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Abstract1

Ecological data seldom meet the assumption of constant variance. Yet patterns of heteroscedasticity often2

reflect biologically meaningful variation, such as differences in plasticity or variable responses to3

environmental stresses. However, most studies model only the mean, treating variance as statistical noise.4

Here, we describe location–scale regression modeling, which estimates mean (location) as well as variance5

(scale) coefficients. We introduce three increasingly flexible formulations: (1) fixed-effect location–scale6

models, (2) models with random effects on the mean, and (3) double-hierarchical models with random7

effects on both mean and variance. We extend location–scale models from Gaussian to non-Gaussian data,8

including over-dispersed counts, proportions, and zero-inflated outcomes, features common to ecological9

datasets. Beyond overdispersion, we address underdispersion in count data and one-inflation in continuous10

proportions, providing a flexible framework for complex variance structures. We show that location–scale11

models can uncover informative variance patterns with minimal additional code. To support12

implementation, we provide an online tutorial (link), model selection workflow, and diagnostic guidance.13

Finally, we refer to new frontiers including multivariate, meta-analytic, phylogenetic, and14

location-scale-shape models. By treating variance as a biological response, instead of a nuisance,15

location–scale models enrich our understanding of organism and ecosystem dynamics in a changing world.16

https://ayumi-495.github.io/Eco_location-scale_model/
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1 Introduction17

Ecologists and evolutionary biologists strive to explain and account for variation in nature; this is usually18

done by statistically modeling target traits or measurements with hypothesized causal factors (e.g., a19

particular environmental factor accounts for 8% of the variance). In contrast, they rarely test whether20

variation changes across an environmental gradient or between groups (Cleasby and Nakagawa, 2011).21

Although ecological data often exhibit non-constant variance, this variation is commonly considered a mere22

nuisance that violates the model’s assumption of homogeneity (i.e., homoscedasticity). In reality, patterns23

in variance, or heteroscedasticity, can signal ecological, evolutionary, and environmental processes. For24

example, environmental stress (e.g., temperature increases) can not only change the mean but can also25

generate more variance in organismal responses (e.g., Buckley and Huey, 2016; O’Dea et al., 2016). On the26

other hand, plasticity, such as learning, can canalize variability because most individuals uniformly reach27

the behavioral optimum (e.g., Baldwin, 1896; Crispo, 2007).28

More than a decade ago, Cleasby and Nakagawa (2011) surveyed and reported that over 95% of published29

studies in behavioral ecology ignored heteroscedasticity. Such neglect can yield incorrect standard errors30

(SE) of regression coefficients (e.g., Type I error) and, critically, overlook biological insights in dispersion31

patterns. Therefore, they recommended two practical solutions. First, they suggested the use of32

heteroscedasticity-consistent (“sandwich”) estimators of SE, which resolve the statistical issues such as33

inflated Type I error (Hayes and Cai, 2007). Second, one can model different residual variances for different34

groups or across a continuous predictor (i.e., heteroscedasticity). This approach, however, does not directly35

provide inferential statistics – whether changes in variance are statistically significant or not. In their paper,36

Cleasby and Nakagawa (2011) neglected the third option: location–scale regression modeling, which37

provides statistical inference on both mean (location) and variance (scale, also known as dispersion) and38

thus resolves all issues at once. Statistically, location–scale models remove bias in SE and test statistics39

under heteroscedasticity (Carroll and Ruppert, 1988; Zuur et al., 2009). Biologically, these models can40
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reveal when and how both mean and variance respond to environmental and other drivers.41

The most flexible forms of location-scale models are double-hierarchical with random effects in both mean42

(location) and variance (scale)(Lee and Nelder, 1996, 2006; Rönnegård and Lee, 2013). However, these43

models are computationally complex and require Bayesian implementation, which may have hindered44

wider adoption. However, simpler location-scale models, which can only include random effects in the45

location part, are straightforward to implement in widely used statistical software. For example, these46

variants can be implemented readily in glmmTMB (Brooks et al., 2017) with minimal coding.47

Therefore, we aim to reintroduce the utility of location–scale regression models. To facilitate broader use,48

we focus on two simpler, practical formulations sufficient for many applications. In the following sections,49

we first introduce location–scale models with only fixed effects on both mean (location) and variance50

(scale) (Model 1). Next, we extend these to include random effects on the location part (Model 2) and, for51

completeness, describe the double-hierarchical framework with random effects on both location and scale52

(Model 3). We then expand these models (mainly Model 2) to non-Gaussian responses, namely count and53

proportion data; although such data are common, modeling over-dispersion of count and proportion seems54

to be rare in ecology, evolution, and environmental sciences (cf., Bolker et al., 2009). These non-Gaussian55

location-scale models can handle zero-inflation, and we refer to the issues of under-dispersion and56

one-inflation. We provide a range of examples illustrating biological insights obtained from location-scale57

models with both frequentist and Bayesian implementations using glmmTMB and brms (Bürkner, 2017),58

respectively (see the online tutorial (link). We also suggest a practical workflow to guide model selection.59

Finally, we discuss broader applications of location-scale models (e.g., meta-analytic location-scale60

models; Nakagawa et al., 2025) and related advanced models, which are potentially even more flexible and61

biologically informative (Rigby and Stasinopoulos, 2005).62

https://ayumi-495.github.io/Eco_location-scale_model/
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2 From simple to location-scale regression (Model 1)63

2.1 Model and motivation64

We begin with the familiar simple regression models (only with fixed effects), where we assume constant65

residual variance as well as data independence:66

yi = β0 +

K∑
k=1

βk xik + ei, (1)

ei ∼ N
(
0, σ2

)
, (2)

where yi is the response for observation i, xik (k = 1, . . . ,K) are the fixed covariates (predictors),67

{β0, β1, . . . , βK} are the regression coefficients, and the residual ei is normally (Gaussian) distributed with68

mean zero and variance σ2. Note that the predictor xik can be either a continuous or categorical variable.69

More accurately, for the latter case, when a categorical predictor has H levels, it becomes H − 1 ‘dummy’70

variables or predictors. That is, a categorical variable becomes (H − 1) binary variables in the model, and71

corresponding regression coefficients represent contrasts (differences) between a reference level (the72

intercept β0) and another level.73

Equivalently, we can write the model in its distributional form:74

yi ∼ N
(
µi, σ

2
)
, (3)

µi = β0 +
K∑
k=1

βk xik, (4)

where µi denotes the expected value of yi given the covariates, and σ2 remains the constant variance.75

This basic regression treats any heteroscedasticity as a nuisance. To turn it into biological/ecological76

signals, we allow the residual standard deviation to vary with predictors. The location–scale regression then77

comprises two linked submodels which can be written as (Model 1; Jorgensen, 1997; Lee et al., 2006;78
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Cleasby et al., 2015):79

yi ∼ N
(
µi, σ

2
i

)
, (5)

µi = β
(l)
0 +

K∑
k=1

β
(l)
k xik, (location submodel) (6)

ln(σi) = β
(s)
0 +

K∑
k=1

β
(s)
k xik, (scale submodel) (7)

where µi is its expectation, modeled by the location submodel coefficients β(l) and covariates xik, and σi is80

the residual standard deviation, modeled on the log (ln) scale by the scale submodel coefficients β(s) and81

the same covariates.82

This fixed effects location-scale regression, by linking predictors to both the mean and the ln-variance,83

allows us to test if an environmental gradient or experimental treatment shifts not just the average response,84

but also its individual variability. In other words, if a predictor (xik) influences the mean, its corresponding85

regression coefficient (β(l)
k ̸= 0) will be non-zero (significant). If a predictor influences variance, the86

associated regression coefficient for the scale component, represented as (β(s)
p ̸= 0), will also be non-zero.87

This suggests that the heterogeneity in the data varies in relation to that predictor, a phenomenon referred to88

as heteroscedasticity. Translating a variance signals into regression coefficients formalizes heterogeneity89

analysis and makes it accessible to researchers already familiar with interpreting regression coefficients for90

the location part (Fig. 1).91

The syntax for writing location-scale models in R builds off familiar modeling syntax in R. To fit a92

(location-only) regression model on the relationship between the location (mean) of y by x, we would write93

the following:94
95

library("glmmTMB")96

location_model <- glmmTMB(y∼x, data = dt)97
98

To explicitly model the ’scale’ as well as ’location’, we simply add the same formula (without the response99
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variable) to the dispformula argument:100
101

location_scale_model <- glmmTMB(y∼x, dispformula = ∼x, data = dt)102
103

This second model returns two regression tables, one (referred to as the Conditional by glmmTMB)104

describes the relationship between x and mean y, while the second table (referred to as Dispersion)105

describes the relationship between x and the variance of y.106

2.2 Illustrative example107

In the following illustrative examples, we report representative model results using the R packages108

glmmTMB and/or brms, selected based on model type and functionality. Full model specifications, code, and109

detailed explanations of datasets and interpretations are available in our online tutorial (link).110

We analyzed whether early-life food supplementation had sex-specific effects on body size variability, using111

adult tarsus length as an indicator, in a wild population of house sparrows (Passer domesticus) on Lundy112

Island, England (Cleasby and Nakagawa, 2011). The model’s location component showed no significant113

effect of sex, treatment, or their interaction on mean adult tarsus length. However, the scale (dispersion)114

component revealed a significant negative interaction between sex and treatment (glmmTMB: β(s)
[interaction] =115

-0.95, 95% CI = -1.66 to -0.24). This indicates a significant reduction in adult tarsus length variance among116

supplemented males. Neither treatment nor sex alone significantly influenced variance. This suggests117

early-life food supplementation can canalize trait development, leading to more uniform adult male118

morphology under favorable nutritional conditions.119

3 Adding random effects in the location part only (Model 2)120

3.1 Model and motivation121

Ecological and environmental datasets often violate both the homoscedasticity and non-independence122

assumptions. The latter is common due to clustered or grouped data, such as multiple measurements per123

site or individual. Consequently, ‘mixed-effects’ models are widely used in ecology and evolution, as they124

https://ayumi-495.github.io/Eco_location-scale_model/


8

incorporate both fixed and random effects to model these clustering and grouping structures (Bolker et al.,125

2009; Nakagawa and Schielzeth, 2013).126

Introducing a random effect (intercept in the location submodel) allows each group j to have a127

group-specific mean, while keeping the scale model fixed-effects only. Such models can be written as128

(Model 2; Jorgensen, 1997; Lee et al., 2006; Cleasby et al., 2015):129

yij ∼ N
(
µij , σ

2
ij

)
, (8)

µij = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (9)

ln(σij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (10)

where the random intercept u(l)j is distributed as u(l)j ∼ N (0, σ2
u). Here yij is the i-th response in group j,130

µij its expected value including the group-specific shift u(l)j , and σij the residual standard deviation driven131

by the scale covariates alone. This (mixed-effects) location–scale model tests whether predictors affect both132

the mean across and within groups, while allowing groups to differ in their overall mean level.133

Notably, we can easily extend Model 2’s location submodel to have more than one random effect (intercept)134

and random slopes. Indeed, such models with multi-random effects may be the rule rather than an135

exception in ecological and evolutionary data (?, e.g., site and year, or individuals nested in136

sites)[]schielzeth2013nested.137

3.2 Illustrative example138

We examined the difference in fledging scaled mass index (SMI), i.e., mass corrected by body size, between139

first and second hatched blue-footed booby (Sula nebouxii) chicks (Drummond et al., 2025). This Gaussian140

location-scale model included nest identity (σNestID(l)) and hatching year (σhatching.year(l)) as random141

effects in the location submodel, and hatching order in both submodels. We found a conclusive mean142
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ln(SMI) difference between first and second hatched chicks (brms: β(l)
[first-second] = -0.02, 95% CI = -0.02 to143

-0.01). Moreover, second hatched chicks exhibited greater ln(SMI) variability compared to their first144

hatched counterparts (brms: β(s)
[first-second] 0.13, 95% CI = 0.08 to 0.18). Random effects in the location145

component also showed that average ln(SMI) differed between nests (brms: σNestID = 0.05, 95% CI = 0.04146

to 0.05) and hatching years (brms: σhatching.year = 0.10, 95% CI = 0.07 to 0.14). These results suggest that147

second hatched chicks not only have a slightly lower average ln(SMI) but also exhibit greater variability in148

their SMI compared to first hatched chicks.149

4 Double-hierarchical model (Model 3)150

4.1 Model and motivation151

Model 2 naturally begs a question: why do not we add random effects in the scale part? Indeed,152

“double-hierarchical” models were the first to arrive in ecology and evolution nearly a decade ago (e.g.,153

Westneat et al., 2013). The double-hierarchical formulation jointly models how each group j shifts its mean154

and its standard deviation on the natural logarithm scale (Model 3; Lee and Nelder, 1996, 2006; Cleasby155

et al., 2015; O’Dea et al., 2022):156

yij ∼ N
(
µij , σ

2
ij

)
, (11)

µij = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (12)

ln(σij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk + u

(s)
j , (scale submodel) (13)
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with the bivariate random-effect vector
(
u
(l)
j , u

(s)
j

)⊤ following157

u
(l)
j

u
(s)
j

 ∼ N

0,

 σ2
u(l) ρu σu(l) σu(s)

ρu σu(l) σu(s) σ2
u(s)


 . (14)

Here, each group j has its own intercept in the mean (u(l)j ) and in the ln-standard deviation (u(s)j ), with their158

covariance governed by ρu. A positive ρu implies that groups with higher means also exhibit greater159

variability, whereas a negative ρu indicates that high-mean groups are more tightly canalized. This full160

double-hierarchical model thus allows simultaneous inference on fixed effects and group-level161

mean–variance associations. An extension of this model with a random slope in both location and scale162

parts in the context of uni- and multi-variate cases is well described in O’Dea et al. (2022). For example,163

when the cluster uj represents individuals (yij is repeated behavioral measures of an individual), the164

parameter ρu is referred to as the personality-predictability association. This is because σ2
u(l) reflects165

between-individual differences in mean behavior (personality), while σ2
u(s) captures differences in166

behavioral variance (predictability). For instance, a positive correlation would indicate that more167

aggressive individuals are also more unpredictable in the intensity of their aggression at one time point.168

As described, our focus in this article is to highlight Model 2 (and Model 1). Therefore, even if one is169

interested in σ2
u(s) and ρu, one should start with Model 2 as a robust baseline. One can fit Model 3, and170

compare Models 2 and 3 using information criteria or likelihood-ratio tests, if sample size permits (more171

than 10 repeats or observations per group may be required to model σ2
u(s) reliably; O’Dea et al., 2022);172

indeed, a simple simulation reveals that one requires 20 observations to get unbiased variance estimates173

(see the online tutorial (link). Such a modeling strategy leverages the stability of Model 2 while allowing174

the richer inferences of Model 3 when data permit (for more on model selection, see Section 7).175

https://ayumi-495.github.io/Eco_location-scale_model/
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4.2 Illustrative example176

Building upon the previous example of fledging scaled mass index (SMI) (Drummond et al., 2025), we177

fitted a Double-hierarchical Gaussian location-scale model. This extended Model 2 by incorporating nest178

identity (σNestID) as a correlated random effect in both the location and scale submodels. This allowed us179

to assess how average ln(SMI) and its variability differed across nests, and if these nest-specific variations180

were related. Average ln(SMI) differ between nests (brms: σNestID(l) = 0.05, 95% CI = 0.04 to 0.05), and181

some nests showed greater ln(SMI) variability (brms: σNestID(s) = 0.36, 95% CI = 0.32 to 0.40). Notably,182

a negative correlation between location and scale random effects within nests (brms: ρNestID = -0.46, 95%183

CI = -0.58 to -0.33) indicated that nests with higher average ln(SMI) tended to exhibit lower variability.184

Fixed effects for hatching order remained consistent with our previous model, further supporting that185

second hatched chicks have slightly lower mean ln(SMI) and greater variability.186

5 Beyond Gaussian I: over-dispersed count data187

In this and the next section, we turn from Gaussian responses to non-Gaussian data common in the natural188

world. Our focus is deliberately selective: we concentrate on count and proportion responses, omitting189

ordinal outcomes despite their feasibility with location-scale models (e.g., Martin et al., 2017). For these190

two response variable types, we develop three practical formulations for researchers. Because structural191

zeros (and ones for proportions) are common in ecological and environmental datasets, some count and192

proportion models include zero- or zero/one-inflation components (submodels). To keep the description193

clear, we present each model with the single random-intercept structure introduced in Model 2, though194

Models 1 and 3 forms are also applicable.195

5.1 Negative-binomial location–scale model196

Many ecological questions involve integer counts: fledglings per nest, insect colony size, or the number of197

eco- or endo-parasites. While Poisson regression is the usual starting point, real data rarely meet its198

assumption that mean equals variance (i.e., E[y] = V ar[y]). Indeed, as many researchers know, count data199
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often exhibit over-dispersion (E[y] < V ar[y]). Negative-binomial regression offers a solution because the200

negative-binomial (NB) distribution (family) has an extra parameter to model this over-dispersion (Stoklosa201

et al., 2022).202

A negative-binomial location scale model – in the form of Model 2 (a random effect only in the scale part) –203

can be written as (Jorgensen, 1997; Lee and Nelder, 1996, 2006):204

yij ∼ NB
(
µij , θij

)
, (15)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (16)

ln(θij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (17)

whereyij is the count for observation i in group j, µij is its mean, linked via a log (ln) link to fixed205

covariates xijk and a group-level random intercept u(l)j , θij is the dispersion parameter, linked on the ln206

scale to the same covariates but no random effect, u(l)j ∼ N (0, σ2
u) captures group-level shifts in the mean,207

and the log links ensure µij , θij > 0. The parameter θij is analogous to the Gaussian dispersion parameter208

σij but is quite different; it calibrates over-dispersion, and a larger value of θij represents less variation.209

This role becomes clear when one sees the formula for variance for the negative-binomial distribution.210

Var(Yij) = µij + µ2
ij/θij so that as θij → ∞, the term µ2

ij/θij vanishes and the distribution approaches211

the Poisson mean-variance expectation (E[y] = V ar[y]); conversely, smaller θij produces increasingly212

strong over-dispersion relative to the Poisson expectation.213

5.2 Zero-inflated negative-binomial location-scale model214

Ecological and evolutionary applications frequently encounter count data with both an excess of true215

absences alongside over-dispersed counts (cf., Zuur et al., 2009). For example, surveying soil invertebrates216

across patchy habitats might yield samples with zero individuals (structural zeros) and others with wildly217

varying densities. Similarly, parasite counts in wildlife often include hosts with no infection and others with218
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heavy (Taylor et al., 2017, e.g.,). To model these dual processes while allowing for distinct underlying219

distributions across populations or sites, we embed a single random intercept in the location submodel of a220

zero-inflated negative-binomial location-scale framework:221

yij ∼


0, with probability πij ,

NB
(
µij , θij

)
, with probability 1− πij ,

(18)

logit(πij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (19)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (20)

ln(θij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (21)

where yij is the count for observation i in group j. The zero-inflation submodel predicts the probability πij222

of a guaranteed zero via a logit link and fixed covariates xijk. Here, β(0)
0 is the baseline log-odds of an223

excess zero when all covariates xijk = 0, and each β
(0)
k represents the change in log-odds of a guaranteed224

zero per unit increase in covariate xijk. A positive β
(0)
k thus indicates that higher values of xk increase the225

probability of structural absence, whereas a negative β
(0)
k decreases it. The location submodel predicts226

µij >0 via a log link, including the group-specific random intercept u(l)j ∼ N (0, σ2
u), which captures227

unobserved differences among groups. The scale submodel with fixed covariates alone governs the228

dispersion parameter θij > 0, so larger θij yields variance closer to the mean, as described above.229

This model formulation allows researchers to simultaneously investigate how habitat characteristics and230

evolutionary history influence (1) the chance of encountering no individuals at all, (2) the expected231

abundance when presence occurs, and (3) the degree of overdispersion beyond the Poisson expectation.232

Notably, Stoklosa et al. (2022), in their review of negative-binomial modeling, advocate for233

negative-binomial models as a default for count data in ecology and biodiversity, given their234
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near-ubiquitous over-dispersion.235

5.3 Conway–Maxwell–Poisson location–scale model236

Under-dispersion (V ar(Y ) < E[Y ]) is probably less common but potentially important in ecological and237

environmental datasets. For example, stabilizing selection and biological ceiling (floor) effects could238

canalize count data. The Conway–Maxwell–Poisson (CMP) family (distribution) spans over- and239

under-dispersion with a parameter ν (variance drops as ν ↑) (Sellers and Shmueli, 2010):240

yij ∼ CMP(µij , νij), (22)

ln(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (23)

ln(νij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (24)

where yij is the count for observation i in group j; µij > 0 is the CMP “rate” (mean, often denoted as λ),241

on the log scale linked to predictors xijk and a random intercept u(l)j ∼ N (0, σ2
u); νij > 0 represents242

under-dispersion: ν = 1 recovers the Poisson Var(Y ) = E[Y ] yields over-dispersion, and ν > 1243

under-dispersion.244

By fitting this mixed-effects location–scale CMP model, ecologists and environmental biologists can probe245

not only how drivers such as resource availability, temperature stress, or habitat fragmentation shift the246

average count of organisms or events, but also whether these same forces tighten or loosen the Poisson247

expectation on variability. Notably, Brooks et al. (2019) points out the dual ability of CMP to deal with248

both overdispersion and underdispersion. Moreover, they introduce zero-inflated CMP models (ZICMP)249

using ‘glmmTMB‘ (Brooks et al., 2019). As we mentioned earlier, its capability to model underdispersion250

is important, because this cannot be done by negative-binomial models. For example, under strong251

stabilizing selection on clutch size, many bird species have evolved canalized brood counts, often producing252

almost exactly the same number of eggs each year, a pattern of under-dispersion captured by ν > 1 (e.g.,253
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Boyce and Perrins, 1987; Liou et al., 1993; Santos and Nakagawa, 2013).254

5.4 Illustrative example255

We analyzed visual preference in Estrildid finches by measuring gaze frequency to dot stimuli under256

food-supplied and food-deprived conditions (Mizuno and Soma, 2023). To account for overdispersed count257

data, we used a negative-binomial location-scale model (corresponding to Model 2), with species and258

individual (nested within species) as random effects in the location component. Birds gazed significantly259

less at dots when food was supplied (glmmTMB: β(l)deprived–supplied = −0.85, 95% CI = –1.08 to –0.61).260

The scale component revealed greater individual-level variability under food-supplied conditions, indicated261

by a negative effect of this condition (θ: β(s)deprived–supplied = −0.66, 95% CI = –1.15 to –0.18).262

Species-level variation in average gaze frequency (SD = 0.55, 95% CI = 0.31 to 0.99) exceeded263

within-species individual variation (SD = 0.34, 95% CI = 0.17 to 0.68). Thus, food deprivation increased264

average gazing, while availability reduced gazing but amplified individual variability.265

6 Beyond Gaussian II: over-dispersed proportion data266

Proportions come in two flavors. Discrete (binomial) proportions arise as “successes out of trials”, for267

example, the number of germinated seeds out of 20, the tally of infected hosts in a sample, the abundance of268

a certain taxon in microbial communities. They are naturally modeled with binomial regression (e.g.,269

Bolker et al., 2009; Zuur et al., 2009). Continuous proportions, in contrast, are already measured as rates on270

the unit interval, [0, 1] – leaf-area loss, percent cover, the fraction of time an animal spends foraging.271

Continuous proportions are usually analyzed with Beta regression, which takes values between 0 and 1272

(Ferrari and Cribari-Neto, 2004; Douma and Weedon, 2019).273

Boundary values (i.e., 0 and 1) complicate matters differently for the two types of proportion. Because the274

binomial distribution already includes zero and n (the number of ‘trials’), discrete counts can generate275

observed proportions of exactly 0 or 1; yet in practice, true absences (e.g., empty traps and seeds that could276

never germinate) often occur more frequently than a binomial distribution can allow (cf., Warton, 2005). A277
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zero-inflation component, therefore, captures a separate “structural-zero” process. In contrast, structural278

ones (a one-inflation component) are seldom, if ever, needed because excess of perfect ‘successes’ are279

unlikely to occur in nature (e.g., Zuur et al., 2009). Beta models, by construction, exclude the boundaries of280

the unit interval, so when continuous proportions include any zeros or ones – for example, sprayed plots281

with 0 % damage, or quadrats that are completely vegetated – both zeros and ones must be modeled via282

zero- and one-inflation submodels respectively (Ospina and Ferrari, 2012). Bearing this in mind, we283

introduce three location-scale models for proportion data below.284

6.1 Beta-binomial location–scale model285

For discrete proportions (e.g., seedling emergence, infection prevalence), one usually starts modeling by286

assuming a binomial distribution:287

yij ∼ Binomial
(
nij , µij

)
, (25)

where yij is the number of successes out of nij trials in group j and µij ∈ (0, 1) is the underlying success288

probability (often denoted p). Yet, a binomial distribution ‘fixes’ the variance at nijµij(1− µij) (i.e., the289

binomial-variance expectation) and therefore cannot accommodate the extra-binomial dispersion that is290

common in field data.291

However, if we assume that the success probability itself varies among observational units according to a292

Beta distribution, µij ∼ Beta(αij , βij), we can combine these two distributions to yield a Beta–binomial293

distribution:294

yij ∼ Beta-binomial
(
nij , µij , ϕij

)
, (26)

where the Beta distribution’s parameters are reparameterized as αij = µij ϕij and βij = (1− µij)ϕij .295

Here ϕij > 0 is a precision (inverse-dispersion or inverse-variance) term. For the resulting Beta–binomial296

the variance is Var(yij) = nij µij(1− µij) ((nij + ϕij)/(1 + ϕij)). When ϕij → ∞, the fraction297

(nij + ϕij)/(1 + ϕij) to 1; the variance collapses to the binomial-variance expectation nij µij(1− µij) and298
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there is no over-dispersion. Therefore, ϕ has the same role as the θ over-dispersion parameter in the299

negative binomial distribution. Given this property of a Beta-binomial distribution, we can let predictors300

explain both the mean success probability and the amount of extra dispersion, while allowing for301

group-level shifts in the mean (Jorgensen, 1997; Lee and Nelder, 1996, 2006):302

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (27)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk. (scale submodel) (28)

In the location submodel, the random intercept u(l)j ∼ N (0, σ2
u) captures baseline differences among sites303

or populations. The scale submodel links the ln-precision to the same (or different) covariates, so predictors304

can inflate (ϕij ↓) or dampen (ϕij ↑) the variation beyond the binomial-variance expectation. Relatedly,305

Martin et al. (2020) introduced the use of the Beta-binomial location-scale model to quantify the relative306

abundance of a specific taxon in microbial communities (genetic sequencing of microbiome samples results307

in discrete proportion data). They indeed emphasized the importance of its ability to model dispersion.308

6.2 Zero-inflated Beta–binomial location–scale model309

In many ecological discrete proportion data (e.g., seedling emergence, infection prevalence), counts of310

“successes” out of nij trials show both structural zeros (true absences) and extra-binomial scatter. A311

zero-inflated Beta–binomial location–scale model accommodates: 1) a point-mass at zero, 2) group-level312
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shifts in the mean, and 3) over-dispersion beyond the binomial expectation, all within a single framework:313

yij ∼


0, with probability πij ,

Beta-binomial
(
nij , µij , ϕij

)
, with probability 1− πij ,

(29)

logit(πij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (30)

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (31)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (32)

Here yij is the number of successes in nij trials for observation i in group j. The zero-inflation submodel314

predicts the probability πij of a “structural” zero via a logit link and covariates xijk. Conditional on315

non-zero counts, the Beta–binomial component arises by assuming the success probability itself follows316

Beta(µij ϕij , (1− µij)ϕij ). The location submodel – with its random intercept u(l)j – captures baseline317

differences among sites or populations, while the scale submodel lets covariates modulate the precision ϕij .318

Similar to Martin et al. (2020), Hu et al. (2018) proposed zero-inflated beta-binomial models for319

microbiome data. While not full location-scale models, their examples underscore the importance of320

modeling zeros in such data.321

6.3 Zero-and-one-inflated Beta location–scale model322

Continuous proportions often include exact zeros or ones (e.g., complete absence or saturation), which323

standard Beta regressions cannot accommodate. Zero-and-one-inflated Beta models resolve this by mixing324

three submodels to estimate coefficients for point mass at 0, point mass at 1, and the Beta-distributed325

interior (Ospina and Ferrari, 2012). This approach models the occurrence of boundary outcomes and the326

variability of intermediate proportions in a single, interpretable framework, without dropping or adjusting327
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boundary data:328

yij ∼



0, with probability π0,ij ,

1, with probability π1,ij ,

Beta
(
µij ϕij , (1− µij)ϕij

)
, with probability 1− π0,ij − π1,ij ,

(33)

logit(π0,ij) = β
(0)
0 +

K∑
k=1

β
(0)
k xijk, (zero-inflation submodel) (34)

logit(π1,ij) = β
(1)
0 +

K∑
k=1

β
(1)
k xijk, (one-inflation submodel) (35)

logit(µij) = β
(l)
0 +

K∑
k=1

β
(l)
k xijk + u

(l)
j , (location submodel) (36)

ln(ϕij) = β
(s)
0 +

K∑
k=1

β
(s)
k xijk, (scale submodel) (37)

Here π0,ij and π1,ij are the structural-zero and structural-one probabilities; µij and ϕij govern the329

continuous Beta component; and u
(l)
j is the lone random intercept in the location submodel, allowing group330

j to differ in its baseline mean proportion. The parameters β(0)
0 and β

(0)
k set the log-odds of an exact zero,331

while β
(1)
0 and β

(1)
k set the log-odds of an exact one; each as a function of covariates. The variance of the332

Beta-distributed interior is Var(yij) = µij(1− µij)/(1 + ϕij).333

When ϕij → ∞ the dispersion shrinks to zero and data distribution concentrates around its mean, whereas334

as ϕij approaches zero, the variance approaches its maximum µij(1− µij). Thus, lower ϕij inflates and335

higher ϕij deflates variability around the mean, and the scale submodel lets predictors modulate dispersion336

separately from the mean process. Note that when data does not include zeros and ones, one can remove337

corresponding submodels (i.e., Beta location-scale models).338

Burke et al. (2023) used a zero-inflated Beta location-scale model – without one-inflation as their dataset339

did not have ones — to examine patterns and drivers of coral diseases (measured by percentage areas of340
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diseased corals) in a meta-analytic context (see Section 8). They found that when sea surface temperature341

increases, not only did the mean percentage of coral disease increase, but so did its variability, and,342

surprisingly, the observations of zero-percent disease, too.343

6.4 Illustrative example344

Lundgren et al. (2022) investigated whether mountain lion predation reduced feral donkey impacts on345

desert wetlands. We re-analzyed some of these data with a Beta location-scale model. We included a346

zero-one inflation and conditional one-inflation submodels to account for exact 0 and 1 values. The model347

revealed that on average, the log-odds of the mean percentage of trampled bare ground were lower in areas348

with high predation risk (brms: β(l)
[predation–no predation] = −1.22, 95%CI[−2.27,−0.71]). The scale349

component showed that log-precision (phi) was lower at sites with predation (ϕ:350

β
(s)
[predation–no predation] = −1.07, 95%CI[−2.01,−0.04]), indicating more variation in trampling in areas with351

predation. See our tutorial (link for the R code and interpretation of zero and one-inflated submodels.352

7 Proposed workflow and diagnostics353

The workflow in Fig. 2 begins with data visualization. Scatterplots of the raw response against each354

predictor often reveal variance fans or funnels, indicating heteroscedasticity. For categorical predictors,355

some groups may show greater data spread (Cleasby and Nakagawa, 2011; Nakagawa et al., 2025).356

However, these patterns are sometimes hard to discern from raw count and proportion data. In these357

situations, residuals from a baseline ‘location-only’ model provide the most informative starting point. This358

baseline may take the form of a linear or generalized linear model, or a random-intercept mixed model in359

the presence of clustering. While residual Q–Q plots effectively identify heteroscedasticity in Gaussian360

data, they are not suitable for other data types. Randomized quantile residual Q–Q plots generalize this361

concept to any exponential-family response (e.g., Poisson or binomial), and they can quickly reveal362

violations of homoscedasticity or other distributional assumptions (e.g., zero inflation) (Dunn and Smyth,363

1996). These residuals can be calculated by the R package DHARMa (Hartig, 2022). Together, these graphics364

https://ayumi-495.github.io/Eco_location-scale_model/
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indicate whether variance is stable enough to justify a location-only model.365

If heteroscedasticity is observed, we extend the model to include a scale submodel. With generous sample366

sizes per cluster (e.g., > 5), random effects can enter the scale part, and a correlation can be modeled367

between the location and scale part of the same random effects (i.e., a double-hierarchical model). Classical368

information criteria, such as AIC for frequentist implementations (Anderson and Burnham, 2004) and369

WAIC or LOO-CV (leave-one-out cross validation) for Bayesian implementations (Vehtari et al., 2017) can370

help simplify the model. However, these scores should be treated as heuristic filters, flagging candidate371

models for closer inspection. Ultimately, the model must address the motivating ecological or evolutionary372

question, not merely minimize an index. Alternatively, if one has clear predictions for both the scale part373

and the location part, one can create such a model with all relevant predictors, bypassing model selection or374

simplification.375

8 Further extensions and future perspectives376

Location–scale thinking invites a broader re-imagination of data analysis. To assist this, we describe four377

extensions that expand the analytical capability to understand variability and quantify heteroscedasticity.378

First, ecological and environmental traits/measurements rarely act in isolation. Multivariate location–scale379

models analyze suites of traits simultaneously, estimating covariances not only among means but also380

among variances, and even mean–variance cross-links among traits. Such models can test, for instance,381

whether life-history ‘syndromes’ involve coordinated changes in both average values and trait predictability,382

or whether plasticity in one dimension buffers variability in another (O’Dea et al., 2022).383

Second, Blowes (2024) and Nakagawa et al. (2025) have introduced and highlighted that bringing384

location–scale thinking into ecological and evolutionary meta-analysis would allow evidence syntheses to385

ask when and why heterogeneity among effect sizes change along environmental gradients and386

methodological differences. Meta-analytic location–scale models treat heterogeneity, which dominates387

ecological and evolutionary meta-analyses (Senior et al., 2016), as a parameter to be explained rather than388
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tolerated. As such, these models can uncover hidden structure in the “noise” of published effect sizes.389

Indeed, using several datasets from community ecology, Blowes (2024) showed that location-scale390

meta-regression can significantly improve model fit compared to location-only meta-regression.391

Third, Halliwell (2025) and Nakagawa et al. (2025) have introduced phylogenetic location-scale models,392

emphasizing that variance itself can evolve and should be a part of macro-evolutionary and393

community-ecological investigation. Embedding phylogenetic covariance structures in both mean and394

variance sub-models opens new terrain for comparative biology. A phylogenetic location–scale model can395

reveal whether evolutionary shifts in trait means are accompanied by shifts in trait variability, and whether396

certain clades are consistently more (or less) variable than expected. By quantifying “phylogenetic397

heritability” for variance and means, researchers gain a fuller picture of evolutionary constraints,398

innovations and trade-offs.399

Fourth, responses not only have location and scale but also have ‘shape’. Extending the framework to400

include a shape component (e.g., skewness, kurtosis or heavy tails) would ask how entire distributions shift401

under ecological, evolutionary and environmental change (Stemkovski et al., 2023; Cornwell and Ackerly,402

2009). ‘Location–scale–shape’ models are already feasible in generalized additive or flexible Bayesian403

settings (Rigby and Stasinopoulos, 2005; Corrales and Cepeda-Cuervo, 2022; Stasinopoulos and Rigby,404

2008; Umlauf et al., 2021). Such models promise insights into the frequency of extreme events, asymmetric405

risks, stabilizing selection, and bet-hedging strategies (Pick et al., 2022; Starrfelt and Kokko, 2012; Pollo406

et al., 2025).407

Collectively, these extensions remind us that mean responses are only the tip of the statistical iceberg.408

Embracing location, scale and (eventually) shape as joint products of ecological and evolutionary processes409

will deepen our understanding of how organisms and ecosystems respond to an increasingly variable world.410
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9 Conclusions411

Location-scale models provide a powerful lens through which ecologists and evolutionary biologists can412

interpret different types of data (i.e., continuous, count and proportion data). Building on the call from413

Cleasby and Nakagawa (2011) to treat heteroscedasticity as a biological clue and process, these approaches414

offer both conceptual and practical tools for richer inference. As datasets grow larger and more complex,415

studying variance as well as the mean should be standard practice in our analytical workflow in ecology,416

evolution, and environmental sciences. Let’s re-imagine heterogeneity.417
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Figure and figure captions558

Figure 1. Homoscedasticity and heteroscedasticity patterns in common data distributions. Examples for559

(a)continuous, (b) count, and (c) proportion data. Top panels show homoscedasticity; bottom panels show560

heteroscedasticity. (a) Continuous responses demonstrate how continuous and categorical predictors can561

exhibit constant or varying variance across. (b) Count data inherently links the mean and variance, if counts562

follow Poisson distributions (E[y] < V ar[y]). Thus, variance increases with expected value. The bottom563

panel, though visually uniform, represents the heteroscedasticity with larger dispersion at higher means. (c)564

Proportion data (proportion 0 - 1) shows heteroscedasticity (bottom) as inflated frequencies at the565

boundaries (0 - 1), reflecting overdispersion. This is often modeled by a Beta-binomial distribution, where566

the success probability varies across observations.567

Figure 2. Practical workflow for detecting and modeling heteroscedasticity with location-scale models.568

This diagram outlines a step-by-step guide for applying location–scale models to identify and interpret569

non-constant variance in continuous, count, or proportion data. The workflow progresses from initial data570

visualization and distribution identification (steps 1 and 2) to fitting a location-only baseline model and571

conducting residual diagnostics for variance patterns (steps 3 and 4). If heteroscedasticity is detected, a572

location-scale model is fitted (step 5) and compared against other possible models (e.g., ones with fewer or573

more fixed effects or random effects) using information criteria such as AIC (frequentist) or WAIC/LOO574

(Bayesian) (step 6). Then, we clearly report both mean and variance effects as final results. Note that the575

table in step 5 summarizes key variance-related parameters (e.g., σ2, θ, ϕ, ν) and their corresponding576

interpretations (for more details, see the main text).577
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