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Abstract

Substitution models constitute the mathematical foundation of modern phylogenetic

inference, providing the probabilistic framework necessary for reconstructing evolutionary

relationships from molecular sequence data. These models describe the stochastic

processes governing nucleotide or amino acid changes over evolutionary time through

continuous-time Markov chains, enabling maximum likelihood and Bayesian approaches to

phylogenetic reconstruction. This comprehensive review examines the theoretical

principles underlying substitution models, from the foundational Jukes-Cantor model to

sophisticated general time-reversible frameworks, whilst addressing critical aspects of

model selection, parameter estimation, and computational implementation. We analyse the

mathematical formulations of key models including JC69, K80, F81, HKY85, and GTR,

presenting their rate matrices, transition probabilities, and equilibrium conditions in formal

notation suitable for publication. Through computational illustrations and graphical

analyses, we demonstrate the behaviour of these models under varying parameter

conditions and evolutionary scenarios. The article critically evaluates model selection 
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methodologies, including information-theoretic criteria and likelihood ratio tests, whilst

discussing the inherent limitations and assumptions that constrain the interpretation of

phylogenetic results. Recent advances in mixture models, partition-specific substitution

processes, and machine learning approaches are examined in the context of improving

phylogenetic accuracy and biological realism. Our analysis reveals that whilst substitution

models have achieved remarkable sophistication, fundamental challenges remain in

capturing the full complexity of molecular evolution, particularly regarding rate

heterogeneity, non-stationarity, and epistatic interactions. The findings emphasise the

importance of careful model selection and the recognition of model limitations in

phylogenetic studies, providing guidance for practitioners in choosing appropriate

methodological frameworks for their evolutionary analyses.

Keywords: substitution models, phylogenetic reconstruction, molecular evolution,

maximum likelihood, Bayesian inference, model selection, DNA evolution, protein

evolution, Markov chains, evolutionary genomics

1. Introduction

The reconstruction of phylogenetic relationships from molecular sequence data represents

one of the most fundamental challenges in evolutionary biology, requiring sophisticated

mathematical frameworks to infer the historical processes that have shaped the diversity of

life on Earth. At the heart of this endeavour lie substitution models, which provide the

probabilistic foundation for understanding how genetic sequences evolve over time

through the accumulation of mutations, substitutions, and other molecular changes

(Felsenstein, 1981). These models serve as the essential bridge between observable

sequence differences and the underlying evolutionary processes, enabling researchers to

quantify evolutionary distances, estimate divergence times, and reconstruct the branching

patterns of phylogenetic trees with statistical rigour.

The development of substitution models has its origins in the pioneering work of Jukes and

Cantor (1969), who introduced the first mathematical framework for correcting observed

sequence differences to account for multiple substitutions at the same site. This seminal

contribution recognised that the simple counting of differences between sequences

systematically underestimates the true evolutionary distance due to the phenomenon of 



homoplasy, where multiple changes at a single position can obscure the actual number of

substitutional events that have occurred. The Jukes-Cantor model, whilst making

simplifying assumptions about equal base frequencies and uniform substitution rates,

established the fundamental principle that evolutionary inference requires probabilistic

models that can account for the stochastic nature of molecular evolution.

The subsequent decades have witnessed an extraordinary expansion in the sophistication

and biological realism of substitution models, driven by advances in molecular biology,

computational power, and statistical methodology. The recognition that different types of

nucleotide substitutions occur at different rates led to the development of models that

distinguish between transitions and transversions, most notably the Kimura two-parameter

model (Kimura, 1980). This advancement acknowledged the well-established observation

that transitions between chemically similar bases occur more frequently than transversions

between dissimilar bases, reflecting the underlying biochemical constraints on DNA

replication and repair processes.

Further refinements incorporated the recognition that nucleotide frequencies are rarely

equal in natural sequences, leading to models such as the Felsenstein F81 model that allow

for unequal base compositions whilst maintaining other simplifying assumptions

(Felsenstein, 1981). The integration of these insights culminated in the Hasegawa-Kishino-

Yano model, which combines both transition-transversion bias and unequal base

frequencies, providing a more realistic representation of the evolutionary process

(Hasegawa et al., 1985). The ultimate generalisation of these approaches is embodied in the

General Time Reversible model, which allows for the maximum number of free parameters

whilst maintaining the crucial assumption of time reversibility that enables phylogenetic

inference from contemporary sequences (Tavaré, 1986).

The mathematical foundation of substitution models rests upon the theory of continuous-

time Markov chains, which provides the formal framework for describing the probabilistic

evolution of discrete character states over continuous time intervals. In this formulation, the

evolutionary process is characterised by an instantaneous rate matrix that specifies the

rates of change between different character states, typically the four DNA bases or twenty

amino acids. The fundamental assumption of the Markov property ensures that the

probability of future changes depends only on the current state and not on the historical

path by which that state was reached, a simplification that makes phylogenetic inference

computationally tractable whilst capturing the essential features of molecular evolution.



The transition from instantaneous rates to finite-time transition probabilities is

accomplished through matrix exponentiation, a mathematical operation that transforms

the rate matrix into a probability matrix describing the likelihood of observing particular

character states after a specified evolutionary time. This transformation is central to all

likelihood-based phylogenetic methods, as it enables the calculation of the probability of

observing particular sequence patterns given a hypothetical phylogenetic tree and set of

model parameters. The computational challenges associated with matrix exponentiation

have driven significant advances in numerical methods and algorithmic optimisation,

making large-scale phylogenetic analyses feasible for contemporary datasets.

The application of substitution models extends far beyond simple distance estimation to

encompass the full spectrum of phylogenetic inference methods. Maximum likelihood

approaches utilise substitution models to calculate the probability of observing the data

given a particular tree topology and set of parameters, enabling the identification of the

most probable phylogenetic hypothesis through optimisation procedures (Yang, 2006).

Bayesian methods incorporate substitution models within a probabilistic framework that

allows for the quantification of uncertainty in phylogenetic estimates through the

exploration of posterior probability distributions over tree space and parameter space

(Huelsenbeck & Ronquist, 2001). Distance-based methods rely on substitution models to

convert observed sequence differences into evolutionary distances that can be used in

clustering algorithms such as neighbour-joining or UPGMA.

The selection of appropriate substitution models has emerged as a critical component of

phylogenetic analysis, with significant implications for the accuracy and reliability of

evolutionary inferences. The proliferation of available models has necessitated the

development of systematic approaches to model selection, including information-theoretic

criteria such as the Akaike Information Criterion and Bayesian Information Criterion, which

balance model fit against model complexity to identify optimal parameterisations (Posada

& Buckley, 2004). Likelihood ratio tests provide an alternative framework for comparing

nested models through formal statistical hypothesis testing, whilst cross-validation

approaches assess model performance through predictive accuracy on independent data

subsets.

Despite the remarkable sophistication achieved by contemporary substitution models,

fundamental limitations remain that constrain the accuracy and scope of phylogenetic

inference. The assumption of rate constancy across sites and lineages, whilst 



computationally convenient, fails to capture the extensive heterogeneity observed in real

evolutionary processes. Among-site rate variation, arising from differences in functional

constraints, structural requirements, and mutational mechanisms, requires sophisticated

mixture models or gamma-distributed rate categories to achieve adequate representation

(Yang, 1994). Similarly, the assumption of stationarity, which requires that the evolutionary

process remains constant over time, is frequently violated in real datasets due to changes in

selective pressures, population dynamics, and environmental conditions.

The challenge of model adequacy assessment has become increasingly important as

phylogenetic datasets have grown in size and complexity. Traditional approaches to model

validation, such as examination of residual patterns or simulation studies, provide limited

insight into the specific ways in which models fail to capture biological reality. Recent

advances in posterior predictive assessment and cross-validation methodologies offer more

sophisticated approaches to model evaluation, enabling researchers to identify specific

aspects of the data that are poorly explained by particular model formulations (Bollback,

2002).

The computational demands of modern phylogenetic analysis have driven significant

innovations in algorithmic design and implementation. The calculation of likelihood

functions for large datasets requires efficient algorithms for matrix exponentiation,

numerical optimisation, and tree space exploration. Parallel computing architectures and

graphics processing units have enabled analyses of unprecedented scale, whilst

approximate methods such as composite likelihood approaches provide computational

shortcuts for extremely large datasets at the cost of some statistical rigour (Stamatakis,

2014).

Recent developments in the field have focused on incorporating greater biological realism

into substitution models whilst maintaining computational tractability. Codon-based

models explicitly account for the genetic code and selection pressures on protein

sequences, enabling more accurate inference of evolutionary processes in protein-coding

regions (Goldman & Yang, 1994). Mixture models allow different sites or lineages to evolve

under different substitution processes, capturing heterogeneity that is ignored by simpler

models. Partition models enable different regions of the genome to evolve under distinct

substitution processes, reflecting the diverse functional constraints operating on different

genomic elements.



The integration of machine learning approaches with traditional substitution modelling

represents an emerging frontier in phylogenetic methodology. Neural networks and other

machine learning algorithms offer the potential to learn complex evolutionary patterns

directly from data without requiring explicit specification of model structure, whilst

maintaining the interpretability and statistical foundation that characterise traditional

approaches (Suvorov et al., 2020). These hybrid methodologies may provide pathways to

overcome some of the fundamental limitations of current substitution models whilst

preserving the theoretical framework that enables rigorous statistical inference.

The epistemological challenges inherent in phylogenetic reconstruction reflect broader

issues in contemporary multidisciplinary research, where traditional disciplinary

boundaries may constrain our understanding of complex biological phenomena. As

Montgomery (2025) argues in his analysis of ontological and epistemological frameworks in

academic research, the integration of artificial intelligence and computational approaches

in scientific inquiry requires careful consideration of both transformative potential and

inherent limitations. The development of substitution models exemplifies this tension

between mathematical sophistication and biological complexity, highlighting the need for

frameworks that can accommodate uncertainty whilst providing actionable insights for

evolutionary biology.

The practical application of substitution models in phylogenetic studies requires careful

consideration of the trade-offs between model complexity, computational feasibility, and

biological realism. Simple models may be adequate for certain applications whilst providing

computational advantages and interpretability, whereas complex models may be necessary

for accurate inference in challenging datasets despite their increased computational

demands and parameter estimation difficulties. The choice of model must be guided by the

specific objectives of the analysis, the characteristics of the dataset, and the available

computational resources.

This comprehensive review aims to provide a thorough examination of substitution models

in phylogenetic reconstruction, encompassing their theoretical foundations, mathematical

formulations, implementation strategies, and practical applications. We present detailed

mathematical derivations of key models, computational illustrations of their behaviour

under different parameter regimes, and critical assessments of their strengths and

limitations. The analysis includes extensive discussion of model selection methodologies,

recent advances in model development, and future directions for the field. Through this 



comprehensive treatment, we seek to provide both theoretical insights and practical

guidance for researchers engaged in phylogenetic analysis, contributing to the continued

advancement of evolutionary biology through improved methodological understanding

and application.

2. Methodology

2.1 Theoretical Foundations

2.1.1 Continuous-Time Markov Chain Framework

The mathematical foundation of substitution models rests upon the theory of continuous-

time Markov chains, which provides a rigorous probabilistic framework for describing the

evolution of discrete character states over continuous time intervals. Consider a DNA

sequence position that can exist in one of four possible states corresponding to the

nucleotides A, G, C, and T, denoted as the state space S = {1, 2, 3, 4} where the numerical

indices correspond to the alphabetical ordering of bases. The evolutionary process is

modelled as a continuous-time Markov chain {X(t) : t ≥ 0} where X(t) ∈ S represents the

nucleotide state at time t.

The fundamental assumption of the Markov property requires that the conditional

probability distribution of future states depends only on the current state and not on the

historical sequence of states that led to the current configuration. Formally, this is expressed

as:

P(X(t+s) = j | X(t) = i, X(u) = x_u, 0 ≤ u < t) = P(X(t+s) = j | X(t) = i)

for all i, j ∈ S, t, s ≥ 0, and any sequence of past states {x_u}. This assumption enables the

complete specification of the evolutionary process through the instantaneous rate matrix

and eliminates the need to track the complete evolutionary history of each sequence

position.

The instantaneous rate matrix Q = (q_ij) defines the rates of change between different

nucleotide states, where q_ij for i ≠ j represents the instantaneous rate of substitution from

state i to state j. The diagonal elements are constrained by the requirement that each row

sums to zero:



q_ii = -∑_{j≠i} q_ij

This constraint ensures that the total rate of change from any given state equals the sum of

rates to all other states, maintaining probability conservation throughout the evolutionary

process. The rate matrix Q completely characterises the substitution process and serves as

the fundamental parameter of all substitution models.

2.1.2 Equilibrium Distribution and Stationarity

A crucial concept in substitution model theory is the equilibrium distribution π = (π₁, π₂, π₃, 
π₄)ᵀ, which represents the long-term stationary frequencies of the four nucleotides. The 

equilibrium distribution satisfies the fundamental equation:

πᵀ Q = 0ᵀ

where 0 is the zero vector. This equation expresses the condition that at equilibrium, the

rate of change into each state exactly balances the rate of change out of that state, resulting

in stable long-term frequencies. The equilibrium distribution is unique for irreducible rate

matrices and represents the limiting distribution of nucleotide frequencies as evolutionary

time approaches infinity.

The assumption of stationarity requires that the substitution process remains constant over

time, implying that the rate matrix Q and equilibrium distribution π do not change during

the evolutionary period under consideration. Whilst this assumption is clearly violated over

very long evolutionary timescales due to changes in selective pressures and environmental

conditions, it provides a reasonable approximation for many phylogenetic analyses and

enables the mathematical tractability necessary for practical implementation.

2.1.3 Time-Reversibility and Detailed Balance

Many substitution models incorporate the assumption of time-reversibility, which requires

that the evolutionary process appears identical when viewed forwards or backwards in

time. This assumption is not merely a mathematical convenience but reflects the

fundamental principle that phylogenetic inference from contemporary sequences requires

models that do not distinguish between ancestral and descendant states. Time-reversibility

is formally expressed through the detailed balance condition:

π_i q_ij = π_j q_ji



for all i, j ∈ S. This equation states that the equilibrium flow from state i to state j exactly

equals the equilibrium flow from state j to state i, ensuring that the process exhibits no net

directional bias when viewed over long time periods.

The detailed balance condition has profound implications for the structure of substitution

models, as it constrains the number of free parameters in the rate matrix. For a four-state

DNA model, the detailed balance condition reduces the number of independent rate

parameters from twelve to six, corresponding to the six possible pairs of nucleotides. This

reduction in dimensionality significantly simplifies parameter estimation and model

comparison procedures.

2.1.4 Transition Probability Matrix

The transition probability matrix P(t) = (P_ij(t)) describes the probability of observing

nucleotide j at time t given that nucleotide i was present at time 0. The relationship between

the instantaneous rate matrix and the transition probability matrix is governed by the

Kolmogorov forward equation:

dP(t)/dt = P(t)Q

with the initial condition P(0) = I, where I is the identity matrix. The solution to this

differential equation is given by the matrix exponential:

P(t) = exp(Qt) = ∑_{n=0}^∞ ((Qt)ⁿ/n!)

The matrix exponential provides the fundamental link between the instantaneous rates of

substitution and the finite-time transition probabilities that are directly observable in

phylogenetic data. The computation of matrix exponentials represents one of the primary

computational challenges in likelihood-based phylogenetic inference, requiring

sophisticated numerical algorithms for efficient and accurate evaluation.

2.1.5 Eigenvalue Decomposition and Computational Methods

For rate matrices that can be diagonalised, the matrix exponential can be computed

efficiently through eigenvalue decomposition. If Q = UΛU⁻¹ where Λ = diag(λ₁, λ₂, λ₃, λ₄) 

contains the eigenvalues and U contains the corresponding eigenvectors, then:

P(t) = Uexp(Λt)U⁻¹ = Udiag(e^(λ₁t), e^(λ₂t), e^(λ₃t), e^(λ₄t))U⁻¹



This decomposition reduces the computation of the matrix exponential to the evaluation of

scalar exponentials, providing significant computational advantages for repeated

calculations with different values of t. The eigenvalues of the rate matrix have important

biological interpretations, with the largest eigenvalue (which is always zero for properly

normalised rate matrices) corresponding to the equilibrium distribution, and the remaining

eigenvalues determining the rates of convergence to equilibrium.

2.2 Specific Substitution Models

2.2.1 Jukes-Cantor Model (JC69)

The Jukes-Cantor model represents the simplest substitution model, making the

assumptions of equal nucleotide frequencies and equal substitution rates between all pairs

of nucleotides (Jukes & Cantor, 1969). Under these assumptions, the equilibrium

distribution is uniform: π = (0.25, 0.25, 0.25, 0.25)ᵀ, and the rate matrix takes the form:

Q_JC = μ [[-3/4, 1/4, 1/4, 1/4], [1/4, -3/4, 1/4, 1/4], [1/4, 1/4, -3/4, 1/4], [1/4, 1/4, 1/4, -3/4]]

where μ represents the overall substitution rate parameter. The transition probability matrix

for the JC69 model has a closed-form analytical solution:

P_ij(t) = {1/4 + 3/4 × exp(-4μt/3) if i = j; 1/4 - 1/4 × exp(-4μt/3) if i ≠ j}

The JC69 distance correction formula provides a method for estimating evolutionary

distances from observed sequence differences. If p represents the proportion of sites that

differ between two sequences, the JC69 distance estimate is:

d_JC = -3/4 × ln(1 - 4p/3)

This formula corrects for multiple substitutions at the same site, which become increasingly

important as evolutionary distances increase.

2.2.2 Kimura Two-Parameter Model (K80)

The Kimura two-parameter model extends the JC69 framework by distinguishing between

transitions (substitutions between purines A↔G or between pyrimidines C↔T) and

transversions (substitutions between purines and pyrimidines) (Kimura, 1980). This

distinction reflects the well-established observation that transitions occur more frequently

than transversions due to biochemical constraints on DNA replication and repair processes.



The K80 model maintains the assumption of equal nucleotide frequencies but introduces a

transition-transversion rate ratio parameter κ. The rate matrix is:

Q_K80 = μ [[-（1+κ)/4, κ/4, 1/4, 1/4], [κ/4, -(1+κ)/4, 1/4, 1/4], [1/4, 1/4, -(1+κ)/4, κ/4], [1/4, 1/4,

κ/4, -(1+κ)/4]]

The K80 distance correction requires separate estimation of the proportions of transitional

(P) and transversional (Q) differences:

d_K80 = -1/2 × ln[(1-2P-Q) × √(1-2Q)]

where P and Q represent the observed proportions of transitions and transversions,

respectively.

2.2.3 Felsenstein Model (F81)

The Felsenstein F81 model relaxes the assumption of equal nucleotide frequencies whilst

maintaining equal rates for all substitution types (Felsenstein, 1981). This model recognises

that natural DNA sequences often exhibit significant compositional bias, with important

implications for evolutionary distance estimation and phylogenetic inference.

The F81 rate matrix incorporates unequal equilibrium frequencies π = (π_A, π_G, π_C, π_T)ᵀ:

Q_F81 = μ [[-（π_G + π_C + π_T), π_G, π_C, π_T], [π_A, -(π_A + π_C + π_T), π_C, π_T], [π_A,

π_G, -(π_A + π_G + π_T), π_T], [π_A, π_G, π_C, -(π_A + π_G + π_C)]]

The transition probabilities for the F81 model are:

P_ij(t) = π_j + (δ_ij - π_j) × exp(-μt)

where δ_ij is the Kronecker delta function.

2.2.4 Hasegawa-Kishino-Yano Model (HKY85)

The HKY85 model combines the transition-transversion distinction of the K80 model with

the unequal base frequencies of the F81 model, providing a more realistic representation of

molecular evolution (Hasegawa et al., 1985). This model has become one of the most widely

used substitution models due to its balance between biological realism and computational

tractability.



The HKY85 rate matrix incorporates both κ and unequal base frequencies:

Q_HKY = μ [[*, κπ_G, π_C, π_T], [κπ_A, *, π_C, π_T], [π_A, π_G, *, κπ_T], [π_A, π_G, κπ_C, *]]

where the diagonal elements are determined by the row-sum constraint. The HKY85 model

requires estimation of five parameters: four base frequencies (with the constraint ∑π_i = 1)

and the transition-transversion ratio κ.

2.2.5 General Time-Reversible Model (GTR)

The General Time-Reversible model represents the most parameter-rich time-reversible

substitution model for DNA sequences (Tavaré, 1986). The GTR model allows for six

independent substitution rate parameters corresponding to the six possible pairs of

nucleotides, whilst maintaining the detailed balance condition that ensures time-

reversibility.

The GTR rate matrix can be written as:

Q_GTR = μ [[*, aπ_G, bπ_C, cπ_T], [aπ_A, *, dπ_C, eπ_T], [bπ_A, dπ_G, *, fπ_T], [cπ_A, eπ_G,

fπ_C, *]]

where a, b, c, d, e, f are the six exchangeability parameters that determine the relative rates

of different substitution types. The GTR model encompasses all simpler time-reversible

models as special cases through appropriate parameter constraints.

2.3 Model Selection and Parameter Estimation

2.3.1 Maximum Likelihood Estimation

Parameter estimation in substitution models is typically accomplished through maximum

likelihood methods, which seek to identify the parameter values that maximise the

probability of observing the given sequence data. For a phylogenetic tree τ with branch

lengths t and substitution model parameters θ, the likelihood function is:

L(τ, t, θ) = ∏_{k=1}^n P(x_k | τ, t, θ)

where n is the number of sequence positions and x_k represents the pattern of nucleotides

observed at position k across all sequences in the dataset.



The log-likelihood function is typically optimised using numerical methods such as the

Newton-Raphson algorithm or quasi-Newton methods. The computational complexity of

likelihood evaluation scales linearly with the number of sequence positions and

exponentially with the number of sequences for exact algorithms, necessitating

sophisticated optimisation strategies for large datasets.

2.3.2 Information-Theoretic Model Selection

Model selection among competing substitution models is commonly accomplished using

information-theoretic criteria that balance model fit against model complexity. The Akaike

Information Criterion (AIC) is defined as:

AIC = -2ln L(θ̂) + 2k

where L(θ̂) is the maximised likelihood and k is the number of free parameters in the model. 

The Bayesian Information Criterion (BIC) applies a stronger penalty for model complexity:

BIC = -2ln L(θ̂) + k ln n

where n is the sample size. Models with lower AIC or BIC values are preferred, with the

optimal model representing the best compromise between explanatory power and

parsimony.

2.3.3 Likelihood Ratio Tests

For nested models, likelihood ratio tests provide a formal statistical framework for model

comparison. The likelihood ratio test statistic is:

Λ = 2[ln L(θ̂₁) - ln L(θ̂₀)]

where θ̂₁ and θ̂₀ represent the maximum likelihood estimates under the more complex and 

simpler models, respectively. Under the null hypothesis that the simpler model is adequate,

Λ follows a chi-squared distribution with degrees of freedom equal to the difference in the

number of parameters between the models.

3. Results

3.1 Transition Probability Evolution and Model Behaviour



The computational analysis of substitution model behaviour reveals fundamental

differences in how various models describe the evolutionary process over time. The

evolution of transition probabilities for the four major substitution models (JC69, K80, F81,

and HKY85) demonstrates the characteristic patterns that distinguish these models and

their implications for phylogenetic inference.

Figure 1. Evolution of transition probabilities over evolutionary time for four major 

substitution models. Blue curves represent the probability of no change (P(i→i)), whilst red

curves show the probability of change to a different nucleotide (P(i→j, i≠j)). The dashed

horizontal line indicates the equilibrium probability of 0.25. Each panel demonstrates the

characteristic behaviour of different model assumptions: (A) JC69 model with symmetric

evolution showing uniform approach to equilibrium, (B) K80 model displaying transition-

transversion bias with κ = 2.0, (C) F81 model with unequal base frequencies (π_A = 0.4, π_G

= 0.3, π_C = 0.2, π_T = 0.1) creating asymmetric equilibrium, and (D) HKY85 model

combining both transition bias and compositional heterogeneity. The analysis

demonstrates how model complexity affects evolutionary dynamics and equilibrium

behaviour.



The JC69 model exhibits perfectly symmetric behaviour, with all transition probabilities

following identical exponential decay patterns towards the equilibrium value of 0.25. This

symmetry reflects the model's fundamental assumption of equal substitution rates and

equal base frequencies, resulting in a simple exponential approach to equilibrium with a

characteristic time constant determined by the overall substitution rate parameter μ. The

probability of remaining in the same state decreases monotonically from 1.0 at time zero to

0.25 at infinite time, whilst the probability of changing to any specific different state

increases from 0.0 to 0.25 following a complementary exponential curve.

The K80 model demonstrates the impact of transition-transversion bias on evolutionary

dynamics, with transition probabilities exhibiting more complex behaviour due to the

preferential occurrence of transitions over transversions. The model's assumption of equal

base frequencies ensures that the equilibrium probabilities remain at 0.25 for all

nucleotides, but the pathway to equilibrium differs significantly from the JC69 case. The

transition-transversion ratio κ = 2.0 used in this analysis reflects typical values observed in

many biological datasets, where transitions occur approximately twice as frequently as

transversions.

The F81 model illustrates the consequences of unequal base frequencies on evolutionary

dynamics, with the equilibrium probabilities reflecting the specified base composition. The

asymmetric equilibrium distribution creates directional evolutionary pressure, with

nucleotides present at low frequencies in the equilibrium distribution showing rapid initial

changes towards their equilibrium values. This behaviour has important implications for

phylogenetic inference, as it introduces compositional bias that must be accounted for in

distance estimation and tree reconstruction procedures.

The HKY85 model combines the effects of both transition-transversion bias and unequal

base frequencies, resulting in the most complex evolutionary dynamics among the models

examined. The interplay between these two factors creates intricate patterns of probability

evolution that reflect the biological reality of molecular evolution more accurately than

simpler models. The model's behaviour demonstrates how multiple evolutionary forces can

interact to produce complex patterns that are not simply additive combinations of

individual effects.

3.2 Rate Matrix Structure and Mathematical Properties



The mathematical structure of rate matrices provides fundamental insights into the

evolutionary processes described by different substitution models. The visualisation of rate

matrices reveals the patterns of substitution rates that characterise each model's

assumptions about molecular evolution.

Figure 2. Heatmap visualisations of rate matrices for major substitution models. Colour

intensity represents the magnitude of substitution rates, with red indicating high rates and

blue indicating low rates. Diagonal elements (shown in blue) represent the negative sum of

off-diagonal elements in each row, ensuring probability conservation. (A) JC69 model

showing uniform off-diagonal rates of μ/4, reflecting equal substitution probabilities

between all nucleotide pairs. (B) K80 model with elevated transition rates (κμ/4) compared

to transversion rates (μ/4), demonstrating the biochemical preference for transitions. (C)

F81 model with rates proportional to target base frequencies, creating directional bias 



towards more frequent nucleotides. (D) HKY85 model combining transition bias with

frequency-dependent rates, representing the most biologically realistic parameterisation

among simple models.

The JC69 rate matrix exhibits perfect symmetry, with all off-diagonal elements equal to μ/4

and diagonal elements equal to -3μ/4. This uniform structure reflects the model's

assumption that all substitution types occur at equal rates, creating a completely unbiased

evolutionary process. The symmetry of the rate matrix ensures that the detailed balance

condition is satisfied trivially, and the eigenvalue spectrum consists of a single zero

eigenvalue corresponding to the equilibrium distribution and three identical negative

eigenvalues that determine the rate of convergence to equilibrium.

The K80 rate matrix demonstrates the structural changes introduced by transition-

transversion bias, with transition rates (A↔G and C↔T) elevated by the factor κ relative to

transversion rates. This asymmetry breaks the perfect symmetry of the JC69 model whilst

maintaining the equal base frequency assumption. The eigenvalue spectrum of the K80

model reflects this increased complexity, with distinct eigenvalues corresponding to

different modes of evolutionary change.

The F81 rate matrix incorporates the effects of unequal base frequencies through rate

elements that are proportional to the target nucleotide frequencies. This structure creates a

directional bias in the evolutionary process, with substitutions towards more frequent

nucleotides occurring at higher rates than substitutions towards less frequent nucleotides.

The resulting rate matrix satisfies the detailed balance condition through the relationship

π_i q_ij = π_j q_ji, ensuring time-reversibility despite the apparent directional bias.

The HKY85 rate matrix combines both transition-transversion bias and unequal base

frequencies, resulting in the most complex structure among the models examined. The rate

elements reflect both the κ parameter that governs transition-transversion bias and the

base frequency parameters that create compositional bias. This complexity is reflected in

the eigenvalue spectrum, which exhibits four distinct eigenvalues corresponding to different

aspects of the evolutionary process.

3.3 Parameter Sensitivity and Model Robustness

Understanding the sensitivity of substitution models to parameter changes is crucial for

assessing the reliability of phylogenetic inferences and the robustness of evolutionary 



conclusions. The comprehensive sensitivity analyses for key parameters in the K80 and

HKY85 models demonstrate how changes in model parameters affect transition

probabilities and evolutionary dynamics.

Figure 3. Parameter sensitivity analysis for substitution models. (A) K80 model

sensitivity to the transition-transversion ratio κ, showing how changes in this parameter

affect the relative probabilities of transitions (A→G, blue line) and transversions (A→C, red

line) at evolutionary time t = 0.5. The analysis demonstrates the linear relationship between

κ and transition probabilities at moderate evolutionary times. (B) HKY85 model sensitivity

to base frequency parameters, demonstrating the impact of compositional bias on

evolutionary dynamics. Changes in the frequency of nucleotide A (π_A) create

corresponding changes in substitution probabilities, with transitions (A→G) and

transversions (A→C) responding differently to compositional changes. Both analyses

highlight the importance of accurate parameter estimation for reliable phylogenetic

inference.

The sensitivity analysis of the K80 model reveals the profound impact of the transition-

transversion ratio κ on evolutionary dynamics. As κ increases from 0.5 to 5.0, the probability

of transitions increases substantially whilst the probability of transversions decreases

correspondingly. This relationship demonstrates the importance of accurate κ estimation

for reliable phylogenetic inference, as misspecification of this parameter can lead to

systematic biases in evolutionary distance estimation and tree reconstruction.

The linear relationship between κ and transition probabilities at moderate evolutionary

times simplifies parameter estimation and model fitting procedures. However, the 



sensitivity analysis also reveals that the impact of κ becomes more pronounced at longer

evolutionary times, where the cumulative effects of substitution bias become more

apparent. This time-dependence has important implications for phylogenetic studies

spanning different evolutionary timescales, with deep phylogenies being more sensitive to

κ misspecification than shallow phylogenies.

The HKY85 model sensitivity analysis demonstrates the complex interactions between base

frequency parameters and evolutionary dynamics. Changes in the frequency of nucleotide A

(π_A) create corresponding changes in the probabilities of substitutions involving this

nucleotide, with the effects being most pronounced for substitutions from A to other

nucleotides. The asymmetric response to base frequency changes reflects the directional

nature of compositional bias in molecular evolution.

3.4 Eigenvalue Analysis and Mathematical Structure

The eigenvalue analysis of rate matrices reveals the mathematical foundations that govern

the dynamics of each substitution model, providing insights into the timescales and modes

of evolutionary change.

Figure 4. Eigenvalue analysis of rate matrices for major substitution models. (A) Real

parts of eigenvalues showing the rates of convergence to equilibrium, with all models

exhibiting one zero eigenvalue corresponding to the equilibrium distribution and negative

real eigenvalues determining convergence rates. (B) Imaginary parts of eigenvalues

indicating oscillatory behaviour, with most models showing purely real eigenvalues except

for complex conjugate pairs in certain parameterisations. The JC69 model exhibits three 



identical negative eigenvalues due to its perfect symmetry, whilst more complex models

show distinct eigenvalue spectra reflecting their increased biological realism.

The eigenvalue analysis reveals fundamental differences in the mathematical structure of

different substitution models. All models exhibit a zero eigenvalue corresponding to the

equilibrium distribution, reflecting the conservation of probability in the evolutionary

process. The remaining eigenvalues are strictly negative, ensuring that the system

converges to equilibrium over time. The magnitude of these eigenvalues determines the

rate of convergence, with larger negative eigenvalues corresponding to faster equilibration.

The JC69 model exhibits three identical negative eigenvalues, reflecting the perfect

symmetry of the rate matrix. This degeneracy simplifies the mathematical analysis and

computational implementation of the model, contributing to its widespread use in

phylogenetic applications despite its biological limitations. The K80 model breaks this

degeneracy through the introduction of transition-transversion bias, resulting in distinct

eigenvalues that correspond to different modes of evolutionary change.

3.5 Model Comparison and Selection Framework

The comparison of different substitution models requires systematic evaluation of their

relative performance in terms of both statistical fit and biological realism. The

comprehensive comparison demonstrates the trade-offs between model complexity and

performance using information-theoretic criteria.



Figure 5. Comparison of substitution models in terms of complexity and performance. 

(A) Number of free parameters for each model, illustrating the hierarchical progression from

simple (JC69 with 1 parameter) to complex (GTR with 9 parameters) models. The

progression reflects the historical development of substitution models, with each

advancement addressing specific limitations of simpler formulations. (B) Simulated AIC

scores demonstrating typical patterns of model selection, where more complex models

generally provide better fit to data but incur penalties for increased parameterisation. The

optimal model (lowest AIC) represents the best balance between explanatory power and

parsimony, with HKY85 often providing optimal performance for many empirical datasets.

The model complexity analysis reveals the hierarchical relationship among substitution

models, with each successive model adding parameters to capture additional aspects of

molecular evolution. The JC69 model represents the simplest case with only one free

parameter (the overall substitution rate μ), whilst the GTR model represents the most

complex time-reversible model with nine free parameters (six exchangeability parameters

and three independent base frequencies).

The progression from JC69 to GTR reflects the historical development of substitution

models, with each advancement addressing specific limitations of simpler models. The K80

model adds the transition-transversion ratio κ to capture substitution bias, the F81 model

adds three base frequency parameters to capture compositional bias, and the HKY85 model

combines both extensions. The GTR model generalises this framework by allowing

independent rates for all six possible substitution types.

The simulated AIC analysis demonstrates typical patterns observed in model selection

studies, where more complex models generally provide better fit to data but incur penalties

for increased parameterisation. The optimal model represents the best balance between

explanatory power and parsimony, with the specific choice depending on the

characteristics of the dataset and the objectives of the analysis. The AIC scores reflect

realistic patterns observed in empirical studies, where the HKY85 model often provides the

optimal balance between complexity and performance for many datasets.

4. Discussion

4.1 Advantages and Fundamental Strengths of Substitution Models



The development and refinement of substitution models over the past five decades

represents one of the most significant achievements in computational evolutionary biology,

providing the mathematical foundation that has enabled the reconstruction of the tree of

life from molecular sequence data. The primary advantage of these models lies in their

ability to transform the complex stochastic process of molecular evolution into a tractable

mathematical framework that can be implemented computationally and applied to real

biological datasets (Swofford et al., 1996). This transformation has revolutionised our

understanding of evolutionary relationships and has provided quantitative tools for

addressing fundamental questions in biology, from the origins of major taxonomic groups

to the dynamics of pathogen evolution.

The probabilistic foundation of substitution models provides a rigorous statistical

framework for phylogenetic inference that enables the quantification of uncertainty and the

assessment of alternative hypotheses. Unlike earlier approaches to phylogenetic

reconstruction that relied on ad hoc distance measures or parsimony criteria, substitution

models provide explicit probability distributions over possible evolutionary outcomes,

enabling the application of well-established statistical methods for parameter estimation,

hypothesis testing, and model selection (Edwards, 1972). This statistical rigour has been

instrumental in establishing phylogenetic analysis as a quantitative science and has

provided the foundation for evidence-based approaches to evolutionary inference.

The modular structure of substitution models provides considerable flexibility in

accommodating different biological scenarios and dataset characteristics. The hierarchical

relationship among models, from the simple JC69 framework to the complex GTR

formulation, enables researchers to select appropriate levels of complexity based on their

data and research objectives. This flexibility is particularly valuable in comparative studies

where different genomic regions or taxonomic groups may require different substitution

models to achieve adequate fit (Lanfear et al., 2012). The ability to nest simpler models

within more complex frameworks also enables formal statistical testing of biological

hypotheses about evolutionary processes.

The computational efficiency of substitution models, particularly for simpler formulations

such as JC69 and K80, has enabled phylogenetic analyses of unprecedented scale and

scope. The analytical solutions available for these models eliminate the need for numerical

integration or approximation procedures, providing exact likelihood calculations that can

be computed rapidly even for large datasets. This computational tractability has been 



essential for the development of sophisticated phylogenetic methods such as Bayesian

MCMC approaches and bootstrap resampling procedures that require thousands or millions

of likelihood evaluations (Ronquist et al., 2012).

The time-reversibility assumption incorporated in most substitution models provides a

crucial simplification that makes phylogenetic inference from contemporary sequences

mathematically tractable. Without this assumption, the reconstruction of evolutionary

relationships would require knowledge of ancestral sequences or complex models that

account for directional evolutionary trends, significantly complicating both the

mathematical formulation and computational implementation of phylogenetic methods

(Barry & Hartigan, 1987). The detailed balance condition that ensures time-reversibility also

provides important constraints on model parameters that improve the stability and

reliability of parameter estimation procedures.

The integration of substitution models with clustering and analytical techniques, as

discussed in contemporary methodological frameworks (Montgomery, 2024a),

demonstrates the broader applicability of these mathematical approaches beyond

traditional phylogenetic reconstruction. The spectral methods and clustering algorithms

that have proven effective in other domains of data analysis can be adapted to enhance the

performance and interpretability of substitution model-based analyses, particularly in the

context of large-scale genomic datasets where traditional approaches may become

computationally intractable.

4.2 Limitations and Fundamental Constraints

Despite their remarkable success and widespread application, substitution models suffer

from several fundamental limitations that constrain their accuracy and biological realism.

The most significant limitation is the assumption of independence among sequence

positions, which ignores the extensive correlations that exist in real biological sequences

due to secondary structure constraints, codon usage bias, and functional requirements

(Schöniger & von Haeseler, 1994). This assumption of site independence leads to systematic

underestimation of uncertainty in phylogenetic estimates and can result in spuriously high

confidence in incorrect phylogenetic hypotheses.

The assumption of rate constancy across sites represents another major limitation that is

clearly violated in real biological sequences. Functional constraints vary dramatically



among different sequence positions, with some sites being highly conserved due to

structural or functional requirements whilst others evolve rapidly due to relaxed selective

pressure. The failure to account for this rate heterogeneity can lead to systematic biases in

phylogenetic inference, particularly for deep evolutionary relationships where the

cumulative effects of rate variation become substantial (Gu et al., 1995). Although gamma-

distributed rate categories and other approaches to modelling rate heterogeneity have been

developed, these methods represent approximations that may not capture the full

complexity of rate variation in real sequences.

The stationarity assumption requires that the evolutionary process remains constant over

time, an assumption that is clearly violated over long evolutionary timescales due to

changes in selective pressures, population dynamics, and environmental conditions. Non-

stationary evolution can lead to systematic biases in phylogenetic inference, particularly for

ancient divergences where the cumulative effects of process changes become significant

(Galtier & Gouy, 1998). The development of non-stationary models has been limited by

computational complexity and parameter identifiability issues, leaving this as an active area

of research with limited practical solutions.

The discrete-state assumption of substitution models ignores the continuous nature of

many evolutionary processes and the intermediate states that may exist during

evolutionary transitions. This limitation is particularly problematic for protein evolution,

where amino acid substitutions may proceed through intermediate states that are not

captured by simple discrete-state models. The failure to account for these intermediate

states can lead to underestimation of evolutionary distances and systematic biases in

phylogenetic reconstruction (Whelan & Goldman, 2001).

The epistemological challenges inherent in substitution model development reflect broader

issues in contemporary scientific research, as highlighted by Montgomery (2025) in his

analysis of ontological and epistemological frameworks in multidisciplinary research. The

tension between mathematical tractability and biological realism exemplifies the

challenges faced when attempting to model complex biological phenomena using

simplified mathematical frameworks. The risk of what Montgomery terms "techno-

solutionist" approaches—where mathematical sophistication is mistaken for biological

accuracy—requires careful consideration of the assumptions and limitations inherent in any

modelling framework.



4.3 Recent Advances and Methodological Innovations

The field of substitution model development has witnessed remarkable innovation in recent

years, driven by advances in computational power, statistical methodology, and biological

understanding. One of the most significant developments has been the introduction of

mixture models that allow different sites or lineages to evolve under different substitution

processes (Pagel & Meade, 2004). These models recognise that biological sequences are

heterogeneous entities composed of regions with different functional constraints and

evolutionary dynamics, requiring more sophisticated modelling approaches than simple

homogeneous models can provide.

Codon-based substitution models represent another major advance that explicitly

incorporates the genetic code and selection pressures on protein sequences. These models

recognise that nucleotide substitutions in protein-coding regions are subject to selection at

the amino acid level, creating complex patterns of synonymous and non-synonymous

substitution that cannot be captured by simple nucleotide models (Goldman & Yang, 1994).

The development of sophisticated codon models has enabled more accurate inference of

selection pressures and evolutionary processes in protein-coding sequences, providing

insights into the molecular basis of adaptation and functional evolution.

Partition models have emerged as an important approach to accommodating the

heterogeneity that exists among different genomic regions within the same dataset. These

models recognise that different genes, codon positions, or functional domains may evolve

under distinct substitution processes, requiring separate model parameterisations for

different data partitions (Kainer & Lanfear, 2015). The challenge of partition model selection

and the computational complexity of joint estimation across multiple partitions remain

active areas of research, but these approaches have demonstrated significant

improvements in phylogenetic accuracy for heterogeneous datasets.

The integration of machine learning approaches with traditional substitution modelling

represents an emerging frontier that offers the potential to overcome some of the

fundamental limitations of current models. Neural networks and other machine learning

algorithms can learn complex evolutionary patterns directly from data without requiring

explicit specification of model structure, potentially capturing biological complexity that is

missed by traditional parametric models (Zou et al., 2020). However, the challenge of



maintaining interpretability and statistical rigour whilst incorporating machine learning

approaches remains a significant obstacle to widespread adoption.

The development of more sophisticated approaches to rate heterogeneity has addressed

one of the most significant limitations of traditional substitution models. Mixture models

that allow different rate categories or continuous distributions of rates across sites have

provided more realistic descriptions of evolutionary processes (Lartillot & Philippe, 2004).

These advances have been particularly important for protein evolution, where the

constraints imposed by protein structure and function create complex patterns of rate

variation that cannot be captured by simple gamma-distributed rate models.

4.4 Computational and Implementation Considerations

The practical application of substitution models in phylogenetic analysis requires careful

consideration of computational efficiency and numerical stability, particularly for large

datasets or complex models. The matrix exponentiation operations that are central to

likelihood calculations represent the primary computational bottleneck in most

phylogenetic analyses, with the efficiency of these calculations determining the feasibility

of large-scale studies. Recent advances in numerical algorithms and parallel computing

architectures have enabled analyses of unprecedented scale, but fundamental algorithmic

limitations remain for extremely large phylogenetic problems (Minh et al., 2020).

The development of approximate methods and heuristic algorithms has provided important

alternatives for analyses where exact methods become computationally intractable.

Composite likelihood approaches, which approximate the full likelihood by considering

only subsets of the data, provide significant computational savings at the cost of some

statistical rigour. These methods have proven particularly valuable for population genomic

analyses where the number of sequences and sites can exceed the capabilities of exact

likelihood methods.

The integration of substitution models with modern computational frameworks, including

cloud computing and distributed processing systems, has enabled new approaches to

phylogenetic analysis that were previously impossible. The ability to distribute likelihood

calculations across multiple processors or computing nodes has made it feasible to analyse

datasets with thousands of sequences and millions of sites, opening new possibilities for

phylogenomic studies and comparative analyses.



4.5 Future Directions and Research Priorities

The future development of substitution models will likely be driven by several key research

priorities that address current limitations whilst incorporating new biological insights and

computational capabilities. The development of more realistic models of rate heterogeneity

represents a critical priority, as current approaches based on gamma-distributed rate

categories or discrete rate classes provide only crude approximations to the complex

patterns of rate variation observed in real sequences (Lartillot & Philippe, 2004). Future

models may incorporate explicit mechanistic understanding of the factors that determine

substitution rates, such as local sequence context, chromatin structure, and functional

constraints.

The incorporation of structural information into substitution models represents another

important research direction that could significantly improve the biological realism of

evolutionary models. Protein structure imposes strong constraints on amino acid

substitutions, with the acceptability of particular substitutions depending on their effects

on protein folding, stability, and function (Robinson et al., 2003). Similarly, RNA secondary

structure creates complex patterns of correlated evolution that are not captured by current

substitution models. The development of structure-aware substitution models could

provide more accurate descriptions of molecular evolution and improve phylogenetic

inference for structured molecules.

The development of truly non-stationary substitution models remains a significant

challenge that will require advances in both statistical methodology and computational

implementation. Non-stationary models must account for changes in substitution processes

over time whilst maintaining parameter identifiability and computational tractability

(Blanquart & Lartillot, 2006). Recent advances in Bayesian methodology and MCMC

algorithms may provide pathways to implementing non-stationary models for practical

phylogenetic analysis, but significant theoretical and computational challenges remain.

The integration of population genetic principles into substitution models represents an

important frontier that could bridge the gap between molecular evolution and population

genetics. Current substitution models ignore the population genetic processes that

determine the fixation probabilities of mutations, treating evolution as a deterministic

process rather than the stochastic process that it actually represents (Gillespie, 1991). The

incorporation of population genetic effects such as genetic drift, selection, and



demographic history into substitution models could provide more realistic descriptions of

evolutionary processes and improve the accuracy of phylogenetic inference.

The epistemological framework proposed by Montgomery (2025) for addressing challenges

in contemporary multidisciplinary research provides valuable insights for the future

development of substitution models. The recognition that mathematical models are

necessarily simplified representations of complex biological phenomena requires careful

attention to the assumptions and limitations inherent in any modelling framework. The

development of AI-enhanced approaches to model selection and validation, whilst

promising, must be implemented with appropriate safeguards to ensure that algorithmic

sophistication does not obscure fundamental biological understanding.

4.6 Practical Implications and Recommendations

The practical application of substitution models in phylogenetic studies requires careful

consideration of the trade-offs between model complexity, computational feasibility, and

biological realism. For most applications, the HKY85 model provides an excellent balance

between these competing considerations, capturing the most important features of

molecular evolution whilst remaining computationally tractable and statistically well-

behaved (Abascal et al., 2005). However, the optimal model choice depends critically on the

characteristics of the dataset and the objectives of the analysis, emphasising the

importance of systematic model selection procedures.

Model selection should be based on rigorous statistical criteria rather than default choices

or computational convenience. Information-theoretic criteria such as AIC and BIC provide

objective frameworks for model comparison, whilst likelihood ratio tests enable formal

hypothesis testing for nested models (Burnham & Anderson, 2002). Cross-validation

approaches offer additional insights into model performance and can help identify

overfitting problems that may not be apparent from information criteria alone.

The assessment of model adequacy should be an integral component of phylogenetic

analysis, as even the best-fitting model may provide an inadequate description of the

evolutionary process. Posterior predictive assessment and simulation studies can reveal

specific aspects of the data that are poorly explained by particular model formulations,

providing guidance for model improvement or alternative analytical approaches (Brown,



2014). The recognition of model limitations is essential for appropriate interpretation of

phylogenetic results and for avoiding overconfidence in evolutionary inferences.

The computational implementation of substitution models requires attention to numerical

stability and algorithmic efficiency, particularly for large datasets or complex models.

Modern phylogenetic software packages incorporate sophisticated algorithms for matrix

exponentiation and likelihood optimisation, but users should be aware of potential

numerical issues and should validate their results through multiple analytical approaches

when possible (Moler & Van Loan, 2003). The use of multiple independent analyses with

different starting conditions can help identify convergence problems and ensure the

reliability of parameter estimates.

5. Conclusion

This comprehensive examination of substitution models in phylogenetic reconstruction has

revealed both the remarkable achievements and persistent challenges that characterise this

fundamental area of computational evolutionary biology. The mathematical frameworks

developed over the past five decades have transformed phylogenetic analysis from a largely

qualitative endeavour into a rigorous quantitative science, enabling the reconstruction of

evolutionary relationships with unprecedented accuracy and statistical confidence. The

progression from simple models such as JC69 to sophisticated frameworks such as GTR

reflects the continuous refinement of our understanding of molecular evolution and the

development of increasingly realistic mathematical descriptions of evolutionary processes.

The theoretical foundations of substitution models, grounded in continuous-time Markov

chain theory, provide a robust probabilistic framework that has proven remarkably versatile

and extensible. The key insights of time-reversibility, detailed balance, and matrix

exponentiation have enabled the development of computationally efficient algorithms that

can handle datasets of enormous scale whilst maintaining mathematical rigour. The

hierarchical structure of substitution models, from simple to complex, provides researchers

with the flexibility to select appropriate levels of biological realism based on their data

characteristics and analytical objectives.

Our analysis of specific substitution models has demonstrated the importance of

understanding the biological assumptions underlying different mathematical formulations.



The computational illustrations presented in this study have revealed the complex

dynamics that govern molecular evolution under different model assumptions, with

important implications for phylogenetic inference and evolutionary distance estimation.

The sensitivity analyses highlight the critical importance of accurate parameter estimation,

as misspecification of key parameters such as the transition-transversion ratio or base

frequencies can lead to systematic biases in phylogenetic reconstruction.

The limitations identified in our analysis underscore the ongoing challenges that face the

field of substitution model development. The assumptions of site independence, rate

homogeneity, and stationarity represent fundamental simplifications that are clearly

violated in real biological systems. Whilst various approaches have been developed to

address these limitations, including mixture models, rate heterogeneity models, and

partition-specific analyses, significant challenges remain in capturing the full complexity of

molecular evolution within computationally tractable frameworks.

The epistemological considerations raised by Montgomery (2025) in his analysis of

contemporary multidisciplinary research provide important context for understanding the

challenges and opportunities in substitution model development. The tension between

mathematical sophistication and biological realism reflects broader issues in scientific

modelling, where the pursuit of computational tractability may obscure important

biological complexity. The development of AI-enhanced approaches to phylogenetic

analysis, whilst promising, must be implemented with careful attention to the preservation

of biological understanding and the avoidance of algorithmic bias.

The practical implications of our analysis emphasise the importance of careful model

selection, rigorous assessment of model adequacy, and appropriate interpretation of

phylogenetic results. The recognition that all models represent simplifications of complex

biological processes should inform the interpretation of phylogenetic analyses and

encourage the integration of multiple lines of evidence in evolutionary studies. The

continued development of more sophisticated models and analytical methods will

undoubtedly improve the accuracy and reliability of phylogenetic inference, but the

fundamental challenges of model selection and validation will remain central concerns for

practitioners in the field.

Looking towards the future, the field of substitution model development faces both exciting

opportunities and significant challenges. The increasing availability of genomic data,



advances in computational power, and developments in statistical methodology provide

unprecedented opportunities for model innovation and refinement. However, the

fundamental tension between biological realism and computational tractability will

continue to shape model development, requiring careful consideration of the trade-offs

between complexity and practicality. The ultimate goal of substitution model development

is to provide increasingly accurate and realistic descriptions of molecular evolution that

enable reliable inference of evolutionary relationships and processes, contributing to our

understanding of the evolutionary processes that have shaped the diversity of life on Earth.

6. Attachments

6.1 Python Code for Visualisation and Analysis

The following Python code was developed to generate the visualisations and analyses

presented in this study. The code implements the major substitution models and provides

functions for calculating transition probabilities, visualising rate matrices, and performing

sensitivity analyses.

Python

#!/usr/bin/env python3
"""
Substitution Models in Phylogenetic Reconstruction: Visualisation Code
Author: Richard Murdoch Montgomery
Affiliation: Scottish Science Society
Email: editor@scottishsciencesocietyperiodic.uk
Date: July 2025

This script generates visualisations for substitution models used in 
phylogenetic reconstruction,
including transition probabilities, rate matrices, model comparisons, and 
parameter sensitivity analysis.
"""

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.linalg import expm, eig
import pandas as pd
import warnings
warnings.filterwarnings('ignore')



# Set style for publication-quality figures
plt.style.use('seaborn-v0_8-whitegrid')
sns.set_palette("husl")

class SubstitutionModel:
    """Base class for DNA substitution models"""

    def __init__(self, name):
self.name = name
self.bases = ['A', 'G', 'C', 'T']

    def rate_matrix(self, **params):
"""Return the instantaneous rate matrix Q"""
raise NotImplementedError

    def transition_matrix(self, t, **params):
"""Return transition probability matrix P(t) = exp(Qt)"""
Q = self.rate_matrix(**params)
return expm(Q * t)

    def equilibrium_frequencies(self, **params):
"""Return equilibrium base frequencies"""
raise NotImplementedError

class JC69(SubstitutionModel):
    """Jukes-Cantor 1969 model"""

    def __init__(self):
super().__init__("JC69")

    def rate_matrix(self, mu=1.0):
"""JC69 rate matrix with equal rates"""
Q = np.full((4, 4), mu/4)
np.fill_diagonal(Q, -3*mu/4)
return Q

    def transition_matrix(self, t, mu=1.0):
"""Analytical solution for JC69"""
P = np.zeros((4, 4))
exp_term = np.exp(-4*mu*t/3)

# Diagonal elements
np.fill_diagonal(P, 0.25 + 0.75 * exp_term)

# Off-diagonal elements
off_diag = 0.25 - 0.25 * exp_term
P[P == 0] = off_diag



return P

    def equilibrium_frequencies(self, **params):
return np.array([0.25, 0.25, 0.25, 0.25])

class K80(SubstitutionModel):
    """Kimura 1980 two-parameter model"""

    def __init__(self):
super().__init__("K80")

    def rate_matrix(self, kappa=2.0, mu=1.0):
"""K80 rate matrix with transition/transversion bias"""
Q = np.array([

[-mu*(1+kappa)/4,  mu*kappa/4,     mu/4, mu/4],
[mu*kappa/4,      -mu*(1+kappa)/4, mu/4, mu/4],
[mu/4, mu/4, -mu*(1+kappa)/4, mu*kappa/4],
[mu/4, mu/4, mu*kappa/4,   -mu*(1+kappa)/4]

])
return Q

    def equilibrium_frequencies(self, **params):
return np.array([0.25, 0.25, 0.25, 0.25])

class F81(SubstitutionModel):
    """Felsenstein 1981 model"""

    def __init__(self):
super().__init__("F81")

    def rate_matrix(self, pi=None, mu=1.0):
"""F81 rate matrix with unequal base frequencies"""
if pi is None:

pi = np.array([0.25, 0.25, 0.25, 0.25])

Q = np.zeros((4, 4))
for i in range(4):

for j in range(4):
if i != j:

Q[i, j] = mu * pi[j]
Q[i, i] = -np.sum(Q[i, :])

return Q

    def equilibrium_frequencies(self, pi=None, **params):
if pi is None:

return np.array([0.25, 0.25, 0.25, 0.25])



return pi

class HKY85(SubstitutionModel):
    """Hasegawa-Kishino-Yano 1985 model"""

    def __init__(self):
super().__init__("HKY85")

    def rate_matrix(self, kappa=2.0, pi=None, mu=1.0):
"""HKY85 rate matrix"""
if pi is None:

pi = np.array([0.25, 0.25, 0.25, 0.25])

Q = np.zeros((4, 4))

# Transitions (A<->G, C<->T)
Q[0, 1] = Q[1, 0] = kappa * mu * pi[1]  # A<->G
Q[2, 3] = Q[3, 2] = kappa * mu * pi[3]  # C<->T

# Transversions
Q[0, 2] = mu * pi[2]  # A->C
Q[0, 3] = mu * pi[3]  # A->T
Q[1, 2] = mu * pi[2]  # G->C
Q[1, 3] = mu * pi[3]  # G->T
Q[2, 0] = mu * pi[0]  # C->A
Q[2, 1] = mu * pi[1]  # C->G
Q[3, 0] = mu * pi[0]  # T->A
Q[3, 1] = mu * pi[1]  # T->G

# Diagonal elements
for i in range(4):

Q[i, i] = -np.sum(Q[i, :])

return Q

    def equilibrium_frequencies(self, pi=None, **params):
if pi is None:

return np.array([0.25, 0.25, 0.25, 0.25])
return pi

def main():
    """Generate all visualisations for the manuscript"""
    print("Generating substitution model visualisations for publication...")

    # Generate all required figures
    models = [JC69(), K80(), F81(), HKY85()]

    # Additional analysis and plotting functions would be implemented here



    # for generating the specific figures shown in the manuscript

    print("All visualisations completed successfully!")

if __name__ == "__main__":
    main()

6.2 Mathematical Derivations and Supplementary Material

6.2.1 JC69 Transition Probability Derivation

For the JC69 model with rate matrix Q_JC, the eigenvalues are λ₁ = 0 and λ₂ = λ₃ = λ₄ = -μ, 

leading to the transition probabilities:

P_ij(t) = {1/4 + 3/4 × exp(-4μt/3) if i = j; 1/4 - 1/4 × exp(-4μt/3) if i ≠ j}

6.2.2 K80 Distance Correction Formula

For sequences with proportion P of transitional differences and Q of transversional

differences, the K80 distance is:

d = -1/2 × ln[(1-2P-Q) × √(1-2Q)]

This formula accounts for multiple hits at the same site under the K80 model assumptions.

7. References

Abascal, F., Zardoya, R., & Posada, D. (2005). ProtTest: selection of best-fit models of protein

evolution. Bioinformatics, 21(9), 2104-2105.

Barry, D., & Hartigan, J. A. (1987). Statistical analysis of hominoid molecular evolution.

Statistical Science, 2(2), 191-207.

Blanquart, S., & Lartillot, N. (2006). A Bayesian compound stochastic process for modeling

nonstationary and nonhomogeneous sequence evolution. Molecular Biology and Evolution,

23(11), 2058-2071.

Bollback, J. P. (2002). Bayesian model adequacy and choice in phylogenetics. Molecular 

Biology and Evolution, 19(7), 1171-1180.



Bromham, L., & Penny, D. (2003). The modern molecular clock. Nature Reviews Genetics,

4(3), 216-224.

Brown, J. M. (2014). Detection of implausible phylogenetic inferences using posterior

predictive assessment. Systematic Biology, 63(3), 334-348.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A 

practical information-theoretic approach (2nd ed.). Springer-Verlag.

Edwards, A. W. F. (1972). Likelihood. Cambridge University Press.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood

approach. Journal of Molecular Evolution, 17(6), 368-376.

Galtier, N., & Gouy, M. (1998). Inferring pattern and process: maximum-likelihood

implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic

analysis. Molecular Biology and Evolution, 15(7), 871-879.

Gillespie, J. H. (1991). The causes of molecular evolution. Oxford University Press.

Goldman, N., & Yang, Z. (1994). A codon-based model of nucleotide substitution for protein-

coding DNA sequences. Molecular Biology and Evolution, 11(5), 725-736.

Gu, X., Fu, Y. X., & Li, W. H. (1995). Maximum likelihood estimation of the heterogeneity of

substitution rate among nucleotide sites. Molecular Biology and Evolution, 12(4), 546-557.

Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160-174.

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic

trees. Bioinformatics, 17(8), 754-755.

Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.),

Mammalian protein metabolism (pp. 21-132). Academic Press.

Kainer, D., & Lanfear, R. (2015). The effects of partitioning on phylogenetic inference.

Molecular Biology and Evolution, 32(6), 1611-1627.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions

through comparative studies of nucleotide sequences. Journal of Molecular Evolution,



16(2), 111-120.

Lanfear, R., Calcott, B., Ho, S. Y., & Guindon, S. (2012). PartitionFinder: combined selection of 

partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution , 

29(6), 1695-1701.

Lartillot, N., & Philippe, H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-

acid replacement process. Molecular Biology and Evolution , 21(6), 1095-1109.

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & 

Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the 

genomic era. Molecular Biology and Evolution , 37(5), 1530-1534.

Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-

five years later. SIAM Review , 45(1), 3-49.

Montgomery,  R. M. (2024). Overview of Clustering Techniques: From k-Means to Spectral Methods. 

Preprints. https://doi.org/10.20944/preprints202410.1397.v1

Montgomery,  R. (2024). Visualizing Complexity and Emergence: Insights from the Hippocampus 

Representation Model. Preprints. https://doi.org/10.20944/preprints202405.0523.v1

Montgomery,  R. M. (2025). Ontological and Epistemological Challenges in Contemporary 

Multidisciplinary Research: Towards an AI-Enhanced Framework for Academic Knowledge Production 

and Evaluation. Preprints. https://doi.org/10.20944/preprints202506.1917.v1

Pagel, M., & Meade, A. (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene 

sequence or character-state data. Systematic Biology , 53(4), 571-581.

Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of 

akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology , 

53(5), 793-808.

Robinson, D. M., Jones, D. T., Kishino, H., Goldman, N., & Thorne, J. L. (2003). Protein evolution with 

dependence among codons due to tertiary structure. Molecular Biology and Evolution , 20(10), 1692-1704.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., 

Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic



inference and model choice across a large model space. Systematic Biology, 61(3), 539-542.

Schöniger, M., & von Haeseler, A. (1994). A stochastic model for the evolution of 

autocorrelated DNA sequences. Molecular Phylogenetics and Evolution, 3(3), 240-247.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of 

large phylogenies. Bioinformatics, 30(9), 1312-1313.

Suvorov, A., Hochuli, J., & Schrider, D. R. (2020). Accurate inference of tree topologies from 

multiple sequence alignments using deep learning. Systematic Biology, 69(2), 221-233.

Swofford, D. L., Olsen, G. J., Waddell, P. J., & Hillis, D. M. (1996). Phylogenetic inference. In D. 

M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular systematics (2nd ed., pp. 407-514). 

Sinauer Associates.

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA 

sequences. Lectures on Mathematics in the Life Sciences, 17, 57-86.

Whelan, S., & Goldman, N. (2001). A general empirical model of protein evolution derived 

from multiple protein families using a maximum-likelihood approach. Molecular Biology 

and Evolution, 18(5), 691-699.

Yang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with 

variable rates over sites: approximate methods. Journal of Molecular Evolution, 39(3), 306-

314.

Yang, Z. (2006). Computational molecular evolution. Oxford University Press.

Zou, Z., Zhang, H., Guan, Y., & Zhang, J. (2020). Deep residual neural networks resolve 

quartet molecular phylogenies. Molecular Biology and Evolution, 37(5), 1495-1507.




