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Abstract 80 

Biodiversity change forecasts rely on long-term time series, but such data are often scarce in 81 

space and time. Here, we interpolated spatiotemporal changes in species richness using a novel 82 

machine learning method without requiring temporal replication at sites. Using 698,692 one-time 83 

survey vegetation plots, we estimated trends in vascular plant alpha diversity across Europe from 84 

1960 to 2020 and validated our approach against 22,852 independent time series. We found an 85 

overall near-zero net change in species richness. However, species richness generally declined 86 

from 1960 to 1980 across habitats, followed by an increase from 2000 to 2020. Declines were 87 

most pronounced in forests, but trends varied significantly across habitats and regions, with 88 

overall increases at higher latitudes and elevations, and declines or stable trends elsewhere. Our 89 

findings demonstrate how data without temporal replication can be used to reveal context-90 

dependent biodiversity dynamics, underscoring the importance of such forecasts for conservation 91 

and management. 92 

1. Introduction 93 

Humans are driving major biodiversity changes worldwide (Díaz et al. 2019; IPBES 2019), but 94 

the magnitude of these changes remains poorly understood across most taxa, regions, and scales 95 

(Gonzalez et al. 2016; Johnson et al. 2024). At the finest grain, that of the local biological 96 

community, losses and gains often offset each other (Bernhardt‐Römermann et al. 2015; Blowes 97 

et al. 2019; Dornelas et al. 2014; Jandt et al. 2022; Klinkovská et al. 2025; Pilotto et al. 2020; 98 

Vellend et al. 2013). In Europe, trends in plant diversity at the community level have been 99 

differentially impacted by various causes, such as agricultural intensification, biological 100 

invasions, climate change, conservation measures, and eutrophication (Finderup Nielsen et al. 101 

2021; Gray et al. 2016; Steinbauer et al. 2018; Stevens et al. 2010; Vellend et al. 2017; Vilà et 102 



 

al. 2011). The relative strength of these drivers potentially varies over different historical periods 103 

(Klinkovská et al. 2024; Wesche et al. 2012), and their impacts may lag in time and only unfold 104 

after many decades (Dullinger et al. 2013). Consequently, the magnitude and direction of plant 105 

diversity change can differ across biogeographical regions and habitat types (Blowes et al. 2019; 106 

Pilotto et al. 2020). This wide variety of trends calls for time-series analyses capable of 107 

identifying fine-grain temporal changes in plant biodiversity across large spatiotemporal extents. 108 

To quantify plant diversity trends, considerable efforts are underway to resurvey vegetation plots 109 

across Europe (Jandt et al. 2022; Klinkovská et al. 2025), which recently culminated into 110 

ReSurveyEurope (Knollová et al. 2024), a database collating thousands of vegetation plot 111 

observations from numerous resurvey and monitoring projects. Despite the impressive collective 112 

effort and the extensive data now available, this database has significant geographical gaps, is 113 

biased toward well-preserved habitats and sites, becomes increasingly sparse further back in 114 

time, and varies in the length of observation intervals between surveys – with a large fraction of 115 

vegetation plots resurveyed only once. Furthermore, trends in plant alpha diversity derived from 116 

resurvey studies are potentially sensitive to plot relocation and observer error (Boch et al. 2022; 117 

Klinkovská et al. 2025; Verheyen et al. 2018). As a result, we still have limited knowledge of 118 

how plant diversity at the community level (i.e., alpha diversity) has changed across various 119 

European biogeographical regions and habitats. 120 

To address data gaps in space and time, we employ a novel machine learning approach (Keil & 121 

Chase 2022) to interpolate temporal biodiversity change using only static data, namely data 122 

without temporal replication at any given site. Our approach relies on the well-established fact 123 

that biodiversity is spatially (Legendre 1993; Tobler 1970) and temporally (Dornelas et al. 2013) 124 

autocorrelated, which is caused by the continuity of species distributions across space and time 125 



 

due to dispersal limitation and environmental structure (Dornelas et al. 2013). Because of this 126 

autocorrelation, we propose that biodiversity can be interpolated jointly in space and time [i.e., in 127 

the space-time cube (Mahecha et al. 2020)] (Figure 1). Specifically, we employed Random 128 

Forests (Breiman 2001; Wright & Ziegler 2017) to interpolate community-level plant diversity in 129 

a multidimensional domain defined by geographical coordinates and time, while also accounting 130 

for the effect of varying plot area on species richness estimates (Dengler et al. 2020; Storch 131 

2016). Our approach provides predictions of plant diversity within the temporal dimension, 132 

ultimately representing interpolated time series of biodiversity change. 133 

To this end, we utilized 698,692 static vegetation plots the European Vegetation Archive (EVA) 134 

(Chytrý et al. 2016) and ReSurveyEurope (Knollová et al. 2024), sampled between 1945 and 135 

2023 with plot sizes ranging from 1 m² to 1000 m². Given its extensive temporal and geographic 136 

coverage, this dataset is well-suited for interpolating biodiversity change. We modelled plot-137 

level alpha diversity (species richness) of vascular plants as a function of plot size, spatial 138 

coordinates (latitude, longitude, and elevation), sampling year, and habitat type (forest, 139 

grassland, scrub, or wetland). To validate our interpolation approach, we tested its ability to 140 

predict temporal species richness changes using 22,852 independent resurvey time series from 141 

ReSurveyEurope within the same period. Specifically, we trained the model on a single 142 

randomly selected observation from each time series and evaluated its predictions against 143 

observed species richness changes in ReSurveyEurope. Our model successfully predicted the 144 

direction of species richness changes and explained 41% of the variability in those changes (see 145 

‘Materials and Methods: Model Validation’). Having established the predictive power of our 146 

approach, we then applied it to temporally interpolate species richness dynamics across all 147 

vegetation plots sampled from 1960 to 2020, covering the last six decades across Europe. 148 



 

Figure 1: Workflow for spatiotemporal interpolation of plant species richness (S) and change in 149 

species richness (ΔS) in European vegetation plots. Species richness (S) from 698,692 static 150 

vegetation plots (independent plot observations from different sites that are not paired in time) 151 

sampled between 1945 to 2023 from the European Vegetation Archive (EVA) (Chytrý et al. 152 

2016) and ReSurveyEurope (Knollová et al. 2024) is interpolated using machine learning as a 153 

function of area, time, space, habitat type and their interactions aiming to maximize prediction 154 

accuracy within the temporal dimension of the space-time cube (panel a). Interpolated values are 155 

then used to estimate temporal changes in species richness (panel b). Colour coding of the dots in 156 

panel a) represents species richness recorded in 10,000 randomly selected plots from the EVA 157 

database for visualization. 158 

2. Materials and Methods 159 

2.1 Vegetation plot data 160 

Our initial data set contained 1,679,403 vegetation plot observations available in the European 161 

Vegetation archive (EVA) (Chytrý et al. 2016) and ReSurveyEurope (Knollová et al. 2024) 162 



 

(project n. 222; version 2024-02-06: https://doi.org/10.58060/jeht-nr04). We restricted the 163 

analysis to plots with complete information on geographical location, habitat type, plot size, and 164 

sampling year, applying specific filters based on each of these variables. We included only plots 165 

with coordinate uncertainty below 1 km and focused exclusively on habitats classified as forest, 166 

grassland, scrub, wetland following the EUNIS habitat classification system (Chytrý et al. 2020). 167 

Additionally, we only included plots within defined size ranges (1-100 m² for non-forest habitats, 168 

100-1000 m² for forests) and sampled between 1945 and 2023. Further details on data cleaning 169 

and preparation are listed in Appendix S1. The application of these filters yielded a subset of 170 

675,840 vegetation plot observations in EVA and 73,886 observations across 22,852 resurvey 171 

plots in ReSurveyEurope (Fig. S1), which we used for all subsequent analyses. Both datasets 172 

were used for model training and interpolation. The ReSurveyEurope dataset was also used to 173 

test whether our approach could predict species richness dynamics observed in time series data 174 

(see ‘Model Validation’). 175 

2.2 Model training 176 

We used Random Forests (Breiman 2001) and Extreme Gradient Boosting (Chen & Guestrin 177 

2016) to model plot-level vascular plant species richness dependence on space (= elevation, 178 

latitude, and longitude) and time (= sampling year) while accounting for the effect of plot size 179 

and habitat type. We applied these algorithms because they are better suited to modelling 180 

complex interactions between predictors and their non-linear effects compared to generalized 181 

linear models and related parametric methods, which is a desirable property when the aim is to 182 

maximize accuracy of cross-scale predictions of biodiversity metrics (species richness or 183 

occupancy) and model grain-dependent interactions between time and spatial scales (Keil & 184 

Chase 2022, 2019; Leroy et al. 2024). 185 

https://doi.org/10.58060/jeht-nr04


 

Our approach is based on static biodiversity data (in our case, vegetation plots surveyed only 186 

once) for spatiotemporal interpolation (Keil & Chase 2022). We trained the final model used in 187 

the interpolation analyses presented in the results of this work on a total of 698,692 vegetation 188 

plots, comprising 675,840 plots from EVA and 22,852 plots from ReSurveyEurope. Because 189 

plots from ReSurveyEurope have multiple observations, ranging from 2 to 46 (mean = 3.2; SD = 190 

3.5), we randomly selected one observation from each plot. The remaining 51,034 plot 191 

observations from ReSurveyEurope were excluded from the final model fit but were later used 192 

for model evaluation as test data (see the ‘Model Validation’ section). 193 

Modelling was fully conducted in R (version 4.4.2) (R Core Team 2024) with the tidymodels 194 

(Kuhn & Wickham 2020) package collection and included the main steps described below. 195 

- Training/Test set splitting. We randomly split the dataset into training (80% of 196 

observations) and testing (20% of observations) datasets. We stratified the split by the 197 

response variable (= species richness) to balance its distribution in both data sets. 198 

- Model specification. We fitted models using vegetation plots as observation units, with 199 

the following formula: S ~ x + y + elevation + plot size + year + habitat type; where S 200 

represents vascular plant species richness; x and y are the coordinates (in meters) of 201 

easting and northing, respectively; elevation corresponds to elevation above the sea level 202 

(in meters); plot size is the area of the plot (in square meters); year is the year of 203 

sampling; and habitat type is a categorical variable describing the general habitat 204 

classification ('forest', 'grassland', 'scrub', or 'wetland'). We used the ‘ranger’ (Wright & 205 

Ziegler 2017) and ‘xgboost’ (Chen et al. 2024) engines available in the parsnip R 206 

package (Kuhn & Vaughan 2024) for Random Forests and Extreme Gradient Boosting 207 

algorithms, respectively. 208 



 

- Hyperparameter tuning. We used a 10-fold random cross validation on the training data 209 

to perform hyperparameter tuning without repetition. We selected the best combinations 210 

of hyperparameters based on the lowest root mean square error (RMSE). For the Random 211 

Forests, we set the number of trees to 1000 and used a regular grid of 25 combinations of 212 

other hyperparameters, setting the minimum number of data points in a node for further 213 

splitting (= ‘node size’) to 2, 5, 10, 15, and 20, and the number of randomly sampled 214 

predictors (= ‘mtry’) from 2 to 6. For XGBoost, we tuned all possible hyperparameters 215 

(except for the number of trees, which was set to 1000) using default tuning parameters 216 

available in the dials R package (Kuhn & Frick 2024). We reduced the grid search for 217 

XGBoost by fitting 50 combinations of hyperparameters using a space filling design with 218 

latin hypercube grids with the ‘grid_space_filling’ function of the dials package. We used 219 

hyperparameter settings obtained from the tuning results of these Random Forests (node 220 

size = 5 and mtry = 3; see Fig. S4) as default hyperparameters in the final model fit and 221 

additional analyses. 222 

- Model evaluation. We evaluated the models using a 10-fold cross-validation (repeated 3 223 

times) on the training data and on a separate testing dataset. The Random Forests 224 

algorithm (RMSE = 7.0, R2 = 0.69) performed better than the XGBoost algorithm (RMSE 225 

= 8.1, R2 = 0.58; Table S1). Therefore, in all subsequent analyses, we exclusively applied 226 

Random Forests. Finally, we validated that the distribution of model residuals did not 227 

exhibit geographical clusters by plotting the distribution of plot-level residuals calculated 228 

from the testing data (observed minus predicted species richness), averaged at a 50 km 229 

resolution (Fig. S5). 230 

We also estimated the proportion of prediction variability explained by interactions between each 231 



 

pair of predictors as well as the proportion of joint effect variability of pairwise interactions by 232 

calculating H2 statistics (Friedman & Popescu 2008) with the ‘hstats’ function from the hstats R 233 

package (Mayer 2024) (Fig. S6). We utilized the ‘partial_dep’ function from the same package to 234 

visualize partial dependence plots (Fig. S7). 235 

2.3 Model validation 236 

To assess the reliability of our approach in estimating species richness dynamics, we trained 237 

separate Random Forests models on three static datasets: A) ReSurveyEurope, B) EVA, and C) a 238 

combination of both. To make the data in ReSurveyEurope ‘static’ (i.e., select one single plot 239 

observation at each vegetation plot site) for datasets A and C, we randomly selected one 240 

observation from each of the 22,852 resurvey plots. We split each of the three datasets, using 241 

80% of the data to train the models. We then evaluated their model performance separately based 242 

on the following observations from the three independent testing datasets: 243 

1) Species richness of the testing data. Here, formal model evaluation was performed on the 244 

20% of data not used for model training during the data split. 245 

2) Species richness of data from ReSurveyEurope. This included all plots from 246 

ReSurveyEurope that were not used for model training, i.e. the remaining 51,034 247 

independent plots neither used in training, nor in testing.  248 

3) Species richness change in ReSurveyEurope. This was assessed using the log-response 249 

ratio (lnRR) of species richness between the initial and final plots within each resurvey 250 

time series. A positive correlation indicates that changes in species richness obtained 251 

from model predictions can capture observed changes in species richness. 252 

We repeated the model training procedure 100 times for dataset A), each with a new random 253 



 

selection of training and testing data from each time series. The model evaluation metrics 254 

showed that predictions were robust to random selection of plot combinations within the time 255 

series when tested using the criteria outlined in points 1, 2, and 3 (see Table S2). 256 

Overall, our test demonstrated the feasibility of predicting species richness dynamics using 257 

interpolations from static data: when interpolating over ReSurveyEurope data, predicted and 258 

observed changes were positively correlated (R² = 0.41; Pearson correlation = 0.64) (Fig. S8; 259 

Table S2). Predictions overall captured the observed direction of change, but they tended to 260 

slightly underestimate the observed magnitude of change, resulting in more conservative 261 

estimates (Fig. S9). However, models struggled to accurately predict species richness changes in 262 

new, spatially independent data, i.e. when EVA-only trained models were tested in 263 

ReSurveyEurope (R² = 0.06; correlation = 0.23). This was likely due to an uneven spatial 264 

distribution of ReSurveyEurope plots relative to EVA plots, an overall higher error of predicting 265 

richness over two time periods for lnRR calculation, and different temporal distribution of EVA 266 

plots located closely to ReSurveyEurope. Finally, we found no significant differences in model 267 

validation results when comparing permanent and quasi-permanent ReSurveyEurope plots (Fig. 268 

S10), thus our approach is potentially robust against biases related to plot relocation.  269 

In sum, our approach can explain up to 41% of the variability in species richness change over 270 

relatively long temporal spans (from 1945 to 2023). The evaluation of the model trained 271 

exclusively on EVA and tested on ReSurveyEurope data suggests that the results should not be 272 

geographically extrapolated beyond plot-level predictions. For these reasons, we used the 273 

interpolated spatiotemporal model to predict solely along the temporal dimension (i.e., we did 274 

not project the models outside the spatial scope of our data) and restricted the predictions of 275 

species richness dynamics exclusively to the plots utilized in the main model, combining data 276 



 

from both EVA and ReSurveyEurope (see ‘Model training’ section). 277 

2.4 Interpolation of species richness change 278 

We used our model, trained on EVA and ReSurveyEurope data (see the ‘Model Training’ 279 

section), to predict species richness for each year from 1960 to 2020. Predictions were made for 280 

the 660,748 plots included in the analysis and sampled during this period, while keeping other 281 

predictors fixed. To account for differences in plot size, we used the median plot size for each 282 

habitat type (forests: 300 m², grasslands: 20 m², scrub: 64 m², wetlands: 50 m²) in our species 283 

richness predictions. To explore changes in species richness across the entire study period (1960-284 

2020), we calculated the percentage change in interpolated species richness between 1960 and 285 

2020 for each plot, as follows: 𝑆𝑐ℎ𝑎𝑛𝑔𝑒 =
100∗(𝑆2020−𝑆1960)

𝑆1960
. Similarly, we also calculated 21-year 286 

changes observed in 1980, 2000 and 2020, relative to that in the year 1960, 1980 and 2000, 287 

respectively. 288 

We also examined temporal trends in mean species richness across all plots within each habitat 289 

type and across plots located in seven European biogeographical regions. For each year, we 290 

calculated the estimated mean species richness across all plots per habitat type or biogeographic 291 

region, respectively, and used it as the response variable in relation to year in a linear regression, 292 

effectively estimating the mean change in number of species per year. Biogeographical regions 293 

were sourced from the data of the European Environmental Agency (European Environment 294 

Agency 2016). We merged the arctic, boreal, and Scandinavian alpine regions into a single 295 

biogeographical unit, to distinguish these regions from the other alpine regions with nemoral-296 

continental (e.g., the Alps, Carpathians, Pyrenees) and nemoral-submediterranean (e.g., Dinaric 297 

Alps, Rhodopes) vegetation (Preislerová et al. 2024). 298 



 

To visualize the geographic distribution of species richness change across the European 299 

continent, we aggregated plot-level percentages of species richness changes into 50 km × 50 km 300 

grids by averaging the predicted values of all plots in each raster cell. We plotted multiple maps 301 

for different time periods (1960–1980, 1980–2000, 2000–2020, and 1960–2020) and habitat 302 

types. Furthermore, to account for different temporal coverage of some cells (Fig. S2-S3), we 303 

calculated and mapped species richness change for each time period, including only plots 304 

sampled within each respective period to restrict the interpolations over shorter temporal gaps 305 

(Fig. S11). Similarly, we evaluated different metrics of species richness change, namely, log-306 

response ratios (Fig. S12), the raw number of species lost or gained (Fig. S13), and linear slope 307 

estimates (Fig. S14) over the three periods (1960–1980, 1980–2000, and 2000–2020) separately, 308 

and across the entire focal period (1960–2020). Linear slope estimates were obtained by fitting 309 

linear regressions of predicted species richness against year for each plot, estimating the average 310 

number of species gained or lost per year over the assessed period. All these metrics quantifying 311 

diversity change exhibited overall consistent patterns with one another. 312 

3. Results and Discussion 313 

3.1 Balanced diversity changes, but shifting dynamics: early losses, late gains 314 

We estimated close to zero mean net change in species richness (-2%) between 1960 and 2020 315 

when averaged across all plots and habitat types (Figure 2a). This finding is similar to results of 316 

previous large-scale analyses of alpha diversity change, which show low net richness change 317 

across multiple time series (Bernhardt‐Römermann et al. 2015; Blowes et al. 2019; Dornelas et 318 

al. 2014; Jandt et al. 2022; Vellend et al. 2013). Although the overall species loss in our analysis 319 

was minor, this average trend hides a substantial proportion of plots exhibiting large changes 320 

over the past six decades: 15% of plots showed a steep decline, with losses of more than 20% of 321 



 

their initial species richness, while 19% of plots showed the opposite trend, with species gains of 322 

more than 20%. 323 

Figure 2: Summary of plant species richness changes over 61 years (1960–2020). Panel a) 324 

shows the distribution of proportional change in interpolated plant species richness for the year 325 

2020 compared to 1960 across 660,748 European vegetation plots sampled over that period. 326 

Dashed vertical line corresponds to 0% change; red solid line to the mean (= -1.9%). Panel b) 327 

shows temporal trends in average species richness (mean values across plots per year) for each 328 

habitat (dark grey lines). Linear regressions (black lines) and their slopes (coloured backgrounds) 329 

are fitted to species richness for three time periods: 1960–1980, 1980–2000, and 2000–2020. The 330 

y-axis scale is standardized to the baseline mean species richness estimated for the year 1960. To 331 

standardize differences in plot size, species richness was predicted using a fixed plot size equal 332 

to the median plot size for each habitat (noted at the top of each panel). 333 

We identified shifting dynamics over time characterized by a prevailing decline in species 334 

richness from 1960 to 1980 (continuing up to the 2000s in forests and scrubs), followed by gains 335 

in species richness from 2000 to 2020 across all habitat types (Figure 2b) and in most 336 

biogeographic regions (Figure 3). While our approach cannot establish a causal link between 337 

species richness changes and potential underlying drivers, the greater losses detected during 338 

earlier decades align with well-documented factors contributing to European biodiversity 339 



 

decline. These factors include agricultural intensification and eutrophication driven by nitrogen 340 

(N) and phosphorus (P) enrichment, along with acid deposition, all of which began increasing in 341 

the early 20th century and peaked in the latter half of the century (Araújo et al. 2008; Fuchs et al. 342 

2015; Schöpp et al. 2003; de Vries et al. 2024). Each of these drivers has likely impacted 343 

different habitats to a different extent, such as acidic deposition in forests (Hédl 2004), and soil 344 

drainage and nitrogen deposition favouring encroachment by generalist species in wetlands 345 

(Sperle & Bruelheide 2021) and grasslands (Stevens et al. 2010). As recently shown for the flora 346 

of the Czech Republic (Klinkovská et al. 2024), industrialization and land-use intensification 347 

during the 1960-1980s has generally advantaged species adapted to anthropogenic disturbances 348 

and high nutrient availability. Especially high rates of eutrophication in European countries 349 

during this period likely contributed to species richness declines, by promoting the dominance of 350 

a few species favoured by high nitrogen availability (Staude et al. 2020; Stevens et al. 2010). 351 

These declines were lessened over time when species numbers gradually reduced as 352 

compositions shifted to more nitrophilous vegetation (Bobbink et al. 2010), with possible species 353 

richness recovery following reduced N input (Storkey et al. 2015).   354 



 

Figure 3: Trends of species richness change over 61 years (1960-2020) in seven European 355 

biogeographic regions. Each panel displays the estimated trend (dark grey curves) of the mean 356 

interpolated species richness (y-axis) across all plots within a given biogeographic region and 357 

habitat type over time (x-axis). The number of plots (n) is indicated at the top of each panel. 358 

Linear regressions (black lines) and their slopes (coloured backgrounds) are fitted to species 359 

richness for three time periods: 1960–1980, 1980–2000, and 2000–2020. The y-axis scale is 360 

standardized to the baseline mean species richness estimated for the year 1960. Species richness 361 

was predicted using a fixed plot size equal to the median plot size for each habitat (noted at the 362 

right for each habitat). 363 

Subsequently, the increased occupancy of warm-adapted and non-native species (Klinkovská et 364 

al. 2024), along with overall range shifts of species tracking their thermal niches in response to 365 

climate change (Rumpf et al. 2018), may have contributed to local species recruitment in recent 366 

decades (2000-2020), resulting in a species richness increase. This trend was particularly 367 



 

noticeable at higher latitudes (e.g., in open habitats of the boreal region) and in mountainous 368 

areas (Figure 3 and Figure 4), and corroborates previous studies focusing on these ecosystems 369 

and regions (Steinbauer et al. 2018; Thuiller et al. 2005). Furthermore, species richness gains 370 

observed since the 2000s could partially reflect the Europe-wide abatement of airborne 371 

anthropogenic N and sulphur (S) deposition from the 1990s onwards (Sutton et al. 2011; de 372 

Vries et al. 2024), as well as more recent improvements in nature conservation and restoration 373 

policies supported by the European Union [e.g., the 1992 Habitats Directive (European Union 374 

1992)]. Preferential sampling could partly explain the observed positive trends in species 375 

richness in some regions over the last decades. However, to our knowledge, this bias applies only 376 

to those regions where older vegetation surveys, focusing on phytosociological classification 377 

(sometimes omitting certain species from the plots, leading to an underestimation of richness), 378 

shifted toward sampling of better-preserved vegetation over more recent years (e.g., due to 379 

monitoring over protected areas). Yet, older surveys often targeted floristically richer sites, while 380 

recent efforts more often include degraded sites too, potentially balancing these trends. 381 

3.2 Habitat- and region-specific diversity change 382 

We found highly context-dependent trajectories of species richness change (Figure 3 and Figure 383 

4), consistent with studies challenging the notion of unidirectional biodiversity change (Dornelas 384 

et al. 2023; Johnson et al. 2024; Pilotto et al. 2020) and supporting the idea that biodiversity 385 

change depends on habitat type (Klinkovská et al. 2025), geographic location 386 

(Bernhardt‐Römermann et al. 2015; Blowes et al. 2019), and, most crucially, time period 387 

considered. Although significant geographic heterogeneity in interpolated species richness trends 388 

was observed across Europe, a few distinct geographic patterns emerged. Overall, colder regions, 389 

namely the alpine and the arctic-boreal zones, showed increases in species richness, although 390 



 

localized declines were observed in wetlands and forests within these regions; conversely, other 391 

regions displayed either stable trends or overall losses.  392 

When comparing 2020 to 1960, forest habitats showed the highest proportion of plots with 393 

substantial declines of species richness compared to other habitats, with 25% of plots estimated 394 

to have lost ≤ 20% of species, and a mean change of -6%. Large declines in forests are 395 

interpretable as results of alteration of management practices (i.e., cessation of coppicing and 396 

forest grazing coupled with increased canopy density), resulting in a shift towards species-poorer 397 

communities representative of denser, moister, and nutrient-richer conditions (i.e., mesification) 398 

(Hédl et al. 2010; Lelli et al. 2021). Our findings partially contrast with the synthesis by 399 

Bernhardt‐Römermann et al. (2015) on resurvey studies of forest vegetation in Europe, which 400 

reported more balanced trends for this habitat type. However, their study covered fewer old sites, 401 

potentially reducing their chance to detect losses that occurred in the 1960s or earlier 402 

(particularly in the Atlantic region), and focused on temperate forests only. Indeed, we identified 403 

constant declines of species richness in boreal and Mediterranean forests (Figure 3). 404 

Interestingly, forests in the Alpine region displayed an opposite, positive trend. These variations 405 

across biogeographic regions reflect the notion that local and regional drivers specific to forest 406 

habitats – such as changes in large ungulate densities, management practices, and their 407 

interactions with nitrogen deposition and global warming – create context-dependent impacts on 408 

plant species richness dynamics of forest vegetation (Bernhardt‐Römermann et al. 2015; Perring 409 

et al. 2018; Staude et al. 2020).  410 



 

Figure 4: Geographic patterns of plant species richness change in Europe. The maps show the 411 

mean percentage change in plot-level species richness between two time points, aggregated 412 

within 50 km × 50 km grid cells. Only grid cells containing at least five plots sampled between 413 

1960 and 2020 are shown. Histograms (upper left of each panel) illustrate the distribution of 414 

percentage change classes across all plots. The number of plots (n) for each habitat is shown in 415 

the panels on the right that estimate richness changes from 1960 to 2020. Species richness was 416 

predicted using a fixed plot size equal to the median plot size for each habitat (noted on the right 417 

for each habitat). 418 



 

Grasslands displayed more balanced trends, with a net species richness change close to zero 419 

(mean: -1.5%) over the whole study period. The high heterogeneity of grassland diversity trends 420 

across Europe (Figure 4) could reflect, among many other drivers, highly localized management 421 

practices, ranging from strong intensification to complete abandonment, creating a patchy 422 

mosaic of biodiversity trends across European grasslands (Shipley et al. 2024). Conversely, 423 

wetlands had the most polarized results, with large fractions of plots showing high gains and 424 

losses (≥20%) in 25% and 18% of the plots, respectively, resulting in a slightly positive average 425 

change (mean: +4%) across the whole study period. Compared to other habitats, wetlands also 426 

displayed a more distinct geographical gradient: plots with increasing richness or no change were 427 

primarily located at higher latitudes (above 55° N). Given the substantial pressures affecting 428 

most European wetland ecosystems (Verhoeven 2014), we did not expect large gains in 429 

wetlands. This sharp latitudinal pattern may reflect changes in local hydrological regimes (e.g., 430 

soil drainage) that promote the encroachment of generalist vascular plant species resulting in 431 

higher species richness, at the expense of typical moss species (not included in our analysis) 432 

found in northern European mires (Kolari et al. 2021; Pedrotti et al. 2014). The higher 433 

magnitude of change in wetlands also likely reflects their generally lower baseline vascular 434 

species richness (see Fig. S7), where the addition of a few species can strongly affect gains in 435 

species richness. Nonetheless, most wetlands at lower latitudes, especially in Central Europe 436 

(Figure 4), experienced large losses in species richness. This find accords with previous studies 437 

of wetlands in central and southern European lowlands, which have documented climate change 438 

toward warmer conditions, combined with drastic increases in human water extraction from 439 

natural systems, as key drivers of wetland specialist losses (Navrátilová et al. 2022; Sperle & 440 

Bruelheide 2021). 441 



 

4. Advances, limitations, and implications for addressing biodiversity change 442 

With this study, we provide the first continental-scale analysis of local biodiversity change over 443 

continuous time and space, unlocking an unprecedented amount of vegetation-plot data collected 444 

over more than six decades. Compared to previous large-scale analyses of time series data 445 

(Bernhardt‐Römermann et al. 2015; Blowes et al. 2019; Dornelas et al. 2014; Jandt et al. 2022; 446 

Klinkovská et al. 2025; Pilotto et al. 2020; Vellend et al. 2013), our approach enabled us to i) 447 

unravel these trends across a broad geographic extent and different habitat types and ii) compare 448 

them to common baselines from the same time period. This was previously difficult to achieve at 449 

the continental scale due to data limitations and because past methods rarely leveraged static data 450 

to inform analyses of biodiversity dynamics (Jandt et al. 2011). Our new method addresses the 451 

latter and can potentially be applied to other taxonomic groups and spatial grains (Keil & Chase 452 

2022; Leroy et al. 2024) to robustly estimate biodiversity change even in the absence of 453 

dedicated time series data. Additionally, our method can be applied to individual species 454 

occurrences, offering potential for studies mapping single-species dynamics and composition 455 

changes, although this may involve considerable computational costs. Our work is intended to 456 

complement, rather than replace, the efforts of field ecologists to resurvey vegetation and collect 457 

new data, which are the fundamental source for assessing spatial and temporal patterns of 458 

biodiversity. Indeed, geographically and temporally representative long-term monitoring of 459 

habitats across Europe is essential for effectively assessing, preserving, and restoring 460 

biodiversity (Moersberger et al. 2024). Such monitoring data are crucial not only for 461 

understanding biodiversity change but also for enhancing the validation of our method from non-462 

systematic data sources like those employed here. 463 

While our approach provides a robust assessment of regional-scale biodiversity trends (i.e., the 464 



 

average local trend in a larger region), as indicated by the results of our model validation (see 465 

Fig. S8), it is likely weaker at making precise predictions at individual sites, as indicated by the 466 

59% of variance in species richness that was not explained by our predictions. In addition, 467 

although habitat changes (e.g., a transition from grassland to scrub) can be integrated into model 468 

predictions, our approach does not account for local land-use changes or intensification, such as 469 

the destruction of surveyed plant communities due to deforestation, urbanization, or agricultural 470 

conversion. In other words, our method is conservative in estimating local species richness 471 

change, assuming the preservation of each community type within the time window assessed. 472 

Furthermore, we caution that this method may yield unreliable estimates in regions lacking 473 

sufficient temporal coverage of geographically close observations in areas that are poorly 474 

sampled over time (but see Fig. S5). 475 

Species richness dynamics revealed by our study have several key implications for biodiversity 476 

assessment and conservation planning in Europe. Our results suggest that vegetation plots 477 

experiencing local losses in species richness could also experience gains in the future. Yet, in 478 

many cases, a local increase in species richness should not necessarily be interpreted as an 479 

improvement in conservation status but could instead indicate habitat quality deterioration 480 

(namely, losses in habitat specialists in favour of generalist or non-native species colonizing 481 

plant communities and increasing local alpha diversity) (Jandt et al. 2022; Klinkovská et al. 482 

2025). Further investigation of long-term plant diversity trends at broader scales and beyond 483 

alpha diversity (e.g., habitat specialist occupancy) is needed to confirm whether the recent rise in 484 

local species richness across habitats results from biotic homogenization by generalists and alien 485 

species at the expense of specialists. Given the large geographic heterogeneity of diversity trends 486 

that we uncovered, we nonetheless emphasize the importance of recognizing regional variations 487 



 

when implementing conservation and restoration actions. This means tailoring the 488 

implementation of joint EU policies, such as the Agri-Environment Schemes (European 489 

Commission 2017), the Common Agricultural Policy (CAP) (European Commission 2012), and 490 

the Nature Restoration Law(European Commission 2023), to prioritize local and habitat-specific 491 

conservation and restoration needs.   492 
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Appendix S1: Additional details on the preparation of vegetation data 720 

We calculated species richness (S) as the number of species in each plot, including subspecies 721 

and aggregates as individual species. We focused exclusively on vascular plants and excluded 722 

non-vascular plant taxa from the analysis because non-vascular plants were often not recorded. 723 

Species nomenclature was based on Euro+Med Plant-Base (Euro+Med PlantBase 2024) and that 724 

of aggregates following the EUNIS-ESy system (Chytrý et al. 2020). When counting species 725 

richness, we also included taxa identified only at the genus level. Before calculating species 726 

richness, we merged species occurrences within the same plot observation if a species was 727 

recorded in multiple vegetation layers. 728 

We restricted the analysis to plots with complete information on geographical location, habitat 729 

type, plot size, and sampling year, applying specific filters based on each of these variables, as 730 

described below.  731 

- Geographic location We included only plots located in Europe with available 732 

geographical coordinates. We excluded plots from Iceland, Svalbard, Russia, and Turkey. 733 

Additionally, we excluded plots with a geographic uncertainty greater than 1 km but 734 

retained plots without reported uncertainty, assuming that in a large majority of cases, 735 

their actual uncertainty is no greater than 1 km (Midolo et al. 2024; Večeřa et al. 2019). 736 

We transformed geographic coordinates to latitude and longitude in meters using 737 

ETRS89 / UTM zone 32N (EPSG:25832) projection (hereinafter, ‘northing’ and 738 

‘easting’, respectively) and used this projection throughout the analysis. To complete the 739 

information on spatial location of all plots included in the analyses, we extracted 740 

elevation at plot location using a Digital Elevation Model with 90-m horizontal resolution 741 

from the European Space Agency (European Space Agency 2024). For the 742 

ReSurveyEurope data, we included both permanent plots (83% of the final dataset), 743 

which were resurveyed at precisely relocated sites, and quasi-permanent plots (17%), 744 

which lacked accurate relocation information. The coordinates of repeated observations 745 

for the same plot in ReSurveyEurope are not always consistent, likely due to variations in 746 

plot relocation error. Thus, to minimize potential bias in species richness interpolation 747 

during model validation, we excluded any plots in ReSurveyEurope where at least one 748 

observation was located more than 100 meters from other observations at that same plot 749 

site. This procedure resulted in the removal of 3,655 observations from 582 plots. 750 



 

Additionally, all experimentally manipulated permanent plots were excluded from the 751 

ReSurveyEurope dataset. 752 

- Habitat types We classified the vegetation plots into habitat types based on species 753 

composition and cover using the European Nature Information System (EUNIS) Habitat 754 

Classification expert system (Chytrý et al. 2020) (version 2021-06-01). We grouped plots 755 

into level-1 EUNIS habitat types and restricted the analyses only to plots categorized 756 

either as forest (code ‘T’), grassland (code ‘R’), scrub (code ‘S’), or wetland (code ‘Q’). 757 

We also included coastal dunes and sandy shore habitats (code ‘N1’) and classified them 758 

either as forest, grassland, or scrub depending on the physiognomy of their level-3 759 

EUNIS habitat. We discarded all plots that were not categorized in one of the habitats 760 

above, such as man-made vegetation and marine habitats. Data reported in the Danish 761 

Nature Database (Nielsen et al. 2012) (which lacks species-cover data needed for 762 

classification into EUNIS habitats by the expert system) were classified into level-1 763 

EUNIS category using the Annex I habitat conversion sheet of the same database 764 

(European Environment Agency 2023). The final selection of plots included the 765 

following number of observations for each of the habitats: 186,719 for forest (171,290 in 766 

EVA; 15,429 in ReSurveyEurope); 360,131 for grassland (309,286 in EVA; 50,845 in 767 

ReSurveyEurope); 70,334 for scrub (65,644 in EVA; 4,690 in ReSurveyEurope); 132,542 768 

for wetland (129,620 in EVA; 2,922 in ReSurveyEurope). 769 

- Plot size We included only plots with sizes ranging from 1 to 100 m2 for grasslands, 770 

scrub and wetlands, and from 100 to 1000 m2 for forests to exclude outliers as well as 771 

potential mistakes of plot size reported in the datasets of EVA and 772 

ReSurveyEurope(Midolo et al. 2024). We excluded all plots with no information on plot 773 

size.  774 

- Sampling year. We excluded plots sampled before 1945 due to a much lower number of 775 

plots compared to later periods. For model training, testing, and evaluation, we focused 776 

on plots sampled between 1945 and 2023. However, to further mitigate potential biases 777 

associated with older sampling protocols and overall fewer plots before 1960, or due to 778 

reporting lags for studies that were conducted within the last few, we restricted 779 

interpolations to plots sampled from 1960 to 2020 (see ‘Interpolation of diversity change’ 780 

section). The temporal distribution of ReSurveyEurope data matched that of the EVA 781 



 

data (Fig. S1), and we had broad temporal coverage of plots sampled in most European 782 

regions (Fig. S2-S3). Across the selected time series in the ReSurveyEurope data, the 783 

mean time span between the first and last observation was 20 years (ranging from 1 to 73 784 

years; SD = 16 years). 785 
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 807 

Figure S1: Spatial (top panels; 50 × 50 km resolution) and temporal (bottom panels) distribution 808 

across plot observations of the European Vegetation Archive (EVA) and ReSurveyEurope.  809 



 

Figure S2: Year of the oldest (top panels) and newest (lowest panels) plot observation located in 810 

each grid cell (50 × 50 km resolution) across the vegetation plots of the European Vegetation 811 

Archive (EVA) and ReSurveyEurope.  812 



 

Figure S3: Temporal span (difference in years between the newest and the oldest plot 813 

observation) located in each cell on a 50 × 50 km resolution grid across the vegetation plots of 814 

the European Vegetation Archive (EVA) and ReSurveyEurope.  815 



 

Table S1: Evaluation metrics (root mean square error, RMSE; coefficient of determination using 816 

squared correlation, rsq) of the tested algorithms (Random Forests and XGBoost) on the full 817 

dataset tested on 10-fold random cross validation (CV) over the training dataset (558,952) and 818 

last fit on the testing dataset (139,740). 819 

 Random Forests XGBoost 

RMSE 

(species richness) 
rsq 

RMSE 

(species richness) 
rsq 

Random CV on 

the training set 

7.07 

(SE: 0.0064) 

0.685 

(SE: 0.0005) 

8.19 

(SE: 0.0050) 

0.580 

(SE: 0.0006) 

Last fit on the 

testing set 

7.02 0.688 8.14 0.583 

  820 



 

Figure S4: Hyperparameter tuning results of minimal node size and the number of randomly 821 

selected predictors in Random Forests.  822 



 

Figure S5: Spatial distribution of model residuals. The map shows the distribution of species 823 

richness residuals (observed - predicted) across Europe from the Random Forests model 824 

estimated over the testing data. Residuals were averaged within 50 km x 50 km grid cells for 825 

each habitat type. Only grid cells with at least five plots are included. The number of plots (n) is 826 

indicated within each panel. The lack of distinct geographic patterns in the residuals suggests 827 

that the model performed similarly in predicting species richness across different regions.  828 



 

Figure S6: Interaction statistic H2 describing variation explained by the interactions of terms 829 

included in Random Forests. Overall, 71% of the total variation explained by the model was 830 

attributable to interactions (H2 statistic = 0.71, not shown in the figure). Left panel: overall 831 

interaction strength per feature H2
j (= proportion of prediction variability explained by 832 

interactions on predictor j). Right panel: pairwise interaction strength H2
jk (=proportion of joint 833 

effect variability of predictors j and k coming from their pairwise interaction); only the top seven 834 

interactions are shown here.  835 



 

Figure S7: Partial dependence plots and variable importance (bottom-right panel) of predictors 836 

in the Random Forests model used for species richness interpolation. Partial dependence plots 837 

are grouped by habitat type. Easting (longitude) and northing (latitude) are originally expressed 838 

in meters (m) (the x-axis scale is transformed to decimal degrees).  839 



 

Table S2: Results of model validation trained on a static version of the ReSurveyEurope data 840 

only. The model was fitted 100 times, with individual plots randomly selected for each time 841 

series from the ReSurveyEurope data in each iteration. The table reports the resulting mean and 842 

standard deviation (SD) values of various evaluation metrics (root mean square error, RMSE; 843 

coefficient of determination using squared correlation, rsq; Pearson correlation of observed 844 

versus predicted values; cor) obtained from three testing datasets. See ‘Materials and Methods’ 845 

and Fig. S8 for additional details. 846 

 RMSE rsq cor 

Static S  

(20% testing) 

7.40  

(SD: 0.1160)  

0.639  

(SD: 0.0096) 

0.799 

(SD: 0.0060) 

Static S 

(ReSurveyEU) 

5.99  

(SD: 0.0244)  

0.737 

(SD: 0.0021) 

0.858 

(SD: 0.0012) 

ΔS 

(ReSurveyEU) 

0.386  

(SD: 0.0018) 

0.415  

(SD: 0.0055) 

0.645 

(SD: 0.0042) 

  847 



 

Figure S8: Validation tests for the temporal interpolation of species richness dynamics. The 848 

panel matrix reports evaluation results of observed (x-axis) vs. predicted (y-axis) species 849 

richness (static S) or its derived change (ΔS). Each panel includes evaluation metrics (root mean 850 

square error, RMSE; coefficient of determination using squared correlation, rsq; Pearson 851 

correlation of observed versus predicted values; cor) and sample size (n). Predictions were 852 

obtained from three models trained over different dataset combinations (columns) and tested 853 

over three different testing datasets (rows). The training data are obtained from A) 854 

ReSurveyEurope only (1st column), B) EVA only (2nd column), and C) a combination of both 855 

(3rd column), using no repeated survey. The testing dataset included 1) the 20% data from the 856 

initial split (1st row), 2) all remaining plots in ReSurveyEurope not utilized for model training 857 

(2nd row), and 3) species richness changes between the initial and final plots within each resurvey 858 

time series (3rd row). See ‘Model validation’ section in ‘Materials and Methods’ for more details. 859 



 

Figure S9: Interpolations tend to predict less strong changes than observed values. The 860 

histogram compares the distribution of observed vs. predicted species richness changes across 861 

22,852 resurvey sites. This is calculated as a log response ratio (lnRR) between the species 862 

richness in the final plot to the one in the initial plot within each time series of ReSurveyEurope 863 

data. Predictions were obtained from a model trained on a static version of ReSurveyEurope data 864 

only (= using a single plot randomly selected for each time series). Same values are displayed in 865 

the scatter plot on the bottom-left panel of Fig. S8.  866 



 

Figure S10: Validation tests for the temporal interpolation of different training datasets (see Fig. 867 

S8) comparing observed vs. predicted species richness change (ΔS) over ReSurveyEU data. 868 

Here, separate evaluation statistics were computed based upon the type of resurvey: either 869 

permanent plots (plots resurveyed at precisely re-located sites; first-row panels) or quasi-870 

permanent (‘Resampling’) plots lacking accurate re-location (second-row panels). No significant 871 

discrepancy in model evaluation results was detected between the two re-survey methods. 872 

Species richness change is calculated as a log-response ratio (lnRR) between the species richness 873 

in the final plot to the one in the initial plot within each time series of ReSurveyEurope data.  874 



 

Figure S11: Geographical patterns of interpolated species richness change in Europe across main 875 

habitat types based on percentages of change (%). The maps are based on average plot-level 876 

percentage of change of species richness between two points in time for each time period, on a 877 

50 km × 50 km grid (as displayed in Fig. 4 in the main text). In comparison to Fig. 4, only grid 878 

cells with at least five plots sampled within each time period are displayed (i.e. number of cells 879 

varies across panels depending on data availability for a given period). To account for 880 

differences in plot sizes, we predicted species richness for each plot and year using the median 881 

plot size value for its habitat (i.e., 300 m² for forests, 20 m² for grasslands, 64 m² for scrub, and 882 

50 m² for wetlands). 883 



 

Figure S12: Geographical patterns of interpolated species richness change in Europe across main 884 

habitat types based on log-response ratios (lnRR) in each plot. The maps are based on average 885 

plot-level lnRRs of species richness between two points in time for each time period, on a 50 km 886 

× 50 km grid. See Fig. S11 for additional details.  887 



 

Figure S13: Geographical patterns of interpolated species richness change in Europe across main 888 

habitat types based on absolute number of species change in each plot. The maps are based on 889 

average plot-level number of species change between two points in time for each time period, on 890 

a 50 km × 50 km grid. See Fig. S11 for additional details.  891 



 

Figure S14: Geographical patterns of interpolated species richness change in Europe across main 892 

habitat types based on linear slope estimates in each plot. The maps are based on average plot-893 

level slope estimates obtained from linear regressions of species richness against time, on a 50 894 

km × 50 km grid. Species change per year is expressed in decades (multiplied by 10). See Fig. 895 

S11 for additional details. 896 


