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Abstract  26 

1. Declines in insect abundance are a cause for concern, with potential downstream 27 

impacts on the function of ecosystems. Insects are key food resources for 28 

insectivorous vertebrates, with evidence that declines in these species could be 29 

driven by changing insect abundance.  30 

2. Quantifying the direct effect of insect abundance on vertebrate population dynamics 31 

is challenging especially at large spatial scales (e.g. regional-to-national scales) due 32 

to data limitations, and because correlations between population dynamics can result 33 

from shared responses to environmental variation. 34 

3. We provide a comprehensive assessment of the role of insect abundance on the 35 

dynamics of 10 insectivores (five birds and five bats) within the United Kingdom, by 36 

assembling and pairing insect and vertebrate abundance data at three spatial 37 

resolutions (100, 50, 10km) utilising several citizen science monitoring programmes.  38 

4. To address the challenges of quantifying direct effects, we use a multiple 39 

specification approach combining: 1) association, 2) prediction, and 3) causal 40 

inference.  41 

5. We found evidence of overall declines for all bird species evaluated and for nearly all 42 

indices of insect food availability, though none of the bat species tested showed 43 

evidence of overall decline. Despite indices of both insect and bird abundance 44 

declining, declines did not always co-occur spatially. We also found limited decisive 45 

evidence that insect change was currently driving insectivore population change, 46 

identifying only moderate evidence of links between both blue tit and great tit and 47 

moth abundance, and grey partridge and Diptera abundance. 48 

6. Our results suggest that for most insectivores assessed, reductions in insect food do 49 

not appear to be a primary cause of declines and that both insects and insectivores 50 

may be impacted by several (non-overlapping) factors associated with environmental 51 
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change. However, we discuss the challenges and limitations of assessing direct 52 

impacts of insect declines from observational monitoring data.  53 

 54 
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Introduction 71 

There has been recent concern over insect declines (Hallmann et al., 2017; Wagner, 72 

Grames, et al., 2021; Warren et al., 2021). While measuring the extent of the declines is 73 

subject to methodological challenges (Didham et al., 2020; Müller et al., 2023), general 74 

surveys show sustained declines on average (Wagner, Grames, et al., 2021), though with 75 

variation between taxa and across different habitats (Hallmann et al., 2020; Powell et al., 76 

2023; Wagner, Fox, et al., 2021). Loss of insect biodiversity is a concern in itself (Clayton, 77 

2003; Wilson, 1986), but the necessity of understanding the causes and consequences of 78 

insect declines is underscored by the wide array of ecosystem functions and services insects 79 

provide (Forister et al., 2019; Goulson, 2019; van der Sluijs, 2020). One major issue relates 80 

to the importance of insects in food webs. As insects are important dietary components for 81 

many vertebrates, declines in insects could have knock-on repercussions on population 82 

dynamics and ecological function. There is some evidence insect decline may be impacting 83 

insectivorous birds (Bowler et al., 2019; Hallmann et al., 2014; Stanton et al., 2018) at least 84 

in specific habitats (e.g. farmland), but shared population responses to environmental 85 

pressures cannot be ruled out (Pearce-Higgins & Morris, 2023). 86 

The role of insect change in insectivore population trends can be assessed through either 87 

indirect or direct approaches. Indirect approaches assess the impacts of drivers of change 88 

where the effects are expected to be partially or fully mediated through changes to insect 89 

abundance. Hallmann et al (2014), for example, found that the quantity of pesticide used in 90 

an area was negatively associated with bird population trends, suggesting a possible impact 91 

of insect abundance change on insectivores, assuming insects rather than birds are most 92 

affected by pesticides. Similarly, Rigal et al (2023) linked reduced European bird populations 93 

to agricultural intensification measured through pesticide and fertiliser use. Finally, 94 

comparisons of the trends of species more reliant on insects relative to those utilising a 95 

greater diversity of food sources, suggests declines in insectivorous species could be driven 96 

by insect abundance (Bowler et al., 2019). This indirect approach captures the ‘total’ effect of 97 
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such drivers, including impacts on insects, but we cannot easily separate shared responses 98 

to environmental challenges from direct effects of insect change. For example, changing 99 

insect abundance is just one of a suite of factors associated with agricultural intensification 100 

and a recent meta-analysis showed neonicotinoid pesticides have direct impacts on birds 101 

independent of their effects on insect abundance (Molenaar et al., 2024).  102 

Another approach is to use insect population data to directly assess the effect of insect 103 

abundance change on insectivores. However, coextensive population data from insects and 104 

insectivores are limited, making links between insects and insectivore population changes 105 

challenging to test. One approach to tackle this constraint is to combine multiple smaller-106 

scale studies through synthesis and meta-analysis (Grames et al., 2023), although here 107 

inference is necessarily limited to the species-interactions, locations, and times that have 108 

been relatively well studied. Alternatively, recent efforts show there is potential to estimate 109 

links between insects and insectivores by utilising citizen science monitoring data from 110 

standardised recording schemes (Evans et al., 2024; Martay et al., 2023; Yazdanian et al., 111 

2024). While each such scheme targets different taxa, the substantial spatial and temporal 112 

replication of some schemes offers the potential to tie together local populations of insects 113 

and insectivores to assess direct effects of insect change at regional-to-national scales.  114 

Utilizing national-scale monitoring data, however, brings additional challenges regarding 115 

measurement and inference. At the local scale, abundance will be measured with some error 116 

and this compounds when tying together monitoring schemes from different locations and 117 

when the most relevant life-stage is not recorded (e.g. if adult insects are recorded while the 118 

bird species in question mainly predates insect larvae). There are also several decision 119 

points when pairing and aggregating insect and insectivore data. One consideration is 120 

spatial scale, for example foraging behaviour may influence the scale at which effects are 121 

detected, as mobile insectivores may be able to overcome local reductions in insect 122 

abundance by foraging over greater distances (Oliver et al., 2010). This may result in 123 

correlations that are weaker at the local scale and stronger at a regional scale. However, 124 
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aggregating data across different scales can also have non-trivial impacts on signal-to-noise 125 

ratios and statistical power. Similarly, insectivores are likely to eat multiple insect species, 126 

therefore, there is a need to generate appropriate indices of overall food abundance from 127 

species-level data. Such indices could be aggregated under different weighting schemes 128 

(i.e. varying species importance) and with different units (e.g. abundance, biomass).  129 

A major inferential challenge when using national-scale monitoring data is confounding 130 

effects, as correlated population fluctuations between insects and insectivores may result 131 

from shared responses to changing environmental variables (e.g. weather, habitat or land 132 

cover change). Omitting, or lacking control for such factors, can bias estimates of the role of 133 

insects, potentially either over or underestimating their impact. Additionally, even if direct 134 

effects are present, tightly coupled population dynamics between predators and prey can 135 

result in positive, negative, or zero correlations in abundances over time (Sugihara et al., 136 

2012), resulting in shifting variable importance in a linear statistical analysis.  137 

These issue around complex causal structures, confounding, data quality, and model 138 

specifications risk incurring both Type I and Type II errors, as, 1) we may falsely identify a 139 

link between insects and insectivore dynamics that could be due to noise or confounding 140 

variables, particularly shared responses to environmental variation; or, 2) we may fail to 141 

detect a link when there is one, due to measurement error (which will bias coefficients 142 

towards zero), improper controls, or model specifications that are unable to capture dynamic 143 

features. 144 

Given the challenges both in terms of varying data quality and causal uncertainty, we think it 145 

is useful to analyse the role of insects on insectivore dynamics through a combination of 146 

approaches rather than any single analysis, especially given that researchers can generate 147 

different conclusions using the same data (Gould et al., 2023). We take inspiration from 148 

specification approaches (Simonsohn et al., 2019) by providing several tests evaluating links 149 

between insects and insectivores.  150 
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Our approach is to follow simple associative tests – which can help identify basic patterns in 151 

the data – to non-linear predictive approaches, useful for capturing associations that linear 152 

methods may be unable to identify, before using linear ‘causal inference’ models to help 153 

account for confounding. 154 

The associative tests evaluate basic patterns between the dynamics of the insects and the 155 

insectivores i.e. are the directions of long-term population trends similar across space? 156 

While any correlations between the trends could obviously not be considered causal, they 157 

are still informative. For example, if on both insectivores and insects are declining, but the 158 

declines are in different locations then we can lower our confidence that insect declines are 159 

driving the insectivore declines. Therefore, while the below approaches provide better 160 

control for confounding, they might obscure these basic patterns (particularly after controlling 161 

for variation associated with site, year, or spatial factors).  162 

Next, we use Empirical Dynamic Modeling (EDM) to test if insect abundances can predict 163 

insectivore dynamics (i.e. Granger Causality; Granger, 1969). This approach, while not free 164 

from spurious associations due to confounding, can capture temporal lags in associations 165 

and shifting correlations due to coupled dynamics that can be missed in linear statistical 166 

approaches. For example, if this approach showed that insects were highly predictive of 167 

insectivore dynamics, but linear approaches found no effect, then it may provide grounds to 168 

explore factors such as tightly coupled population dynamics (i.e. top-down and bottom-up 169 

controls), or lagged effects, rather than concluding there is no evidence for insect impacts 170 

and insectivore declines. 171 

Finally, we apply several linear ‘causal inference’ approaches that, through different means, 172 

aim to robustly control for the cofounding effects of potential static (e.g. habitat quality) and 173 

dynamic factors (e.g. shared responses to weather) that can cause mirage associations 174 

between insect and insectivore dynamics. The fixed-effects panel estimator models used are 175 

designed to minimize the risk of Type I errors by accounting for unobserved heterogeneity 176 

and correlated external drivers. However, increased control comes with a trade-off in 177 
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interpretability and a potential increased risk for Type II errors for certain specifications of 178 

these models. 179 

Using our specification approach, and assessing evidence holistically across different 180 

methods, we evaluate evidence for the role of changing insect abundance in insectivore 181 

decline for several insect groups and 10 insectivorous vertebrate species. Specifically, we 182 

ask three main questions: 1) are insect and insectivores long-term trends and interannual 183 

changes correlated across space? 2) Does information on insect abundance predict 184 

insectivore abundance change? 3) After controlling for shared environmental factors, is there 185 

evidence for a direct effect of insects on insectivore dynamics?  186 

 187 

Methods  188 

Insectivore data  189 

Data for insectivores were derived from the National Bat Monitoring Programme (NBMP; 190 

https://www.bats.org.uk/our-work/national-bat-monitoring-programme, Barlow et al., 2015) 191 

and the Breeding Bird Survey (BBS; https://www.bto.org/our-science/projects/breeding-bird-192 

survey, Massimino et al., 2025).  193 

For the BBS, volunteers walk two transects across a 1km square twice a year during the bird 194 

breeding season with observations organised into four distance categories (0–25, 25–100, 195 

>100 m and flying over). To generate indices of relative local abundance, we summed 196 

observations from all categories (other than those ‘flying over’, as these birds may not be 197 

members of the local breeding population) and took the maximum number observed as the 198 

index of abundance. We targeted five insectivorous species that occupy a range of habitats 199 

and which specialise on different insect groups: great tit (Parus major), blue tit (Cyanistes 200 

caeruleus), grey partridge (Perdix perdix), skylark (Alauda arvensis), and corn bunting 201 

https://www.bats.org.uk/our-work/national-bat-monitoring-programme
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(Emberiza calandra). For the skylark, we retained ‘flying over’ counts as skylarks sing 202 

directly over their breeding territories. 203 

For bats we used relative abundance data from the NBMP Field and Waterway Surveys. The 204 

Field Survey captures the number of ‘passes’ by common and soprano pipistrelle 205 

(Pipistrellus pipistrellus, P. pygmaeus) at point counts along a field transect, and by noctule 206 

(Nyctalus noctule), and serotine (Eptesicus serotinus) along the walked section between 207 

each point. The Waterway Survey captures the number of Daubenton’s bat (Myotis 208 

daubentonii) passes at point counts along a transect adjacent to a waterway. For both 209 

schemes, we generated relative indices of site-level abundance by taking the maximum 210 

number of passes for a given visit (summed across transect section). We additionally only 211 

used data from completed transects and removed sites with only zero counts (i.e. the 212 

species never occurred). One additional challenge with these data is over-dispersion in 213 

passes due to the potential for counting the same individuals more than once. Previous 214 

approaches have circumvented such issues by using alternative measures of abundance 215 

such as the number of transect sections the bats were found to occupy (Barlow et al., 2015). 216 

However, this approach removes information and adds an upper bound to the index. As we 217 

were interested in indices of relative abundance, we treated the potential for over-dispersion 218 

as a source of additional noise that we expected to be consistent across years, but we note 219 

that the bat indices are likely to have more noise relative to our bird and insect indices.  220 

Insect data 221 

We assembled data from four insect monitoring programmes that provide indices of relative 222 

abundance for moths, butterflies, freshwater invertebrates, and carabid beetles. Schemes for 223 

butterflies, moths, and freshwater invertebrates provide a relatively high spatial coverage at 224 

either the country or national level (England), whereas data for the beetles were available for 225 

12 sites. We derived indices at the order level for all groups except carabids which are 226 

necessarily at the family level, and we kept moths and butterflies separate as they are 227 
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recorded in different schemes. We choose to use combined indices at the order and family 228 

level to constrain the already extensive analysis, but also because insectivores are expected 229 

to eat a variety of insect prey within an order and previous research indicates a signal of 230 

insect abundance on insectivore dynamics at the order level (Evans et al., 2024) or with 231 

combined insect indices (Martay et al., 2023). A combined index might be biased towards 232 

more detectable rather than abundant species, but there was not sufficient information on 233 

inter-specific variation in detectability to control for such effects across our insect taxa.  234 

Data on moth abundance were derived from the Rothamsted Insect Survey light-trap 235 

network (https://www.rothamsted.ac.uk/national-capability/the-insect-survey). The traps 236 

currently operate nightly at approximately 80 sites. For a local index of population 237 

abundance we used the site-level indices produced by Harrower et al (2020) covering the 238 

period 1968–2017. These data comprise species-level indices of abundance that we 239 

subsequently converted into order level indices by summing the relevant species level 240 

indices for each site and year. 241 

The butterfly indices were derived from the UKBMS 2019 site level indices  (Botham et al., 242 

2020). These indices are measures of relative abundance calculated using standardised 243 

methods from the data collected in the UK Butterfly Monitoring Scheme (https://ukbms.org/; 244 

Dennis et al., 2016) spanning the period 1976-2019.  245 

Abundance data for freshwater invertebrates were extracted from the Environment Agency's 246 

ecological monitoring database which covers rivers in England (Environment Agency, 247 

2020a). We used the pre-processing applied by Powell et al (2023)  to derive indices of local 248 

abundance by summing the abundances derived from 3-min kick-samples.  249 

Data for carabid beetles were derived from carabid beetle surveys undertaken at the 250 

terrestrial sites of the Environmental Change Network (Rennie, 2017). The surveys consist 251 

of standardised deployment of pitfall traps at twelve sites undertaken throughout the year 252 

across the period 1992-2015. Unlike the other insect data here we derived our own indices 253 
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by estimating fixed effects of yearly annual abundance. Details of our approach are 254 

presented in the supplementary materials.  255 

Weather data 256 

For comparisons of the predictive role of insects relative to weather, we used the HadUK 257 

gridded 5km observations (Met Office et al., 2023) which provide observations of annual and 258 

seasonal mean temperatures and total precipitation at the 5km scale 259 

(https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/overview). 260 

We averaged these values to scale to relevant grid sizes (see below). 261 

Pairing insects and insectivores 262 

To select the candidate insect food source(s) we used a combination of expert opinion and 263 

literature review. Our approach was to fill matrices of potential food sources (insectivores-by- 264 

insect) using three categories: 1) insect taxon is a primary food source, 2) insect taxon is a 265 

secondary food source, or, 3) limited or no evidence of the insect taxon as a food source. 266 

The matrices were at the level of insect families nested within orders. The categorisation for 267 

the birds were undertaken by a taxon expert (anonymised) supported by the relevant 268 

literature. For the bats, the importance categories were conducted by anonymised informed 269 

by a rapid review of the diet literature for bats. The matrices and references supporting the 270 

assessments are presented in the code and data supplement (10.5281/zenodo.15037980).  271 

After categorising food importance for our 10 species, we cross-referenced the selections 272 

with the insect data aiming to identify one or two primary candidates for the analysis. 273 

Occasionally, a key resource was not tested due to data limitations. For example, diet 274 

studies for noctule and serotine bats in the UK highlight Scarabaeoidea as a key resource, 275 

however, we did not have data for this beetle family. Similarly, carabid beetles are taken by 276 

grey partridge, however we had insufficient overlap between the data sets to test 277 

associations. For Diptera (true flies), we only utilised data for aquatic species (i.e. aquatic 278 

larvae), though we note most species will be primarily feeding on the adults.  279 

https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/overview
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Our selections are as follows, we paired blue tit and great tit with moths, corn bunting with 280 

moths and butterflies, skylark with Carabidae, and grey partridge with aquatic Diptera. For 281 

bats, we tested common and soprano pipistrelle with aquatic Diptera, noctule with aquatic 282 

Diptera and moths, serotine with aquatic Diptera and moths, and Daubenton’s bat with 283 

aquatic Diptera. 284 

Aggregating and pairing by grid squares 285 

To combine and pair insect, insectivore, and weather data, we used a grid-based approach 286 

using the Ordnance Survey national grid reference system. To generate grid level indices, 287 

we averaged, for each year, the data for each insect, insectivore, and weather index at three 288 

scales 100km, 50km and 10km grid squares. This resulted in time series of relative 289 

abundance for each taxon at the different spatial aggregations. Insect-insectivore time series 290 

where then paired within each grid square to test for an impact of insect abundance on 291 

insectivore dynamics (Figure 1).  292 

Our grid-based approach is one of several potential methods for linking proximate surveying 293 

sites from the different monitoring schemes. We favoured this approach for several reasons. 294 

First, it provides a simple and objective method to tie together indices at fixed levels of 295 

aggregation without concern for utilising the same data in multiple comparisons. Second, it’s 296 

a well-utilised reference system that situates the trends and dynamics of the target species 297 

within a recognisable spatial context. Finally, we take advantage of the nesting structure of 298 

the national grid system with smaller spatial units within larger ones to correlate standard 299 

errors in the fixed effects panel estimators (see below). A downside of the grid-based 300 

approach is that there might be sites near the edges of grids that are closer in geographic 301 

space, but which are nevertheless assessed in different pairings, however we view this as a 302 

reasonable trade-off given the described advantages.  303 
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 304 

Figure 1. Demonstration of the grid-based strategy a) 100km, b) 50km, and c) 10km grid 305 

squares. d), e), and f) show the generated standardised abundances for the great tit (red 306 

line) and moth index (blue line) for a selected (and nested) grid square at each scale. Grid 307 

squares vary in coverage across space and time with the indices becoming sparser at higher 308 

spatial resolutions.  309 

Overall analytic strategy 310 

We used three approaches 1) association, 2) prediction, and 3) causal inference to test the 311 

main hypotheses. For association, we used Seasonal and Trend decomposition using Loess 312 

(STL; Cleveland et al., 1990) which partitions a time series into a trend and remainder. The 313 

trend captures the long-term trajectory of the population, and the remainder captures inter-314 

annual fluctuations. For prediction, we used Empirical Dynamic Modelling (specifically 315 

Gaussian process regression EDM; Munch & Rogers, 2024). This method can assess 316 

potential links (including non-linear and time-varying interactions) between insects and 317 

insectivores by demonstrating how prediction accuracy increases with the inclusion of 318 
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certain variables (i.e. Granger causality, Granger, 1969; Shojaie & Fox, 2022). Finally for 319 

causal inference, we used a panel of fixed effects estimators (Wooldridge, 2010). These 320 

tested for linear interactions after controlling for static grid-level average differences in 321 

population growth and shared dynamic effects (i.e. shared yearly environmental effects), 322 

while utilising clustered standard errors to capture correlated errors within regions (i.e. 323 

100km squares).  324 

Association: STL decomposition 325 

We decomposed each time series into a long-term trend and remainder (interannual change 326 

beyond the trend) by applying STL at all three spatial scales for time series with five or more 327 

years of consecutive abundance data. We used STL as it splits time-series’ into trends and 328 

remainders which allows us to separately evaluate if the trends in insectivores and insects 329 

are correlated across space or if interannual changes beyond the trend is correlated 330 

(suggestive of either direct effect or shared environmental responses). As STL cannot 331 

incorporate missing data we took the longest consecutive run of data at each spatial scale 332 

keeping only those grids where there were at least ten years of data, excluding sites where 333 

>50% of the time-series was zero as they provide little information on trend. After 334 

decomposing the time series, we assessed the correlation in both trend and remainder for 335 

each insect-insectivore pairing. For the remainder, we calculated the Pearson correlation for 336 

each grid pairing and then calculated the average and standard error to assess if there was 337 

evidence of a positive (or negative) association. For the trend, we initially fitted a mixed 338 

linear model for each species with abundance as the dependent variable and year fitted as a 339 

continuous variable, and with random correlated slopes and intercepts for each grid square. 340 

We then took the values of these slopes for insect and insectivore and split them into two 341 

categories: increasing or decreasing. We then assessed if there was more agreement in the 342 

direction of these slopes than expected by chance through a binomial test.  343 
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Prediction: Gaussian process regression empirical dynamic modelling  344 

Our framework for EDM was gaussian-process empirical dynamic modelling with automatic 345 

relevance determination, applied through the GPEDM package (Munch & Rogers, 2024) . 346 

This hierarchical approach utilises time-delay embedding and shared information across 347 

spatial replicates to construct approximations of the state-space manifold, thereby capturing 348 

the system dynamics alongside estimating the underlying dynamic correlation i.e. the 349 

similarity in the underlying dynamics across sites. An accessible overview of the EDM 350 

approaches are provided by Chang et al. (2017) and Edwards et al. (2024).   351 

We used a time-delay of one year, and to constrain the complexity of the models a maximum 352 

embedding dimension of three years. To assess the role of insect abundance in insectivore 353 

dynamics we fitted 10 GPEDM models for each insectivore-insect pairing at each scale. This 354 

consisted of five direct comparisons: 1) insectivore only vs insectivore and insect; 2) 355 

insectivore and spring weather variables vs insectivore, insect, and spring weather variables; 356 

3) insectivore and summer weather variables vs insectivore, insect, and summer weather 357 

variables; 4) insectivore and winter weather variables vs  insectivore, insect, and winter 358 

weather variables; and 5) insectivore and annual weather variables vs  insectivore, insect, 359 

and annual weather variables.  360 

Out-of-sample predictive performance was estimated through leave-one-timepoint-out 361 

validation (Munch & Rogers, 2024). To handle missing data, we identified the longest 362 

consecutive run of time series data for each grid square and utilised that in the analysis.  363 

Causal inference: Fixed effects panel estimator  364 

The fixed effects panel estimator is a regression-based approach that attempts to estimate 365 

‘causal’ effects by controlling for static (site-level) and dynamic confounding (year-level) 366 

effects. These approaches can be preferable to random effects models for causal inference 367 

as they make no distributional assumptions about variation across units and induce no 368 

shrinkage; they also make no assumptions of independence between the site-level 369 
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characteristics and independent variables and are unbiased when the independent variables 370 

are correlated with unobserved heterogeneity – factors expected to be common in 371 

observational data (Byrnes & Dee, 2025). However, estimation differs, as rather than 372 

modelling site and year-level variation as draws from a normal distribution, the static and 373 

dynamic effects are eliminated through de-meaning the independent and dependent 374 

variables prior to the regression, e.g. centering the independent and dependent variable at 375 

each site. When only site (unit-level) fixed effects are included, we estimate how within-unit 376 

deviations from the site mean are influenced by the independent variables. When only time 377 

effects are included, the coefficients for the independent variables represent the average 378 

(across all years) of how differences in the independent variables between sites within a 379 

given year are associated with differences in the dependent variable across sites in that 380 

same year. But when both site and time level effects are included, the coefficient of interest 381 

represents a complex combination of within-year and across unit contrasts which is both 382 

challenging to interpret and can generate bias under certain circumstances (De 383 

Chaisemartin & d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Kropko & Kubinec, 2020). 384 

However, including both site and year fixed effects provides robust control for shared 385 

‘shocks’ (insectivores and insects responding similarly in a given year due to unmeasured 386 

confounding factors e.g. a drought). Therefore, in line with our overall specification 387 

approach, we specify a set of different models that vary in controls generating results that 388 

can be interpreted holistically. 389 

The first model was a one-way fixed effect model, with a fixed effect at the unit level (each 390 

grid square at a given scale). This model aims to control for unmeasured time-invariant unit-391 

level confounds (e.g. habitat) and estimates the within unit effect of insect abundance on 392 

insectivore growth rate. However, this model provides limited control for possible time-393 

varying factors/shocks (such as shared responses of insects and insectivores to extreme 394 

weather). For the 10km and 50km scales, we included some control for time varying factors 395 

through clustered standard errors at the regional level (100km) which account for spatially 396 
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structured environmental shocks that may induce correlations in the residuals of nearby 397 

units. The second model was a two-way fixed effects model including an additional fixed 398 

effect at each year that aimed to additionally control for time-varying shocks. But as stated 399 

above, we are asking an unusual question: in a given year, do sites with more insect 400 

abundance than other sites experience higher population growth relative to the average at 401 

these sites? The final two models had the same fixed effect structures as the above two 402 

models, but additionally include covariates for annual temperature and precipitation. Here for 403 

the one-way fixed effect, this attempts to adjust for the shared responses to climate, which, if 404 

a main determinant of shared annual responses across sites, should provide better 405 

estimates of the impact of changing insect abundance on insectivores. However, these 406 

models will not control for all unmeasured temporal factors, especially those uncorrelated 407 

with the climatic variables. And finally, the two-way fixed effect has the same benefits and 408 

limitations as above, but additionally controls for the effect of shared climate.  409 

The models were instantiated within a linearized Gompertz equation (Equation 1) predicting 410 

the log growth rate – the log ratio of the current and previous years population size. 411 

Equation 1: 412 

𝑙𝑜𝑔(Δi𝑛𝑠𝑒𝑐𝑡𝑖𝑣𝑜𝑟𝑒𝑖𝑡) = log(𝐼𝑛𝑠𝑒𝑐𝑡𝑖𝑣𝑜𝑟𝑒)𝑖(𝑡−1) +𝑆𝑖𝑡𝑒𝑖 + 𝑌𝑒𝑎𝑟𝑡 + 𝐼𝑛𝑠𝑒𝑐𝑡𝑖𝑡 + 𝐼𝑛𝑠𝑒𝑐𝑡𝑖(𝑡−1) + ϵ𝑖𝑟 413 

With i relating to each unit (10km/50km/100km grid square) and t to each year. In the panel 414 

estimator standard errors were clustered by the unit (i) at 100km and region (r) and unit for 415 

the 50 and 10km models. In this equation, we show the framework for the 50 or 10km model 416 

including the fixed effects for year (Yeart) - though this fixed effect is not present in models 1 417 

and 3. As we were working with log growth rates, we needed to deal with zeros indices as 418 

they result in undefined growth rates. We first removed sites for the insectivores that 419 

contained more than 50% zeros as they induce considerable dilution in assessing 420 

relationships to insect abundance. For the remaining sites, we computed growth as the 421 

change in log(𝑦+1) between consecutive years. This transformation prevents the undefined 422 

growth rates and retains observations where populations crash to, or recover from, zero, 423 
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which are ecologically meaningful events. However, we recognise adding one alters the 424 

scale of the growth rate and may disproportionately affect low counts, but we accepted this 425 

trade-off to capture important losses and gains in the abundance indices. All models were 426 

fitted using the feols function in the fixest package (Bergé, 2018).  427 

All analysis was undertaken in R 4.2 with the code and data in support of the results 428 

available at 10.5281/zenodo.15037980.  429 

 430 

Results  431 

As there are several results from each of insect-insectivore pairing, we present detailed 432 

results for great tits and moths and provide full results in the supplementary materials and 433 

code supplement.  434 

Association: Correlations between trends and dynamics 435 

All birds showed evidence of decline across all scales, but none of the bat species showed 436 

evidence of overall decline (Figure 2). 437 

For indices of insect abundance, we found consistent negatives trends across all scales with 438 

only the moth index showing no change at 100km and 50km, but negative trends at the 439 

10km scale.  440 
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 441 

Figure 2. a) Summary of average linear trends for insectivores and insect indices at different 442 

grid aggregations. Positive trends are indicated by ↗, negative trends are indicated by ↘, and 443 

no change is shown by →. Scales without data presented are indicated by -. b) Trends 444 

across space for the great tit at 100km. 445 

There were few simple associations between the trends in insects and insectivores, though 446 

both the great tit and blue tit showed positive correlations with moths at the 50 and 10km 447 

scales and there was a positive association between butterflies and the corn bunting at the 448 

100km scale (Figure 3). For inter-annual change, we found positive associations for blue tit 449 

and moths, and noctule and Diptera at the 10km scale, and negative associations between, 450 

Daubenton’s bat and Diptera at the 100 and 50 km scale. 451 

 452 
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 453 

Figure 3. Associations between trends and the remainder (interannual change) for 454 

insectivore-insect pairs. a) Correlations between insectivores and food indices for trends and 455 

remainders across scales. The green points represent positive associations, the red points 456 

negative associations, and the yellow points uncertain associations. b) shows how trends for 457 

the great tit and the moth index compare at the 100km scale with locations where the trends 458 

have the same sign shown in green and locations where trends have the opposite sign in 459 

red. The arrows within each grid-square indicate the trend direction where there is 460 

agreement. c) Distribution of correlations between the remainders within 100km grid squares 461 

for the great tit and moth index. The solid black line shows the mean correlation, dotted lines 462 

show 95% confidence intervals, and a grey dashed line indicates zero.  463 
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Prediction: Empirical dynamic modelling 464 

Predictive skill generally increased when including insect indices, although with considerable 465 

variability across scales and controls (Figure 4). Improvements in predictive skill were also 466 

typically small and overall performance degraded at smaller scales. For six insectivore 467 

species (great tit, grey partridge, skylark, common pipistrelle, noctule and Daubenton’s bat) 468 

the majority of the best models across different scales included the insect data. The only 469 

species where none of the best models included the insect variable was corn bunting 470 

regarding butterflies.  471 

 472 

 473 
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 474 

Figure 4. a) Model comparisons for EDM, for each comparison ✘ indicates that the model 475 

without insects had highest R2, ✔  the insect model had highest R2  and the symbol in 476 

brackets was the single best model at that scale. Results for great tit at 100km scale for the 477 

insect and insectivore model with b) time series of abundance for a selection of 100km grid-478 

squares with the EDM predictions shown in red and, c) inverse-length scale from the auto 479 

relevance determination reflecting the inferred importance of each time-lagged input for 480 

predictive performance. GT 1:3 refers to lags of great tit abundance while moth 1:3 refers to 481 

lags of moth abundance.482 
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483 

 484 

Causal links: Fixed effects panel estimator 485 

For the fixed effects panel estimators, evidence for direct effects of insects on insectivores 486 

was mixed (Figure 5). Positive links included those for great tit, blue tit, common pipistrelle, 487 

grey partridge and noctule, but this varied between model specification and scale – with 488 

sometimes the lag or sometimes the concurrent measure of insect abundance showing the 489 

effect (e.g. for the blue tit). We also identified negative links for the serotine, soprano 490 

pipistrelle and blue and great tit for the concurrent index abundance at some scales. In 491 

general, where effects were detected, they were for model specifications 1 and 3 that 492 

included only unit level fixed effects and climate controls.  493 

 494 

 495 

 496 
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Figure 5. a) Summary of results from the fixed effects panel estimators. The colours (red or green hues) represent the direction of the effect 498 

while the strength of the hue shows the number of models where a significant effect was detected, a grey square indicates the analysis was not 499 

conducted at this scale. b) Forest plots of the effect of concurrent and lagged insect abundances on population change for comparisons at the 500 

100km scale.  501 

 502 

 503 

 504 
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Discussion  505 

We have provided a holistic assessment of evidence for impacts of insect abundance on the 506 

dynamics and trends of 10 vertebrate insectivore species in the UK. We explored three key 507 

questions: 1) are long-term trends and interannual variation between insect and insectivore 508 

pairings correlated over space? 2) Does information on insect abundance predict insectivore 509 

abundance change? 3) After controlling for shared static and dynamic environmental factors, 510 

is there evidence for a direct effect of insects on insectivore dynamics? 511 

Firstly, we found few spatial associations in trends between insects and insectivores. This 512 

despite all bird species and almost all indices of insect abundance showing evidence of 513 

declines (this being consistent with other analyses for these taxa; Bell et al., 2020; Brooks et 514 

al., 2012, though also dependent time-series length and analytic method e.g. Woodward et 515 

al., 2020). The only positive associations between trends across space were for the blue tit, 516 

great tit, and corn bunting. This suggests that, though the populations of these insectivore 517 

species and insects are declining on average, they are not necessarily declining in the same 518 

locations. No bat species were declining on average and, consequently, it is reasonable to 519 

assume that, so far and for the specific species groups we investigated, declines in the 520 

insect groups tested are not leading to declines in UK bat abundance (although they may still 521 

impact population growth rates). 522 

Overall, this first level of associative testing, though lacking control for possible confounds, 523 

provides a high-level overview of spatial patterns, and suggests that declines in the insect 524 

groups tested are unlikely to be a primary cause of decline for most of the insectivores we 525 

assessed. This is plausible as there is evidence that declines to both insects and 526 

insectivores result from a combination of several drivers including land use change, 527 

agricultural intensification, and changing climate (Pearce-Higgins & Morris, 2023; Wagner, 528 

Grames, et al., 2021). The contrast in spatial patterning in insect and insectivores suggests 529 

that some of these drivers of change may be non-overlapping, or at least, the importance of 530 
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the drivers may vary between the insects and insectivores. Further evaluation of the 531 

underlying causes of regional variation in trends for both insects and insectivores, and the 532 

generality of such patterns, would therefore be highly valuable.  533 

For those species where we found associations with insect indices, it was necessary to 534 

assess if insect abundance was impacting dynamics after controlling for possible confounds. 535 

Similarly, even for those species where there were no associations in trends, it is possible 536 

that low insect abundance could cause reduced population numbers in particular years and, 537 

for the bats, where we found limited evidence of populations declining, it may still be the 538 

case that populations may have been higher, and trends more positive, had insect 539 

abundance not decreased.   540 

We found that inclusion of information on insects generally improved the predictive skill of 541 

the EDMs, but by only small amounts. Model performance also declined at finer spatial 542 

scales, suggesting either increased noise or reduced time-series lengths, reduced our ability 543 

to capture dynamics. Generally, when assessing both predictive and statistical criteria, 544 

results were mixed and demonstrated scale dependency. Handling variation across scales is 545 

challenging as it influences signal-noise relationships alongside coverage of the data across 546 

time and space. These issues are also related to the challenge of generating site-level or 547 

regional trends given a particular scheme. For example, for butterflies, local trends and 548 

abundance indices have been utilised frequently to understand local drivers of population 549 

dynamics, but it remains challenging to estimate robust bat population trends at scales 550 

smaller than country-level, due to smaller sample sizes.  551 

We next applied panel estimators to robustly handle shared dynamic and static factors 552 

influencing populations and isolate the direct (linear) effect of insects on insectivores. As with 553 

the EDMs, we found limited conclusive evidence of a direct effect of insect abundance on 554 

insectivore populations. Positive links across the majority of scales tested (but not for all 555 

model specifications) were only found for blue tit, and great tit. We also found evidence of 556 

positive links for grey partridge, corn bunting, and noctule but only at one scale. However, 557 
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we also found a handful of negative links in either the lag or concurrent insect abundance at 558 

at least one scale for blue tit, great tit, soprano pipistrelle and serotine. Ignoring data 559 

limitations, the occurrence of negative links and the disconnect between the EDM and the 560 

panel estimators could suggest that links between insects and insectivores are not simply 561 

bottom-up linear effects (insects influence insectivore abundance) but may include a variety 562 

of processes. For example, top-down effects, which have been observed to operate in both 563 

bird- and bat-insect systems (Beilke & O’Keefe, 2023; Holmes et al., 1979), could generate 564 

apparent reverse causation that complicates interpretation, and lagged responses from 565 

insectivores combined with density dependence in the insect populations might generate 566 

apparent negative relationships. While not feasible given this broad survey, close 567 

examination of non-linear approaches like EDM, against a variety of plausible top-down and 568 

bottom-up causal structures assessed through linear statistical approaches may help to 569 

identify any complex or non-linear associations.  570 

Overall, our analysis of trends and links between insectivores and insect food indices 571 

provides some evidence that populations of great tit, blue tit, and grey partridge, may be 572 

influenced by the abundance of their insect prey. For the blue tit, this link is also consistent 573 

with results from Evans et al (2024) albeit using different methods and different aggregations 574 

of the underlying data. For the remaining bird species, we provide limited evidence that the 575 

abundance of the insect prey assessed is driving dynamics or declines. These results may 576 

be surprising as there is considerable circumstantial evidence that insectivorous birds are 577 

impacted by changing insect abundance (Tallamy & Shriver, 2021). Evidence from synthesis 578 

(Grames et al., 2023) and studies utilising monitoring data (Martay et al., 2023; Yazdanian et 579 

al., 2024) also strongly suggest a link between insect abundance and either insectivore vital 580 

rates or distributions. None of these studies, however, evaluate, or find, a direct link between 581 

insect abundance and population changes in insectivores per se. Consequently, it may be 582 

that limitations with the data (see below) or the complex influence of multiple drivers acting 583 
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on both insect and insectivore populations makes it challenging to detect direct links 584 

between insect and insectivores population change at large scales. 585 

None of the bat species were declining on average, and although we found some evidence 586 

(using EDM) that insect abundance provided some predictive information for bats, there was 587 

only one positive link using the panel estimators (noctule and Diptera). It is challenging to 588 

link bat populations trends to trends in their insect prey (though see Langton et al., 2010; 589 

Vaughan et al., 1996). Bat populations in the UK are at historic lows likely due to habitat 590 

change (Razgour et al., 2024) and, therefore, changes to insect abundance may not be a 591 

main factor limiting populations. Bats are also highly mobile foragers allowing them to exploit 592 

ephemeral concentrations of aerial insects, which might mitigate the effects of reductions in 593 

local insect abundances. In sum, this analysis does not provide evidence that bat 594 

populations are limited by changing abundance of the insect groups tested here, though we 595 

identify that generating more robust regional trends for bats and assessing both the potential 596 

for top-down bottom-up dynamics could better clarify links between bat populations and their 597 

prey in the UK. 598 

Although we covered several methodological possibilities in our specification approach, we 599 

recognise limitations in our analyses. Principally, the data used to make comparisons 600 

between insects and insectivores are not from the same locations and the underlying indices 601 

were not designed with the analysis undertaken here in mind. Additionally, the coarseness of 602 

the population aggregations and insect food indices might introduce considerable noise, and 603 

targeted analyses using data collected from key insect species (or a combination of key 604 

species) in the same location as insectivore populations might reveal stronger effects. More 605 

sophisticated approaches to generating such insect food indices, such as weighting by 606 

insect food preference, or using biomass, might similarly identify stronger effects of changing 607 

insect abundance. Nevertheless, we hope this research has identified plausible avenues for 608 

further research into trophic links between populations at large scales and identified 609 

considerations regarding scale and method when conducting such analyses. 610 
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Code and data in support of the manuscript is available at 10.5281/zenodo.15037980 617 
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