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Abstract
We introduce DeepResearch

Eco

, a novel agentic LLM-based system for automated scientific synthesis that

supports recursive, depth- and breadth-controlled exploration of original research questions—enhancing search

diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented

generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-

driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining

analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase

in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield

expert-level analytical depth and contextual diversity.

Source code available at: https://github.com/sciknoworg/deep-research.
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1. Introduction

Science requires extreme attention to detail, and large language models (LLMs) can overlook or mis-

use details when faced with challenging reasoning problems [1, 2]. Ensuring factual accuracy in

LLM-generated content has thus become a key challenge. The current paradigm for eliciting factu-

ally grounded responses from LLMs is to use retrieval-augmented generation (RAG) [3, 4], which

supplements the model’s knowledge with relevant documents from external sources. By leveraging

retrieval, such agentic pipelines can explore scientific literature at a much higher throughput than

human scientists—enabling comprehensive surveys that were previously impractical. However, scaling

up literature exploration in this manner raises new questions about how to balance breadth (covering

many sources) versus depth (deeply analyzing the evidence from each source) to produce high-quality

scientific syntheses.

In this work, we introduce DeepResearch
Eco

, an agentic LLM-based system for complex scientific

question answering and literature synthesis, which in this work is tested against research questions

in the ecological sciences. DeepResearch employs a recursive retrieval and generation loop guided by

explicit, user-controllable depth and breadth parameters. This design enables iterative broad exploration

of the topic followed by targeted deep dives, effectively marrying a wide-ranging literature survey with

in-depth analysis. Unlike prior feed-forward pipelines, our approach surfaces intermediate reasoning

steps (e.g., search subqueries and extracted “learnings”) and uses them to refine subsequent queries,

yielding a transparent and traceable knowledge workflow. We integrate two variants of LLM reasoning

models within this framework to assess the robustness and generality of the generated research reports

across different model capabilities. The result is a flexible methodology that can be tuned to either
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quickly scan numerous publications or rigorously drill down into specific evidence, all within an

automated agentic workflow.

Specifically, we explore the following empirically driven research questions in this work: RQ1: How
similar are the reports generated by DeepResearch across different depth and breadth settings, using two
variants of reasoning models, when evaluated with ROUGE (word-based) and embedding-based semantic
similarity metrics? RQ2: How do depth and breadth parameters in automated research systems affect
the quality and diversity of synthesized scientific knowledge in ecology? RQ3: Can high-parameter
configurations in LLM-based systems achieve domain-specific synthesis capabilities that match or exceed
expert-level integration, especially in ecological research contexts? To answer these questions, we conduct

extensive experiments using DeepResearch on ecological science problems, analyzing both quantitative

metrics and qualitative aspects of the generated outputs. In summary, our contributions are threefold:

(1) we present a novel recursive, breadth-vs-depth controllable LLM workflow for automated scientific

literature review; (2) we provide an in-depth evaluation of how exploration depth and breadth impact

the quality and diversity of knowledge synthesis (finding, for example, that a high-depth configuration

can automatically integrate information from 111 sources—nearly 6× more than a shallow setting—and

increase coverage of key concepts by 25%); and (3) we demonstrate that carefully configured, high-

parameter runs can approach expert-level integration in ecology, achieving an order-of-magnitude

higher information density in outputs without loss of rigor or specificity. All code and data are released

under an open-source MIT license
1

to facilitate reproducibility and future research.

2. Related Work

Recent developments in LLMs have led to the emergence of agentic workflows for scientific question

answering and synthesis. This section reviews key systems that shape the landscape of LLM-based

scientific discovery, covering agentic pipelines, human-aligned synthesis frameworks, and multi-agent

reasoning systems.

Scientific Search and Synthesis. A growing line of work focuses on using LLMs to automate scientific

search and synthesis, combining document retrieval with intelligent summarization and reasoning

capabilities.

PaperQA [5] introduced a modular agentic pipeline for LLM-assisted scientific question answering.

It begins by retrieving relevant papers through Google Scholar using keyword and year-range queries,

then constructs an embedding-based chunk database. For each user question, relevant text chunks are

retrieved using maximal marginal relevance. These chunks are then summarized or marked as irrelevant,

helping mitigate semantic noise and parsing errors. Finally, an LLM generates a response, using its own

knowledge and optionally the summarized content. PaperQA2 [1] builds on this model by introducing

a full-fledged multi-agent framework. Retrieval and generation are separated into distinct agents: a

paper search agent reformulates the user query, fetches PDFs, and converts them to text; a citation

traversal agent expands the corpus through citation networks; a gather-evidence agent retrieves and

summarizes text chunks via dense retrieval, reranking, and contextual summarization; and a generation

agent synthesizes answers from the top-ranked evidence. PaperQA2 also powers use cases beyond

question answering, including Wikipedia-style summarization (WikiCrow) and contradiction detection

(ContraCrow), the latter benchmarking whether scientific claims contradict prior literature.

ORKG Ask [6] offers a complementary approach rooted in scholarly infrastructure. It combines

semantic search over a 70+ million article index (from CORE [7]) with knowledge extraction via LLMs.

The search interface returns top-ranked articles using vector similarity (via Nomic embeddings), and the

LLM generates a synthesis of the top 5 results. This is augmented by LLMs4Synthesis [8], a framework

that structures synthesis tasks into paper-wise, methodological, and thematic categories. Syntheses are

generated using structured prompts and evaluated using GPT-4 as an LLM-as-a-judge. This highlights

an important emerging research direction: leveraging LLM-as-a-judge [9] as a scalable and effective
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approach for evaluating scientific tasks. RLAIF (reinforcement learning with AI feedback) is further

applied to optimize open-source models (e.g., Mistral-7B) for factuality and clarity.

Iterative, Structured, and Human-Aligned Research Workflows. Beyond retrieval and synthe-

sis, another line of research focuses on designing LLM systems that mirror human cognitive work-

flows—emphasizing iterative refinement, structured reasoning, and alignment with scientific practices.

Nova [10] and IdeaSynth [11] enable iterative refinement of research ideas. Nova leverages planning

and information retrieval to diversify generated ideas, addressing the tendency of LLMs to produce

repetitive outputs. IdeaSynth organizes ideas as canvas nodes that evolve through literature-grounded

feedback loops, facilitating deeper exploration across multiple stages of ideation. Semantic Canvas [12]

complements these efforts by introducing constraint-guided input filtering and semantic navigation,

which improves output relevance and encourages user engagement.

Other systems focus on structuring the research ideation process. Chain of Ideas (CoI) [13] arranges

literature into developmental chains to reflect how research areas evolve over time, supporting pro-

gressive insight development. Scideator [14] promotes creativity by recombining research facets—such

as purpose, mechanism, and evaluation—using novelty heuristics to suggest original directions. Both

systems emphasize structured representations of knowledge to align with how researchers typically

generate and refine ideas.

Multi-Agent Systems for End-to-End Scientific Discovery. Recent work explores autonomous

multi-agent systems that aim to replicate the full scientific workflow—from ideation to publication.

Going beyond search and synthesis, fully autonomous multi-agent systems have been proposed to

tackle scientific discovery holistically. The AI Scientist framework [15] automates the entire pipeline

from idea generation to experimental design and publication writing. VirSci [16] coordinates teams

of virtual agents that generate, critique, and revise scientific proposals collaboratively. These systems

demonstrate the potential of distributed agentic reasoning and underscore the growing interest in

autonomous research systems. These systems underscore the growing interest in distributed agentic

reasoning for scientific discovery and highlight the feasibility of closed-loop, autonomous scientific

workflows.

Positioning DeepResearch. While prior systems like PaperQA2 and ORKG Ask emphasize modularity

and scalability, they follow largely feedforward retrieval-to-generation pipelines, often with limited con-

figurability or recursion. In contrast, DeepResearch introduces a recursive, user-controllable exploration

loop governed by explicit depth and breadth parameters. One of the essential facets of true deep research

is the ability to have recursive calls to repeatedly drill down on the nuances of the question posed by

researchers. This enables progressively focused or diversified reasoning, which single-pass architectures

do not address. Moreover, DeepResearch surfaces intermediate reasoning steps—such as SERP-style

subqueries, structured “learnings,” and follow-up questions—enhancing transparency and researcher

oversight. Its ability to integrate multiple search modalities and enforce structured, schema-conformant

outputs positions it as a flexible tool for both exploratory synthesis and machine-readable knowledge

workflows. These distinctions highlight DeepResearch’s unique contribution to the emerging paradigm

of agentic, iterative, and human-aligned scientific research systems.

3. Method

3.1. Deep Research

The Deep Research system orchestrates a recursive, multi-agent workflow for automated literature

exploration and synthesis, as shown in Figure 1. The system is initialized with a user-defined research

question and two parameters—breadth and depth—that determine how the exploration unfolds. The

breadth parameter controls how many diverse SERP-style queries are generated at each level, allowing

the system to branch into multiple directions. The depth parameter governs the number of recursive

layers, each of which pushes the investigation deeper by refining queries based on prior learnings.

Before execution begins, the environment is configured by selecting an LLM backend and a search client.

Two search modes are currently supported: Firecrawl, which enables open web search and returns
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Figure 1: Deep Research Orchestration Workflow. The user provides a research question and feedback,

along with recursion parameters — breadth (b) and depth (d) — to guide the exploration. The workflow recursively

calls four sub-agents: (1) generate serp queries to formulate search-optimized sub-queries and research goals,

(2) search to retrieve content from configurable APIs (e.g., ORKG Ask or Firecrawl), (3) summarize result to

extract structured learnings and follow-up questions, and (4) generate report to produce a final markdown

report. The process iterates until the maximum depth is reached.

full-text results in markdown, and ORKG Ask, which queries a scholarly corpus of over 80 million

publications to return structured metadata including titles, abstracts, and links.

The core loop is composed of four sub-agents. The generate serp queries sub-agent converts the

input research question (or a follow-up from a previous round) into a set of search-compatible queries,

each accompanied by a research goal. These are passed to the search sub-agent, which retrieves

the top results using the selected provider. The results are then processed by the summarize result

sub-agent, which merges relevant content (titles and abstracts or full text) and prompts the LLM to

generate summary “learnings” and new follow-up questions. This cycle continues until the specified

depth is reached. All accumulated insights are then handed off to the generate report sub-agent,

which synthesizes the findings into a comprehensive Markdown report, complete with citations and

structured using a validated JSON schema. Each sub-agent operates independently but in coordination,

and the entire orchestration is governed by a shared system prompt that ensures coherence across the

research workflow.

3.2. Sub-agents

generate serp queries. This sub-agent takes an actual research question (e.g., “What are the effects

of invasive species in grasslands?”) and prompts the LLM to generate SERP-style queries—i.e., search

engine-compatible (SERP = search engine results page) queries—which are typically: 1) declarative



or keyword-based sentences, and 2) optimized for information retrieval rather than naturalness. For

example, the original question may yield the query “impact of invasive species on native grassland

biodiversity.”

On its first invocation, the sub-agent receives the user’s research question, optionally enriched with

feedback. In subsequent recursive calls, its input consists of the previous research goal and a set of

follow-up questions, along with accumulated learnings passed from the summarize result sub-agent.

The number of queries generated defaults to 3 but is configurable via the breadth parameter. With

each increase in recursion depth, the number of generated queries is halved (using integer division,

breadth // 2), thus progressively narrowing the scope of research exploration. Note that at this stage,

the LLM is prompted not only to generate SERP-style queries, but also to produce an accompanying

research goal for each query, which helps guide subsequent iterations of the research process.

search. This sub-agent executes each SERP-style query using one of two configurable search

providers. The first is the Firecrawl API, which performs web-scale search and returns full-text web

content in markdown format for up to ten retrieved pages. This mode enables broad coverage of

unstructured online sources such as blogs, scientific literature, or news articles. The second is the

ORKG Ask API, which queries a scholarly index of over 70 million scientific publications and returns a

structured response comprising titles, abstracts, and URLs for the top-ranked results. While Firecrawl

supports general-purpose web research, ORKG Ask is optimized for evidence-based synthesis from

scientific literature. In both cases, the sub-agent operates asynchronously and executes queries in

parallel to maximize efficiency. Retrieved content is passed unfiltered to the summarization sub-agent,

and all URLs are retained for transparency and citation in downstream reporting.

summarize result. This sub-agent processes the raw output from the search sub-agent. For each

query, it takes the top 10 returned documents (by default) and extracts their textual content. In the case

of the Firecrawl provider, this content consists of markdown-formatted full text; for ORKG Ask, it is

a combination of publication titles and abstracts. These are merged into a single prompt and passed

to the LLM, along with the original query that triggered the search. The LLM is then instructed to

produce two outputs: (i) a list of up to 3 “learnings,” meaning concise and information-dense summary

insights derived from the content, and (ii) a list of up to 3 follow-up questions for further exploration.

Both values are configurable via parameters. These outputs are used to inform recursive querying

(generate SERP queries) and accumulate findings for the final report. The agent prompt used for this

summarization is shown below.

generate report. This sub-agent synthesizes all accumulated learnings from previous search

and summarization rounds into a comprehensive Markdown report. It takes as input the original user

research question or, in the case of a recursive call, a composed prompt containing the research goal

and follow-up questions. Alongside this prompt, it receives the list of learnings—information-dense

insights extracted by the summarize result sub-agent—and the URLs of visited documents. The LLM is

instructed to generate a detailed narrative that weaves together all findings, aiming for the length and



coherence of a multi-page literature overview. The final report includes a Sources section automatically

appended, listing all retrieved document URLs for transparency and traceability. The output is strictly

validated against a JSON schema that enforces the presence of a single field: reportMarkdown. The

exact prompt passed to the language model is shown below, illustrating how the composed query and

accumulated learnings are structured to guide report generation.

4. Results and Discussion

This section presents our experiments with DeepResearch on ecological research questions, analyzing

outcomes both quantitatively and qualitatively.

4.1. Experimental Settings

4.1.1. Dataset

We compiled a corpus of 49 ecological research questions from nine fellows of the interdisciplinary group

“Mapping Evidence to Theory in Ecology.”
2

The questions were collected via a Google Form with prompts

such as: Your research question, Relevant ecological sub-discipline, and Purpose of the question. The dataset

is publicly available at https://github.com/sciknoworg/deep-research/blob/main/data/49-questions.csv.

The questions span a wide range of ecological sub-domains, including restoration ecology, invasive

species management, microbial ecology, and pollination ecology, as well as interdisciplinary areas

involving sociology and geology. In terms of intent, 16 questions aim to explore existing hypotheses,

another 16 seek to generate new ideas, and 13 aim to collect evidence. A few respondents were

motivated by the need for practical insights or broad knowledge overviews. This distribution highlights

the exploratory and generative nature of early-stage or interdisciplinary ecological research.

4.1.2. Experimental Setup

We conducted experiments using two OpenAI models: GPT o3 and GPT o3-mini. These models were

selected for their ability to produce structured, schema-conformant outputs, supporting fields such

as learnings, follow-up questions, and research goals extracted from unstructured LLM

responses. Both models are also advertised as reasoning-capable, an essential feature for multi-step

scientific synthesis.

The semantic search component is powered by the ORKG Ask API.
3

We evaluated the system across

eight configurations defined by a Cartesian product of two reasoning models (o3-mini and o3), two

synthesis depths (𝑑 ∈ {1, 4})—i.e., the number of recursive synthesis steps, where each step involves

one full query-response cycle, and two breadth values (𝑏 ∈ {1, 4})—i.e., the number of subqueries

issued per step. Each configuration generated 49 structured markdown reports saved with the filename

pattern: <index>_<model>_<engine>_d<depth>_b<breadth>.md. All the markdown reports are

available at https://github.com/sciknoworg/deep-research/tree/main/data/ecology-reports/orkg-ask.

4.2. Quantitative Evaluations

To compare DeepResearch outputs across settings, we align reports generated under different con-

figurations by their shared indices. Let 𝐺𝑖 and 𝐺𝑗 denote two configuration groups (e.g., different
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model-depth-breadth settings), each containing 50 reports indexed by question ID 𝑘. We define the

aligned subset of indices as: 𝐷𝑖𝑗 = { 𝑘 : 𝑘 exists in both 𝐺𝑖 and 𝐺𝑗}.

This ensures that for each 𝑘 ∈ 𝐷𝑖𝑗 , the same research question is compared under both configurations.

All similarity metrics are computed over these aligned report pairs and averaged across the set 𝐷𝑖𝑗 .

4.2.1. Metrics

We assess report similarity using three complementary metrics:

1. ROUGE-L F1. ROUGE-L is a lexical metric that measures the longest common subsequence (LCS)

between two texts. It reflects surface-level overlap in word order and phrasing. Given token sequences

𝐴 and 𝐵, with ℓ = LCS(𝐴,𝐵), the precision, recall, and F1 score are:

𝑃LCS =
ℓ

|𝐴|
, 𝑅LCS =

ℓ

|𝐵|
𝐹1LCS =

2𝑃LCS 𝑅LCS

𝑃LCS +𝑅LCS

.

We compute ROUGE-L using the rouge_score library with stemming enabled. While effective for

capturing surface similarity, ROUGE-L does not account for paraphrasing or semantic equivalence.

2. BERTScore (SciBERT F1). BERTScore compares token-level embeddings from a pre-trained

language model to measure semantic similarity. Using SciBERT, we split each report into chunks of

up to 510 tokens, ensuring compatibility with the model’s 512-token input limit. For each chunk pair

(𝑠𝑎, 𝑠𝑏), we compute cosine similarity-based precision, recall, and F1:

𝑃
chunk

=
1

|𝐴|

|𝐴|∑︁
𝑖=1

max
𝑗

cos(a𝑖,b𝑗), 𝑅
chunk

=
1

|𝐵|

|𝐵|∑︁
𝑗=1

max
𝑖

cos(a𝑖,b𝑗)

We then average chunk-level F1 scores across aligned reports to obtain document-level similarity. Unlike

ROUGE-L, BERTScore captures paraphrasing and semantic alignment even when wording differs.

3. Word Mover’s Distance (WMD). WMD computes the minimal cumulative distance required to

"transport" words from one document to another in embedding space. Each word is represented by a

SciBERT embedding h𝑤 , and distances are computed as 𝑑(𝑤,𝑤′) = 1− cos(h𝑤,h𝑤′). WMD solves the

following optimal transport problem:

WMD(𝐴,𝐵) = min
𝜋∈Π(𝐴,𝐵)

∑︁
𝑤∈𝐴

∑︁
𝑤′∈𝐵

𝜋(𝑤,𝑤′) 𝑑(𝑤,𝑤′),

where Π(𝐴,𝐵) denotes valid transport plans between the empirical word distributions of 𝐴 and 𝐵.

To match our similarity scale, we report 1 − WMD(𝐴,𝐵), where higher values indicate greater

similarity. Computation is performed using Gensim’s WmdSimilarity on precomputed SciBERT

embeddings.

Comparison: ROUGE-L emphasizes exact token sequence overlap, BERTScore captures contextual

semantic similarity via embedding proximity, and WMD quantifies semantic dissimilarity as the trans-

port cost between word embeddings. Together, these metrics offer a complementary, multi-faceted

perspective on report similarity.

4.2.2. Results

To address RQ1—How similar are the reports generated by DeepResearch across different depth and
breadth settings, using two variants of reasoning models, when evaluated with ROUGE (word-based) and
embedding-based semantic similarity metrics?—we present results in Figure 2. The figure contains three

8×8 heatmaps showing pairwise similarity between the four o3 configurations (rows/columns 1–4) and

the four o3-mini configurations (rows/columns 5–8). Each cell reports the average similarity across

aligned reports with the same index. Darker shading indicates stronger similarity (higher ROUGE-L or

BERTScore; lower WMD).



(a) ROUGE-L F1 (b) WMD (1 - distance) (c) BERTScore F1

Figure 2: RQ1: Similarity of reports generated by o3-mini and o3 across four depth-breadth settings.

Darker cells indicate higher similarity (ROUGE-L/BERTScore) or lower distance (WMD).

Self-consistency. In all three heatmaps, the main diagonal—where each configuration is compared

to itself—is the darkest, reflecting perfect alignment. ROUGE-L F1 and BERTScore F1 are both 1.0, and

WMD similarity is also 1.0 (i.e., WMD = 0). This confirms that the similarity metrics behave as expected

in the identity case.

Within-model consistency. The upper-left 4×4 block shows consistency across o3 configurations

with different depth and breadth settings. BERTScore values average around 0.56, WMD similarity

around 0.56, while ROUGE-L is lower, around 0.14. Similarly, the bottom-right 4×4 block for o3-mini
configurations shows even higher internal consistency: BERTScore averages around 0.61, WMD simi-

larity around 0.61, and ROUGE-L around 0.16.

The comparatively lower ROUGE-L scores are expected, as ROUGE evaluates surface-level token

overlap and does not account for paraphrasing or semantic equivalence. In contrast, BERTScore and

WMD rely on contextual embeddings, capturing semantic similarity even when lexical expressions

differ. These embedding-based metrics thus better reflect the meaning-preserving variations typical in

LLM-generated outputs.

Cross-model similarity. The off-diagonal blocks (rows 1–4 vs. columns 5–8 and vice versa),

representing comparisons across o3 and o3-mini, are visibly lighter. Average BERTScore drops to

approximately 0.54, WMD similarity to 0.54, and ROUGE-L to 0.12. Even the best-aligned configuration

pair—depth 4, breadth 4 for both models—exhibits weaker similarity than within-model comparisons.

Summary. These results indicate that both o3 and o3-mini produce internally consistent outputs

across different recursive configurations, with o3-mini showing slightly stronger stability. However,

alignment between the two models is consistently weaker, suggesting that model-specific generation

patterns persist despite identical prompts and retrieval settings. This highlights the influence of model

architecture on the structure and wording of scientific outputs.

4.3. Qualitative Evaluations

To systematically evaluate synthesis quality across multiple dimensions, we developed a scoring

framework. Our approach builds on existing frameworks for assessing scientific synthesis quality

[17, 18] while incorporating domain-specific considerations for ecological research.

4.3.1. Theoretical Foundation

Our quality assessment framework is motivated by three key principles from the literature on automated

research systems: (i) human alignment (Chain of Ideas [13]), emphasizing depth, breadth, and rigor;

(ii) iterative refinement (Nova [10], IdeaSynth [11]), highlighting sophisticated reasoning and broad

literature integration; and (iii) collaborative knowledge integration (VirSci [16]), assessing the ability to



draw connections across sources.

4.3.2. Metric Design

We assess the deep research generated report quality using six complementary metrics, selected to

balance ecological relevance, analytical depth, and scalability for automated evaluation. Each metric

targets a distinct quality axis, grounded in identifiable linguistic or structural signals and weighted

by domain relevance and signal reliability. Scores are normalized to the [0,1] range using empirical

thresholds from our 196-report dataset and aggregated via weighted sums reflecting their relative

importance. For each metric, we define the detection strategy, assumptions, normalization scheme, and

weight rationale, informed by curated vocabularies and empirical distributions.

Research Depth Parameter Assessment. Research depth quantifies the mechanistic sophistication

and analytical precision of synthesis outputs, distinguishing surface-level description from process-

level understanding. We define three key components: Mechanistic understanding is assessed via a

curated list of 15 ecology-specific process indicators (Appendix A), such as “feedback,” “nutrient cycling,”

and “trophic cascade.” Matches are counted via case-insensitive substring search. Causal reasoning
captures explicit cause-effect statements using predefined connectives (“because,” “due to”), result

indicators (“results in,” “induces”), and mechanistic verbs (“drives,” “regulates”). This reflects an LLM’s

capacity to reason about ecological processes. Temporal precision measures the proportion of specific

temporal references, such as quantified intervals (“within 6 months,” “every 3 years”) and dated events

(“1990–2020”), identified via regular expressions.

The combined score is:

𝑆_𝑑𝑒𝑝𝑡ℎ = 0.4 ·min

(︂
𝑀_𝑚𝑒𝑐ℎ

20
, 1

)︂
+ 0.3 ·min

(︂
𝑀_𝑐𝑎𝑢𝑠𝑎𝑙

10
, 1

)︂
+ 0.3 ·𝑀_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 (1)

Research Breadth Parameter Assessment. Breadth evaluates the diversity of evidence synthesized

across spatial, ecological, and methodological axes. It reflects generalizability and the capacity to identify

patterns across contexts. We compute five normalized sub-scores: Geographic coverage (𝐺𝑟𝑒𝑔𝑖𝑜𝑛𝑠): count

of unique biogeographic zones (e.g., “Tropical,” “Boreal”) from a list of 20. Intervention diversity (𝐼𝑡𝑦𝑝𝑒𝑠):

number of unique management practices matched to a taxonomy of 17 interventions. Biodiversity
dimensions (𝐷𝑑𝑖𝑚𝑠): presence of terms related to taxonomic, functional, phylogenetic, and spatial

diversity. Ecosystem services (𝐸𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠): matches against a vocabulary aligned with the Millennium

Ecosystem Assessment. Spatial scale (𝑆𝑠𝑐𝑎𝑙𝑒𝑠): presence of explicit scale terms (“local,” “regional,”

“continental”) and area measures.

Combined:

𝑆_𝑏𝑟𝑒𝑎𝑑𝑡ℎ =; 0.25 ·min

(︂
𝐺_𝑟𝑒𝑔𝑖𝑜𝑛𝑠

8
, 1

)︂
+ 0.25 ·min

(︂
𝐼_𝑡𝑦𝑝𝑒𝑠

12
, 1

)︂
+ 0.25 ·min

(︂
𝐷_𝑑𝑖𝑚𝑠

8
, 1

)︂
+ 0.15 ·min

(︂
𝐸_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

10
, 1

)︂
+ 0.10 ·min

(︂
𝑆_𝑠𝑐𝑎𝑙𝑒𝑠

6
, 1

)︂ (2)

Domain-Specific Quality Assessment. This ecology-specific dimension captures alignment with

pressing research themes: Conservation focus: frequency of conservation-related terms (“biodiversity,”

“restoration,” “habitat loss”). Climate relevance: mentions of climate-related terms across scales. Ecological
complexity: use of system-level terms (“synergistic,” “nonlinear,” “interconnected”).

Combined:

𝑆_𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 = 0.4 ·min

(︂
𝐶_𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

8
, 1

)︂
+0.3 ·min

(︂
𝐶_𝑐𝑙𝑖𝑚𝑎𝑡𝑒

6
, 1

)︂
+0.3 ·min

(︂
𝐸_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

5
, 1

)︂
(3)

Scientific Rigor Assessment. This metric assesses evidentiary and methodological integrity across

three axes: Statistical sophistication detects the use of inferential statistics and analysis techniques,

reflecting quantitative depth. Citation practices are evaluated by presence of parenthetical (e.g., “(Smith et

al., 2021)”) or narrative citations. Uncertainty acknowledgment rewards explicit discussion of limitations

(“unknown,” “limited evidence,” “unclear”).



Combined score:

𝑆_𝑟𝑖𝑔𝑜𝑟 = 0.4 ·min

(︂
𝑅_𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙

5
, 1

)︂
+0.4 ·min

(︂
𝐶_𝑓𝑜𝑟𝑚𝑎𝑙

20
, 1

)︂
+0.2 ·min

(︂
𝑈_𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑚𝑒𝑛𝑡

5
, 1

)︂
(4)

Innovation Capacity Assessment. We assess novelty using three linguistic signals: Speculative
statements use hedging and conjecture (“might,” “could,” “hypothetical”). Novelty indicators include

self-declared innovation terms (“novel,” “pioneering,” “emerging”). Gap identification detects explicit

acknowledgment of unanswered questions (“research gap,” “understudied”).

Combined:

𝑆_𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 = 0.4 ·min

(︂
𝐼_𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒

3
, 1

)︂
+0.3 ·min

(︂
𝐼_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠

3
, 1

)︂
+0.3 ·min

(︂
𝐺_𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ

3
, 1

)︂
(5)

Information Density and Taxonomic Precision. Information density reflects synthesis efficiency:

𝑆_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = min

(︂
𝑁_𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑊_𝑐𝑜𝑢𝑛𝑡/1000
· 1

50
, 1

)︂
(6)

Together, these dimensions enable a multifaceted, reproducible evaluation of synthesis quality

grounded in both ecological expertise and computational feasibility. To facilitate reproducibility,

we publicly release our qualitative evaluation pipeline and the accompanying taxonomies at https:

//github.com/sciknoworg/deep-research/blob/main/scripts/README.md.

4.3.3. Results

Analysis of 196 syntheses across 49 ecological questions shows that depth and breadth parameters

strongly shape synthesis quality, with clear implications for automated research system design.

Depth Parameter Effects. In addressing RQ2 on how depth and breadth parameters shape synthesis

quality and diversity, we first examine the role of depth in enhancing analytical sophistication. Increasing

depth parameters transforms synthesis from surface-level generalizations to mechanistic understanding.

Moving from d1 to d4 yields a 5.9-fold increase in source utilization (18.9 to 111.1 sources) without

increasing content length, enabling denser, more analytical outputs.

At low depth (d1), syntheses are descriptive but lack causal insight. For example, a grassland analysis

notes: “Extensification packages suppress herbage or milk output by 10–40%,” reporting outcomes

without explanation. In contrast, high-depth (d4) synthesis offers mechanistic accounts: “Nutrient

withdrawal shifts competitive hierarchies from fast-growing tall grasses to stress-tolerators by (i)

reducing soil NO
−
3 and NH

+
4 , (ii) decreasing leaf N content, and (iii) opening ground-layer light niches...”

— tracing clear ecological pathways and system dynamics.

Research depth is formally assessed via three components that capture analytical sophistication:

mechanistic understanding, causal reasoning, and temporal precision. Mechanistic understanding is

measured using a curated vocabulary of 15 ecology-specific terms (Appendix A) such as “feedback,”

“nutrient cycling,” and “energy flow,” detected via case-insensitive substring matching. Causal reasoning

is assessed through scientific connectives (“because,” “due to,” “leads to,” “triggers,” “regulates,” etc.),

identifying both simple and multi-step causal explanations. Temporal precision quantifies the ratio of

specific time references (e.g., “5–10 years,” “within 6 months”) to all temporal mentions, using regular

expressions to distinguish precise from vague durations.

Measured via Equation 1, empirical results reflect this assessment: though raw depth scores for d1

and d4 are similar (0.494 vs. 0.500), d4 outputs contain over three times more multi-step causal chains,

revealing deeper reasoning. Temporal specificity also improves: low-depth syntheses use vague terms

like “several years” or “long-term,” while d4 outputs report concrete thresholds (“5–6 years” for species

recovery, “≥10 years” for diversity lags). Although temporal precision scores remain close (0.583 for

𝑑1𝑏1 vs. 0.549 for 𝑑4𝑏4), this reflects the challenge of reconciling more diverse temporal information in

high-depth synthesis. The ability of d4 configurations to integrate broader evidence while maintaining

precision demonstrates robust synthesis capabilities under information load.

https://github.com/sciknoworg/deep-research/blob/main/scripts/README.md
https://github.com/sciknoworg/deep-research/blob/main/scripts/README.md


Breadth Parameter Effects. Breadth expansion shifts synthesis from localized analyses to globally

integrated perspectives. Moving from b1 to b4 results in a 5.8-fold increase in source utilization (19.2 to

110.8), demonstrating that breadth parameters expand diversity of evidence without inflating content

length. This shift manifests most clearly in geographic coverage. Low-breadth configurations (b1)

average 3.7 regions, typically focused on temperate zones in Europe and North America. In contrast,

b4 outputs integrate evidence from an average of 4.9 distinct regions across multiple continents—e.g.,

“North America, Europe, Asia, and Australia”—surfacing biogeographic variation in species response,

management effectiveness, and system constraints. Such contextualization enables nuanced recommen-

dations that are otherwise invisible in regionally constrained syntheses.

Methodological diversity also improves with breadth. Low-breadth syntheses average 2.6 intervention

types, often reflecting single-strategy evaluations. In contrast, high-breadth configurations incorporate

an average of 3.2 distinct approaches. For example, a b4 synthesis on Phragmites control evaluates

chemical (glyphosate, imazapyr), mechanical (mowing, excavation), biological (goat grazing), and

hydrological (salinity manipulation) methods. This comparative framing enhances decision support by

revealing trade-offs and synergies across intervention types.

Applying the breadth metric (Equation 2) reveals broader gains beyond geography and methodology.

High-breadth (d4_b4) syntheses exhibit stronger integration of biodiversity dimensions (e.g., combining

functional, phylogenetic, and spatial perspectives), more comprehensive treatment of ecosystem ser-

vices (including provisioning, regulating, and cultural functions), and finer resolution of spatial scale

considerations (e.g., from plot-level to continental). These collectively elevate the generalizability and

ecological realism of the synthesis.

Quantitatively, the breadth score rises from 0.376 (d4_b1) to 0.473 (d4_b4), affirming that breadth

enables systematic identification of cross-regional patterns while accounting for boundary conditions.

The increase reflects not just a higher number of sources but a richer, more multidimensional integration

of evidence, supporting more robust ecological inference and transferable insights for policy and practice.

Domain, Rigor, Innovation, and Density Quality Validation. Figure 3 presents a comprehensive

decomposition of quality improvements across all six dimensions, revealing how each component

responds to depth-breadth parameter configurations and demonstrating the empirical validation of our

multi-dimensional quality framework.

To address RQ3—whether high-parameter configurations enable domain-aware synthesis comparable

to expert-level integration—we analyzed performance across four advanced quality metrics: domain

specificity (𝑆𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙), scientific rigor (𝑆𝑟𝑖𝑔𝑜𝑟), innovation capacity (𝑆𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛), and information den-

sity (𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦). The findings support a clear pattern: high-parameter setups (notably d4_b4) consistently

outperform lower-depth/breadth configurations across all measures. Domain-specificity metrics reveal

that breadth-enhanced configurations (d1_b4, d4_b4) better capture conservation-oriented themes and

climate relevance, aligning with the inherently cross-scale nature of ecological policy and management.

For example, conservation term frequency rises to 9.33± 10.00 in d4_b4, compared to 8.67± 8.89 in

depth-focused d4_b1—consistent with the weighting of conservation and climate indicators in Equation 3.

Climate integration shows a 25% gain from d1_b1 to d4_b4, underscoring the role of parameter scaling

in cross-domain awareness. Interestingly, ecosystem service coverage peaks in d4_b1, suggesting that

depth facilitates mechanistic unpacking of service generation, while breadth ensures representational

completeness.

Rigorous synthesis practices also improve with parameter scaling. Statistical sophistication, a key

component of 𝑆𝑟𝑖𝑔𝑜𝑟 (Equation 4), increases from 1.02 to 1.20 across configurations, reflecting greater

incorporation of inferential analysis. Citation quality and uncertainty acknowledgment co-evolve, result-

ing in robust evidence presentation that mirrors academic standards. Innovation capacity (Equation 5)

benefits from enhanced parameterization through more frequent identification of knowledge gaps and

speculative framing—signals that often underpin novel research trajectories. The most pronounced

efficiency gain, however, lies in information density (Equation 6), which improves 14.9-fold from d1_b1

to d4_b4 despite only modest word count increases. This validates that high-parameter configurations

not only scale information volume but also preserve analytical quality and specificity. Taken together,

these results confirm that LLM-based systems, when carefully configured, can approximate expert-level



Figure 3: Decomposition of quality improvements across six key dimensions. Error bars represent

standard deviations across 49 ecological research questions. The domain-specific score shows strong perfor-

mance for comprehensive configurations (d4_b4: 0.9+), while information density remains the primary driver of

differentiation across configurations. Overall quality scores (composite of all dimensions): best configuration

d4_b4 achieved 0.577, with mean across all configurations of 0.511.

synthesis across domain, rigor, and innovation dimensions in ecology. A detailed qualitative analysis is

provided in Appendix B.

5. Conclusion and Future Work

In this work, we presented DeepResearch
Eco

, a recursive, agentic workflow for controllable scientific

synthesis, validated on 49 ecological research questions. Increasing depth and breadth parameters

improves analytical rigor, evidence diversity, and ecological specificity. For instance, in Question 8—“Is
there evidence that climate change and land use interact to alter biodiversity of grasslands?”—the d=1,

b=1 report offers a brief generalization, while the d=4, b=4 report integrates cross-regional evidence,

mechanistic pathways, and system feedbacks. Similarly, for Question 41—“What is the most common
effect of fertilization on grassland plant diversity?”—the d=1, b=1 report notes a general decline, whereas

the d=4, b=4 report details competitive shifts, functional group changes, and long-term nutrient effects.

These cases exemplify how DeepResearch enables structured, transparent, and expert-like synthesis

with tunable analytical control.

Future work will focus on evaluating DeepResearch across additional domains beyond ecology, such

as materials science and social science, to further demonstrate its generality and adaptability. We

also plan to address current limitations by implementing an interactive agent for researcher feedback

integration, enabling guided refinement across recursive steps. Support for multimodal synthesis—

including figures and tables—will be explored to enhance utility in data-rich fields. Finally, we envision

collaborative agentic workflows in which multiple agents co-explore subtopics or perspectives, enabling

distributed synthesis across teams or disciplines. These enhancements will reinforce our commitment

to scalable, human-aligned, and reproducible AI-assisted research.

https://github.com/sciknoworg/deep-research/blob/main/data/ecology-reports/orkg-ask/o3/8_o3_orkg_d1_b1.md
https://github.com/sciknoworg/deep-research/blob/main/data/ecology-reports/orkg-ask/o3/8_o3_orkg_d1_b1.md
https://github.com/sciknoworg/deep-research/blob/main/data/ecology-reports/orkg-ask/o3/8_o3_orkg_d4_b4.md
https://github.com/sciknoworg/deep-research/blob/main/data/ecology-reports/orkg-ask/o3/41_o3_orkg_d1_b1.md
https://github.com/sciknoworg/deep-research/blob/main/data/ecology-reports/orkg-ask/o3/41_o3_orkg_d4_b4.md
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A. Domain-Specific Vocabulary for Quality Assessment

The following vocabulary was used for automated detection of ecology-specific concepts in our quality

assessment framework. Terms were selected based on frequency analysis of high-impact ecology papers,

expert consultation, and validation against ecology textbook indices.

A.1. Mechanistic Terms

"mechanism", "pathway", "feedback", "trophic", "nutrient cycling",
"energy flow", "predation", "competition", "mutualism", "succession",
"disturbance", "resilience", "adaptation", "selection pressure", "gene
flow", "decomposition", "mineralization", "nitrification", "photosynthesis",
"respiration", "herbivory", "facilitation", "inhibition"

A.2. Management Interventions

"fertilizer", "stocking", "mowing", "grazing", "irrigation", "organic",
"controlled burn", "restoration", "reforestation", "afforestation",
"rewilding", "habitat creation", "invasive species control", "predator
control", "captive breeding", "protected area", "translocation"

The complete vocabulary is available in machine-readable JSON format at: https://github.com/

sciknoworg/deep-research/blob/main/scripts/vocab/ecology_dictionaries.json

B. Detailed Qualitative Analysis

B.1. Depth Parameter Effects

Analysis of depth parameter variation reveals a fundamental transition in analytical sophistication that

transcends simple quantitative scaling. Enhancement from d1 to d4 produces a 5.9-fold increase in

average source utilization (from 18.9 to 111.1 sources) while maintaining comparable content length, in-

dicating that depth parameters enable qualitatively different synthesis modes characterized by enhanced

analytical penetration rather than mere scope expansion.
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The transformation in mechanistic understanding proves most evident when comparing synthesis

outputs across depth levels. Low-depth configurations (d1) typically provide broad generalizations

with minimal mechanistic detail, employing descriptive language that reports empirical relationships

without explaining underlying processes. A representative d1 grassland analysis exemplifies this

pattern: "Extensification packages suppress herbage or milk output by 10-40%." While this statement

provides useful quantitative information about management outcomes, it offers no insight into the

causal pathways or ecological mechanisms driving these effects.

In stark contrast, high-depth configurations (d4) deliver comprehensive mechanistic frameworks that

explicitly trace causal sequences from initial interventions through intermediate processes to ultimate

outcomes. The same grassland management question addressed at d4 provides detailed process-level

explanations: “Nutrient withdrawal shifts competitive hierarchies from fast-growing tall grasses toward

stress-tolerators by: (i) reducing soil NO
−
3 and NH

+
4 availability, (ii) decreasing leaf N content and

photosynthetic capacity in dominants, (iii) opening ground-layer light niches through reduced canopy

closure, enabling germination of small-seeded forbs.” This progression from empirical observation to

mechanistic understanding represents a qualitative shift in synthesis capability, with d4 documents

consistently capturing biochemical pathways, ecological feedbacks, and system dynamics that remain

entirely implicit or absent in lower-depth analyses.

Temporal precision emerges as another critical differentiator across depth levels. Low-depth syntheses

employ vague temporal descriptors such as "several years," "long-term," or "historically," providing little

guidance for practical implementation or hypothesis testing. High-depth configurations transform

this temporal vagueness into precise quantitative thresholds essential for ecological management and

prediction. D4 syntheses consistently specify exact timeframes: species richness recovery occurs within

"5-6 years," functional diversity lags require "≥10 years," and diversity-productivity trade-offs emerge at

“ca. 18–22 years.” This precision extends beyond simple duration reporting to include process-specific

temporal sequences, seasonal timing requirements, and critical intervention windows.

The apparent stability in temporal precision metrics (0.583 for 𝑑1𝑏1 versus 0.549 for 𝑑4𝑏4, as measured

by the temporal component in Equation 1) initially seems counterintuitive but reflects a phenomenon: as

source integration increases 21-fold, maintaining comparable precision becomes increasingly challeng-

ing due to the need to reconcile conflicting temporal information across diverse studies. This pattern

indicates that high-depth configurations successfully integrate temporal information from expanded

source sets while preserving precision, demonstrating robust temporal synthesis capabilities under high

information loads.

Causal reasoning sophistication shows marked enhancement with depth parameter increases. While

d1 and d4 configurations achieve similar raw depth scores (0.494 versus 0.500), calculated using Equation

1), qualitative analysis reveals that d4 documents contain 3.2 times more multi-step causal sequences,

linking distal causes through proximate mechanisms to ultimate ecological outcomes. This multiplication

of causal chains indicates not merely more causal statements but fundamentally more sophisticated

causal reasoning that captures the complex, indirect pathways characteristic of ecological systems. The

depth enhancement enables synthesis outputs to move beyond simple cause-effect pairs to construct

integrated causal networks that better represent ecological reality.

B.2. Breadth Parameter Effects

Breadth parameter drives a systematic expansion from geographically and methodologically constrained

analyses to globally comprehensive syntheses that capture the full spectrum of ecological variation.

Quantitative analysis shows that progression from b1 to b4 produces a 5.8-fold increase in source

utilization (from 19.2 to 110.8 sources on average) while maintaining proportional content expansion,

indicating that breadth parameters facilitate the integration of diverse evidence rather than superficial

coverage expansion.

Geographic coverage transformation represents the most immediately evident manifestation of

breadth enhancement. Low-breadth configurations (b1) typically focus on specific biogeographic

regions, averaging 3.7 geographic regions, with a heavy emphasis on well-studied European or North



American temperate systems. These syntheses often present detailed insights into regional management

practices but offer limited applicability beyond their focal geography. The concentration on familiar

systems reflects both source availability bias and the computational constraints of limited breadth

parameters that prevent comprehensive geographic integration.

High-breadth configurations (b4) achieve substantially enhanced global perspective, with geographic

coverage expanding to an average of 4.9 regions while systematically incorporating evidence from

multiple continents. A representative b4 synthesis demonstrates this transformation by integrating

findings from "North America, Europe, Asia, and Australia," explicitly recognizing biogeographic

variation in species responses, management effectiveness, and ecological constraints. This expanded

geographic scope enables identification of context-dependencies and boundary conditions that remain

entirely invisible in regionally-focused analyses, providing managers with nuanced understanding of

when and where specific interventions prove effective.

Methodological diversity shows parallel enhancement with breadth parameters. Low-breadth synthe-

ses average only 2.6 intervention types, typically focusing on single management approaches or closely

related intervention clusters. This methodological constraint limits the ability to compare alternative

strategies or identify optimal intervention combinations. High-breadth configurations expand interven-

tion coverage to 3.2 categories on average, systematically integrating diverse management philosophies

and implementation approaches. A representative b4 Phragmites management synthesis exemplifies

this comprehensiveness by evaluating "chemical (glyphosate, imazapyr), mechanical (mowing, excava-

tion), biological (goat grazing), and hydrological (salinity manipulation) control methods," providing

practitioners with comparative assessment across the intervention spectrum rather than advocacy for

single approaches.

The breadth enhancement particularly influences synthesis generalizability through systematic

identification of context-dependencies and biogeographic patterns. Higher breadth configurations

consistently achieve superior breadth scores (0.473 for d4_b4 versus 0.376 for d4_b1, calculated using

Equation 2), reflecting enhanced capacity to identify cross-regional patterns while explicitly acknowl-

edging boundary conditions and regional variations. This dual capability—recognizing both generalities

and exceptions—proves essential for developing robust management recommendations that maintain

validity across diverse implementation contexts.

B.3. Source Utilization and Synthesis Efficiency

The relationship between parameter configuration and synthesis capability follows a precise power law

(𝑅2 = 0.97), revealing systematic scaling properties that transcend simple linear effects. Our analysis

of 196 synthesis documents demonstrates that maximum parameter configurations (d4_b4) achieve a

21.2-fold increase in source utilization compared to baseline (d1_b1), with mean source counts escalating

from 9.1± 1.7 to 192.9± 31.2 sources per synthesis. This exponential scaling pattern indicates that

higher parameter configurations enable qualitatively different modes of information integration.

The efficiency implications prove particularly striking when examining the relationship between

source utilization and content generation. While source utilization increases 21.2-fold, word count

expands only 41.5% (from 1,579 to 2,234 words), yielding a dramatic 14.9-fold enhancement in information

density measured as sources per 1,000 words (Equation 6). This disproportionate scaling demonstrates

that parameter enhancement drives analytical depth rather than content inflation, with high-parameter

configurations achieving superior knowledge integration while maintaining proportional document

length.

Three critical characteristics define this scaling behavior. First, the relationship exhibits consistency

across ecological domains, with coefficients of variation remaining stable (0.16-0.19) across all 50 research

questions spanning grassland management, invasive species control, and biodiversity conservation.

This domain-independent scaling suggests that the observed patterns reflect fundamental properties of

the synthesis system rather than artifacts of particular research areas. Second, the scaling demonstrates

clear threshold effects, with minimal improvements occurring until both parameters exceed moderate

values (𝑑 ≥ 2, 𝑏 ≥ 2), after which dramatic gains materialize. Overall quality scores increase by only



Figure 4: Individual parameter effects on source utilization showing equivalent depth and breadth
contributions. Bar chart comparing averaged effects of depth and breadth parameters independently: Depth

1 (18.9 sources), Depth 4 (111.1 sources), Breadth 1 (19.2 sources), and Breadth 4 (110.8 sources). Both depth

(5.9-fold increase) and breadth (5.8-fold increase) parameters demonstrate nearly identical individual effects when

averaged across the complementary parameter. This equivalence indicates that depth and breadth contribute

equally to synthesis capability when considered independently, validating the balanced parameter design.

The synergistic combination of both parameters (d4_b4: 192.9 sources) exceeds the sum of individual effects,

demonstrating super-linear scaling behavior.

0.8% from d1_b1 to intermediate configurations but jump 16.1% from intermediate to d4_b4, indicating

discrete capability transitions rather than smooth improvement curves. Third, the super-linear efficiency

indicates that computational investment yields disproportionate returns in synthesis quality, altering

the cost-benefit calculations for deploying automated research systems (Figure 5).

Figure 5: Exponential scaling of synthesis capabilities with depth-breadth parameters. (Left) Source

utilization demonstrates super-linear scaling from 9.1± 1.7 sources (d1_b1) to 192.9± 31.2 sources (d4_b4),

representing a 21.2-fold increase. (Center) Word count shows modest 41.5% increase (1,579 to 2,234 words),

indicating enhanced information integration rather than verbosity. (Right) Information density (sources per

1,000 words) exhibits 14.9-fold improvement, demonstrating that higher parameter configurations achieve

fundamentally superior synthesis efficiency. Error bars represent standard deviations across 49 ecological

research questions (n=196 documents total).



Configuration Mean Sources Std Dev Min Max

d1_b1 9.1 1.7 0 10

d1_b4 28.7 7.0 10 40

d4_b1 29.3 4.7 18 39

d4_b4 192.9 31.2 93 244

Table 1
Source utilization statistics across 49 ecological questions (n=196 documents)

B.4. Domain-Specific Quality Validation

Beyond general synthesis metrics, our analysis reveals systematic patterns in ecology-specific qual-

ity dimensions that validate the system’s domain expertise and demonstrate parameter-dependent

specialization capabilities. These domain-specific assessments provide critical evidence that the sys-

tem achieves not merely generic text synthesis but ecological knowledge integration that scales with

computational investment.

Conservation focus (a component of 𝑆𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 in Equation 3) demonstrates clear parameter-

dependent variation, with breadth-enhanced configurations achieving superior performance (d1_b4:

9.42± 9.73; d4_b4: 9.33± 10.00) compared to depth-focused alternatives (d4_b1: 8.67± 8.89). This

pattern reflects the inherently multi-scale, multi-stakeholder nature of conservation challenges that

require integration of diverse management approaches, regional conservation strategies, and cross-

jurisdictional policy frameworks. The superior performance of breadth-enhanced configurations aligns

with conservation biology’s need to synthesize evidence across geographic regions, taxonomic groups,

and intervention strategies to develop effective preservation strategies.

Climate relevance (another component of 𝑆𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 in Equation 3) exhibits progressive enhancement

with parameter optimization, increasing systematically from 5.88± 6.46 (d1_b1) to 7.33± 7.73 (d4_b4),

representing a 25% improvement in climate integration capability. This enhancement transcends simple

keyword counting to demonstrate cross-domain synthesis, as high-parameter configurations success-

fully identify and integrate climate considerations across diverse research contexts. The progressive

improvement validates that parameter enhancement enables deeper integration of specialized research

domains.

Ecosystem services coverage reveals nuanced patterns that illuminate the differential effects of

depth versus breadth parameters. Coverage ranges from 1.32 to 1.49 across configurations, with depth-

enhanced configurations achieving optimal performance (d4_b1: 1.49± 1.40). The finding suggests

that while breadth helps identify diverse services across systems, depth enables understanding of the

mechanisms underlying service generation.

Statistical sophistication (a key component of 𝑆𝑟𝑖𝑔𝑜𝑟 in Equation 4) shows progressive enhancement

across parameter configurations (1.02 to 1.20), with d4_b4 achieving optimal integration of quantitative

research methodologies. This improvement reflects not merely increased detection of statistical terms

but enhanced capacity to synthesize quantitative findings across vastly expanded literature sets. The 53%
increase in quantitative information density (related to 𝑆𝑑𝑒𝑛𝑠𝑖𝑡𝑦 in Equation 6) from d1_b1 (12.16±9.05)

to d4_b4 (18.55± 9.43) demonstrates the system’s enhanced content analysis capabilities that emerge

under high-parameter conditions, enabling the system to identify, extract, and integrate numerical

findings that would be overlooked by simpler synthesis approaches.

Taxonomic precision emerges as the most distinctive quality indicator, with d4_b4 configurations

achieving perfect performance (1.0± 0.0) compared to variable results in other configurations (0.47–

0.53). This improvement reflects the system’s enhanced capacity to correctly identify and reference

specific taxonomic entities when processing comprehensive literature sets. The pattern suggests that

taxonomic accuracy benefits from the combination of broad geographic coverage (exposing the system

to diverse taxa) and analytical processing (enabling correct taxonomic placement and nomenclature).

Ecological complexity metrics demonstrate stability across parameter configurations despite expo-

nentially increasing source loads, with d4_b4 achieving the highest score (1.22± 1.36) while processing

21.2-fold more sources than the baseline. This maintained performance under information loads vali-



dates the system’s capacity for knowledge integration at scale, suggesting that parameter enhancement

enables not just broader coverage but sustained analytical depth even as information complexity

increases.

As illustrated in Figure 3, the overall quality score progression from 0.405 to 0.478 across configurations

demonstrates consistent enhancement with parameter increases, following a logarithmic improvement

pattern with diminishing returns. The d4_b4 configuration achieves an 18% quality improvement over

d1_b1, providing empirical justification for the 21.2-fold increase in computational requirements. This

cost-benefit relationship, while showing diminishing returns, still validates high-parameter deployment

for applications demanding comprehensive, high-quality synthesis outputs, particularly in domains

where synthesis quality directly impacts conservation outcomes or policy decisions (Figure 6).

The practical implications of these scaling relationships become clear when examining cost-benefit

trade-offs (Figure 6), which reveals that optimal configuration choice depends critically on application

requirements and resource constraints.

Figure 6: Configuration optimization analysis showing cost-benefit trade-offs and efficiency frontiers.
Four-panel analysis of parameter configuration performance: (A) Quality vs. cost trade-off using source count

as computational cost proxy, revealing d4_b4’s superior quality despite highest resource requirements; (B)

Quality efficiency (quality per source) showing d1_b1’s highest efficiency for resource-constrained applications;

(C) Marginal quality improvement relative to baseline (d1_b1), demonstrating diminishing returns with d4_b4

providing 18% quality improvement; (D) Composite ranking combining quality (70%) and efficiency (30%) weights

to identify optimal configurations for different use cases. Analysis based on 196 documents across 49 ecological

research questions, providing empirical foundation for resource allocation decisions.
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