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Abstract1

1. Biological data often violate the assumption of constant variance, yet such heteroscedasticity can reflect2

meaningful biological processes such as plasticity, canalization, or stress responses. Despite this, most3

models treat variance as statistical noise. Here, we reintroduce location–scale regression as a general4

framework that jointly models the mean (location) and variance (scale) components of a response.5

We describe three hierarchical extensions: 1) fixed-effects, 2) mixed-effects, and 3) double-hierarchical6

models, which allow researchers to formally test variance structures alongside mean effects, enhancing7

biological interpretation.8

2. This framework is highly flexible and can extend beyond Gaussian assumptions to accommodate real-9

world data. The framework accommodates overdispersed, underdispersed, and zero-inflated count10

data through the use of negative binomial and Conway–Maxwell–Poisson distributions, and bounded11

proportion data through beta-binomial and beta regressions. Submodels can also be incorporated12

to account for structural zeros and ones when boundary outcomes are common. These extensions13

allow researchers to capture ecological processes such as presence–absence, success rates, and bounded14

response rates.15

3. Using worked examples from published evolutionary and behavioral ecological studies, we illustrate16

how location–scale models can uncover biologically meaningful variance patterns that are overlooked17

in models focused solely on means. For instance, we show how food supplementation, hatching order,18

and predation risk influence not only average trait values but also their variability. Each example19

corresponds to one of the model types and is implemented using widely used R packages such as glmmTMB20

and brms. All examples are accompanied by a freely accessible, step-by-step online tutorial, thereby21

lowering technical barriers and fostering broader adoption of location–scale modeling in ecological and22

evolutionary research.23

4. Finally, we propose a practical workflow for model selection and diagnostics and highlight recent24

extensions of the framework. These include multi-response models, meta-analytic models, phylogenetic25

comparative models, and models including shape parameters such as skewness. Treating variance as a26

biologically informative response opens new avenues for us to explore the evolutionary, ecological, and27

environmental processes that shape biological systems across diverse contexts.28

Keywords— Bayesian statistics, distributional regression, GLMM, homoscedasticity, linear modeling, mixed-effects29
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models, over-dispersion, zero-inflation30
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1 Introduction31

Ecologists and evolutionary biologists strive to explain and account for variation in nature; this is usually done by32

statistically modeling target traits or measurements with hypothesized causal factors (e.g., a particular environmental33

factor accounts for 8% of the variance). In contrast, they rarely test whether variation changes across an environmental34

gradient or between groups (Cleasby and Nakagawa, 2011). Although ecological data often exhibit non-constant35

variance, this variation is commonly considered a mere nuisance that violates the model’s assumption of homogeneity36

(i.e., homoscedasticity). In reality, patterns in variance, or heteroscedasticity, can signal ecological, evolutionary, and37

environmental processes. For example, environmental stress (e.g., temperature increases) can not only change the38

mean but can also generate more variance in organismal responses (e.g., Buckley and Huey, 2016; O’Dea et al., 2016).39

On the other hand, plasticity, such as learning, can canalize variability because most individuals uniformly reach the40

behavioral optimum (e.g., Baldwin, 1896; Crispo, 2007).41

More than a decade ago, Cleasby and Nakagawa (2011) surveyed and reported that over 95% of published studies42

in behavioral ecology ignored heteroscedasticity. Such neglect can yield incorrect standard errors (SE) of regression43

coefficients (e.g., Type I error) and, critically, overlook biological insights in dispersion patterns. Therefore, they44

recommended two practical solutions. First, they suggested the use of heteroscedasticity-consistent (“sandwich”)45

estimators of SE, which resolve the statistical issues such as inflated Type I error (Hayes and Cai, 2007). Second, one46

can model different residual variances for different groups or across a continuous predictor (i.e., heteroscedasticity).47

This approach, however, does not directly provide inferential statistics – whether changes in variance are statistically48

significant or not. In their paper, Cleasby and Nakagawa (2011) neglected the third option: location–scale regression49

modeling, which provides statistical inference on both mean (location) and variance (scale, also known as dispersion)50

and thus resolves all issues at once. Statistically, location–scale models remove bias in SE and test statistics under51

heteroscedasticity (Carroll and Ruppert, 1988; Zuur et al., 2009b). Biologically, these models can reveal when and52

how both mean and variance respond to environmental and other drivers.53

The most flexible forms of location-scale models are double-hierarchical with random effects in both mean (location)54

and variance (scale)(Lee and Nelder, 1996, 2006; Rönneg̊ard and Lee, 2013). However, these models are computa-55

tionally complex and require Bayesian implementation, which may have hindered wider adoption. However, simpler56

location-scale models, which can only include random effects in the location part, are straightforward to implement57

in widely used statistical software. For example, these variants can be implemented readily in glmmTMB (Brooks et al.,58

2017) with minimal additional coding.59

Therefore, we aim to reintroduce the utility of location–scale regression models. To facilitate broader use, we focus60

on two simpler, practical formulations sufficient for many applications. In the following sections, we first introduce61

location–scale models with only fixed effects on both mean (location) and variance (scale) (Model 1). Next, we extend62
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these to include random effects on the location part (Model 2) and, for completeness, describe the double-hierarchical63

framework with random effects on both location and scale (Model 3). We then expand these models (mainly Model64

2) to non-Gaussian responses, namely count and proportion data; although such data are common, modeling over-65

dispersion of count and proportion seems to be rare in ecology, evolution, and environmental sciences (cf., Bolker66

et al., 2009). These non-Gaussian location-scale models can handle zero-inflation, and we refer to the issues of67

under-dispersion and one-inflation. We provide a range of examples illustrating biological insights obtained from68

location-scale models with both frequentist and Bayesian implementations using glmmTMB and brms (Bürkner, 2017),69

respectively (see the online tutorial: link). We also suggest a practical workflow to guide model selection. Finally,70

we discuss broader applications of location-scale models (e.g., meta-analytic location-scale models; Nakagawa et al.,71

2025a) and related advanced models, which are potentially even more flexible and biologically informative (Rigby72

and Stasinopoulos, 2005).73

2 From simple to location-scale regression (Model 1)74

2.1 Model and motivation75

We begin with the familiar simple regression models (only with fixed effects), where we assume constant residual76

variance as well as data independence:77

yi = β0 +

K∑
k=1

βk xik + ei, (1)

ei ∼ N
(
0, σ2), (2)

where yi is the response for observation i, xik (k = 1, . . . ,K) are the fixed covariates (predictors), {β0, β1, . . . , βK}78

are the regression coefficients, and the residual ei is normally (Gaussian) distributed with mean zero and variance σ2.79

Note that the predictor xik can be either a continuous or categorical variable. More accurately, for the latter case,80

when a categorical predictor has H levels, it becomes H − 1 ‘dummy’ variables or predictors. That is, a categorical81

variable becomes (H − 1) binary variables in the model, and corresponding regression coefficients represent contrasts82

(differences) between a reference level (the intercept β0) and another level.83

Equivalently, we can write the model in its distributional form:84

yi ∼ N
(
µi, σ

2), (3)

µi = β0 +

K∑
k=1

βk xik, (4)
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where µi denotes the expected value of yi given the covariates, and σ2 remains the constant variance.85

This basic regression treats any heteroscedasticity as a nuisance. To turn it into biological/ecological signals, we86

allow the residual standard deviation to vary with predictors. The location–scale regression then comprises two87

linked submodels which can be written as (Model 1; Jorgensen, 1997; Lee et al., 2006; Cleasby et al., 2015):88

yi ∼ N
(
µi, σ

2
i

)
, (5)

µi = β
(l)
0 +

K∑
k=1

β
(l)
k xik, (location submodel) (6)

ln(σi) = β
(s)
0 +

K∑
k=1

β
(s)
k xik, (scale submodel) (7)

where µi is its expectation, modeled by the location submodel coefficients β(l) and covariates xik, and σi is the residual89

standard deviation, modeled on the log (ln) scale by the scale submodel coefficients β(s) and the same covariates.90

This fixed effects location-scale regression, by linking predictors to both the mean and the ln(standard deviation),91

allows us to test if an environmental gradient or experimental treatment shifts not just the average response, but also92

its individual variability. In other words, if a predictor (xik) influences the mean, its corresponding regression coeffi-93

cient (β
(l)
k ̸= 0) will be non-zero (significant). If a predictor influences variance, the associated regression coefficient94

for the scale component, represented as (β
(s)
p ̸= 0), will also be non-zero. This suggests that the heterogeneity in the95

data varies in relation to that predictor, a phenomenon referred to as heteroscedasticity. Translating variance signals96

into regression coefficients formalizes heterogeneity analysis and makes it accessible to researchers already familiar97

with interpreting regression coefficients for the location part (Fig. 1).98

The syntax for writing location-scale models in R builds off familiar modeling syntax in R. To fit a (location-only)99

regression model on the relationship between the location (mean) of y by x, we would write the following.100

library(glmmTMB)101

location_model <- glmmTMB(y~x, data = dt)102

To explicitly model the ‘scale’ as well as ‘location’, we simply add the same formula (without the response variable)103

to the dispformula argument.104

location_scale_model <- glmmTMB(y~x, dispformula = ~ x, data = dt)105

This second model returns two regression tables, one (referred to as the Conditional by glmmTMB) describes the106

relationship between x and mean y, while the second table (referred to as Dispersion) describes the relationship107

between x and the variance of y.108
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2.2 Illustrative example109

In the following illustrative examples, we report representative model results using the R packages glmmTMB and/or110

brms, selected based on model type and functionality. Full model specifications, code, and detailed explanations111

of datasets and interpretations are available in our online tutorial (link), where we also explain how to interpret112

regression coefficients on the log scale in terms of percentage change in details.113

We reanalyzed whether early-life food supplementation had sex-specific effects on body size variability, using adult114

tarsus length as an indicator, in a wild population of house sparrows (Passer domesticus) on Lundy Island, England115

(Cleasby and Nakagawa, 2011). The model’s location component showed no significant effect of sex, treatment, or their116

interaction on mean adult tarsus length. However, the scale (dispersion) component revealed a significant negative117

interaction between sex and treatment (glmmTMB: β
(s)

[interaction] = −0.95, 95% CI [−1.66,−0.24]), which corresponds118

to a 61.3% lower residual SD for supplemented males relative to baseline (non-supplemented females) (% change119

in SD = 100[exp(β(s)) − 1]; CI −81.0% to −21.3%) and 58.2% lower than non-supplemented males (β
(s)

[male-female] +120

β
(s)

[interaction] = −0.87; 100[exp(−0.87)−1] = −58.2). Neither treatment nor sex alone significantly influenced variance.121

This suggests early-life food supplementation can canalize trait development, leading to more uniform adult male122

morphology under favorable nutritional conditions.123

3 Adding random effects in the location part only (Model 2)124

3.1 Model and motivation125

Ecological and environmental datasets often violate both the homoscedasticity and non-independence assumptions.126

The latter is common due to clustered or grouped data, such as multiple measurements per site or individual.127

Consequently, ‘mixed-effects’ models are widely used in ecology and evolution, as they incorporate both fixed and128

random effects to model these clustering and grouping structures (Bolker et al., 2009; Nakagawa and Schielzeth,129

2013).130

Introducing a random effect (intercept in the location submodel) allows each group j to have a group-specific mean,131

while keeping the scale model fixed-effects only. Such models can be written as (Model 2; Jorgensen, 1997; Lee et al.,132
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2006; Cleasby et al., 2015):133

yij ∼ N
(
µij , σ

2
ij

)
, (8)

µij = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (9)

ln(σij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (10)

where the random intercept u
(l)
j is distributed as u

(l)
j ∼ N (0, σ2

u). Here yij is the i-th response in group j, µij its134

expected value including the group-specific shift u
(l)
j , and σij the residual standard deviation driven by the scale135

covariates alone. This (mixed-effects) location–scale model tests whether predictors affect both the mean across and136

within groups, while allowing groups to differ in their overall mean level.137

It should be noted that Model 2’s location submodel has the simplest random effect structure and, in practice, this138

submodel may need to have more than one random effect (intercept) and random slopes. Indeed, such models with139

multiple random effects may be the rule rather than an exception in ecological and evolutionary data (e.g., site and140

year, or individuals nested in sites Schielzeth and Nakagawa, 2013).141

3.2 Illustrative example142

We re-examined the difference in fledging scaled mass index (SMI), i.e., mass corrected by body size, between first-143

and second-hatched blue-footed booby (Sula nebouxii) chicks (Drummond et al., 2025). This Gaussian location–scale144

model included nest identity (σNest ID(l)) and hatching year (σhatching.year(l)) as random effects in the location sub-145

model, and hatching order in both submodels. We found a mean ln(SMI) difference between first- and second-hatched146

chicks (brms: β
(l)

[first–second] = −0.02, 95% CI [−0.02,−0.01]), which on the response scale corresponds to a ∼ 2.0%147

lower mean SMI for second-hatched (exp(β(l)) = 0.980; CI ≈ 0.980–0.990; % change ≈ −2.0% to −1.0%). More-148

over, second-hatched chicks exhibited greater ln(SMI) variability compared to their first-hatched counterparts (brms:149

β
(s)

[first–second] = 0.13, 95% CI [0.08, 0.18]), implying a +13.9% residual SD (CI +8.3% to +19.7%). Random effects150

in the location component also showed that average ln(SMI) differed between nests (brms: σNest ID = 0.05, 95% CI151

[0.04, 0.05]; multiplicative spread exp(0.05) = 1.051, i.e., ∼ +5.1%) and hatching years (brms: σhatching.year = 0.10,152

95% CI [0.07, 0.14]; exp(0.10) = 1.105, i.e., ∼ +10.5%). These results suggest that second-hatched chicks not only153

have a slightly lower average ln(SMI) but also exhibit greater variability in their SMI compared to first-hatched154

chicks.155
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4 Double-hierarchical model (Model 3)156

4.1 Model and motivation157

Model 2 naturally begs a question: why do not add random effects in the scale part? Indeed, “double-hierarchical”158

models were the first to arrive in ecology and evolution nearly a decade ago (e.g., Westneat et al., 2013). The159

double-hierarchical formulation jointly models how each group j shifts its mean and its standard deviation on the160

natural logarithm scale (Model 3; Lee and Nelder, 1996, 2006; Cleasby et al., 2015; O’Dea et al., 2022):161

yij ∼ N
(
µij , σ

2
ij

)
, (11)

µij = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (12)

ln(σij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk + u

(s)
j , (scale submodel) (13)

with the bivariate random-effect vector
(
u
(l)
j , u

(s)
j

)⊤
following162

u
(l)
j

u
(s)
j

 ∼ N

0,

 σ2
u(l) ρu σu(l) σu(s)

ρu σu(l) σu(s) σ2
u(s)


 . (14)

Here, each group j has its own intercept in the mean (u
(l)
j ) and in the ln-standard deviation (u

(s)
j ), with their163

covariance governed by ρu. A positive ρu implies that groups with higher means also exhibit greater variability,164

whereas a negative ρu indicates that high-mean groups are more tightly canalized. This full double-hierarchical165

model thus allows simultaneous inference on fixed effects and group-level mean–variance associations. An extension166

of this model with a random slope in both location and scale parts in the context of uni- and multi-variate cases167

is well described in O’Dea et al. (2022). For example, when the cluster uj represents individuals (yij is repeated168

behavioral measures of an individual), the parameter ρu is referred to as the personality-predictability association.169

This is because σ2
u(l) reflects between-individual differences in mean behavior (personality), while σ2

u(s) captures170

differences in behavioral variance (predictability). For instance, a positive correlation would indicate that more171

aggressive individuals are also more unpredictable in the intensity of their aggression at one time point.172

As described, our focus in this article is to highlight Model 2 (and Model 1). Therefore, even if one is interested in173

σ2
u(s) and ρu, one should start with Model 2 as a robust baseline. One can fit Model 3, and compare Models 2 and174

3 using information criteria or likelihood-ratio tests, if sample size permits (more than 10 repeats or observations175

per group may be required to model σ2
u(s) reliably; O’Dea et al., 2022); indeed, a simple simulation reveals that one176
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requires 20 observations to get unbiased variance estimates (see the online tutorial (link)). Such a modeling strategy177

leverages the stability of Model 2 while allowing the richer inferences of Model 3 when data permit (for more on178

model selection, see Section 7).179

4.2 Illustrative example180

Building upon the previous example of fledging scaled mass index (SMI) (Drummond et al., 2025), we fitted a181

double-hierarchical Gaussian location–scale model. This extended Model 2 by incorporating nest identity (σNest ID)182

as a correlated random effect in both the location and scale submodels. This allowed us to assess how average ln(SMI)183

and its variability differed across nests, and if these nest-specific variations were related. Average ln(SMI) differed184

between nests (brms: σNest ID(l) = 0.05, 95% CI [0.04, 0.05]; exp(0.05) = 1.051, ∼ +5.1%), and some nests showed185

greater ln(SMI) variability (brms: σNest ID(s) = 0.36, 95% CI [0.32, 0.40]; exp(0.36) = 1.433, i.e., +43.3% SD; CI186

≈ +37.7% to +49.2%). Notably, a negative correlation between location and scale random effects within nests (brms:187

ρNest ID = −0.46, 95% CI [−0.58,−0.33]) indicated that nests with higher average ln(SMI) tended to exhibit lower188

variability; a +1 SD increase in a nest’s location effect is associated with an expected change of ρuσu(s) ≈ −0.166189

on ln(SD), i.e., ≈ −15.3% SD
(
exp(−0.166) − 1

)
, with a rough range of ∼ −20.7% to −10.0% across the CI limits.190

Fixed effects for hatching order remained consistent with our previous model, further supporting that second-hatched191

chicks have slightly lower mean ln(SMI) and greater variability.192

5 Beyond Gaussian I: over-dispersed count data193

In this and the next section, we turn from Gaussian responses to non-Gaussian data common in the natural world.194

Our focus is deliberately selective: we concentrate on count and proportion responses, omitting ordinal outcomes195

despite their feasibility with location-scale models (e.g., Martin et al., 2017). For these two response variable types, we196

develop three practical formulations for researchers. Because structural zeros (and ones for proportions) are common197

in ecological and environmental datasets, some count and proportion models include zero- or zero/one-inflation198

components (submodels). To keep the description clear, we present each model with the single random-intercept199

structure for the location, introduced in Model 2, though Models 1 and 3 forms are also applicable.200

5.1 Negative-binomial location–scale model201

Many ecological questions involve integer counts: fledglings per nest, insect colony size, or the number of eco- or202

endo-parasites. While Poisson regression is the usual starting point, real data rarely meet its assumption that mean203
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equals variance (i.e., E[y] = V ar[y]). Indeed, as many researchers know, count data often exhibit over-dispersion204

(E[y] < V ar[y]). Negative-binomial regression offers a solution because the negative-binomial (NB) distribution205

(family) has an extra parameter to model this over-dispersion (Stoklosa et al., 2022).206

A negative-binomial location scale model – in the form of Model 2 (a random effect only in the location part) – can207

be written as (Jorgensen, 1997; Lee and Nelder, 1996, 2006):208

yij ∼ NB
(
µij , θij

)
, (15)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (16)

ln(θij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (17)

where yij is the count for observation i in group j, µij is its mean, linked via a log (ln) link to fixed covariates xijk209

and a group-level random intercept u
(l)
j , θij is the dispersion parameter, linked on the ln scale to the same covariates210

but no random effect, u
(l)
j ∼ N (0, σ2

u) captures group-level shifts in the mean, and the log links ensure µij , θij > 0.211

The parameter θij is analogous to the Gaussian dispersion parameter σij but is quite different; it calibrates over-212

dispersion, and a larger value of θij represents less variation. This role becomes clear when one sees the formula213

for variance for the negative-binomial distribution. Var(Yij) = µij + µ2
ij/θij so that as θij → ∞, the term µ2

ij/θij214

vanishes and the distribution approaches the Poisson mean-variance expectation (E[y] = V ar[y]); conversely, smaller215

θij produces increasingly strong over-dispersion relative to the Poisson expectation. It should be noted that there216

are alternative parametrisations of negative-binomial models, for example, in glmmTMB.217

5.2 Zero-inflated negative-binomial location-scale model218

Ecological and evolutionary applications frequently encounter count data with both an excess of true absences along-219

side over-dispersed counts (cf., Zuur et al., 2009a). For example, surveying soil invertebrates across patchy habitats220

might yield samples with zero individuals (structural zeros) and others with wildly varying densities. Similarly, par-221

asite counts in wildlife often include hosts with no infection and others with heavy infections (Taylor et al., 2017,222

e.g.,). To model these dual processes while allowing for distinct underlying distributions across populations or sites,223

we embed a single random intercept in the location submodel of a zero-inflated negative-binomial location-scale224
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framework:225

yij ∼


0, with probability πij ,

NB
(
µij , θij

)
, with probability 1− πij ,

(18)

logit(πij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (19)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (20)

ln(θij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (21)

where yij is the count for observation i in group j. The zero-inflation submodel predicts the probability πij of a226

guaranteed zero via a logit link and fixed covariates xijk. Here, β
(0)
0 is the baseline log-odds of an excess zero when all227

covariates xijk = 0, and each β
(0)
k represents the change in log-odds of a guaranteed zero per unit increase in covariate228

xijk. A positive β
(0)
k thus indicates that higher values of xk increase the probability of structural absence, whereas229

a negative β
(0)
k decreases it. The location submodel predicts µij > 0 via a log link, including the group-specific230

random intercept u
(l)
j ∼ N (0, σ2

u), which captures unobserved differences among groups. The scale submodel with231

fixed covariates alone governs the dispersion parameter θij > 0, so larger θij yields variance closer to the mean, as232

described above.233

This model formulation allows researchers to simultaneously investigate how habitat characteristics and evolutionary234

history influence (1) the chance of encountering no individuals at all, (2) the expected abundance when presence235

occurs, and (3) the degree of overdispersion beyond the Poisson expectation. Notably, Stoklosa et al. (2022), in their236

review of negative-binomial modeling, advocate for negative-binomial models as a default for count data in ecology237

and biodiversity, given their near-ubiquitous over-dispersion.238

5.3 Conway–Maxwell–Poisson location–scale model239

Under-dispersion (V ar(Y ) < E[Y ]) is probably less common but potentially important in ecological and environmen-240

tal datasets. For example, stabilizing selection and biological ceiling (floor) effects could canalize count data (in this241

case, the ceiling effect means that values cannot go over a certain upper biological limit, while the floor effect means242

a lower limit). The Conway–Maxwell–Poisson (CMP) family (distribution) spans under- and over-dispersion with a243
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parameter ν (variance drops as ν ↑) (Sellers and Shmueli, 2010):244

yij ∼ CMP(µij , νij), (22)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (23)

ln(νij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (24)

where yij is the count for observation i in group j; µij > 0 is the CMP “rate” (mean, often denoted as λ), on the log245

scale linked to predictors xijk and a random intercept u
(l)
j ∼ N (0, σ2

u), and Var(Yij) ≈ µ
ν−1
ij

ij ν−1
ij : ν > 0 represents246

under-dispersion, ν = 1 recovers the Poisson Var(Y ) = E[Y ] yields over-dispersion, and ν > 1 under-dispersion.247

By fitting this mixed-effects location–scale CMP model, ecologists and environmental biologists can probe not only248

how drivers such as resource availability, temperature stress, or habitat fragmentation shift the average count of249

organisms or events, but also whether these same forces tighten or loosen the Poisson expectation on variability.250

Notably, Brooks et al. (2019) points out the dual ability of CMP to deal with both overdispersion and underdispersion.251

Moreover, they introduce zero-inflated CMP models (ZICMP) using glmmTMB (Brooks et al., 2019). As we mentioned252

earlier, its capability to model underdispersion is important, because this cannot be done by negative-binomial models.253

For example, under strong stabilizing selection on clutch size, many bird species have evolved canalized brood counts,254

often producing almost exactly the same number of eggs each year, a pattern of under-dispersion captured by ν > 1255

(e.g., Boyce and Perrins, 1987; Liou et al., 1993; Santos and Nakagawa, 2013).256

5.4 Illustrative example257

We reanalyzed visual preference in Estrildid finches by measuring gaze frequency to dot stimuli under food-supplied258

and food-deprived conditions (Mizuno and Soma, 2023). To account for overdispersed count data, we used a negative-259

binomial location–scale model (corresponding to Model 2), with species and individual (nested within species) as260

random effects in the location component. Birds gazed significantly less at dots when food was supplied (glmmTMB:261

β
(l)
deprived–supplied = −0.85, 95% CI [−1.08,−0.61]), which corresponds to a rate ratio of exp(β(l)) = 0.427 (i.e.,262

−57.3% mean; CI −66.0% to −45.7%). The scale component revealed greater individual-level variability under263

deprivation, indicated by a negative effect on θ (β
(s)
deprived–supplied = −0.66, 95% CI [−1.15,−0.18]), giving a θ-ratio264

of exp(β(s)) = 0.517 (i.e., −48.3% precision; CI −68.3% to −16.5%), noting that lower θ implies more scatter than265

the Poisson expectation. Species-level variation in average gaze frequency (SD = 0.55, 95% CI [0.31, 0.99]) exceeded266

within-species individual variation (SD = 0.34, 95% CI [0.17, 0.68]). Thus, food deprivation increased average gazing,267

while availability reduced gazing but amplified individual variability.268
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6 Beyond Gaussian II: over-dispersed proportion data269

Proportions come in two flavors. Discrete (binomial) proportions arise as “successes out of trials”, for example, the270

number of germinated seeds out of 20, the tally of infected hosts in a sample, the abundance of a certain taxon in271

microbial communities. They are naturally modeled with binomial regression (e.g., Bolker et al., 2009; Zuur et al.,272

2009b). Continuous proportions, in contrast, are already measured as rates on the unit interval, [0, 1] – leaf-area loss,273

percent cover, the fraction of time an animal spends foraging. Continuous proportions are usually analyzed with beta274

regression, which takes values between 0 and 1 (Ferrari and Cribari-Neto, 2004; Douma and Weedon, 2019).275

Boundary values (i.e., 0 and 1) complicate matters differently for the two types of proportion. Because the binomial276

distribution already includes zero and n (the number of ‘trials’), discrete counts can generate observed proportions277

of exactly 0 or 1; yet in practice, true absences (e.g., empty traps and seeds that could never germinate) often occur278

more frequently than a binomial distribution can allow (cf., Warton, 2005). A zero-inflation component, therefore,279

captures a separate “structural-zero” process. In contrast, structural ones (a one-inflation component) are seldom,280

if ever, needed because excess of perfect ‘successes’ are unlikely to occur in nature (e.g., Zuur et al., 2009b). Beta281

regression models, by construction, exclude the boundaries of the unit interval, so when continuous proportions include282

any zeros or ones – for example, sprayed plots with 0 % damage, or quadrats that are completely vegetated – both283

zeros and ones must be modeled via zero- and one-inflation submodels respectively (Ospina and Ferrari, 2012). Yet,284

we note that there exist methods to rescale contentious proportion data to eliminate zeros and ones, especially when285

these values are rare (e.g., lemon squeezer transformation; Smithson and Verkuilen, 2006). Nevertheless, whenever286

possible, it is advantageous to model zeros and ones explicitly, because these values can be due to some ecological or287

evolutionary processes. Bearing this in mind, we introduce three location-scale models for proportion data below.288

6.1 Beta-binomial location–scale model289

For discrete proportions (e.g., seedling emergence, infection prevalence), one usually starts modeling by assuming a290

binomial distribution:291

yij ∼ Binomial
(
nij , µij

)
, (25)

where yij is the number of successes out of nij trials in group j and µij ∈ (0, 1) is the underlying success probability292

(often denoted p). Yet, a binomial distribution ‘fixes’ the variance at nijµij(1 − µij) (i.e., the binomial-variance293

expectation) and therefore cannot accommodate the extra-binomial dispersion that is common in field data.294

However, if we assume that the success probability itself varies among observational units according to a beta295
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distribution, µij ∼ Beta(αij , βij), we can combine these two distributions to yield a beta–binomial distribution:296

yij ∼ Beta-binomial
(
nij , µij , ϕij

)
, (26)

where the beta distribution’s parameters are reparameterized as αij = µij ϕij and βij = (1−µij)ϕij . Here ϕij > 0 is297

a precision (inverse-dispersion or inverse-variance) term. For the resulting beta–binomial the variance is Var(yij) =298

nij µij(1− µij) ((nij + ϕij)/(1 + ϕij)). When ϕij → ∞, the fraction (nij + ϕij)/(1 + ϕij) to 1; the variance collapses299

to the binomial-variance expectation nij µij(1− µij) and there is no over-dispersion. Therefore, ϕ has the same role300

as the θ over-dispersion parameter in the negative binomial distribution. Given this property of a beta-binomial301

distribution, we can let predictors explain both the mean success probability and the amount of extra dispersion,302

while allowing for group-level shifts in the mean (Jorgensen, 1997; Lee and Nelder, 1996, 2006):303

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (27)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk. (scale submodel) (28)

In the location submodel, the random intercept u
(l)
j ∼ N (0, σ2

u) captures baseline differences among sites or pop-304

ulations. The scale submodel links the ln-precision to the same (or different) covariates, so predictors can inflate305

(ϕij ↓) or dampen (ϕij ↑) the variation beyond the binomial-variance expectation. Relatedly, Martin et al. (2020)306

introduced the use of the beta-binomial location-scale model to quantify the relative abundance of a specific taxon in307

microbial communities (genetic sequencing of microbiome samples results in discrete proportion data). They indeed308

emphasized the importance of its ability to model dispersion.309

6.2 Zero-inflated beta–binomial location–scale model310

In many ecological discrete proportion data (e.g., seedling emergence, infection prevalence), counts of “successes” out311

of nij trials show both structural zeros (true absences) and extra-binomial scatter. A zero-inflated beta–binomial312

location–scale model accommodates: 1) a point-mass at zero, 2) group-level shifts in the mean, and 3) over-dispersion313

16



beyond the binomial expectation, all within a single framework:314

yij ∼


0, with probability πij ,

Beta-binomial
(
nij , µij , ϕij

)
, with probability 1− πij ,

(29)

logit(πij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (30)

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (31)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (32)

Here yij is the number of successes in nij trials for observation i in group j. The zero-inflation submodel predicts315

the probability πij of a “structural” zero via a logit link and covariates xijk. Conditional on non-zero counts, the316

beta–binomial component arises by assuming the success probability itself follows Beta(µij ϕij , (1 − µij)ϕij ). The317

location submodel – with its random intercept u
(l)
j – captures baseline differences among sites or populations, while318

the scale submodel lets covariates modulate the precision ϕij .319

Similar to Martin et al. (2020), Hu et al. (2018) proposed zero-inflated beta-binomial models for microbiome data.320

While not full location-scale models, their examples underscore the importance of modeling zeros in such data.321

6.3 Zero-and-one-inflated beta location–scale model322

Continuous proportions often include exact zeros or ones (e.g., complete absence or saturation), which standard323

beta regressions cannot accommodate. Zero-and-one-inflated beta models resolve this by mixing three submodels324

to estimate coefficients for point mass at 0, point mass at 1, and the beta-distributed interior (Ospina and Ferrari,325

2012). This approach models the occurrence of boundary outcomes and the variability of intermediate proportions326
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in a single, interpretable framework, without dropping or adjusting boundary data:327

yij ∼



0, with probability π0,ij ,

1, with probability π1,ij ,

Beta
(
µij ϕij , (1− µij)ϕij

)
, with probability 1− π0,ij − π1,ij ,

(33)

logit(π0,ij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (34)

logit(π1,ij) = β
(1)
0 +

K∑
k=1

β
(1)
k xijk, (one-inflation submodel) (35)

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (36)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (37)

Here π0,ij and π1,ij are the structural-zero and structural-one probabilities; µij and ϕij govern the continuous beta328

component; and u
(l)
j is the lone random intercept in the location submodel, allowing group j to differ in its baseline329

mean proportion. The parameters β
(0)
0 and β

(0)
k set the log-odds of an exact zero, while β

(1)
0 and β

(1)
k set the log-330

odds of an exact one; each as a function of covariates. The variance of the beta-distributed interior is Var(yij) =331

µij(1− µij)/(1 + ϕij).332

When ϕij → ∞ the dispersion shrinks to zero and data distribution concentrates around its mean, whereas as ϕij333

approaches zero, the variance approaches its maximum µij(1− µij). Thus, lower ϕij inflates and higher ϕij deflates334

variability around the mean, and the scale submodel lets predictors modulate dispersion separately from the mean335

process. Note that when data does not include zeros and ones, one can remove corresponding submodels (i.e., beta336

location-scale models).337

Burke et al. (2023) used a zero-inflated beta location-scale model – without one-inflation as their dataset did not338

have ones — to examine patterns and drivers of coral diseases (measured by percentage areas of diseased corals) in339

a meta-analytic context (see Section 8). They found that when sea surface temperature increases, not only did the340

mean percentage of coral disease increase, but so did its variability, and, surprisingly, the observations of zero-percent341

disease, too.342

6.4 Illustrative example343

Lundgren et al. (2022) investigated whether mountain lion predation reduced feral donkey impacts on desert wet-344
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lands. We re-analysed some of these data with a beta location–scale model. We included zero–one inflation and345

conditional one-inflation submodels to account for exact 0 and 1 values. The model revealed that on average,346

the log-odds of the mean percentage of trampled bare ground were lower in areas with high predation risk (brms:347

β
(l)
predation–no predation = −1.22, 95% CI [−2.27,−0.71]), corresponding to an odds ratio of exp(β(l)) = 0.295 (i.e.,348

−70.5%; CI −89.7% to −50.9%). The scale component showed that log-precision (phi) was lower at sites with preda-349

tion (ϕ: β
(s)
predation–no predation = −1.07, 95% CI [−2.01,−0.04]), implying a ϕ-ratio of exp(β(s)) = 0.343 (i.e., −65.7%350

precision; CI −86.6% to −3.9%) and therefore more variation in trampling in areas with predation. See our tutorial351

(link) for the R code and interpretation of zero and one-inflated submodels.352

7 Proposed workflow and diagnostics353

Before any plotting or fitting, we recommend identifying whether the biological question concerns (i) changes in354

the mean alone, (ii) changes in variance (e.g., canalization, predictability, plasticity), or (iii) both. If variance is355

central to inference, one should start with a location–scale specification so that dispersion is modeled, estimated,356

and interpreted from the outset (e.g., Cleasby and Nakagawa, 2011; Nakagawa et al., 2025b). If variance is plausibly357

constant, a location-only baseline may be reasonable; however, one should verify this with targeted diagnostics (below)358

before concluding that homoscedasticity holds.359

Then, one could plot the raw response against each predictor to look for fans/funnels and group-wise spread for360

categorical predictors (heteroscedasticity cues). For non-Gaussian or transformed responses, one could also display361

the data (or fitted means) on the model’s link scale (log, logit) to align visualization with the inferential scale and362

avoid misreading curvature or boundary effects. When helpful, one might pair response-scale and link-scale panels in363

figures to aid interpretation. When a location-only baseline is fitted (Gaussian regression or mixed model with random364

intercepts for clustering), standard Q–Q plots are used to diagnose Gaussian residual assumptions, but they are not365

suitable for discrete responses. One should use randomized quantile residuals to obtain uniform residual checks for366

any GLM/GLMM family; these quickly reveal dispersion misfit, zero/one inflation, and other distributional problems367

(Dunn and Smyth, 1996). Such residuals can be calculated by the R package DHARMa (Hartig, 2022).368

These graphics could indicate whether a location-only model is defensible or whether a scale submodel is needed369

(see Fig. 2). If diagnostics or the question motivate it, one should specify a scale submodel for the residual SD370

(Gaussian), the dispersion/precision (negative binomial θ, beta-binomial ϕ), or other variance-link parameters (e.g.,371

CMP ν). With sufficient replication per cluster (roughly >5 observations), random effects can be introduced in372

the scale part and, where scientifically motivated, a correlation between location and scale random effects can be373

modeled (double-hierarchical formulation). If possible, one should treat such expansions as hypothesis-driven, not374

purely data-driven, although there are cases where pure exploration is warranted.375
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Information criteria can triage candidate models, but should not replace subject-matter reasoning. One could use376

AIC (Akaike information criterion) for frequentist fits and WAIC (widely applicable information criterion) or LOO-377

CV (leave-one-out cross validation) for Bayesian fits (Akaike, 2003; Anderson and Burnham, 2004; Vehtari et al.,378

2017). Then, one should inspect whether retained models answer biological questions of interest. For Bayesian379

implementations, one should routinely check any convergence/mixing issues before interpreting parameters via, for380

example, Gelman-Rubin statistics (R̂≈ 1) and effective sample sizes; posterior predictive checks can be performed381

to see predictions (mis-)match observed data (Gelman and Rubin, 1992; Vehtari et al., 2017; Gelman et al., 2020).382

Furthermore, regardless of the approaches (frequentist/Bayesian), one could go as far as performing simulation-based383

validation by generating data under the fitted generative process at the same or comparable sample size, refitting,384

and reporting bias and coverage for key model parameters. These and relevant procedures are increasingly available385

and supported by recent statistical tools (Säilynoja et al., 2025; Modrák et al., 2025; Monnahan et al., 2017; Allegue386

et al., 2017).387

Importantly, we can report location effects on their natural or link scale, whichever makes biological sense. For scale388

submodels, it is easy to interpret if we report percentage change in SD or dispersion for a unit change in a predictor,389

e.g., % change in SD = 100 [exp(β(s)) − 1]; if β(s) is a contrast between two groups, it represents % change in SD390

from one group to the other, as we have done in our examples above. In this way, we could emphasise magnitudes391

and uncertainty for biological interpretation rather than solely relying on interval overlap with zero, i.e., statistical392

significance (Nakagawa and Cuthill, 2007).393

8 Further extensions and future perspectives394

Location–scale thinking invites a broader re-imagination of data analysis. To assist this, we describe four extensions395

that expand the analytical capability to understand variability and quantify heteroscedasticity. First, ecological and396

environmental traits/measurements rarely act in isolation. Multivariate location–scale models analyze suites of traits397

simultaneously, estimating covariances not only among means but also among variances, and even mean–variance398

cross-links among traits. Such models can test, for instance, whether life-history ‘syndromes’ involve coordinated399

changes in both average values and trait predictability, or whether plasticity in one dimension buffers variability in400

another (O’Dea et al., 2022).401

Second, Blowes (2024) and Nakagawa et al. (2025a) have introduced and highlighted that bringing location–scale402

thinking into ecological and evolutionary meta-analysis would allow evidence syntheses to ask when and why het-403

erogeneity among effect sizes change along environmental gradients and methodological differences. Meta-analytic404

location–scale models treat heterogeneity, which dominates ecological and evolutionary meta-analyses (Senior et al.,405

2016), as a parameter to be explained rather than tolerated. As such, these models can uncover hidden structure in406
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the “noise” of published effect sizes. Indeed, using several datasets from community ecology, Blowes (2024) showed407

that location-scale meta-regression can significantly improve model fit compared to location-only meta-regression.408

Third, Halliwell (2025) and Nakagawa et al. (2025b) have introduced phylogenetic location-scale models, emphasizing409

that variance itself can evolve and should be a part of macro-evolutionary and community-ecological investigation.410

Embedding phylogenetic covariance structures in both mean and variance sub-models opens new terrain for com-411

parative biology. A phylogenetic location–scale model can reveal whether evolutionary shifts in trait means are412

accompanied by shifts in trait variability, and whether certain clades are consistently more (or less) variable than413

expected. By quantifying “phylogenetic heritability” for variance and means, researchers gain a fuller picture of414

evolutionary constraints, innovations and trade-offs.415

Fourth, responses not only have location and scale but also have ‘shape’. Extending the framework to include a416

shape component (e.g., skewness, kurtosis or heavy tails) would ask how entire distributions shift under ecological,417

evolutionary and environmental change (Stemkovski et al., 2023; Cornwell and Ackerly, 2009). ‘Location–scale–shape’418

models are already feasible in generalized additive or flexible Bayesian settings (Rigby and Stasinopoulos, 2005;419

Corrales and Cepeda-Cuervo, 2022; Stasinopoulos and Rigby, 2008; Umlauf et al., 2021). Such models promise420

insights into the frequency of extreme events, asymmetric risks, stabilizing selection, and bet-hedging strategies (Pick421

et al., 2022; Starrfelt and Kokko, 2012; Pollo et al., 2025; Anderson et al., 2017).422

Collectively, these extensions remind us that mean responses are only the tip of the statistical iceberg. Embracing423

location, scale and (eventually) shape as joint products of ecological and evolutionary processes will deepen our424

understanding of how organisms and ecosystems respond to an increasingly variable world.425

9 Conclusions426

Location-scale models provide a powerful lens through which ecologists and evolutionary biologists can interpret427

different types of data (i.e., continuous, count and proportion data). Building on the call from Cleasby and Nakagawa428

(2011) to treat heteroscedasticity as a biological clue and process, these approaches offer both conceptual and practical429

tools for richer inference. As datasets grow larger and more complex, studying variance as well as the mean should430

be standard practice in our analytical workflow in ecology, evolution, and environmental sciences. Let’s re-imagine431

heterogeneity.432
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and M. Modrák. Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020.487

B. Halliwell. Rethinking niche conservatism with phylogenetic location-scale models. bioRxiv, pages 2025–03, 2025.488

F. Hartig. Dharma: residual diagnostics for hierarchical (multi-level/mixed) regression models. r package version 0.4.489

6, 2022.490

23



A. F. Hayes and L. Cai. Using heteroskedasticity-consistent standard error estimators in ols regression: An introduc-491

tion and software implementation. Behavior research methods, 39:709–722, 2007.492

T. Hu, P. Gallins, and Y.-H. Zhou. A zero-inflated beta-binomial model for microbiome data analysis. Stat, 7(1):493

e185, 2018.494

B. Jorgensen. The theory of dispersion models. CRC Press, 1997.495

Y. Lee and J. A. Nelder. Hierarchical generalized linear models. Journal of the Royal Statistical Society Series B:496

Statistical Methodology, 58(4):619–656, 1996.497

Y. Lee and J. A. Nelder. Double hierarchical generalized linear models (with discussion). Journal of the Royal498

Statistical Society Series C: Applied Statistics, 55(2):139–185, 2006.499

Y. Lee, J. A. Nelder, and Y. Pawitan. Generalized linear models with random effects: unified analysis via H-likelihood.500

Chapman & Hall/CRC, 2006.501

L. W. Liou, T. Price, M. S. Boyce, and C. M. Perrins. Fluctuating environments and clutch size evolution in great502

tits. The American Naturalist, 141(3):507–516, 1993.503

E. J. Lundgren, D. Ramp, O. S. Middleton, E. I. Wooster, E. Kusch, M. Balisi, W. J. Ripple, C. D. Hasselerharm,504

J. N. Sanchez, M. Mills, et al. A novel trophic cascade between cougars and feral donkeys shapes desert wetlands.505

Journal of Animal Ecology, 91(12):2348–2357, 2022.506

B. D. Martin, D. Witten, and A. D. Willis. Modeling microbial abundances and dysbiosis with beta-binomial507

regression. The annals of applied statistics, 14(1):94, 2020.508

J. G. Martin, E. Pirotta, M. B. Petelle, and D. T. Blumstein. Genetic basis of between-individual and within-509

individual variance of docility. Journal of Evolutionary Biology, 30(4):796–805, 2017.510

A. Mizuno and M. Soma. Pre-existing visual preference for white dot patterns in estrildid finches: a comparative511

study of a multi-species experiment. Royal Society Open Science, 10(10):231057, 2023.512

A. Mizuno, S. Nakagawa, and co-authors. Data and code for ”location–scale models in ecology and evolution:513

heteroscedasticity in continuous, count, and proportion data”, 2025. URL https://doi.org/10.5281/zenodo.514

17515632.515
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Figure captions585

Figure 1. Homoscedasticity and heteroscedasticity patterns in common data distributions. Examples for (a) contin-586

uous, (b) count, and (c) proportion data. Top panels show homoscedasticity; bottom panels show heteroscedasticity.587

(a) Continuous responses demonstrate how continuous and categorical predictors can exhibit constant or varying588

variance across. (b) Count data inherently links the mean and variance, if counts follow Poisson distributions589

(E[y] < V ar[y]). Thus, variance increases with expected value. The bottom panel, though visually uniform, rep-590

resents the heteroscedasticity with larger dispersion at higher means. (c) Proportion data (proportion 0 - 1) shows591

heteroscedasticity (bottom) as inflated frequencies at the boundaries (0 - 1), reflecting overdispersion. This is often592

modeled by a beta-binomial distribution, where the success probability varies across observations.593

594

Figure 2. Practical workflow for detecting and modeling heteroscedasticity with location-scale models. This diagram595

outlines a step-by-step guide for applying location–scale models to identify and interpret non-constant variance in596

continuous, count, or proportion data. The workflow progresses from initial data visualization and distribution iden-597

tification (steps 1 and 2) to fitting a location-only baseline model and conducting residual diagnostics for variance598

patterns (steps 3 and 4). If heteroscedasticity is detected, a location-scale model is fitted (step 5) and compared599

against other possible models (e.g., ones with fewer or more fixed effects or random effects) using information criteria600

such as AIC (frequentist) or WAIC/LOO (Bayesian) (step 6). Finally, clearly report both mean and variance effects601

as final results. Note that the table in step 5 summarizes key variance-related parameters (e.g., σ2, θ, ϕ, ν) and their602

corresponding interpretations (for more details, see the main text).603
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