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Abstract1

Density dependence is a core principle in ecological and evolutionary theory, and yet the precise2

nature of the relationship between per capita growth and population size continues to ignite debate.3

While sublinear (convex/decelerating) density dependence is frequently observed in empirical studies,4

standard techniques for estimating density dependence are prone to unreliable inference. At the same5

time, the putative ubiquity of sublinearity in nature is at odds with the predictions of mechanistic6

models of resource competition. We used a continuous-culture approach, which bypasses the7

inferential challenges hindering conventional methods, in order to investigate the shape of density8

dependence in Escherichia coli. In agreement with the predictions of a model of resource competition9

empirically parameterised from independent growth assays, we found strong evidence for superlinear10

(concave/accelerating) density dependence. Despite the simplicity of our experimental system, we11

hypothesise that the evidence for sublinearity as a widespread phenomenon is less robust than widely12

assumed. Resolving this debate has significant implications for our fundamental understanding of13

ecosystem stability and the development of reliable models informing conservation and resource14

management.15
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Introduction16

Density-dependent population growth is a fundamental principle in ecology and evolution, shaping17

both the generation and maintenance of biodiversity. For over a century, scientists have used18

phenomenological models of density dependence to help understand, predict, and manage populations19

of animals, plants, and microbes [1, 2]. The classic example is the logistic model, where per capita20

growth rate declines linearly with density. Few organisms, however, exhibit strictly linear density21

dependence. One pattern that is generally believed to predominate in nature is so-called ‘sublinear’22

(i.e., decelerating) density dependence [2, 3], where per capita growth rate declines most rapidly at23

low densities. It is less widely appreciated that pure sublinearity runs counter to the predictions of24

mechanistic models of competition, which typically generate superlinear (i.e., accelerating) or more25

complex patterns of density dependence [4–6]. The extent to which this tension reflects a flaw in26

the theory or the data remains unclear.27

A central empirical challenge in estimating the shape of density dependence is that in most systems28

it is impractical to hold densities constant while simultaneously observing resulting growth rates29

[4]. Exclusively studying organisms with discrete growth dynamics offers a partial solution, but the30

potential for decoupled effects of density on growth rate (e.g., due to delayed resource depletion)31

remains a problem [4, 7]. Both experiments and observational time-series are also plagued by32

statistical issues, with sublinearity potentially emerging as an artefact of regressing a noisy variable33

upon itself [8]. Sparse sampling can introduce a comparable bias [8], while inference from natural34

systems may also be compromised by the confounding effect of interspecific interactions [2]. Taken35

together, these empirical limitations cast doubt on the reliability of conventional methods for36

investigating density dependence.37

To circumvent these problems, Abrams [4] proposed an alternative experimental approach that38

reverses the logic of traditional tests of density-dependence; instead of measuring per-capita growth39

rate over experimentally manipulated densities, the hypothetical experimenter manipulates harvest40

rates in order to observe their impact on equilibrium density (Fig. 1A) [4]. In a continuously41

harvested population, per capita growth rate is equal to the harvest rate at equilibrium, and42

therefore equilibrium density can be treated as a function of growth rather than the other way43

around [4, 7]. Inverting this function returns the familiar curve describing growth rate as a function44

of density, hence we term this technique ‘growth-density inversion’. While Abrams recognised the45

impracticalities of implementing this approach in most natural systems, he employed the same logic46

to deduce the emergent shape of density dependence arising from classical consumer-resource models47

[4, 9]. Given saturating growth functions, consumer-resource models point to a greater prevalence48

of superlinear density dependence than the empirical data would suggest [4–6].49

Building upon Abrams’ insights, we used growth-density inversion to generate analytical predictions50

for the shape of density dependence in the model bacteria Escherichia coli via an empirically51
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parametrised consumer-resource model. We then implemented the technique experimentally, using a52

continuous-culture system to measure equilibrium densities under different dilution (i.e., harvesting)53

rates. This two-pronged approach combines the mechanistic insight afforded by a model-based54

prediction, with a fully empirical test of density dependence that bypasses the statistical and55

experimental artifacts of traditional methods.56

Results & Discussion57

We used 143 independent growth assays for E. coli strain MG1655 across a range of initial glucose58

concentrations to parameterise a consumer-resource model assuming Monod growth dynamics59

(Fig. 1B). Solving the model for equilibrium density now assuming a range of continuous dilution60

(i.e., harvesting) rates predicted an acutely superlinear density-dependent function for E. coli (inset61

in Fig. 1B). To test this prediction, we then ran a series of independent chemostat experiments,62

growing replicate lines under equivalent dilution rates to those investigated analytically (until they63

established a stable equilibrium). Next, to quantify the strength and shape of density dependence,64

we fitted an inverse θ-logistic model to equilibrium density as a function of dilution rate, where θ<1,65

θ>1 and θ=1 corresponds to sublinear, superlinear and linear density dependence, respectively (see66

Methods and Supplementary Information for further methodological details). The experimental67

results aligned with the predictions of the consumer-resource model. More specifically, we found68

compelling evidence for superlinear density dependence, with θ = 4.39 (95% credible intervals:69

2.14-7.76) (Fig. 1C).70

The role of the consumer’s functional response in determining the shape of emergent density71

dependence is conspicuous in Fig. 1B. Abrams’ principle of “inheritance of the curvature” posits72

that a consumer’s density dependence will also be influenced by the shape of density dependence73

of the resource [4, 9]. In contrast to systems where resources grow logistically or enter in periodic74

pulses, continuous resource supply represents one of the few theoretical conditions under which75

regions of sublinear density dependence may arise [4–6]. In our experimental system, however,76

adjusting chemostat dilution rate, and therefore harvest rate, also meant changing the resource77

supply rate, a consequence of which is that the independent effect of the resource supply dynamic78

on the emergent shape of density dependence is cancelled out. We therefore also investigated the79

predictions of the empirically parameterised model under three alternative resource supply regimes80

(continuous, pulsed, and logistic) and three baseline mortality rates (25%, 50%, and 75% of the81

maximum growth rate). Under pulsed and logistic supply, the model predicts exclusively superlinear82

density dependence (centre and right columns in Fig. 2). Under continuous resource supply, the83

model predicts a switch from superlinearity to sublinearity as density increases (left column in84

Fig. 2), with the latter region only being conspicuous at low mortality rates.85

The predicted absence of sublinearity at low densities (under any combination of resource dynamic86

and mortality) stands in contrast with a large body of theoretical and empirical research whose87
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conclusions derive from models characterised by sublinear density dependence. In a recent study [2],88

sublinearity at low density was a crucial factor fostering a presumptive positive relationship between89

diversity and stability [10]. Our findings are also at odds with the assumptions of sublinearity that90

underpin many population models that inform conservation and resource management decisions91

[11, 12]. It may be tempting to attribute this disconnect to the ecological simplicity of our bacterial92

study system or as a phenomenon that is more broadly unique to microbes. Indeed, a recent analysis93

of diverse microbial time-series (employing a novel statistical approach) also found no evidence for94

sublinear growth [13]. Nevertheless, we are unaware of any arguments from first principles why95

increasing organismal or system complexity should drive a universal switch from superlinearity to96

sublinearity. On the contrary, given the prevalence of saturating functional responses across diverse97

organisms [14], a reasonable prediction deriving from the principle of inheritance of the curvature98

[4] is that density dependence will only become increasingly superlinear with each jump in trophic99

level.100

To our knowledge, this is the first study to directly compare predictions from empirically parame-101

terised consumer-resource models with independent experimental observations of density dependence.102

The qualitative alignment we observe between model-predicted and experimentally observed density103

dependence (Figs. 1B & 1C insets, respectively) makes a compelling case for the explanatory power104

of even simple consumer-resource models, particularly given that the model was parameterised using105

independent batch culture data. That being said, the higher maximum growth rate observed under106

continuous culture conditions (y-intercept in Fig. 1C inset) suggests a potential plastic shift to a107

faster-growing phenotype at high dilution rates. Nevertheless, even without phenotypic plasticity,108

the θ-logistic model is not usually flexible enough to capture the density-dependence that emerges109

from most consumer-resource models [4]. In natural systems, where a species’ density dependence110

may be influenced by many biological processes (e.g., dispersal, species interactions), more flexible111

phenomenological models of density dependence that allow for contiguous sublinear and superlinear112

regions (e.g., the basic-Savageau model [15]) may be required to accurately describe population113

dynamics.114

Conclusion115

In this study, we found strong evidence for superlinear density dependence that aligns with predictions116

from mechanistic theory, predictions that are general and taxonomically agnostic. When considered117

alongside the serious, yet widely ignored, biases introduced by conventional methods for estimating118

density dependence, we contend that the evidence supporting sublinear density dependence as119

a universal phenomenon may be far less robust than commonly assumed. Resolving this debate120

carries potentially significant implications, not only for our fundamental understanding of ecosystem121

stability and the maintenance of biodiversity, but also for the development of reliable population122

models that inform conservation and resource management strategies.123
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Methods124

We used 143 independent batch-culture growth assays of the model bacteria Escherichia coli125

(MG1655) to parameterize a consumer-resource model, and then used those parameters to predict126

the shape of density dependence for E. coli in continuous culture. We then empirically tested this127

prediction by growing E. coli populations in 30mL chemostats supplied with 0.05% glucose M9128

media. Dilution rates were manipulated, and samples were taken daily until populations reached129

equilibrium. The shape of density dependence was quantified by fitting an inverse θ-logistic model130

to the experimental data using (i) a grid-based Bayesian approach, which prevented predictions of131

negative densities (Fig. 1B) and (ii) a Bayesian model implemented in Stan via the brms R package,132

which used MCMC and constrained the estimated maximum growth rate to be greater than the133

highest observed growth rate (reported in the SI). The parameterized consumer-resource model134

was then used to predict the shape of density dependence under continuous, pulsed, and logistic135

resource supply regimes across three baseline mortality rates. Further details of the experiments136

and analyses are in the Supporting Information.137
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Figure 1: (A) Schematic of the experimental approach where the classic density dependence
perspective (blue) is inverted (green) to overcome the challenges of manipulating densities. We
varied the dilution rate of chemostats and quantified densities at equilibrium (when growth rate
is equal to dilution rate) to study the shape of density dependence. (B) Parameterized Monod
growth function with 100 posterior draws representing uncertainty. Inset shows the analytical
prediction for the density dependence of this parameterized consumer–resource model. (C)
Inverse θ-logistic model fitted to the experimental data with 95% credible intervals. Inset shows
the same data and model with axes inverted to give the classic density dependence perspective.
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Figure 2: Predicted density dependence across three resource supply regimes (columns) and
three baseline mortality rates (rows). Thick lines show predictions using median parameter
estimates and thin lines are 100 posterior draws representing uncertainty.
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S1 Modelling resource-dependent consumer growth

S1.1 Batch culture data

Growth curves were obtained for E. coli strain MG1655 across a range of initial glucose
concentrations. For each replicate, an overnight culture was grown at 37 °C in M9 media
supplemented with 0.05% glucose for 18 hours. 1mL of culture was then pelleted and
resuspended in 200uL M9 0% glucose in order to remove any residual glucose. 2µL of this
resuspension was subsequently inoculated into 178µL of M9 with ten different glucose
concentrations ranging from 0-0.01% glucose in a 96-well plate maintained at 37 °C.
Optical density measurements were made every minute in a Epoch 2 plate reader over 24
hours. Owing to the appearance of two distinct growth phases (likely attributable to a
diauxic shift from the primary glucose substrate to a carbon intermediate), we truncated
the growth curve to only include the first, glucose limiting phase of growth. Each glucose
concentration was replicated 15 times for a total of 150 individual assays (seven were
subsequently excluded due to contamination or irregular OD measurements).

S1.2 Model formulation and parameterization

Based on the prevailing literature, we assumed that E. coli in batch culture should show
resource-dependent growth that follows a Monod or Michaelis–Menten relationship (i.e.,
growth rate saturates at high resource concentrations) [1]:

dN

dt
=

µmax R

kS +R
N , (S1)

where N is the consumer biomass density, R is the resource concentration, µmax is the
maximum growth rate and, and kS is the half-saturation constant. In parallel to the
equation for consumer growth, there is a corresponding equation for resource depletion
given by

dR

dt
= −1

υ

µmax R

kS +R
N , (S2)

where υ is the yield of consumer density produced per one unit of resource concentration
taken up.

Upon noting that the quantity K(t) = N(t) + υR(t) is actually constant for all times
because dK

dt
= dN

dt
+ υ dR

dt
≡ 0 given both Eq. S1 & S2, it is possible to use a “conservation

approach” to describe the consumer dynamics [2]. This allows us to eliminate R from
Eq. S1 to give

dN

dt
=

µmax (K −N)

υ kS +K −N
N . (S3)

This conversation approach further implies that K ≡ N0 + νR0, where N0 is the initial
consumer biomass density and R0 is the initial resource concentration. The full set of
parameters needed to predict growth dynamics is {N0, R0, µmax, kS, υ}.

Since the initial inoculum densities deriving for each of the 15 overnight cultures potentially
varied between themselves, we treated each of these 15 values as additional unknowns
when fitting the model to the observed data [3]. Optical density measurements are also
subject to variation due directly to the M9 growth media. To account for this as well
as non-independence across observations, we allow the OD due to growth media to vary
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randomly across 96-well plates and across wells nested within plates using a hierarchical
model. We furthermore assumed that the total optical density in a well was the sum of
the optical density due to the growth media and the optical density due to the consumer
biomass.

We estimated the model parameters via Bayesian inference using the sample() method
from the cmdstanr package v0.9.0 [4] in R v4.5.1 [5]. We sampled over four chains with
1000 warmup and 1000 post-warmup Hamiltonian Monte Carlo iterations, resulting in a
total of 4000 posterior samples. To promote chain convergence, we set the max treedepth

parameter to 20 and the adapt delta parameter to 0.999. We solved the initial-value
problem using the ode rk45() method in Stan [6]. All unknown parameters were con-
strained to be positive in order to keep the model biologically sensible. The full Bayesian
description of our model including prior distributions is

ODpwt ∼ Lognormal (lnλpwt, σOD) (S4)

λpwt = Npwt + bpw (S5)

Npwt = ode rk45 (N0,p, t,Kpw, µmax, kS, υ) (S6)

Kpw = N0,p + υR0,pw (S7)

ln bpw = βpw (S8)

{lnN0,1, . . . , lnN0,15} ∼ Normal(0, 1) (S9)

{lnµmax, ln kS, ln υ} ∼ Uniform(−∞,∞) (S10)

β0 ∼ Uniform(−∞,∞) (S11)

βp ∼ Normal(β0, σp) (S12)

βpw ∼ Normal(βp, σw) (S13)

{σOD, σp, σw} ∼ Student-t(3, 0, 2.5) (S14)

where for convenience we have introduced the subscript p to denote the 96-well plate,
the subscript w to denote the well in that plate, and the subscript t to denote the time
elapsed at the moment of estimating optical density.

S1.3 Prediction of density dependence

We then used the parameterized consumer-resource model to predict the shape of density
dependence in our experiment. Though the parameters were inferred from batch culture,
we can also use those same parameters to predict consumer behaviour in other contexts.
We started from a consumer-resource model for one resource (glucose) and one consumer
(E. coli) with Monod growth and chemostat resource supply:

dN

dt
= N

(
µmaxR

kS +R
−m

)
dR

dt
= d(S −R)− µmaxR

kS +R
QN

(S15)

where N is the consumer density, R is the resource concentration, µmax is the maximum
growth rate, kS is the half saturation constant, m is the mortality rate, d is the dilution
rate, S is concentration of glucose in the supply, and Q is the quota (i.e., resources per
consumer), which is the inverse of the yield parameter used above.
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We had empirical estimates for µmax, kS, and Q (see above), and we knew the value of
S in our system. Following Abrams [7, 8], we could therefore analytically predict the
relationship between per capita growth rate and equilibrium density:

N∗ =
d

µmaxQ

[
µmaxS

m
− mkS

µmax −m
− kS

]
(S16)

To predict the density dependence observed in our experiment, we inserted median
parameter estimates (and posterior draws for uncertainty) into Eq. S16 and we set m = d
(assuming washout was the dominant source of loss).

S2 Growth-density inversion

Traditional tests of density dependence, where species densities are manipulated (often to
unrealistic levels) and resulting growth rates are quantified, suffer from time delay issues
[7, 9]. Specifically, delayed effects of density on growth rate distorts the shape of density
dependence and keeping densities fixed is impossible for many systems. Given these
challenges, an alternative test of density dependence was proposed by Peter Abrams [7, 8].
This intuitive approach, which we call “growth-density inversion”, reverses the logic of
traditional tests of density-dependence by manipulating per capita growth and quantifying
resulting densities. In practice, this entails varying harvest rate and quantifying densities
once equilibrium is reached (when harvest is equal to growth).

Here, we studied the density dependence of Escherichia coli by manipulating the dilution
rate of chemostats and quantifying bacterial population density at equilibrium (when
growth rate equals dilution rate). Bacterial populations growing in chemostats is an
ideal first empirical application of the growth-density inversion approach as steady state
equilibria are reached (cycling population dynamics would complicate the analysis), and the
short generation time of microbes facilitates observation of population density responses
to changes in per capita growth rates.

In Abrams’ analytical work, density dependence is studied by varying “neutral parameters”,
which only directly impact a focal species [8]. However, experimentally manipulating
a “neutral parameter” of the bacteria in a chemostat system, such as harvest rate, is a
technical challenge. While dilution rate is not a “neutral parameter”, in the sense that it
directly impacts both the bacteria and the resources, it offers a feasible way to manipulate
bacteria harvest rate, and we can analytically control for the effect it has on resource
dynamics. A consumer’s density dependence is influenced by the shape of its functional
response and by the density dependence of the resource it consumes [7, 10, 11, 12]. By
manipulating dilution rate we effectively observed how the bacteria’s functional response
shapes their density dependence independently of resource dynamics.

S3 Experimental procedure

Five experimental replicates were performed using a “Chi.Bio” chemostat system comprised
of eight 30mL reactors connected to a series of peristaltic pumps. The reactors were held
at constant temperature with continuous stirring and measurement of optical density
measurement (600nm) at 1-minute intervals. In each run of the experiment, we tested
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six different dilution rates (that varied across experimental replicates), in addition to
one methodological control (E. coli grown at the same dilution rate across experimental
replicates) and one biological control (sterile media).

The day before an experimental replicate, the reactors, tubing, and media bottles of
the chemostat system were autoclaved, 0.05% glucose M9 media was prepared, and an
overnight culture of E. coli was set up at 37 °C shaking at 180 rpm. Once the overnight
culture had grown for 18 hours, reactors with 20mL media were inoculated with 1mL
of the overnight culture (or 100µL in the first two experimental replicates). All reactors
were set to the same temperature (37 °C), stirring rate, and outflow rate. The inflow rates
of the reactors varied in order to experimentally manipulated dilution rate (and therefore
bacteria harvest rate). When the inflow pumps ran, fresh media entered the reactors and
raised the level of the liquid above the outflow port. After several minutes of stirring, the
outflow pumps ran until the level of the liquid in all reactors returned to the level of the
outflow port. The inflow and outflow pumps ran every 20 minutes at fixed dilution rates
that varied depending on inflow rates.

The chemostats were sampled each day for up to four days and the experiments ran
until the populations were inferred to have reached equilibrium (based on the live optical
density read-out). The higher the dilution rate, the longer it took the populations to
reach equilibrium. For sampling, 0.5ml of liquid was collected from the outflow ports of
the reactors using syringes. 200µL of this was used to obtain higher precision optical
density readings with a plate reader and 100µL was diluted and then plated onto LB agar
for colony counting.

S3.1 Calculating dilution rates

In classic chemostat theory, the dilution rate is defined as the volume of fresh media
supplied per unit time divided by the volume of the culture. This assumes continuous flow,
with instantaneous inflow and outflow, such that the volume of the culture is constant.
In practice, however, chemostat systems often have discrete pulses of inflow and outflow,
resulting in transient variation in culture volume. In our system, fresh media was added
every 20 minutes and there was approximately two minutes intentionally left between
inflows and outflows to allow for thorough mixing.

To calculate a continuous dilution rate in our system with discrete pulses we calculated
the exponential decay rate that would have produced the same net dilution over a full
inflow-outflow cycle. A single inflow pulse dilutes the population as follow:

N1 = N0 ·
V0

V0 + Vin

(S17)

where V0 is the baseline culture volume (21mL) and Vin is the inflow volume (equal to
the outflow volume, which we measured daily). We can then match this discrete dilution
factor to a continuous exponential decay model over a full cycle:

N0 ·
V0

V0 + Vin

= N0 · e−dτ (S18)

where τ is the length of the inflow-outflow cycle (20 minutes) and d is the dilution rate.
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After rearranging we have:

d =
log(V0+Vin

V0
)

τ
(S19)

This allowed us to obtain a dilution rate that we could use for continuous-time modelling
that reflected the effects of the discrete inflow and outflow pulses in our system.

S3.2 Determining when populations were at equilibrium

Although samples were taken every day, only samples taken when populations were at
equilibrium were used to estimate the shape of density dependence. Three biological
phenomena needed to be considered when determining if a population had reached
equilibrium: 1) populations under higher dilution rates took longer to reach equilibrium;
2) populations under the lowest dilution rates exhibited overshooting dynamics where
density initially exceeded their equilibrium density before settling back down; 3) there
was a risk of adaptive evolution to the different dilution rates through the course of the
experiment.

Based on these factors, we used simple heuristics to determine when populations were
at equilibrium. For the lowest dilution rates, samples taken on day four were considered
at equilibrium to account for the overshooting dynamics (this was in line with previous
work with this system). For the intermediate dilution rates, samples taken on days one
and two were considered at equilibrium as there was no overshooting dynamics but there
was a risk of evolution to experimental conditions (as evidenced by jumps in OD after a
period of stabilisation). For the highest dilution rates, samples taken on days three and
four were considered at equilibrium as populations were still increasing on days one and
two. No samples taken after day four were used due to the increased risk of evolutionary
change. All dilution rates below 0.1 mL/hour/mL were treated as “low” dilution rates;
optical density always decreased from day one to day four in these populations (overshoot).
All dilution rates above 0.65 mL/hour/mL were treated as “high” dilution rates; optical
density always increased from day one to days three/four in these populations. Dilution
rates between 0.1 and 0.65 mL/hour/mL were treated as “intermediate” dilution rates;
populations reached equilibrium by day one according to the “Chi.Bio” timeseries.

Five experimental replicates each with eight reactors gave us forty individual reactors.
After removing the biological controls (no bacteria present), a reactor whose pump failed,
and reactors that were not sampled on the days when their populations were considered
at equilibrium, we were left with 31 reactors that had at least one sample taken when
populations were at equilibrium. 15 reactors had two samples taken (on two separate days)
when populations were at equilibrium, giving 46 observations in total. For these 15 reactors,
we took the average optical densities of the two samples taken. As demonstrated in the
R notebooks at https://github.com/jamesaorr/chemo-dd, our results are insensitive
to these data processing choices. Indeed, broadly ignoring the heuristics (e.g., by only
considering samples from days three or four), changing the cutoff for what was considered
“low”, “intermediate”, or “high” dilution rates, or using the first or last equilibrium sample
rather than the average, all return data showing superlinear density dependence.
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S4 Estimating the shape of observed density depen-

dence

The θ-logistic model is the canonical model for describing the shape of density dependence
in ecology [13, 8, 14]. It extends the logistic model by including an additional parameter
to control the non-linearity of the relationship between per capita growth and density:

g = r

(
1−

(
N

K

)θ
)

(S20)

where g = 1
N

dN
dt

is the per capita growth, N is the population density, r is the maximum
(intrinsic) growth rate, K is the carrying capacity, and θ controls the shape of density
dependence. When θ > 1, density dependence is superlinear; when θ < 1, it is sublinear;
and θ = 1 recovers the classic logistic model. For our “Growth-Density Inversion”
experimental approach, per capita growth (dilution rate) was our explanatory variable,
and density was our response variable. We therefore fit an inverse θ-logistic model to our
data [7], which explained equilibrium density as a function of per capita growth:

N∗ = K
(
1− g

r

) 1
θ

(S21)

We first used the brms R package [15] to fit the inverse θ-logistic model (Eq. S21) to our
data with a Gamma distribution and an identity link function since equilibrium densities
cannot be negative. Broad but biologically plausible priors were chosen for r (uniform
distribution between 0.6 and 1.1) and K (uniform distribution between 0.15 and 0.25)
based on growth rates and densities previously observed in this system. We set very loose
priors for θ (uniform distribution between -1 and 10) ranging from highly sublinear to
highly superlinear as this was the key parameter we were interested in estimating from
the data.

The posterior estimates of this model were: K = 0.20 (95% credible interval: 0.17 to
0.23), r = 0.93 (0.90 to 0.99), and θ = 1.94 (1.35 to 2.68), indicating superlinear density
dependence. Although the posterior predictive checks were reasonably good, the posterior
distribution of r was bounded and negatively correlated with θ. As seen in Eq. S21, the
model becomes undefined when the maximum growth rate (r) is less than the largest
observed dilution rate (g). Thus, the model cannot explore the region of parameter space
where r < g. Incorporating measurement error in g, log-transforming the model, or
reparametrizing the model could not resolve this boundary issue.

To overcome this limitation in the fitting of the model, we reverted to a grid-based
Bayesian approach that was feasible given the low dimensionality of our model. We
slightly modified Eq. S21 by bounding the function at N∗ = 0 when g ≥ r:

N∗ = K
(
max

{
0, 1− g

r

}) 1
θ

(S22)

This equation gives the globally stable equilibrium population size, which is given by
Eq. S21 for r > g and zero otherwise. Thus, Eq. S22 ensured that the model was
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well-defined over the full parameter space, including where g ≥ r. A large grid was used
with all combinations of 50 values of K, 50 values of θ, 50 values of r, and 20 values of
the standard deviation of the residual errors. The number of values for each parameter
included in the grid was chosen to obtain relatively smooth posterior distributions for each
parameter. The posterior probability of each combination of these parameters (n = 2.5
million) was calculated by combining the likelihood and the priors (same priors as the
brms approach above). Randomly drawing combinations of parameters from the grid
weighted by their posterior probability allowed us to obtain posterior draws and posterior
predictive distributions.

The posterior estimates obtained from this grid-based Bayesian approach were: K = 0.17
(95% credible interval: 0.16 to 0.19), r = 0.80 (0.77 to 0.93), and θ = 4.39 (2.14 to 7.76),
again indicating superlinear density dependence. There was some evidence of bimodality
in the posteriors of r and θ, reinforcing the idea that the θ-logistic model is often not
flexible enough to capture the true shape of density dependence, even for monotonic
relationships. Irrespective of the data processing and modelling approaches used (see
R notebooks at https://github.com/jamesaorr/chemo-dd), there was no qualitative
change in the result; our experimental data showed superlinear density dependence.

S5 Density-dependence predictions for other resource

dynamics

We used the parametrized Monod function (see S1) to predict the shape of density
dependence in resource supply regimes that weren’t tested in our continuous-culture
experiment. Median parameter estimates were used to make the predictions with posterior
draws used to represent uncertainty.

To predict the shape of density dependence under chemostat resource supply (where
harvest of bacteria is separated from resource dynamics), we parametrized Eq. S16 and
examined how N∗ changed in response to varying harvest rate (m, a “neutral parameter”),
while keeping dilution rate (d) fixed.

For logistically growing resource, we started with the consumer-resource model:

dN

dt
= N

(
µmaxR

kS +R
−m

)
dR

dt
= rR

(
1− R

K

)
− µmaxR

kS +R
QN

(S23)

where r is the intrinsic rate of growth of the resource and K is the carrying capacity of
the resource, and we could again analytically predict the shape of density dependence as:

N∗ =
kSr[Kµmax − (kS +K)m]

Kq(m− µmax)2
(S24)

To obtain stable equilibria over a range of consumer mortality values in this model, a
relatively low value of K (0.0004) and a relatively high value of r (100) were used to avoid
cyclic dynamics or extinctions.
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To estimate the shape of density dependence under pulsed resource dynamics we took
a numerical approach, as Abrams’ analytical technique is best suited to systems with
fixed point equilibria. We simulated a consumer-resource system with Monod resource
uptake and introduced resources as periodic pulses (with no resource loss other than
through consumption). For each time step, we extracted per capita growth rate from the
model and plotted this against consumer density. The magnitude and the frequency of
the resource pulses has no impact on the shape of the consumer’s density dependence as
the resource itself has no density dependence (unlike logistic or continuous resources).

Finally, to illustrate the importance of baseline mortality rates in determining the shape
of density dependence, we plotted the observed density dependence for each of the three
resource supply regimes under baseline mortality rates of 25%, 50%, and 75% of the
maximum growth rate.

9



References

[1] Jacques Monod. The growth of bacterial cultures. Annual Review of Microbiology,
3(1):371–394, 1949.

[2] Rui Dilao and Tiago Domingos. A general approach to the modelling of trophic
chains. Ecological Modelling, 132(3):191–202, 2000.

[3] Richard McElreath. Statistical rethinking: A Bayesian course with examples in R
and Stan. Chapman and Hall/CRC, 2018.
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