying (Punt, 2023). The second approach, called “mechanistic” by Punt et al. 26 

(2014), explicitly links population processes to environmental covariates (regression, Fig. 1) which 27 

we refer to as a regression paradigm. While being attractive in principle and having more biological 28 

realism than the empirical approach, the mechanistic approach has been less widely used (Punt et 29 

al., 2014; Karp and Vieser, 2024). It also has several potential challenges: (i) dealing with multiple 30 

correlated covariates, (ii) outside sample extrapolations (Kell et al., 2005; Punt et al., 2014, p 20) 31 

because estimated relationships are based on historical observations, and (iii) relationships 32 

breaking over time (Myers, 1998; McClatchie et al., 2010). Furthermore, regression analyses are 33 

not sufficient to establish mechanistic links because they ignore relationships among potential 34 

covariates and the population process that are known to lead to biased estimates of mechanistic 35 

relationships, particularly with missing confounding variables (Grace and Irvine, 2020; Byrnes 36 

and Dee, 2025). 37 



 

Recently, causal analysis has been advocated as a more reliable scientific framework for 38 

determining mechanistic links as well as overcoming some of these covariate dilemmas (Grace 39 

and Irvine, 2020; Arif and MacNeil, 2023; Siegel and Dee, 2025). The goal of causal inference is 40 

to quantify the effect of a variable, called the exposure, on another variable called the outcome. 41 

The structural causal modelling framework (SCM, Pearl, 2009) allows the use of observational 42 

data and derives causal effects based on a set of assumptions about the data-generating process 43 

(e.g., the exposure affects the outcome and not the other way around, Arif and MacNeil, 2023). 44 

SCM uses causal diagrams to represent how a system works; that is, all the hypotheses about the 45 

relationships in a study system, including all known confounding variables (Grace and Irvine, 46 

2020). This requires expert scientific knowledge regarding the studied system before statistical 47 

modelling (McElreath, 2018; Grace and Irvine, 2020; Hernán and Robins, 2023). We believe that 48 

SCMs present desirable features for linking covariates to stock assessment: (i) it allows a broader 49 

and more rigorous use of multiple non-independent environmental variables sampled through data 50 

collection processes than traditional regression and correlative approaches; (ii) it actively 51 

integrates the process knowledge generated by ecological research; (iii) it transparently represents 52 

hypotheses through causal diagrams and provides a comprehensive communication tool towards 53 

fisheries stakeholders. 54 

While causal questions are common in ecology, causal inference approaches are not yet widely 55 

adopted, although recent studies and reviews are encouraging its (Laubach et al., 2021; Thorson 56 

et al., 2021; Arif and MacNeil, 2023; Siegel and Dee, 2025). Several applications in the marine 57 

sciences have linked species abundance to environmental and/or anthropogenic drivers using 58 

Structural Equation Modelling (SEM; Kuczynski et al., 2017; Boyce et al., 2021). SEM is a part 59 

of the SCM framework and can be defined as a multivariate method testing direct and indirect 60 

effects on pre-assumed causal relationships (Lefcheck, 2016). Another approach used to explore 61 

causal relationships between time series is Empirical Dynamic Modelling (EDM, Sugihara et al., 62 

2012) which allows for testing non-linear relationships. This method and its expansion 63 

(Convergence Cross Mapping, Clark et al., 2015) have also been used to understand causes of 64 

species abundance fluctuations, and to project it in the future (Deyle et al., 2013; Ye et al., 2015). 65 

Recent applications demonstrated EDM abilities to compute reference points (Giron-Nava et al., 66 

2021; Tsai et al., 2024), but to our knowledge, SEM, EDM, and CCM have not been embedded in 67 

an age-structured population model used as the basis for stock assessment. 68 

State-space models combine observed variables with unobserved latent states modelled as random 69 

variables with a specified probability distribution and for which process errors can be estimated, 70 

and they provide a natural way to represent natural resource dynamics. They are being increasingly 71 

used in fisheries science, notably for stock assessment (e.g., Cadigan, 2016; Aeberhard et al., 2018; 72 

Cadigan et al., 2024). Time series of stock abundance, its age/size structure, fishing mortality rates, 73 

and other processes can be stochastic latent states in a state-space stock assessment model (SSAM), 74 

informed by indirect observations such as commercial catches and survey indices, which are 75 

subject to observation errors. A common method to estimate SSAM parameters is maximum 76 



 

marginal likelihood estimation, which requires high dimensional integrals to be evaluated. Recent 77 

advances in algorithms and software (e.g., TMB, Kristensen et al., 2016) allow efficient fitting of 78 

state-space models. Because of their flexibility SSAMs have modelled population time-varying 79 

processes using either empirical or mechanistic frameworks (e.g.,  WHAM, SAM). We suggest 80 

instead that a causal framework should be used to model time-varying processes, which would 81 

allow the inclusion of multiple non-independent covariates in a rigorous and transparent way. In 82 

this framework, a time-varying process from a stock assessment would be modelled as an outcome 83 

of exposure variables linked through a causal diagram (far right column in Fig. 1). Dynamic 84 

Structural Equation Models (DSEM, Thorson et al., 2024) were recently developed to unify causal 85 

inference and time series forecasting in a computationally efficient framework that can also impute 86 

missing values for covariates. DSEM is compatible with most SSAMs because it presents a state-87 

space structure and has versions available in TMB and RTMB. Moreover, it provides 88 

computationally efficient options for short-term forecasts and end-of-century projections, both of 89 

which are useful for different purposes in stock assessments. DSEM is therefore a convenient 90 

statistical framework to incorporate causal diagrams into SSAMs. 91 

This study is the first demonstration (to our knowledge) of combining population models and SCM 92 

to address the needs of fisheries management in a changing environment. Specifically, we show 93 

how coupling DSEM and a SSAM (i) generalizes the regression paradigm while addressing several 94 

of its important limitations, and (ii) provides accurate forecasts of population. Our Structural 95 

Causal Enhanced Assessment Model (SCEAM) facilitates testing against status quo methods 96 

(empirical – iid, AR1, and regression, Fig. 1) to facilitate comparison of models of increasing 97 

complexity. As a case study, we apply SCEAM to estimate and forecast recruitment of the walleye 98 

pollock (Gadus chalcogrammus) stock in the Gulf of Alaska. 99 

2. Materials and methods 100 

SCEAM consists of combining two models: DSEM and a population dynamics model. We first 101 

describe DSEM and its functionality and explain the conceptual steps for coupling it to a 102 

population model. Second, we introduce the GOA pollock case study with an overview of the stock 103 

assessment and the environmental and ecosystem variables used. Then, we describe the process of 104 

building causal diagrams and how they were implemented within the stock assessment to build 105 

SCEAM. Finally, we detail how we evaluated model performance against traditional approaches 106 

and a simple simulation test to explore the statistical properties of SCEAM. 107 

2.1 DSEM overview 108 

DSEM estimates simultaneous and lagged effects in multivariate time series analysis (Thorson et 109 

al., 2024). This is defined through a generalized linear mixed model (GLMM) for a 𝑇 × 𝐽 matrix 110 

𝑌, where 𝑦௧௝ is the measurement in time 𝑡 in {1,...,T} for variable 𝑗 in {1,...,J}. This measurement 111 



 

matrix can include missing values, and DSEM estimates a 𝑇 × 𝐽 matrix of latent states 𝑋 for all 112 

modelled times and variables. The observation module for 𝑦௧௝ allows several data distributions 113 

(normal, Poisson, gamma - called families hereafter) to be used (top insert Fig. 1). 114 

For each latent state (also called random effect), the user can specify the time series structure 115 

(autoregressive process) and the causal relationship (simultaneous or lagged) with other variables. 116 

This defines 𝐾 relationships between variables encoded as coefficients in the path matrix 𝑃௞ of 117 

dimension 𝐽 × 𝐽. The lag information about each relationship is stored in a 𝑇 × 𝑇 matrix 𝐿௞. These 118 

two matrices are used to build a joint path matrix 𝑃௝௢௜௡௧ of dimension 𝑇𝐽 × 𝑇𝐽 representing 119 

relationships between all variables at all time-steps (Eq. 1): 120 

𝑃௝௢௜௡௧ = ∑ (𝐿௞ ⊗𝑃௞)
௄
௞ୀଵ ,   Eq. 1 121 

where ⊗ is the Kronecker product. 122 

Latent states are then estimated as a Gaussian Markov random field (GMRF, Rue and Held, 2005, 123 

Eq. 2): 124 

𝑣𝑒𝑐(𝑋) ∼ 𝐺𝑀𝑅𝐹(0, 𝑄௝௢௜௡௧),    Eq. 2 125 

where 𝑄௝௢௜௡௧ = ൫𝐼 − 𝑃௝௢௜௡௧
் ൯𝑉ିଵ(𝐼 − 𝑃௝௢௜௡௧) is a sparse  𝑇𝐽 × 𝑇𝐽 precision matrix constructed 126 

based on 𝑃௝௢௜௡ , 𝑉 is the sparse 𝑇𝐽 × 𝑇𝐽 matrix of exogenous variation for each variable, and the 127 

sparsity of 𝑄௝௢௜௡௧ is limited by 𝑃௝௢௜௡௧
் 𝑃௝௢௜௡௧ and 𝑉.  128 

Inference is done by maximizing the marginal log-likelihood approximated by integrating the 129 

random effects (X) out using the Laplace approximation (Skaug and Fournier, 2006), and 130 

asymptotic uncertainty is calculated using the generalized delta method as implemented in TMB 131 

(Kristensen et al., 2016). Estimated parameters (fixed effects) include time series process error 132 

variances (𝜎௝
ଶ) and correlations (𝜌௝) in 𝑉, effect sizes of the causal relationships between two 133 

variables at lag (𝛽) in 𝑃௝௢௜௡௧, and, optionally, observation errors depending upon the specified 134 

family for the GLMM. The matrix of latent states 𝑋 can naturally be projected into the future 135 

because of the lags, autocorrelation, and causal relationships 𝑋, either by augmenting 𝑋 with 136 

additional rows for future years (for short-term forecasts) and/or sampling future years from the 137 

conditional-GMRF distribution (for end-of-century projections).  138 

In addition to partial effects (𝛽), the “total effect” of each variable on every other variable accounts 139 

for the impact of direct and indirect links and can be computed by summing the product of partial 140 

effect sizes along each causal path. Because of the lags, this computation can easily get complex 141 

to do “by hand” and we instead obtain total effect by extracting them from the total effect matrix 142 

of dimension 𝑇𝐽 × 𝑇𝐽 defined as: (𝐼 − 𝑃௝௢௜௡௧)
ିଵ. 143 



 

Finally, DSEM introduced an arrow-lag notation enabling easy specification of a wide range of 144 

statistical models including structural equation models (SEMs), dynamic factor analysis (DFA, 145 

Zuur et al., 2003), autoregressive integrated moving average (ARIMA e.g., random walk, AR1, 146 

Box et al., 2016), and vector autoregression (Thorson et al., 2024). Because this flexible interface 147 

allows us to write out a variety of statistical configurations of time-variation, we adopt it as our 148 

interface for SCEAM and use it to explore and compare a range of models within the same 149 

framework as detailed below. 150 

2.2 Conceptual steps to model coupling 151 

Coupling DSEM to a population model requires the latter to have a state-space structure, which 152 

has become more common in the last years (Schaub et al., 2024). For compatibility purposes, the 153 

population model should also use TMB (either directly or through RTMB, Kristensen, 2024). We 154 

list below the general steps necessary to combine DSEM and a population dynamics model. We 155 

use the causal diagram represented on the far-right column in Fig. 1 to illustrate these steps. Further 156 

details regarding code to write can be found in Table S1.1. 157 

1. Define random effects: Add the vector 𝑃 containing variables from the population model 158 

as additional column to the matrix 𝑌 (the DSEM time series data input), where 𝑃 contains 159 

NA values representing missing values (that will later be estimated). 160 

2. Specify a structural causal model: Specify the time series structure and causal relationship 161 

between time series A, B, C, D and P through the ‘arrow interface’ (third row in Fig. 1), 162 

and the observation error type (family) for each time series. 163 

3. Combine models: Add all likelihood components to form a unique joint likelihood. As 164 

vector P has been moved to a column of 𝑌, it will be estimated through the DSEM 165 

likelihood statement (Eq. 2) so its original likelihood component from the population 166 

model can be deleted. Adapt the population model code to connect P (now estimated 167 

through DSEM as part of 𝑋) with the rest of the population dynamics, in the hindcast and 168 

forecast period. 169 

4. Information workflow: P is informed by time series of population observations as well as 170 

DSEM covariates A, B, C and D. Both data types can have missing values, which results 171 

in periods where P estimation is mostly informed by a certain data type. In the most recent 172 

years, or during the forecast period, no population observations are available, but P will be 173 

informed by previous observations of A, B, C and D because of lags and autoregressive 174 

processes. Notably, D in Fig. 1 has a forecast in the future (e.g., from an oceanographic 175 

model) which can inform P forecasts.  176 

2.3 Case study 177 

Walleye pollock recruitment in the Gulf of Alaska (Gadus chalcogrammus, hereafter “GOA 178 

pollock”) is used as a case study to illustrate the benefits of coupling DSEM to a population 179 



 

dynamics model. This stock has high recruitment variability, making it a good candidate for aiming 180 

to explain this variation through causal relationships with ecosystem variables (Monnahan et al., 181 

2023). More generally, forecasting recruitment is known to be an important, but complex and 182 

difficult task and there is a long history of developing methods to do so (Haltuch et al., 2019; Ward 183 

et al., 2024). 184 

2.3.1 Assessment model overview 185 

The stock is assessed using an age-structured population dynamics model covering the period 1970 186 

to 2023. The modelled population includes individuals from age 1 to age 10+ (i.e., a plus group, 187 

or all individuals of age 10 and older). Recruitment in year y (billions of age-1 pollock on January 188 

1st, 𝑁ଵ,௬) is modelled as an independent random effect around the mean (Eq. 3): 189 

𝑁ଵ,௬ = 𝑒௟௡(ோ)ାఌ೤  where 𝜀௬ ∼ 𝑁(0, 𝜎ோ),    Eq. 3 190 

with 𝑙𝑛൫𝑅൯ being the log of mean recruitment of the time series and 𝜎ோ the standard deviation of 191 

the recruitment process which for an iid model represents total variation in recruitment (i.e., there 192 

is no explained variation). 193 

Standard formulations are used to represent the population dynamics, mortality and fishery catch 194 

(Fournier and Archibald, 1982; Hilborn and Walters, 1992; Quinn and Deriso, 1999). The model 195 

is fitted to time series of catch biomass, survey biomass indices and age- and length-compositions 196 

from the fishery and survey (Fig. 2). Several small adjustments were made from Monnahan et al. 197 

(2023) to ease the implementation (Supplementary Information S1.1). Model parameters are 198 

estimated by maximizing the marginal log-likelihood using the Laplace approximation 199 

implementation from TMB (Kristensen et al., 2016).  200 

2.3.2 Environmental indicators of stock productivity 201 

The development of "Ecosystem and Socioeconomic Profiles” (ESPs) aims to enable the 202 

integration of a broad range of factors within the U.S. stock assessment processes to facilitate 203 

Ecosystem-Based Fisheries Management (EBFM) (Shotwell et al., 2023b). ESP is based on data 204 

from several national initiatives, scientific literature, ecosystem surveys, process studies, and 205 

laboratory analyses to generate a set of standardized indicators that capture potential drivers of the 206 

dynamics of a given stock (Shotwell et al., 2023b). The ESP consists of a suite of indicators 207 

relevant to stock processes and dynamics and is also a repository for process knowledge regarding 208 

recruitment and other important processes that may be important in a stock assessment context. A 209 

‘full’ ESP report was first conducted for GOA pollock in 2019 (Shotwell et al., 2019), and since 210 

then, yearly ‘report cards’ are produced that contain updated indicator statuses and trends 211 

(https://akesp.psmfc.org/). This process knowledge and indicator suite (fully presented in Shotwell 212 

et al. (2023a), restricted to relevant ones for the study, see Table 1) allowed us to identify a general 213 



 

conceptual model of how ecosystem processes impact recruitment (Fig. 3a). Note that this diagram 214 

is a conceptual representation of these processes among several other possible representations. 215 

2.3.3. Causal diagrams design 216 

Generating causal diagrams for a study system requires gathering knowledge and hypotheses 217 

(Grace and Irvine, 2020; Arif and MacNeil, 2023). We started this process relying on the initial 218 

conceptual model (Fig. 3a) representing interactions between pollock recruitment and ecosystem 219 

processes, and the available data to inform these processes (e.g., ESP time series). Because 220 

previous uses of DSEM relied on a limited number of variables (eight as a maximum, Thorson et 221 

al., 2024), we reduced the number of variables used in the conceptual model (Fig. 3a) by working 222 

with experts to identify the ESP time series with well-established mechanisms linked to 223 

recruitment (Table 1). Several iterations were required to identify candidate causal diagrams which 224 

performed well, a point we return to in the discussion. We developed three candidate diagrams 225 

called ‘simple’, ‘moderate’, and ‘complex’ causal diagrams (Fig. 3b) with the number of causal 226 

variables ranging from five to 10. Two differences between panel 3a and 3b are worth highlighting: 227 

(i) in the conceptual model (3a) icons represent processes evaluated for the GOA pollock stock as 228 

part of the initial ESP evaluation process which can be informed by multiples data sources, whereas 229 

in the alternative simplified models (3b) the icons represent the paired down indicator suite 230 

described in Table 1 that is highly relevant to recruitment based on expert knowledge; (ii) in the 231 

conceptual model (3a) the arrows are colored and represent hypotheses regarding the sign of the 232 

relationship, while in the alternative simplified models, no hypotheses regarding the sign is made, 233 

only the direction and lags are used as input within the modelling framework, which is why we 234 

used black arrows. 235 

2.3.4 Model implementation and alternative configurations 236 

Coupling the pollock stock assessment with the DSEM framework, resulting in SCEAM, was 237 

achieved as outlined in Section 2.2. Note that the age composition data were initially weighed 238 

using Francis methods (Francis, 2011) before coupling, but not in subsequent fits. All scripts and 239 

code used for the analysis are available online at 240 

https://github.com/jchampag/GOApollock/tree/dsem.  241 

We used SCEAM to test seven different configurations of time-variation or environmental 242 

information to explain recruitment (Fig. 3b). The simplest two involved modelling recruitment as 243 

an iid and an AR1 process. Another configuration used linear regression to estimate a slope for a 244 

covariate hypothesized to affect recruitment. For this, several physical and biological indicator 245 

time series from the ESP dataset were tested as a covariate of recruitment with a lag of one year 246 

and that leading to the lowest AIC value was chosen, as is commonly done in the regression 247 

paradigm. The fourth configuration illustrates the use of a DFA-like modelling approach, where 248 

multiple environmental time series information is reduced to fewer latent states directly affecting 249 



 

recruitment (Ward et al., 2024), which is possible via the DSEM interface. The DFA structure 250 

used the same variables as the Moderate causal diagram and pooled them in two states causally 251 

linked to recruitment with a lag of 1 or 2 years. The remaining three configurations relied on 252 

hypothesized causal diagrams to inform recruitment, with different levels of complexity (Simple, 253 

Moderate, Complex) as developed in section 2.3.3.  254 

All configurations do not link all ESP time series to recruitment; however, all ESP time series (Fig. 255 

2) were kept in all models. We will refer to time series as either “active” when they are linked to 256 

recruitment or “background” when the time series is being modelled but is not linked to 257 

recruitment. We retained background time series in the model so that all models are fit to the same 258 

set of data and AIC can be used to compare among models. However, these background time series 259 

do not affect any other portion of the model. Therefore, they could be dropped from the model 260 

without affecting estimates for other model components.   261 

ESP time series were all modelled as AR1 processes and fitted with normal families with a fixed 262 

standard deviation of 0.1 which corresponds to a CV of 10% for standardized variables; 263 

explorations of larger CVs indicated the results were insensitive to this choice. To allow 264 

comparison among the DFA and other configurations, some changes were made to the DFA 265 

configuration, which separate it from a traditional DFA: (i) variables are modelled as AR1 and not 266 

iid, (ii) the variance of variables is fixed close to 0 and not at 0, (iii) observation error of variables 267 

was chosen to be independent and identical (fixed at 0.1 as stated above). 268 

2.4. Model performance and evaluation 269 

All model configurations converged (small gradient and invertible Hessian) in less than two 270 

minutes. We used three metrics to evaluate the performance of each model configuration: 271 

1. Parsimony: While making different assumptions about how environmental and biological 272 

variables affect recruitment, all configurations are fitted to the same data (Fig. 2) so that 273 

the marginal AIC can be compared. Marginal AIC is a measure of expected predictive 274 

performance of new data;  275 

2. Exogenous variance of recruitment: we compared the unexplained recruitment variance 276 

𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ
ଶ  value (contributing to V from Eq. 2), which is a partition of the total 277 

recruitment variance 𝜎ோ,௧௢௧௔௟
ଶ , not explained by other variables in the model. Explicitly: 278 

𝜎ோ,௧௢௧௔௟
ଶ = 𝜎ோ,௘௫௣௟௔௜௡௘ௗ

ଶ + 𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ
ଶ ; 279 

3. Leave-future-out (LFO) cross-validation: the predictive forecast performance of each 280 

model configuration was assessed by conducting a retrospective experiment where we 281 

excluded all data after year T and then forecasted recruitment for year T+1. We fitted 10 282 

“retrospective peels” where the last year of data T={2022, 2021,…, 2013} and compared 283 

the recruitment forecast with the estimate arising when fitted to all data (T=2023) for the 284 

same model configuration (see Fig. S2.3 for an example). The overall predictive skill is 285 

computed as the Root Mean Standard Error (RMSE, equation in Supplementary 286 



 

Information S.2.3). We compared RMSE when peeling only 5 years of data, or 10. LFO 287 

cross-validation is a measure of expected predictive performance for a decadal projection, 288 

a projection that is critically needed for fisheries management (Tolimieri and Haltuch, 289 

2023). 290 

 291 

These three performance metrics were used to select a ‘best’ configuration for which additional 292 

results will be shown.  293 

2.5 Simulation experiment 294 

For the ‘best’ configuration based on parsimony, residual variance, and cross-validation, a self-295 

test simulation experiment was conducted to check for parameter unbiasedness. The overall idea 296 

of self-test simulation is to generate new data based on a fitted model, fit these new data with the 297 

same model configuration, and to check relative error between true and new estimated parameters 298 

values. Given that SCEAM couples two models, the procedure is more complicated and follows 299 

multiple steps: (i) generate new latent states (ESP and recruitment time series) using DSEM 300 

function dsem::simulate() to simulate ‘true’ time series for recruitment deviations and 301 

environmental and ecological variables given estimated linkages and variance parameters; (ii) 302 

simulate new assessment data conditioned on those new states; (iii) refit simulated data with its 303 

matching model; and (iv) calculate relative errors in DSEM parameters and quantities of interest 304 

such as total catch, recruitment, and stock spawning biomass. Relative error is calculated as ఏ
෡
𝑖

𝜃𝑖
− 1 305 

, where 𝜃௜ is the true value for simulated dataset i and 𝜃෠௜ is the value estimated from fitting the 306 

model to simulated data. Given the sparsity (i.e., missing data) of the ESP time series (Fig. 2), we 307 

performed two simulation experiments, one where simulated ESP time series are as sparse as real 308 

one and a second called ‘idealistic’ without missing data. 309 

3. Results 310 

3.1 Model performance 311 

The Moderate causal diagram configuration had the lowest marginal AIC by far (Fig. 3b and Table 312 

2). It was better than the two other causal diagrams with simpler (𝛥𝐴𝐼𝐶 = 12) and more complex 313 

structures (𝛥𝐴𝐼𝐶 = 13), as well as regression (𝛥𝐴𝐼𝐶 = 22), iid (𝛥𝐴𝐼𝐶 = 35), AR1 (𝛥𝐴𝐼𝐶 = 31) 314 

and DFA (𝛥𝐴𝐼𝐶 = 58). It also had the lowest value for recruitment standard deviation 315 

(𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ, Table 2). This corresponds to a 69% reduction in unexplained recruitment 316 

variation between this configuration and the iid one, for example. Forecasting skill is assessed 317 

based on RMSE, indicating how well a configuration predicts one-year-ahead recruitment, with 318 

the lower the RMSE, the more accurate the prediction. Moderate and Complex causal diagrams 319 

show the best predictive skill (Table 2), with a slightly better value for the Moderate causal 320 

diagram when averaged over 10 peels.  321 



 

3.2 Preferred configuration estimates and validation 322 

The three performance indicators agreed that the Moderate causal diagram is our best 323 

configuration, and additional results will be shown for this configuration only. The signs of the 324 

estimated causal link effect sizes are consistent across the three alternative causal diagrams, but 325 

their values and p-value (from a two-sided Wald test) are not identical (Fig. 3b). This is also the 326 

case for estimated stock assessment parameters that are also close but not identical for the 327 

Moderate configuration and the iid one (Table S2.1).  328 

We compare the estimates of recruitment deviations and ESP time series for the Moderate diagram 329 

configuration with the iid one to highlight how the imputed data are affected by the causal 330 

relationships (Fig. 4). Only the eight “active” ESP time series used in the Moderate configuration 331 

are shown (out of the 10 total series). The difference in estimation mainly occurs when there is 332 

missing data: the iid configuration fills these gaps with a mean value (and an interval that covers 333 

most historical estimates), whereas the Moderate configuration predicts a value aligning with 334 

causally connected time series and ultimately recruitment (the prediction of which is also driven 335 

by the age composition data). Recruitment deviations are similar for both configurations except 336 

for the most recent years (2016 and 2022-2023) and projection period where the estimates from 337 

the Moderate configuration are slower to return to mean because of the influence of the 338 

environmental and ecosystem data included in the model.  339 

We computed the total effect of each variable on recruitment for the Moderate configuration, 340 

which allows quantification of how much a change in a variable would impact recruitment with 341 

all else held constant (Fig. 5). Because time series have an AR1 structure, a causal effect of a 342 

certain lag also has an impact at other lags, leading to total effects at lags larger than those 343 

hypothesized Fig. 3b (we only show lags {0,1,2} but they exist through 𝑇 − 1, with an exponential 344 

decay in the absolute effect with longer lags). The most influential time series are offshore YOY 345 

condition, with negative effects for both lags 1 and 2 and offshore YOY, and larvae with positive 346 

effects, particularly for lag 1. Other variables such as Adult Condition, Spring SST, Euphausiids 347 

and Wind, achieve a non-zero total effect on recruitment but with a wide uncertainty around this 348 

total effect, which prevents making strong inference regarding their effects. 349 

The self-simulation experiment was conducted with 600 repetitions. Among these, 10% did not 350 

converge (maximal gradient >0.1) and were excluded from analysis. The computation of the 351 

relative errors shows no bias in the estimation of parameters and quantities of interest for 352 

management (e.g., catch, recruitment and SSB, Fig S2.1). Another self-simulation experiment 353 

based on ‘idealistic data’ (i.e., simulated variable time series with no NAs) had a 100% 354 

convergence rate and also showed no-bias in the estimates (Fig S2.2). 355 

4. Discussion 356 



 

This study presents the first fisheries stock assessment model to incorporate a structural causal 357 

model component. We hypothesized that this causal component could help to explain variation in 358 

population productivity and improve forecasting it in the future. DSEM’s flexible interface allows 359 

us to write out a variety of statistical configurations to model time-variation in a population process 360 

and to compare them within the same modelling framework. We applied this approach to the GOA 361 

pollock stock, using it to explain recruitment variation using standard statistical approaches such 362 

as iid, AR1, linear regression with environmental covariate, DFA and three causal diagrams of 363 

varying complexity (Fig. 3b). Model configurations where recruitment was informed by a causal 364 

diagram performed better than other traditional approaches in terms of AIC, unexplained 365 

recruitment variance reduction, and leave-future-out cross-validation (Table 2). The Structural 366 

Causal Enhanced Assessment Model (SCEAM) framework offers a novel way to incorporate 367 

multiple correlated covariates and scientific expertise directly into stock assessments. By 368 

formalizing ecological hypotheses and embedding them in a flexible statistical framework, 369 

SCEAM provides a pathway for addressing key challenges in managing fish stocks under changing 370 

environmental conditions. We thus propose SCEAM as a general scientific and statistical 371 

framework for building next-generation ecosystem and climate-linked fisheries stock assessment 372 

models and progressing toward EBFM. 373 

4.1 Technical challenges of SCEAM 374 

Despite its promise, SCEAM introduces several new challenges in addition to the usual stock 375 

assessment caveats (Maunder and Piner, 2015). First, we used the DSEM framework, which 376 

currently does not support estimation of non-linear or threshold effects (Thorson et al., 2024). 377 

Such effects are common in nature (Samhouri et al., 2017), including pollock, which exhibit non-378 

linear temperature-dependent survival and growth (Laurel et al., 2016, 2018). Although extensions 379 

to DSEM to accommodate these effects are possible, they are currently incompatible with missing 380 

data and causal loops (Thorson et al., 2024). Another important limitation is related to the 381 

assumption of stationarity of the mean and variance of the autoregressive covariate processes 382 

(Szuwalski and Hollowed, 2016). While this assumption appeared reasonable in our dataset (by 383 

visual inspection; Fig. 4), it may not hold generally, for example, in systems with long-term trends 384 

or increasing variability. We recommend further simulations to test the behavior of SCEAM when 385 

assumptions of stationarity are violated (e.g., drawing upon the econometrics literature regarding 386 

co-integration models, Johansen, 1995), but for now analysts should be cautious with variables 387 

that visually appear nonstationary. Second, a common concern when relating natural resource and 388 

environmental variables is that a relationship might not hold through time (Myers, 1998; Haltuch 389 

et al., 2009; Punt et al., 2014). For example, omitted variables or shifts in system dynamics may 390 

break the assumed causal links. Although structural causal models can incorporate more variables 391 

than regression and may be more robust to such issues, we did not perform simulation testing to 392 

evaluate this in our application. 393 



 

An unexpected outcome of integrating population models with environmental covariate estimation 394 

in a state-space framework is that population data can inform environmental covariate predictions. 395 

For example, in our study, although we assume environmental and ecosystem variables inform 396 

recruitment, the age composition data also indirectly inform predictions of environmental and 397 

ecosystem variables before the start of the time series and in missing years (Fig. 4, blue line) when 398 

predictions for the iid configuration revert to the mean of the time series as AR processes do (Fig.4, 399 

red line). Note that these missing year predictions remain highly imprecise for all model 400 

configurations. Similar effects have been observed in other studies and are likely to be pronounced 401 

when indicator time series contain large data gaps, high observation error, inconsistencies with 402 

population data (Miller et al., 2018; Correa et al., 2023), or when causal pathways are weak (e.g., 403 

small effect size) or statistically unsupported. If this behavior is considered undesirable, it can be 404 

mitigated by assuming that environmental covariates are measured without error, such that there 405 

is no leverage from biological processes upon their estimated value in years with data.   406 

The coupled structure of SCEAM also increases code complexity, particularly for implementing 407 

diagnostics such as residual analysis or simulations. Integrating SCEAM into existing or future 408 

stock assessment platforms (e.g., SS3, WHAM, SAM) will require careful design and testing. 409 

Additionally, the flexibility of causal diagrams may increase the risk of overfitting, especially 410 

when relying on model selection tools such as marginal AIC. Most of the nonconverged repetitions 411 

of our self-testing analysis had 𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ going to 0, meaning that recruitment deviations are 412 

fully explained by environmental and ecosystem variables. These cases could be examples of 413 

overfitting and should be investigated more in the future by conducting leave-one-out cross-414 

validation (Yates et al., 2023), or using a recent generic approximation to conditional AIC (Zheng 415 

et al., 2024), which is designed to measure expected predictive performance for leave-one-out 416 

cross-validation designs (Thorson, 2024). Finally, our simulation testing focused on basic 417 

statistical behavior, and we recommend future work to conduct more extensive simulations to 418 

evaluate sensitivity to misspecification (in either the causal diagram or stock assessment model), 419 

violations of stationarity, observation error, and missing data.  420 

4.2 Ecological interpretation of causal diagram for our case study 421 

Our study demonstrates the benefits of including environmental and ecosystem covariates into a 422 

stock assessment model which align with recent applications (Miller et al., 2016; du Pontavice et 423 

al., 2022; Rogers et al., 2025). However environmentally-linked SSAMs usually rely on 424 

regression-based methods while SCEAM uses a causal approach. Thus, we highlight several 425 

aspects of the causal diagram interpretation that may be less familiar. In a causal diagram, a driver 426 

can influence an outcome through both direct and indirect pathways. The estimates of these direct 427 

and indirect effects can have opposite signs, potentially leading to a null total effect. However, this 428 

result would not imply the exposure variable is not important for prediction or for driving dynamics 429 

of intermediate variables. Such effects would likely be missed in a standard regression analysis. 430 

Our causal diagrams included physical drivers (wind, SST), biological indicators (pollock body 431 



 

condition, diet, prey abundance), and early observations of recruitment (larvae, offshore and 432 

nearshore YOY). However, these variables differ in interpretation. For instance, early recruitment 433 

indicators do not cause recruitment, rather they are early measurements of year-class strength. 434 

Including them allows for a more realistic representation of the system’s causal structure at 435 

different life stages, helping bridge mechanistic understanding with observed outcomes, and 436 

improving short-term projections. Notably, almost all estimated effect sizes resulted in the 437 

expected sign, consistent with the literature and process studies presented in Table 1. For instance, 438 

when adult pollock are in better condition prior to spawning, recruitment is estimated to be higher, 439 

which is consistent with hypothesized maternal effects on reproductive investment and offspring 440 

success (McBride et al., 2015). This highlights how expert-informed hypotheses can yield models 441 

that both reflect ecological understanding and perform well statistically. One exception was the 442 

negative effect of YOY condition on recruitment across all the three diagrams (Fig. 3b), which 443 

contrasted with our expectation that higher YOY body condition would improve survival to the 444 

next life stage and increase recruitment (Siddon et al., 2013). This unexpected result may point to 445 

missing causal pathways in our causal diagram, creating bias in the estimated link. But the 446 

Moderate causal diagrams fit the environmental and ecosystem time series well (Fig. 4), 447 

reinforcing its predictive strength despite some counterintuitive pathways. Together, these findings 448 

underscore the importance of distinguishing predictive performance from causal interpretation and 449 

highlight the need for further investigation into the mechanisms or model structures contributing 450 

to unexpected results. 451 

4.3 Future directions 452 

The distinction between prediction and causal inference is particularly important in structural 453 

causal modelling, where additional steps are required to validate causal claims. First, one must 454 

assess whether the implied independencies in the causal diagram are consistent with the 455 

observational data (i.e., causal diagram-data consistency; Arif and MacNeil, 2023). This can be 456 

tested using the d-separation rule to evaluate conditional independence among variables (Pearl, 457 

1988; Shipley, 2000, 2016; Thorson et al., 2025). The second step uses the backdoor criterion to 458 

identify which variables must be directly measured to allow a causal effect to be identified from a 459 

given dataset (Pearl, 2009). Applying this criterion helps avoid common statistical biases such as 460 

confounding, overcontrol and collider bias (Arif and MacNeil, 2023). If the causal diagram 461 

contains a known, but unmeasured, variable that may confound the results, one can use the front-462 

door criterion instead of the backdoor one (Pearl, 1995, 2009). Tools to perform these validation 463 

steps on time series are beginning to become available (Thorson et al., 2025) and were beyond the 464 

scope of our study. However, they are critical for moving beyond prediction toward inference 465 

about underlying mechanisms. Together, these tools provide a foundation for extending SCEAM 466 

beyond its initial application to recruitment and for increasing the complexity of modelled 467 

processes in a principled way. Building on this framework, future iterations of SCEAM could 468 

extend its scope to capture time-varying dynamics across multiple population processes such as 469 

growth and natural mortality (Fig. 1, far right). This would involve the development of specific 470 



 

causal diagrams for each process, potentially linked through shared environmental or ecological 471 

drivers (e.g., temperature or prey abundance). We are conscious of the challenges of modelling 472 

multiple time-varying population processes known as hard to estimate and sometimes 473 

correlated/confounded with each other (Punt, 2023). But we think that explicit modelling of shared 474 

drivers could account for part of this correlation in a transparent way. Other time-varying 475 

components commonly modelled in assessments such as fishery selectivity, survey catchability, 476 

and weight-at-age may also benefit from this framework, particularly where  indicators can help 477 

explain observed trends. Advancing this line of work will require sustained interdisciplinary 478 

collaboration to incorporate expert opinion and careful attention to structural assumptions. 479 

As the scope and complexity of causal modelling in stock assessments expands, realizing its full 480 

potential in practice will require institutional support and investment in modelling capacity. 481 

Broader adoption of causal analysis in stock assessments will require new workflows, tools, and 482 

training. Encouragingly, causal modelling for observational data is gaining traction in ecology, 483 

and recent reviews provide accessible entry points for the fisheries science community (e.g., Grace 484 

and Irvine, 2020; Arif et al., 2022; Arif and MacNeil, 2023; Thorson et al., 2024, 2025; Byrnes 485 

and Dee, 2025; Siegel and Dee, 2025). To guide future development and the more formal 486 

integration of causal reasoning into fisheries science, we propose a conceptual framework (Fig. 6) 487 

that outlines an idealized, iterative framework for incorporating causal analysis into ecosystem-488 

linked stock assessments. While inspired by the general principles of explanatory modelling (e.g., 489 

Grace and Irvine, 2020), this framework is tailored to the structure, constraints, and practical needs 490 

of the fishery management process. Figure 6 highlights the cyclical relationship between data 491 

collection, synthesis of existing knowledge, causal diagram development, statistical modelling, 492 

and targeted process research. Initial causal diagrams are constructed from expert knowledge and 493 

empirical evidence, implemented within the SCEAM framework, and they are used to evaluate 494 

both stock dynamics and ecosystem linkages. Model results, including those indicating weak or 495 

uncertain causal pathways, then inform the design of future ecosystem monitoring or experiments, 496 

which in turn can be used to refine causal structure. This adaptive process supports the 497 

development of models that are not only statistically robust but also mechanistically grounded and 498 

responsive to management needs. Such a framework is well aligned with the principles of EBFM 499 

(Levin et al., 2009; Link, 2010), which emphasize the importance of accounting for ecological 500 

interactions, environmental variability, and broader ecosystem drivers in the management of fish 501 

stocks. 502 

4.4 Benefits and challenges of SCEAM for management 503 

Causal diagrams are promising tools for stakeholder communication, as they have the potential to 504 

enhance transparency, support the sharing of knowledge across disciplines, and enable co-505 

construction of the linkages in ecosystems. SCEAM would also directly respond to current 506 

mandates for including ecosystem and socioeconomic considerations within the estimation of 507 

optimum yield (Magnuson-Stevens Fishery Act, 2007). However, important challenges remain in 508 



 

implementing SCEAM for advice production. A key difficulty lies in integrating changes in stock 509 

productivity into the existing science-to-management framework, which often relies on static 510 

reference points. While many agree that strong environmental linkages should be incorporated into 511 

stock assessment models (Link et al., 2021), there is less consensus on using time-varying 512 

reference points or management targets (Berger, 2019; O’Leary et al., 2020; Szuwalski et al., 513 

2023; Bessell-Browne et al., 2024). In addition, rigid management systems may struggle to 514 

accommodate dynamic processes, even as evidence grows that ecosystem-based approaches can 515 

reduce risk of collapse under increased climate variability (Holsman et al., 2020). In the near-term, 516 

time-varying parameters could inform management by reporting stock status relative to “Dynamic 517 

B0” (the spawning biomass that would have occurred without fishing to provide context for drivers 518 

of population dynamics) and to improve short-term forecasts. In the longer-term, models based on 519 

SCEAM could form the basis for the operating models used to evaluate candidate harvest control 520 

rules (whether they are static or dynamically respond to ecosystem drivers). In the near-term, 521 

robustly constructed causal diagrams (i.e., based on expert input, process studies, and model 522 

validation) not yet approved for direct use in management, could still support management advice 523 

qualitatively. For example, they could help contextualize indicator trends in syntheses or reviews 524 

that summarize environmental and ecosystem dynamics (e.g., ecosystem overview [ICES, 2024] 525 

or risk tables [Dorn and Zador, 2020)]).  526 

Regardless of their use in management, stock assessment platforms must first be built to 527 

incorporate complex, causal relationships among variables and key population processes. Our 528 

SCEAM framework provides proof of concept and demonstrates superior statistical performance 529 

than the status quo, serving as a critical first step towards progress in better managing fisheries 530 

under varying environmental conditions. 531 

  532 
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Tables 808 

Table 1: Environmental and ecosystem variables used in our modelling framework. This is a subset of the Ecosystem 809 
and Socioeconomic Profile (ESP) presented in Shotwell et al. (2023a) relevant to our work. In Shotwell et al. (2023a), 810 
each indicator is associated with a contact name. 811 
 812 

Variable 
name 

Description of data and proposed mechanism relating to recruitment 

Spring SST Spring (April-May) daily sea surface temperatures (SST) for the western and central 
(combined) GOA from the NOAA Coral Reef Watch Program 
(https://coralreefwatch.noaa.gov/). Temperature directly affects metabolic rates for pollock 
early life stages and indirectly affects pollock through ecosystem processes (Shotwell et al., 
2019). 

Wind Mean springtime (April-May) north/south surface wind strength from the National Data 
Buoy Center for site B-AMAA2 located in the NE Kodiak Archipelago 
(https://www.ndbc.noaa.gov/station_history.php?station=amaa2). Northerly surface winds 
are hypothesized to retain larvae and juveniles in areas that favor survival (Wilson and 
Laman, 2021). 

Euphausiids Summer euphausiid abundance from the Alaska Fishery Science Center (AFSC) acoustic 
survey for the Kodiak core survey area. Euphausiids are an energy-rich prey source for 
juvenile pollock (Wilson et al., 2013). 

Fall adult 
condition 

Fall body condition for adults from the pollock fishery sampled by observers. Body condition 
of adults prior to spawning may affect reproductive output and success (McBride et al., 2015). 

Larvae Spring pollock larvae catch-per-unit-of-effort (CPUE) from the EcoFOCI spring survey. 
Larval CPUE reflects reproductive output and early life stage mortality and can be an early 
indicator of year-class strength (Rogers et al., 2021). 

Offshore 
YOY 

Summer young-of-the-year (YOY) pollock catch-per-unit-of-effort (CPUE) from the 
EcoFOCI summer survey. Relative abundance of YOY pollock in pelagic habitat over the 
shelf reflects reproductive output and cumulative mortality through the first summer (Litzow 
et al., 2022). 

Nearshore 
YOY 

Summer catch-per-unit-of-effort (CPUE) of young-of-the-year (YOY) pollock from the 
AFSC beach seine survey in the Kodiak region. Relative abundance of YOY pollock in 
nearshore habitat has been associated with year-class strength (Litzow et al., 2022). 

YOY 
Condition 

Summer body condition for young-of-the-year (YOY) pollock from EcoFOCI summer 
survey. Fish with better body condition have greater energetic reserves to survive the first 
winter (Siddon et al., 2013). 

Euph Diet Proportion-by-weight of euphausiids in the diets of juvenile (age 1+) GOA pollock from 
summer bottom-trawl surveys. Increased euphausiids in juvenile diets may reflect higher 
availability of euphausiids as prey, including for YOY pollock. 

Copepod Summer large copepods from the EcoFOCI summer survey. Large copepods are an 
important prey source for YOY pollock (Wilson et al., 2013). 
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Table 2: Models results across configurations, as shown in Fig. 3b. Configurations are described in terms of numbers 815 
of parameters, value of the joint negative log-likelihood, marginal AIC, value of the recruitment standard deviation 816 
(𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ , indicating the unexplained part of recruitment variability) and RMSE. RMSE is the Root Mean Square 817 
Error of projected recruitment (in billions) one year ahead compared to estimated recruitment, computed and averaged 818 
for 5 or 10 peeled years. Skill-prediction analysis was not performed for the DFA configuration. 819 

Configuration name No. 

parameters 

-log-likelihood 𝛥𝐴𝐼𝐶 𝜎ோ,௨௡௘௫௣௟௔௜௡௘ௗ  RMSE 

5y 

RMSE 

10y 

iid 313 639 35 1.01 3.7 3.6 

AR1 314 636 31 0.94 4.1 4.3 

Regression 314 632 22 0.687 3.1 9.0 

DFA 314 649 58 0.90 -- -- 

Simple causal diagram 318 622 12 0.587 2.7 3.0 

Moderate causal 

diagram  

322 612 0 0.558 1.8 2.5 

Complex causal 

diagram  

324 617 13 0.588 1.7 2.7 
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Figure legends 821 

 822 
Figure 1. Overview of the various options (columns) to represent time-variation in a population process (P in the red 823 
square): random deviation around a mean (iid), autoregressive structure of order one (AR1), regression on 824 
environmental variables, Dynamic Factor Analysis (DFA) and causal. Each statistical structure has a graphical 825 
representation,  the number of estimated parameters, and existing software able to estimate it: Stock Synthesis (SS3, 826 
Methot and Wetzel, 2013); SAM (Nielsen and Berg, 2014), WHAM (Stock and Miller, 2021), and Structural Causal 827 
Enhanced Assessment Model (SCEAM, this study). Some options include the use of latent states (F) and/or covariates 828 
(A, B, C, D) and the top insert illustrates the variety of data types that SCEAM can handle (A-C: observations with or 829 
without NAs and observation error; D: output from a model with forecast). The arrow-lag interface row highlights the 830 
additional code needed to move from one option to another within the SCEAM framework (except for the causal 831 
column where the code adds on the code of regression not DFA, as indicated by the gray box). The estimated 832 
parameters row details the type of fixed effects: mean (𝜇), standard deviation (𝜎), correlation coefficient (𝜌), effect 833 
size (𝛽) and their number in parenthesis. 834 
  835 



 

 836 
Figure 2. Overview of data sources for the GOA pollock case study including stock assessment data and 837 
environmental and ecosystem variables used in the Ecosystem and Socioeconomic Profile (ESP). Colors indicate 838 
different data type. Circle sizes are relative to values within a row, with larger circles indicating larger catches, smaller 839 
coefficients of variation for abundance indices and ESP time series, and larger effective sample sizes for compositions 840 
(comps). YOY is young of the year, SST is sea surface temperature. 841 
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 843 



 

Figure 3: (a) Initial conceptual model summarizing ecosystem processes affecting the early life stages of GOA pollock 844 
until recruitment (age 1). Each arrow represents a causal link; for example, the relationship between two variables 845 
where a change in the exposure variable implies a change in the outcome variable being pointed to. Arrows color 846 
indicate hypothesized signs for the relationship: blue for positive, red for negative. Transparent arrows represent links 847 
for which mechanism is less established and/or known. (b) Alternative simplified models explored with SCEAM. The 848 
top left text indicates the model’s name and the difference in the marginal Akaike Information Criterion (AIC) between 849 
a given model and the model with the lowest AIC (𝛥𝐴𝐼𝐶, Table 2) is reported in the parentheses. Black arrows indicate 850 
the hypothesized causal links, with plain arrows being simultaneous links and dashed ones lagged by one year (note 851 
that the small dash arrow in the Dynamic Factor Analysis (DFA) panel is a lag of 2 years, see text). These causal 852 
hypotheses are required as a model input. Red and blue circled numbers indicate the estimated values of causal links 853 
and stars the significance of a p-value from a two-sided Wald test where * is <0.05 , ** is <0.03 and *** is <0.01. The 854 
sign of the causal relationship for circles with dashed lines is opposite from our a priori expectation. In the DFA panel, 855 
the grey circles represent latent variables. 856 
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 858 

 859 
Figure 4: Estimated values for recruitment deviations and eight covariates (a subset of the indicators used in the 860 
Moderate causal diagram) between two configurations (colors), shown as estimates (lines) and 95% confidence 861 
intervals (ribbons). The data are shown as black points and the black vertical line marks the start of the projection 862 
period. Most variables are scaled to have a mean of zero and variance of one, except Larvae, Offshore and Nearshore 863 
young of the year which are in log scale. Configuration names correspond to Fig. 3b and Table 2. 864 
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 866 

 867 
Figure 5: Total effects of the environmental variables on GOA pollock recruitment for various time lags (in year, 868 
colored by time-lag) for the selected Moderate model configuration. The total effect value accounts for the direct and 869 
indirect effects of causal links. 95% confidence intervals are shown as line range. A positive total effect indicates an 870 
increase in the covariate would lead to an increase in recruitment. 871 
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 873 
Figure 6. Representation of the ideal development of causal diagram within the stock assessment framework and 874 
associated ecosystem monitoring and process research. 875 
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Supplementary Information 877 

Supplementary Information 1: SCEAM details 878 

S1.1 Equations of the GOA pollock stock assessment model 879 

The full details of the model structure can be found in Appendix 1C of Monnahan et al. (2023). Several 880 
notable changes were made from the 2023 assessment model for this study. First, vaguely informative priors 881 
were placed on selectivity parameters to stabilize estimation in the simulation studies. Specifically, 𝑁(0, 2) 882 
priors were put on descending slope parameters in log space, 𝑁(0, 3) priors on initial inflection points, and 883 
𝑁(10, 3) on descending inflection points. Further details can be found in the online model file in the link 884 
given in the main text. Second, the age-1 and age-2 indices from the Shelikof index were removed 885 
completely from the model presented here. This was done because subsequent to the 2023 model they were 886 
deemed to have strong and unreliable impacts on estimates of recruits. This was also done in the 2024 887 
operational model (Monnahan et al., 2024). 888 
 889 

S1.2. Pseudo-code block for DSEM integration into stock assessment model 890 

Table S1.1: Pseudo-code blocks required to integrate DSEM into future stock and ecosystem models 891 
Code type Purpose Example 
Logical 
code (R) 

User creates the covariates table covering 
stock assessment + projection years 

y_tj =data.frame(P_dev= NA, A, B, C, D) 

User 
interface 
(R) 

User creates his causal structure using 
expressive arrow-lag notation 

my_sem =  “  
# time series structure 
A<->A,0, 
B->B,1, 
C<->C,0, 
D->D,1, 
P<->P,1 
 
#causal relationships 
A->P,0, 
C->B,0, 
D->B,1, 
B->P,1” 

User 
interface 
(R) 

User builds DSEM-related object through 
the dsem() function 

obj_dsem=fit_dsem(tsdata=ts(y_tj), 
family=rep(‘fixed’, ncol(y_tj)), 
run_model=FALSE, 
use_REML=FALSE, 
  sem =my_sem) 

Logical 
code (R) 

User constructs data objects for coupled 
model 

data = c(input_assess$data, 
obj_dsem$tmb_inputs$dat) 
pars= c(input_assess$pars, 
obj_dsem$tmb_inputs$parameters) 
map= c(input_assess$map, 
obj_dsem$tmb_inputs$map) 



 

Logical 
code (R) 

User specifies parameters to be estimated or 
pre-specified 

pars$sigmaP <- NULL 
pars$meanP <- NULL 

Statistical 
code 
(TMB) 

User combines DSEM and assessment TMB 
code and defines new parameters to be 
estimated 

vector<Type> P_dev=x_tj.col(0); 
 
 

Statistical 
code 
(TMB) 

Model calculates joint negative log-
likelihood for causal variables given GMRF 

jnll_dsem -= loglik_tj.sum() 
jnll_dsem += GMRF(Q_kk)( x_tj - 
xhat_tj - delta_k ); 

Statistical 
code 
(TMB) 

Model calculates log-likelihood for 
assessment (loglik elements depending on 
model structure) and creates a global 
objective function to be optimized by 
combining assessment and dsem likelihood. 

objfun = -sum(loglik) + jnll_dsem; 
 

Supplementary information 2: Additional model results and validation 892 

S2.1 Model results 893 

Table S2.1 Estimated fixed effect and standard error (SE) for assessment parameters for the Moderate causal diagram 894 
contrasted with the iid configuration results. 895 



 

 896 

 897 



 

S2.2 Self-test simulations 898 

 899 
Figure S2.1: Self-test simulation results for the Moderate model configuration (600 simulations with NA in the input 900 
data). Top panel is relative error on DSEM and mean log recruitment parameters, bottom panel on the assessment 901 
quantities.  902 
 903 

The ESP time series used as input in our model contained a lot of missing values which can make 904 

convergence difficult to reach. To evaluate if it was happening, we also tested a self-test simulation 905 

design where the simulated ESP time series have no NAs. We refer to this as an ‘idealistic” case 906 

and perform identical analysis of self-test results. For this idealistic case, 100% of the repetition 907 

converged and parameters and quantities show no bias (Fig. S2.2). 908 
 909 



 

 910 
 911 
Figure S2.2: self-test simulation results for the Moderate model configuration (600 simulations with no NA 912 
in the input ESP time series - idealistic case). Top panel is relative error on DSEM and mean log recruitment 913 
parameters, bottom panel on the assessment quantities.  914 
 915 

S2.3 Predictive skill-testing 916 

Predictive skill testing is described in section 2.4. The Root Mean Square Error (RMSE) of recruitment was 917 
computed as follows (equation S2.1): 918 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑇
෍(𝑁෡ଵ,௧ାଵ − 𝑁ଵ,௧ାଵ)ଶ
்

௧ୀଵ

 919 

where 𝑁෡ଵ,௧ାଵ is the recruitment forecast in year 𝑡 + 1 with a model peeled to year 𝑡 and 𝑁ଵ,௧ାଵ the 920 

recruitment forecast in year 𝑡 + 1 with a complete model (no peeled data). 921 



 

 922 
Figure S2.3: Illustration of the predictive skill-testing. For each peel (color) model predictions (lines) are compared to 923 
recruitment estimated by the complete model (i.e., model with no peeled data, black points). Ribbons indicate the 95% 924 
confidence intervals. 925 
 926 
 927 


