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Abstract 1 

Globally, bird and aircraft collisions are a major safety hazard and monetary expense for the 2 

aviation industry. Empirical evidence suggests that the behavioral response of the animal just 3 

prior to a collision is a critical factor in determining whether a collision occurs. However, no 4 

theoretical framework exists to predict the probability of a collision based on the escape response 5 

of the animal to an approaching vehicle. We adapted concepts from existing predator-prey 6 

theoretical frameworks to develop a novel model to quantify the outcome of an animal-vehicle 7 

interaction. Specifically, our model consists of two distinct phases. Phase one determines if a 8 

collision is even possible based on the amount of time the animal has available to clear the 9 

trajectory of the approaching vehicle. If the animal does not have enough time, then phase two of 10 

the model estimates the probability of collision based on the surface area of the vehicle given the 11 

location of the animal within the trajectory. We demonstrate the utility of the model by 12 

estimating the probability of collision between a Canada goose and an approaching Boeing-737 13 

aircraft with the absence and presence of onboard lights of different wavelength, a technological 14 

intervention aimed at minimizing bird strikes. Our model predicts that when a Canada goose is 15 

within the trajectory of a Boeing-737, the average probability of collision is approximately 0.43; 16 

however, onboard lights with wavelengths tuned to the visual system of the species can reduce 17 

that probability on average by either 19% (red-light onboard) or 32% (blue-light onboard). The 18 

highest probability of collision occurred when the animal was in the center of the trajectory of 19 

the vehicle. The behaviors with the largest effect on reducing the probability of collision were an 20 

increase in flight-initiation distance and an increase in escape speed. Our approach provides a 21 

framework to quantitatively predict how the probability of collision might change across 22 

different species, vehicles, and situations, which could be used in forecasting the impacts of 23 

present and future transportation projects on wildlife populations. 24 

 25 

  26 
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Introduction 27 

Globally, collisions between birds and aircraft pose a major safety hazard and monetary expense 28 

for the aviation industry (Allan, 2000, Altringer et al., 2021, Dolbeer et al., 2023). As air traffic 29 

is slated to increase with the proliferation of unoccupied aerial systems (i.e., UAS) (Mulero-30 

Pázmany et al., 2017, Federal Aviation Administration Aerospace Forecasts Fiscal Years 2024–31 

2044, 2024, Davies et al., 2021), the frequency of bird and aircraft collisions, hereafter bird 32 

strikes, is expected to increase. At a time when bird populations are globally declining 33 

(Rosenberg et al. 2017, Burns et al. 2021, Lees et al. 2022), mitigating bird-strikes has the 34 

potential to reduce both avian and human mortality as well as economic damage.  35 

We know from the empirical literature that animal behavioral responses to an imminent 36 

collision with an approaching vehicle are critical in determining whether a collision does (i.e., 37 

the two come into contact) or does not occur (i.e., near miss), hereafter referred to as the  38 

probability of collision (DeVault et al., 2015, Blackwell et al., 2019, Brieger et al., 2022). 39 

Mathematical models exist to predict whether a prey animal can escape an approaching predator 40 

based on properties of their escape response (Dill 1974, Domenici, 2002, Broom & Ruxton, 41 

2005, Corcoran & Conner, 2016, Ruxton et al., 2018, Kawabata, et al., 2023, Bartashevich et al., 42 

2024). However, these models have yet to be applied to quantify how changes in the behavioral 43 

response of an animal affect the probability of colliding with an approaching vehicle (DeVault et 44 

al. 2015, Guenin et al. 2024). Herein, we build upon existing models of predator-prey 45 

interactions to propose a novel model to estimate the probability of collision when an animal is 46 

exposed to an approaching vehicle.  47 

Our study has three aims. First, we introduce a model that can be used to quantify the 48 

probability of collision considering variables such as escape trajectory, escape speed, vehicle size 49 
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and vehicle speed. The model also incorporates new elements such as the location of the animal 50 

within the trajectory of the vehicle, and a stochastic component based on estimates of the relative 51 

sizes of the vehicle and the animal. Second, we demonstrate the application of the probability of 52 

collision model to a scenario involving an approaching Boeing-737 aircraft and a Canada goose 53 

(Branta canadensis), a large bodied, abundant, flocking species that can cause substantial 54 

damage upon collision (Dolbeer et al. 2014, DeVault et al., 2018). We parameterized our model 55 

with empirical data found in the peer-reviewed literature of Canada goose escape responses to an 56 

approaching vehicle. Third, we then applied the model to a scenario where a Canada goose is 57 

approached by an aircraft but with onboard lights to investigate how different properties might 58 

affect the behavioral responses of Canada geese (Blackwell et al., 2012) and consequently the 59 

probability of collision.  60 

Aircraft lighting of high chromatic contrast relative to the visual system of a target 61 

species has been proposed as a method to mitigate bird and aircraft collisions, especially beyond 62 

the airport boundary where mitigation methods are difficult to implement (Dolbeer et al., 2011, 63 

Blackwell & Fernández-Juricic, 2013). Specifically, experimental evidence has shown that these 64 

onboard lights tuned to the avian visual system increase the distance a bird first detects an 65 

approaching aircraft, ultimately allowing more time for the animal to execute an escape response 66 

(Blackwell et al., 2009, Blackwell et al., 2012, Doppler et al., 2015). Additional evidence 67 

suggests that lights might also facilitate a more effective escape response by promoting 68 

avoidance responses (Goller et al., 2018, Lunn et al., 2023). However, to date no quantitative 69 

estimates have been made for how changes in behavior caused by lights might reduce the 70 

probability of collision between a bird and an aircraft. 71 

 72 
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Probability of collision model overview 73 

Our model for the probability of collision has two distinct phases. Phase one calculates whether 74 

the animal has enough time to escape the trajectory of the approaching vehicle (Table 1). If the 75 

animal has enough time to escape the trajectory of the vehicle, then a collision is avoided. 76 

However, if the animal does not have enough time, then the vehicle overtakes the animal and 77 

therefore a collision is possible. Phase one assumes that the animal is within or near the 78 

trajectory of the vehicle and therefore a collision is possible, and that the trajectory of the vehicle 79 

is fixed (Table 2, Assumptions 1 & 2). Phase two assigns the animal some probability of 80 

collision depending on the location of the animal within the trajectory of the vehicle.  81 

 82 

Phase one 83 

Phase one rearranges the classic formula for speed (i.e., 𝑆𝑝𝑒𝑒𝑑 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
) and 84 

incorporates additional parameters to determine whether a collision is possible. Functionally, in 85 

phase one we estimate the time that the animal needs to escape the trajectory of the vehicle (𝑇𝑎) 86 

and the remaining amount of time until the vehicle reaches the location of the animal after escape 87 

is initiated (𝑇𝑣)(Table 1). If the time the animal needs to escape (𝑇𝑎) is great than or equal to the 88 

amount of time remaining prior to the vehicle reaching the animal (𝑇𝑣), then the situation results 89 

in a potential collision (𝑇𝑎 ≥ 𝑇𝑣). Alternatively, if the time the animal needs to escape (𝑇𝑎) is less 90 

than the time remaining prior to the arrival of the vehicle (𝑇𝑣), then a collision is avoided (𝑇𝑎 <91 

 𝑇𝑣). The time needed to escape the trajectory of the vehicle (𝑇𝑎) depends on the distance the 92 

animal needs to travel to safety (𝐷min ), the body length of the animal (𝑙), escape speed (𝑆𝑎), 93 

escape angle (𝜃), and sensory-motor delays as the animal reorients and begins to accelerate (δ) 94 

(Table 1, Fig.1). After initiating escape, the animal needs time to travel some minimum distance 95 
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to safety (𝐷𝑚𝑖𝑛) and additionally travel beyond its own body length (𝑙) to completely avoid a 96 

collision, where the maximum possible value of 𝐷𝑚𝑖𝑛 is the entire width of the vehicle (Eq. 1).  97 

𝐷𝑠𝑎𝑓𝑒 = 𝐷𝑚𝑖𝑛 +  𝑙      (Eq.1) 98 

𝐷𝑠𝑎𝑓𝑒 is the total distance the animal needs to travel to clear the trajectory of the vehicle.  99 

Animals often combine a mixture of protean and optimal escape trajectories, alternatively 100 

escape angle (𝜃), to successfully escape or avoid an approaching threat, such as a natural 101 

predator (Domenici, 2002, Walker et al., 2005, Kimura & Kawabata, 2018, Kawabata et al., 102 

2023). Escape angles (𝜃) are typically defined relative to the approach angle of the threat. Herein 103 

we define 0⁰ as flight directly towards the approaching vehicle and 180⁰ as flight directly away 104 

from the vehicle, where escape angles are limited between a range of 0⁰ to 180⁰.  Escape angles 105 

that differ from a perpendicular escape angle (i.e., 90⁰) extend the time needed for the animal to 106 

completely cross 𝐷𝑠𝑎𝑓𝑒. Additionally, 𝑇𝑎 is dependent upon the escape speed of the animal (𝑆𝑎) 107 

and the additional time required to reorient and accelerate as it enacts its escape response (δ) (Eq. 108 

2; Figure 1).  109 

𝑇𝑎 =

𝐷𝑠𝑎𝑓𝑒
sin(𝜃)

𝑆𝑎
+  δ       (Eq.2) 110 

Equation 2 assumes a constant escape speed by the animal (Table 2, Assumption 3). 111 

The time remaining until the vehicle reaches the location of the animal after escape 112 

initiation (𝑇𝑣) depends on the flight-initiation distance (𝐷𝐹𝐼𝐷), escape speed (𝑆𝑎), and escape 113 

angle (𝜃) of the animal, and the approach speed of the vehicle (𝑆𝑣) (Table 1, Fig.1). After the 114 

animal initiates its escape response (𝐷𝐹𝐼𝐷), it has a limited amount before the vehicle reaches the 115 

location of the animal depending on the approach speed of the vehicle (𝑆𝑣). However, depending 116 

on the escape speed (𝑆𝑎) and angle (𝜃) of the animal, the vehicle will reach the position of the 117 
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animal either relatively sooner or later as the animal moves either farther away or closer to the 118 

approaching vehicle (Eq. 3).  119 

𝑇𝑣 =
𝐷𝐹𝐼𝐷

𝑆𝑣+(cos(𝜃)∗ 𝑆𝑎)
      (Eq.3) 120 

Equation 3 assumes a constant vehicle approach speed (𝑆𝑣) and animal escape speed (𝑆𝑎).  121 

Consequently, if 𝑇𝑎 (i.e., time needed to escape) is greater than or equal to 𝑇𝑣 (i.e., 122 

time remaining to successfully escape), a collision is possible. If a collision is possible then 123 

phase two of the model estimates some probability of collision based on the location of the 124 

animal within the trajectory of the vehicle. However, phase two is not applicable to situations 125 

where 𝑇𝑎< 𝑇𝑣 because a collision is entirely avoided, assuming the animal does not change 126 

directions or stop (Table 2, Assumption 3).  127 

 128 

Phase two 129 

Phase two has two distinct components: 1) an estimate of the location of the animal within the 130 

trajectory of the vehicle at the moment of collision (𝐷collision ); and 2) the assignment of the 131 

probability of collision based on that location (i.e., 𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛)).  132 

 We estimated 𝐷collision  based on the absolute minimum distance to safety (𝐷min ), the 133 

entirety of the vehicles width (𝐷width ), the escape speed (𝑆𝑎) and angle (𝜃) of the animal, and 134 

the duration of time that elapsed since the animal initiated escape (𝑇𝑣). First, the minimum 135 

distance to safety (𝐷min ) and the trajectory width of the vehicle (𝐷width ) are used to estimate the 136 

initial position of the animal in the trajectory of the vehicle at the time when escape is initiated 137 

(𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (Table 1, Fig.1, Eq. 4).  138 

𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐷min −𝐷width      (Eq.4) 139 

From the initial location of the animal 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 the model estimates how much further the animal 140 
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travels within the trajectory of the vehicle while the vehicle continues to approach by multiplying 141 

escape speed (𝑆𝑎), angle (𝜃), and the time remaining since escape initiation (𝑇𝑣, see Eq.3), which 142 

yields equation 5.  143 

𝐷𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + (cos(𝜃) ∗ 𝑆𝑎 ∗ 𝑇𝑣)    (Eq. 5) 144 

𝐷𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is the location, specifically the midpoint, of the animal in the trajectory of the vehicle 145 

at the moment the vehicle reaches the animal.   146 

Estimates of 𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) are based on the frontal surface area of the vehicle (𝐴𝑓𝑟𝑜𝑛𝑡) 147 

and width of the animal the point of contact based on the location of the animal in the trajectory 148 

of the vehicle (𝐷collision ) and body length of the animal(𝑙) (Table 1). We defined the trajectory 149 

of the vehicle as a 2-D planar space bound by vehicle width (𝐷width ) and height (𝐷height ), 150 

which, respectively, can be thought of as the x and y axes (Fig. 2). We estimated the probability 151 

of collision as the ratio between all the space occupied by the frontal surface area of the vehicle 152 

(𝐴𝑓𝑟𝑜𝑛𝑡) and the entire surface area at that location on the x-axis where the animal could be (i.e., 153 

product of 𝑙 and 𝐷height ), assuming the animal (i.e., a bird) could be at any random altitude (i.e., 154 

y-axis) within the collision window (Table 2, Assumption 4, Eq.6a-6c).  155 

𝑐𝑜𝑜𝑟𝑑1 = 𝐷𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − ( 
𝑙

2
 )    (Eq. 6a) 156 

𝑐𝑜𝑜𝑟𝑑2 = 𝐷𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + ( 
𝑙

2
 )    (Eq. 6b) 157 

𝑃(𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) =
1

𝐷ℎ𝑒𝑖𝑔ℎ𝑡∗ 𝑙
∫ 𝐴𝑓𝑟𝑜𝑛𝑡

𝑐𝑜𝑜𝑟𝑑2

𝑐𝑜𝑜𝑟𝑑1
    (Eq. 6c) 158 

 159 

Methods 160 

Parameter selection & simulation approach 161 

We applied our model to estimate the probability of collision for a scenario where a high-speed 162 

aircraft (i.e., a Boeing737) approaches a Canada goose.  We investigated how the probability of 163 
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collision changes by systematically iterating through a range of realistic values for four different 164 

parameters: goose escape speed (𝑆𝑎), sensory-motor delay (δ), the minimum distance to safety 165 

(𝐷min ), and aircraft approach speed (𝑆𝑣). (Table 1). Herein, we used only a single value for body 166 

length (𝑙), where we defined body length as the linear distance from the tip of the beak to the 167 

outer edges of the tail feathers (115 cm, Bellrose, 1976).  168 

 We varied escape speed (𝑆𝑎) between 1 m/s to 17 m/s, in increments of 2 m/s, based on 169 

the recorded flight speed of Canada geese (Wege & Raveling, 1984). The sensory-motor delay 170 

values (δ) varied between 0 to 1 second in increments of 0.1 secs based on the observed 171 

response delays of different bird species (Provini et al., 2012, Guenin et al., 2024). A sensory-172 

motor delay of 0 seconds represents a scenario where the animal is actively moving when it 173 

crosses into the trajectory of the vehicle, whereas 1 second means the animal took an entire 174 

second before it actually began to move. The minimum distance to safety (𝐷min ) varied from 1 175 

to 14.35 m by increments of 1.48 m for a total of 10 different intervals. We chose 14.35 m as the 176 

maximum distance to safety based on the width between the edges of the horizontal stabilizers of 177 

a 737commercial aircraft (Fig. 2). We elected not to use the entire width of the aircraft wingspan 178 

because the collisions with the highest probability of damage, once a collision occurs, are 179 

impacts to the fuselage or engine ingestion (Liu et al., 2018, Dolbeer et al., 2023) (Fig. 2). 180 

Lastly, we varied aircraft approach speed (𝑆𝑣) between 70.47 (i.e., 150 knots) to 270.97 m/s by 181 

increments of 14.32 m/s for a total of 15 different approach speeds based on the range of Federal 182 

Aviation Administration recommended approach speeds that occur at different flight phases 183 

(e.g., take-off run, climb, cruise, approach, landing) (Instrument Procedures Handbook: FAA-H-184 

8083-16A, 2017).   185 

For each run of the model, we simulated a single flight-initiation distance (𝐷𝐹𝐼𝐷) and 186 
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escape angle (𝜃). We simulated flight-initiation distance values (𝐷𝐹𝐼𝐷) from a normal 187 

distribution with a mean of 56.2 m and a standard deviation of 16.5 m, based on Canada goose 188 

escape responses to direct approaches by an automobile (i.e., a truck) (Blackwell et al. 2019). 189 

Escape angle values (𝜃) were simulated from one of two different uniform distributions. Birds 190 

either received an escape angle (𝜃) from a uniform distribution with escape angles (𝜃) ranging 191 

from 0.01 to 89.99⁰, hereafter referred to as the “toward” distribution, or from a uniform 192 

distribution with escape angles (𝜃) ranging from 90.01 to 179.99⁰, hereafter the “away” 193 

distribution. In our parametrization of the model, geese had a different probability of receiving 194 

either an escape angle from the “toward” (0.58) or “away” (0.42) distribution based on the 195 

frequency of different Canada goose behavioral responses reported by pilots obtained from the 196 

“Remarks” section of the Federal Aviation Administration wildlife collision database (Appendix 197 

S1).  198 

To account for variation in model predictions attributable to differences in simulated 199 

flight-initiation distance (𝐷𝐹𝐼𝐷) and escape angle (𝜃) values, we ran the model with 500 iterations 200 

for each unique combination of parameter values.  201 

 202 

Estimating the probability of collision 203 

We quantified the probability of collision by digitizing a to-scale-schematic of a Boeing-737 204 

(Fig. 2). We estimated the frontal surface area of the vehicle (𝐴𝑓𝑟𝑜𝑛𝑡) by summing all the pixels 205 

occupied by the aircraft (Fig. 2), divided by the total number of pixels within a specific 206 

subsection along the x-axis defined by the length of the goose and height of the aircraft, hereafter 207 

referred to as the “collision window”. We converted the length of the goose to pixels by first 208 

dividing the width of the trajectory (i. e.,  14.35 m) by the width of the aircraft schematic image 209 
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(i.e., 1031 pixels) (Fig. 2) to estimate the m/pixels conversion factor (0.0139 m/pixels), then 210 

divided goose length (𝑙) (i.e., 115 cm) by the conversion factor to estimate the length of a goose 211 

in nearest whole pixels (83 pixels).  212 

 213 

Model application   214 

We applied our model to quantify how lights of different wavelengths onboard an approaching 215 

aircraft might affect the probability of collision through altering the behavior of Canada geese. 216 

Lights have been shown to lead to earlier alert responses to approaching vehicles (Blackwell et 217 

al., 2012). Specifically, Canada geese alerted 4.1 seconds earlier to an approaching aircraft with 218 

a light turned on (11.4 ± 4.4 sec) relative to an aircraft with a light turned off (7.3 ± 4.4) 219 

(Blackwell et al., 2012). This early alert provides an opportunity for the animal to escape sooner, 220 

thus expanding the range of potential flight-initiation distances (𝐷𝐹𝐼𝐷) (Blackwell & Fernández-221 

Juricic, 2013). Consequently, for an aircraft approaching with lights on we simulated flight-222 

initiation distance (𝐷𝐹𝐼𝐷) values from a uniform distribution with a minimum of 0 m and 223 

maximum flight-initiation distance (𝐷𝐹𝐼𝐷) based on the maximum possible alert distance. We 224 

estimated the maximum possible alert distance by multiplying the temporal benefit provided by 225 

the light source, hereafter β, by the aircrafts approach speed. We systematically varied the 226 

temporal benefit of the light source (β) from 0 to 8.5 seconds by increments of 0.88 seconds for 227 

10 different intervals, based on the mean observed temporal benefit (4.1 sec) and SD in alert time 228 

(4.4 sec) observed in Blackwell et al. (2012).   229 

 Light wavelengths of high chromatic contrast have also been shown to affect the 230 

avoidance responses in Canada geese in a single choice experiment (i.e., a T-maze test), where 231 

differences in the probability of avoidance could potentially translate to differences in the escape 232 
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angle of the animal (Lunn et al., 2023). Lunn et al., 2023 found that after repeated exposures 233 

geese tended to avoid a 483 nm light (i.e., blue) (probability of avoidance 0.65) and were 234 

attracted to 631 nm light (i.e., red) (probability of avoidance 0.11). Consequently, we explored 235 

how the probability of collision changes for different wavelengths of high chromatic contrast 236 

(i.e., a blue- and red-light) assuming an avoidance response translates to an escape trajectory 237 

away from the approaching aircraft (i.e., an escape angle (𝜃) > 90 deg). Specifically, in a blue-238 

light scenario geese had a 65% chance of receiving an escape angle from the “away” distribution, 239 

where in a red-light scenario geese had a 11% chance of receiving an escape angle from the 240 

“away” distribution according to the difference in the probability of avoidance reported in the 241 

final trials of Lunn et al. 2023.   242 

 No study that we are aware of has examined how different wavelengths of light 243 

simultaneously affect different combinations of flight-initiation distance (𝐷𝐹𝐼𝐷) and escape 244 

angles (𝜃). Lunn’s et al. (2023) findings indicate that geese developed an attraction response to 245 

the red-light but showed a mild avoidance response to the blue-light after repeated exposures. 246 

We assumed for both the blue- and red-light scenarios that “toward” escape angles are indicative 247 

of a potential attraction response to the lights (not necessarily to the approaching aircraft) and 248 

thus paired them with shorter flight-initiation distances (𝐷𝐹𝐼𝐷); whereas “away” escape angles 249 

were indicative of avoidance and paired with longer flight-initiation distances (𝐷𝐹𝐼𝐷). 250 

Specifically, the presence of attractants such as a food source, potential mate, or flock members 251 

results in shorter flight-initiation distances, where the presences of an aversive stimuli or 252 

repellent associated with greater perceived risk, such as faster and more direct predator 253 

approaches, results in longer flight-initiation distances (Ydenberg & Dill 1986, Cooper et al., 254 

2009, Blackwell et al. 2019, Ventura et al., 2021, Hammer et al., 2025). Additionally, birds can 255 
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either be attracted or repelled by different light stimuli (Poot et al., 2008, Rodríguez et al., 2017, 256 

Adams et al., 2021, Van Doren et al., 2021), potentially leading either to shorter or longer flight-257 

initiation distances, respectively.  258 

 For both the blue- and red-light scenarios if the simulated escape angle (𝜃) was received 259 

from the “toward” distribution then consequently the flight-initiation distance (𝐷𝐹𝐼𝐷) was 260 

simulated from the same distribution as a no-light scenario (i.e., normal distribution, mean= 56.2 261 

m, SD=16.5, and not affected by β). However, if an escape angle (𝜃) was received from the 262 

“away” distribution, then consequently flight-initiation distance values were simulated from the 263 

distribution affected by β (i.e., a uniform distribution ranging from 0, to 𝑆𝑎 × β).  264 

 265 

Reporting results 266 

We generated a total of 222,750,000 predictions of whether a collision would or would not occur 267 

with our model for all combinations of goose escape speed (𝑆𝑎), sensory-motor delays (δ), the 268 

minimum distance to safety (𝐷min ), aircraft approach speed (𝑆𝑣),and the three different light 269 

scenarios (i.e., no-light, blue-light, red-light) which included the temporal benefit (β) afforded by 270 

a light onboard. For each combination of parameters, we generated 500 predictions with different 271 

simulated values for flight-initiation distance (𝐷𝐹𝐼𝐷) and escape angle (𝜃).  272 

 We present the model predictions for the probability of collision in Figures 3 and 4, 273 

where both figures show the relationship between the probability of collision and a single 274 

variable. In Figure 3, the x-axes were variables that we systematically manipulated, whereas in 275 

Figure 4 the x-axes are simulated variables (see above). We estimated the predicted probability 276 

of collision in Figure 3 by first summing the number of collisions that occurred for each unique 277 

combination of parameters and then divided the total by 500, representing the number of 278 
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different runs of the model with simulated flight-initiation distance (𝐷𝐹𝐼𝐷) and escape angle (𝜃) 279 

values. We estimated the predicted probability of collision in Figure 4 by first binning both 280 

flight-initiation distance (𝐷𝐹𝐼𝐷) and escape angle (𝜃) to within 0.1 of either a meter or degree and 281 

then added the total number of collisions that occurred within that bin divided by the total 282 

number of predictions within that bin. To describe the relationship between our continuous 283 

variables and the probability of collision regarding the three different light scenarios, we fitted a 284 

curve from a general additive model using the geom_smooth in the ggplot2 package (Wickham 285 

& Chang, 2016). The results of each figure can be interpreted as the average effect of that single 286 

parameter value on the probability of collision across all other possible parameter values.  287 

 288 

Results  289 

Overview 290 

First, the mean probability of collision among all combinations of parameters was the lowest for 291 

the blue-light scenario (mean ± SD, 0.292 ± 0.167), with an increase for the red-light scenario 292 

(0.347 ± 0.161), and with the highest probability of collision occurring for the no-light scenario 293 

(0.429 ± 0.189) (Fig. 3a). Second, an increase in escape speed of the animal (𝑆𝑎) generally 294 

resulted in a non-linear asymptotic decrease in the probability of collision (Fig. 3b.). For the 295 

blue- and red-light scenarios, probability of collision decreased at a decreasing rate with escape 296 

speed. In contrast, the no-light scenario yielded a probability of collision that decreased but at an 297 

increasing rate with increasing escape speed (Fig. 3b). As sensory-motor delays increased, the 298 

probability of collision increased linearly and slightly, with a similar pattern across all three light 299 

scenarios (Fig. 3c). An increase in aircraft approach speed resulted in the probability of collision 300 

increasing to an asymptote for each light scenario (no-light > red-light > blue-light; Fig. 3d). The 301 
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relationship between the minimum distance to safety and the probability of collision was 302 

multimodal with three different inflection points (Fig. 3e). Generally, as the minimum distance to 303 

safety increased, so did the probability of collision. However, the shape of the curve strongly 304 

reflected the difference in the probability of collision based on the shape of the aircraft and the 305 

location of the animal within the trajectory. Specifically, the probability of collision was highest 306 

when the location of the animal within the trajectory of the aircraft coincided with either the 307 

fuselage or the engines, where this pattern was similar for all three light scenarios (Fig. 3e). Also, 308 

as the temporal benefit afforded by a light source increased, the probability of collision 309 

decreased to an asymptote and was only relevant for the blue- and red-light scenarios (Fig. 3f).  310 

 Larger flight-initiation distances (𝐷𝐹𝐼𝐷) resulted in dramatically lower probabilities of 311 

collision for both the blue- and red-light scenarios (Fig 4a). Additionally, escape angles (𝜃) 312 

closer to 90⁰ (i.e., escaping perpendicularly to the approaching vehicle) had a lower probability 313 

of collision relative to escape angles (𝜃) closer to either 0⁰ or 180 (Fig. 4b). The “away” escape 314 

angles for both the blue- and red-light scenarios (i.e., paired with longer flight-initiation distance 315 

(𝐷𝐹𝐼𝐷) yielded a dramatically lower probability of collision, in contrast to a perpendicular escape 316 

angle (Fig. 4b).  317 

 318 

Discussion 319 

To summarize, we built upon an existing theoretical foundation (Domenici, 2002, Kawabata, et 320 

al., 2023) to propose a new mathematical model to estimate the probability of collision an animal 321 

faces given it is within the trajectory of vehicle, where herein applied to an approaching aircraft. 322 

Our model quantifies how differences in specific aspects of an escape response in the final 323 

seconds prior to the arrival of a high-speed approaching vehicle affects the probability of 324 
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collision. We then applied the model to quantify how a given technological intervention (i.e., 325 

onboard light stimuli) aimed at altering the escape response of the animal subsequently affects 326 

the probability of collision. Our model demonstrates the importance of considering how animals 327 

simultaneously alter multiple properties of an escape response to reduce the probability of 328 

collision, how the probability of collision varies depending on the location of the animal within 329 

the trajectory of the vehicle, and that the presence of onboard lighting tuned to eyes of the target 330 

species has the potential to reduce the probability of collision.  331 

 Animals often rely on a combination of several different sequential behaviors to reduce 332 

the mortality risk associated with an approaching predator (Evans et al., 2019, Branco & 333 

Redgrave, 2020). Evidence suggests that animals rely on similar behaviors when attempting to 334 

avoid approaching vehicles (Lima et al., 2015, DeVault et al., 2015, Lunn et al., 2022). 335 

Specifically, individuals can adjust their flight-initiation distance (Ydenberg & Dill 1986, 336 

Stankowich & Blumstein, 2005, Cooper & Blumstein, 2015), escape speed (Domenici & Blake, 337 

1991, Lind et al., 2002), escape angle (Domenici & Blake, 1993, Domenici et al., 2011a, 338 

Domenici et al., 2011b), or opt to not escape at all (Broom & Ruxton, 2005, Cooper 2009b), 339 

Blackwell et al., 2020), to reduce mortality risk from an approaching threat (Caro et al., 2005).  340 

The model can be used to identify the components of an escape response that have the 341 

largest effect on the probability of collision. Technological interventions or management can 342 

then target these specific behaviors of relatively larger effect size to enact the larger reductions in 343 

the probability of collision. For instance, in the case of Canada geese and an approaching 737 344 

with no-light onboard, flight-initiation distance had the largest effect, where an increase from 0 345 

m (0.460) to greater than 120 m (0.361) resulted in a 21.6 % decrease in the probability of 346 

collision (Fig. 4a). Differences in escape speed had the second largest effect, where an increase 347 
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from 0 (0.467) to 17 m/s (0.377) resulted in a 19.3% decrease in the probability of collision (Fig. 348 

3b). Lastly, difference in escape angle from 0⁰ (0.467) or 180⁰ (0.464) to 90⁰ (0.397) (Fig. 4b) 349 

respectively resulted in a 14.9% and 14.4% decrease in the probability of collision, respectively 350 

(Fig. 3c). Thus, we would expect that a strategy aimed at increasing Canada goose flight-351 

initiation distance or escape speed would yield the largest reduction in the probability of collision 352 

relative to an approaching 737.  353 

Our model also enables us to quantify how different vehicle approach scenarios affect the 354 

probability of collision, which can aid in developing collision mitigation strategies. For example, 355 

in the case of a 737 approaching a Canada goose, the location of the animal in the trajectory of 356 

the vehicle had the largest effect, where the difference between a minimum distance to safety of 357 

1 m (0.102) versus 8.42 m (0.673) resulted in a 570% increase in the probability of collision. 358 

Specifically, the three inflection points (i.e., peaks) in Figure 3e correspond to the aircraft 359 

engines and fuselage, where the probability of collision increases due to their larger frontal 360 

surface areas. The predictions of our model align with the Federal Aviation Administration’s 361 

wildlife strike database, where the most frequently struck locations of Canada geese on a 737 are 362 

the engines and the fuselage (n=193, Federal Aviation Administration Wildlife Strike Database) 363 

(Fig.5a & b). A potential mitigation strategy therefore might focus on deterring birds away from 364 

sections of the aircraft with the largest frontal surface area.  365 

Our model also provides a quantitative framework to make predictions about high-speed 366 

vehicle approach scenarios that are difficult to test empirically. Previously the fastest simulated 367 

approach speed empirically tested was 100 m/s by DeVault et al., 2015 (Fig. 5c). In our example 368 

with a Canada goose and a Boeing-737, we were able to estimate that the probability of collision 369 

increased by 27% from 70 (0.359) to 271 (0.457) m/s, extremely fast approach speeds. 370 
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Additionally, previous empirical studies have been limited to estimating whether a collision 371 

occurs based on only a few properties of an escape response (i.e., flight-initiation distance) and 372 

approaching vehicle (i.e., approach speed, vehicle width) (DeVault et al. 2015, Guenin et al., 373 

2024). Our model proposes a framework for the additional variables that need to be collected to 374 

more accurately predict the outcome of an animal-vehicle interaction. While the predictions of 375 

our model align qualitatively with the empirical data (i.e., an increase in approach is associated 376 

with an increase in the probability of collision; DeVault et al., 2015, Guenin et al., 2024), the 377 

disparity in the probability of collision estimates between empirical and theoretical approaches 378 

(Fig. 5c) is likely due to our model considering how animals might alter many different 379 

components of their escape response simultaneously.  380 

Both the probability of capture in the context of predator-prey interactions and the 381 

probability of collision in the context of animal-vehicle interactions rely on similar variables to 382 

quantify the outcome of an interaction with either a predator or a vehicle; however, additional 383 

assumptions and parameters are needed to estimate the probability of collision (Table 2). We 384 

argue that three major differences need to be considered. First, the probability of collision, 385 

especially for larger vehicles, is often not homogenous throughout trajectory of the vehicle (i.e., 386 

portions with larger frontal surface area increase the probability of collision). As a result, the 387 

specific location of the animal within that trajectory should be considered, because a collision 388 

still might be avoided despite the vehicle reaching the location of the animal (e.g., a goose 389 

passing over the fuselage of the aircraft, see Phase two above).  390 

Second, vehicles generally remain on a fixed and linear trajectory when approaching an 391 

animal as opposed to the dynamic trajectories of predators (Peterson et al., 2021). Models of 392 

predator-prey capture vary in whether they assume a predator approaches linearly or non-linearly 393 
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(Corcoran & Conner, 2016, Domenici, 2002, Kawabata et al., 2023). Vehicles are commonly 394 

limited to travelling on a designated substrate (i.e., road) or predetermined course (i.e., flight 395 

path), especially at faster speeds; therefore, when modeling animal vehicle collisions generally a 396 

linear approach can be assumed. Yet, a fixed and linear trajectory does not necessarily mean that 397 

the behavior of the vehicle does not change (e.g., pilots alter flight paths, speeds, etc.). An 398 

important component for future research is to assess the effects of driver behavior seconds prior 399 

to a collision (e.g., Pakula et al., 2023).  400 

Third, the probability of collision is dependent on the approach angle of the vehicle. In 401 

empirical studies, approach angles are often categorized as either direct or indirect, defined by 402 

whether the trajectory of the predator intersects or simply bypasses the prey animal (e.g., 403 

Domenici, 2002, Stankowich & Blumstein 2005). However, the threshold approach angle that 404 

distinguishes between direct versus indirect angles is generally not explicitly defined, primarily 405 

because predators can dynamically alter their approach angle based on prey escape trajectories as 406 

they get closer (Howland, 1974, Corcoran & Conner, 2016, Peterson et al., 2021).  407 

However, because vehicles are often limited to fixed trajectories (see above), we propose 408 

that the critical angle of a direct or indirect approach can be quantitatively defined as:   409 

𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑖𝑛−1 (
𝐷ℎ𝑎𝑙𝑓+𝑙 

𝐷𝑚𝑖𝑑
);      (Eq. 7)  410 

where 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the critical approach angle differentiating between an indirect and direct 411 

approach, 𝐷𝑚𝑖𝑑 is the distance between the center of the vehicle and the animal, and 𝐷ℎ𝑎𝑙𝑓 is half 412 

the maximum width of the vehicle, and 𝑙 is the length of the animal. Specifically, vehicle 413 

approach angles greater than 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will equate to an indirect approach where if the animal 414 

does not enact an escape response a collision can be avoided, where approach angles less than or 415 

equal 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will result in a potential collision if no response is enacted. The probability of 416 
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collision with a vehicle being completely dependent on approach angle might explain in part why 417 

some animals appear to adopt relatively shorter flight-initiation distances (Holmes et al., 1993, 418 

Blackwell et al., 2020), not flee at all (Guenin et al., 2024), or flee after the vehicle has passed 419 

(Pfieffer et al., 2025) because the probability of collision is 0 for an indirect approach. 420 

Importantly, equation 7 does not explicitly affect the predictions of our model because 421 

assumption 1 (Table 2) states the vehicle is approaching directly and therefore the approach 422 

angle is below 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and a collision is possible, if no response is enacted. As computer 423 

vision technology becomes further integrated into automated vehicle navigation (i.e., advanced 424 

air mobility) estimating the vehicles approach angle (𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) relative to a detected wildlife 425 

hazard could be important in monitoring the prevailing probability of collision and whether 426 

collision avoidance measures are necessary by the vehicle (Huijser et al., 2015, Corcoran et al., 427 

2021, Nandutu et al., 2022). 428 

 The Federal Aviation Administration’s wildlife strike database reports that interactions 429 

with Canada geese and aircraft over a 23-year period have cost the airline industry approximately 430 

183 million dollars, a 7.95-million-dollar annual cost (Dolbeer et al., 2023). Our model suggests 431 

that blue and red onboard lighting tuned to the eyes of Canada geese would reduce the 432 

probability of collision by about 14 % and 8%, respectively, which potentially could have saved 433 

25 and 15 million US dollars, respectively, over a 23-year period for just one species. However, 434 

a more structured analysis is necessary to truly estimate the potential financial savings and 435 

variation in savings afforded by light stimuli following the approaches put forth by Altringer et 436 

al. (2021, 2024). Additionally, these estimates are based on assumptions about how animals 437 

change multiple aspects of their escape behavior simultaneously in response to a light stimulus, 438 

and future research needs to evaluate these assumptions.  439 
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Future efforts to quantify the probability of collision for an approaching vehicle can build 440 

upon this existing model in several concrete ways. First, our modelling approach can be applied 441 

to other vehicle types (e.g., rotorcraft, automobiles, boats, etc.) and other taxa of management or 442 

conservation concerns. Second, in our modelling approach we did not incorporate any parameter 443 

or make any assumption about how animals delay escape after detection and continue to assess 444 

an approaching threat before initiating escape (Blumstein 2010, Chan et al., 2010, DeVault et al., 445 

2015, Lunn et al., 2022, Guenin et al., 2024). As such, the absolute value for the probability of 446 

collision estimates are most likely conservative (i.e., smaller), especially given the extremely fast 447 

range of speeds we used to model an approaching aircraft. Future studies quantifying the 448 

probability of collision should explicitly incorporate a delay in time for risk assessment after 449 

detection and before flight-initiation distance into estimates of the time needed for the animal to 450 

clear the path trajectory of the vehicle. Third, our model implicitly assumes that the altitude of 451 

the animal in the path trajectory of the vehicle is random because the animal could be at 452 

potentially at any height (Fig. 2). In reality, the aircraft could be ascending or descending, and 453 

the bird as well could be attempting to gain or lose altitude to escape the trajectory of the vehicle. 454 

We did not assume any specific height within the trajectory of the vehicle because of the scarcity 455 

of empirical data to support a given range. However, if we had data on both take-off velocity and 456 

take-off or dive angle for Canada geese, we could improve the accuracy of the probability of 457 

collision estimates.   458 

We envision that our model be applied to quantitatively estimate the probability of 459 

collision for various species and different vehicle approach scenarios, which could ultimately aid 460 

in forecasting the impacts of present and future transportation projects on wildlife populations. 461 

Additionally, our model allows us to estimate the probability of specific components of the 462 



22 
 

aircraft (fuselage, engines, wings, etc.) being struck, helping in the estimation of economic 463 

damage and safety hazards (Dolbeer et al., 2023). Overall, our framework can be used to develop 464 

targeted and preventative animal vehicle collision mitigation strategies, especially as air-traffic 465 

volume is forecasted to increase. 466 

 467 
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 780 

 781 

Figure legends 782 

Figure 1. A top-down (a) and front-view (b) illustration of the variables considered in both phase 783 

1 and 2 of the model. All definitions are  provided in table 1.  784 

 785 

Figure 2. a) The schematic of a Boeing 737 aircraft used to estimate the frontal surface area. The 786 

red, dotted line represents the x-axis intercepts of both 𝑐𝑜𝑜𝑟𝑑1 and 𝑐𝑜𝑜𝑟𝑑2 that define the 787 

location of the collision window on the x-axis. b) The sum of all pixels per the entirety of the 788 

goose body length and relative to  each potential location of the goose along the x-axis of the 789 

aircraft’s trajectory.  Here, the right side shows the decrease in the probability of collision as the 790 

gooses body length exits the trajectory.  791 
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 792 

Figure 3. The relationship between each variable manipulated in our modeling and the 793 

probability of collision, where  grey bars represent the standard deviation. a) The mean and 794 

standard deviation in the probability of collision for each of the three light scenarios, where each 795 

point represents the average probability of collision for over 500 runs of the model and with the 796 

same combination of manipulated variables. b) The relation between escape speed (m/s) and 797 

probability of collision for the three  light scenarios. c) The relation between sensory-motor 798 

delay (sec) and probability of collision for the three  light scenarios. d) The relation between 799 

aircraft approach speed (m/s) and probability of collision for the three  light scenarios. e) The 800 

relation between the minimum distance to safety (m) and probability of collision for the three  801 

light scenarios. f) The relation between the minimum distance to safety (m) and  probability of 802 

collision for the three light scenarios. 803 

 804 

Figure 4. a) Plot of the average probability of collision for all model predictions made with 805 

aspecific flight-initiation distance (m) separated by the three light scenarios. b) Plot of the 806 

average probability of collision for all model predictions made with a specific escape angle 807 

(degree), separated by the three light scenarios.  808 

 809 

Figure 5. a) The relationship between approach speed and the model-predicted probability of 810 

collision compared to the empirical relationship between observed probability of collision and 811 

vehicle approach speed reported in DeVault et al., (2015) & Guenin et al. (2024. b & c). A 812 

density map of the collision locations reported in the FAA wildlife strike database between 813 
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Canada geese and a 737 aircraft, where b) is the frontal view of an aircraft & c) a top-down view 814 

of the aircraft.  815 
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Table 1. A list of all variables, their corresponding symbols, definitions and units used for 822 
equations 1 to 6 in the main text.   823 
 824 

Symbol Definition Units 

𝑇𝑎  
Time needed for the animal to escape the 

vehicles trajectory 
sec  

𝑇𝑣  

Time until the vehicle reaches the 

location of the animal within its 

trajectory  

sec  

𝐷𝑚𝑖𝑛  
Distance needed to clear the trajectory of the 

approaching vehicle  
m   

𝑙 Body length or wingspan of the animal    m  

𝐷𝑠𝑎𝑓𝑒 The total distance the animal needs to travel 

to reach safety (Eq.1)  
m 

𝑆𝑎 Escape speed of the animal  m/s 

𝜃 

Escape angle ranging from 0 to 180 degrees, 

where 0 is directly towards the approaching 

vehicle and 180 degrees is directly away 

deg 

𝛿 
The time needed for the animal to re-orient 

and initiate escape  
sec 

𝐷𝐹𝐼𝐷 

Flight-initiation distance or distance between 

the animal and the aircraft when the animal 

initiates escape 

m 

𝑆𝑣 Approach speed of vehicle  m/s 

𝐷ℎ𝑒𝑖𝑔ℎ𝑡  The maximum height of the approaching 

vehicle 
m 
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𝐷𝑤𝑖𝑑𝑡ℎ  The maximum width of the approaching 

vehicle 
m 

𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙  
The animal’s initial position within the 

vehicle’s trajectory relative vehicle width 

(Eq. 4) 

m 

𝐷𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  

The animal’s position within the vehicle’s 

trajectory relative to vehicle width when the 

vehicle reaches the  location of the animal 

(Eq. 5) 

m 

𝐴𝑓𝑟𝑜𝑛𝑡  The frontal surface area of the approaching 

aircraft 
m2 
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Table 2. A list of the model assumptions  840 
 841 

Assumptions 

1 

The vehicle is approaching directly, alternatively 

the animal is within the path trajectory of the 

vehicle. 

2a 
The trajectory of the vehicle is linear and 

constant  

2b Vehicle approach speed (𝑆𝑣) is constant 

3a 
The trajectory of the animal is linear and 

constant after it initiates escape  

3b 
Animal escape speed is constant (𝑆𝑎) after it 

initiates escape   

4 
The animal can be located at any altitude within 

the trajectory of the vehicle 

5 

Per the light application exercise, towards escape 

angles are paired with shorter flight-initiation 

distances as part of a larger attraction response to 

the light stimuli 
    

    

    

     
 842 
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