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Abstract

Anthropogenic climate change is leading to more frequent and extreme heat waves. These large-scale events
are radically re-shaping interactions among organisms — impacting biodiversity, community composition and
ecosystem services crucial to natural systems and food security. Predicting heat wave impacts on interacting
species requires an understanding of the processes driving differential exposure and sensitivity of organisms
to extreme heat events in a life-cycle context. To achieve this predictive capacity, we need to integrate
models across scales while capturing species-specific responses at the individual level. We review and
demonstrate how existing models in disparate fields can be linked to achieve an increased understanding of

how individuals and communities will respond to extreme heat, now and into the future.

A systems-modelling approach to understand the biotic impacts of heatwaves

Climate change is leading to warmer and more variable thermal environments globally [1,2]. Greater thermal
variability is resulting in organisms experiencing extreme heat waves that lead to thermal stress impacting
organismal growth, survival and reproduction, with cascading effects on population dynamics, species
interactions, community composition and ecosystem structure and function [3,4]. Climate variability has
already been linked to dramatic global declines in pollinator abundance [5] and crop yields [6—8], but the
causes underlying such declines, and their ramifications through communities and society, are not fully
understood. The impacts of extreme heat on species and communities are driven by a combination of direct
effects of heat stress on the physiology and fitness of organisms within a given species [9—11] and indirect
effects on interactions (both positive and negative) among species [e.g., 12]. Understanding the dynamic
interplay between direct and indirect effects of extreme heat, and how these are mediated by environmental
factors (e.g., water and food availability, microbial community), has been hampered by inadequate coupling
of models that predict short-term physiological damage on a given species’ fitness with population and
community dynamic models across species [11,13,14]. A systems-thinking approach is now needed to tackle
the multifaceted nature with which extreme heat manifests within a community. This approach will require
interdisciplinary collaboration to integrate biophysical, physiological, population and community ecology
processes so that we can capture and model the dynamic feedbacks, nonlinearities and interactions between

species that drive responses across scales [15,16].

Using plants and insects as examples, we review broad classes of models across subfields of ecology and
evolution and discuss how they can be linked to effectively model the biotic impacts of heatwaves from
individuals to communities (Figure 1). We focus on plant and insect communities given the strong

interconnections between them, the ease with which they can and have been studied, and their importance to
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socioecological systems [17]. Physiological models can now be seamlessly integrated with biophysical
models to characterize temperatures experienced by organisms and simulate the effects of extreme heat
events on the entire life cycle of species within ecological communities [18-21] (Figure 1). Physiological
models that incorporate estimates of thermal sensitivity across species can capture the delicate balance
between damage and repair of physiological systems [10,11,13,22], yielding predictions of the immediate
and cumulative impacts of extreme heat on growth, survival and reproduction. Importantly, mechanistic
physiological models provide outputs at the individual level (e.g., energy and water requirements, waste
production, activity constraints, vital rates) that can be integrated into population and community ecology
models to capture how extreme heat events perturb interactions among species and across whole, complex
communities [23,24]. We demonstrate how such a coupling can be made within and across species and
highlight the opportunities it presents to develop a greater understanding of the ways in which extreme heat
stress manifests across species. We discuss the challenges of coupling models across diverse species in
communities, and of capturing the eco-evolutionary feedbacks that will be necessary for accurate predictions

in the future.

o 2o . N
Population/Community ) < Coupled Mechanistic Models : Dynamic Energy Budget Models
Ecology Models Outputs: Behaviour, Growth, Survival, H Life cycle, activity patterns
Reproduction h
g (_).3 g = S
@ e 2
S Plants e = | |
3 : o (NRARANANNNN
2 ol . ' - 2
g Pollinators | Time Time (hr/day) (2)
| 4
= Damage/Repair Models )
Im
h s 2 o - Sensitivity
e . g "Z = sensitivity %* L
1N s
3 v | g|LTso 2
£ ] e L
A) , = H logso Time (hours) )
109w Time (hours) |.* Herbivores: |* climate & Biophysical Models |

pan /4
2 31

Exposure

50°C

Temperature (°C)
-
I
N

Body Temperature (°C)




71

72

73
74
75
76
77
78
79
80
81
82
83

Figure 1- A coupled systems modelling framework for predicting the effects of extreme heat on
ecological communities. A systems modelling approach first integrates (1) climate/biophysical models to
predict the different microclimates species experience. (2) Microclimates experienced by organisms then
provide inputs for physiological models that integrate temperature exposure with explicit physiological
processes that simulate development, behaviour, survival (e.g., 50% survival thresholds, LT50) and
reproduction in response to microclimate dynamics across life history stages. Physiological models can be
built around the unique life cycles of the diverse species in communities, capturing lagged responses to
extreme heat, phenological mismatches and mechanistically informed responses to extreme heat for
species of the system in question. Outputs (behaviour, growth rate, biomass accumulation, survival and
reproduction) from physiological models of individual organisms can then be integrated into (3) population
and community ecology models (such as those developed with in the Modern Coexistence Theory
Framework — see text) to predict population growth and community composition under a specific type of
change (either to the environment or suite of interacting species). Environment-mediated feedback loops
(4) influence organism thermal exposure and sensitivity, including water availability and microbial
communities, which can vary across different life stages and organs depending on the microclimates
occupied. Coupling existing models will allow for quantitative predictions to be made on how extreme
heatwaves perturb biological systems and for the development and implementation of strategies to enhance

biological system resilience to extreme heat. Created with BioRender.com.

From weather to microclimates: predicting community wide exposure to

extreme heat

Extreme weather events such as heatwaves are measured by climate re-analysis or predicted by Global
Circulation Models (GCMs), typically at large spatial scales (e.g. 0.5°grid cells), and can be regionalized by
downscaling to smaller spatial scales. However, species within communities experience heatwaves
differently because of the varied microhabitats they occupy. For example, while air temperature may be
50°C, an organism a metre below the soil surface may be exposed to temperatures ~20°C cooler (Figure 1).
Therefore, to understand how extreme heat affects a community of organisms, we must characterize the
microclimates (see Glossary) experienced by individuals of different species under a given atmospheric
event. Microclimate predictions are made by taking the atmospheric conditions as independent forcing
variables and combining them with detailed information on terrain (slope, aspect, hill shade), vegetation
[plant-area index (PAI), stomatal behaviour, leaf reflectance] and soil hydrothermal properties to predict how

radiation, wind speed, air temperature, humidity, soil temperature and soil moisture vary on small spatial
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scales [25-32]. Capturing the interaction between soil moisture and temperature in microclimate models is
critical because the same atmospheric heat wave can have different implications for microclimatic conditions
depending on the recent history of rainfall and temperature [33]. Downscaling to microclimate conditions
requires the specification of key environmental properties (e.g. % shade, soil characteristics, surface albedo)
at a fine scale (metres) for the local area of interest. Depending on the organism and question of interest, not
all input variables are needed to parameterize a given microclimate calculation, as recent guides to

microclimate modelling illustrate [e.g., 34,35,36].

Beyond parameterization, the benefit of a systems-thinking approach in the context of microclimate
modelling is its ability to capture vegetation and soil dynamics which can dramatically shape microclimate
conditions within and between species dynamically across time. While the large-scale feedbacks from plant
and soil dynamics to heatwave development are captured in GCMs [e.g. 37], these dynamics are also
important in determining thermal regimes at micro-scales. For example, plant water use dynamics can
amplify or reduce within-canopy temperatures via effects on photosynthetic capacity, stomatal decoupling,
cuticular conductance, leaf damage and plant mortality [20,38]. These impacts are important for the plants
themselves and for thermal regimes available to other organisms. Forecasting future thermal regimes is
challenging because it involves forecasting future vegetation dynamics, including changes in key vegetation
properties such as leaf area index, as a function of plant growth, phenology, plant population dynamics and
shifts in community composition. Despite the complexity and non-linearity of these interactions across the
soil-plant-atmosphere continuum, there is existing capacity, and growing potential, to model them and
determine individual-specific exposure to extreme heat. For example, a wide range of vegetation models is
available for this purpose, from crop growth models that simulate growth and yield of crops over a season
(e.g. Agricultural Production Systems sIMulator (APSIM); [39]) up to the dynamic global vegetation models
(DGVMs) that simulate vegetation function and distribution at local to global scales [40].

Translating exposure to organism temperature: biophysics to the rescue!

Once microclimates are quantified, it is crucial to estimate the heat and water budgets of organisms to
determine how microclimate variability within a system translates to realized organismal temperatures and
hydration states. Heat and water budgets can be computed using a combination of species functional traits
(e.g., body mass, metabolic rate, surface area, solar absorptivity) along with how heat energy and water are
exchanged with the environment — dependent on the microclimate experienced. Such biophysical models
have a long history [41,42] but have become more widely applied in ecology in the past 20 years, facilitated
by developments in environmental datasets, microclimate modelling, and the emergence of high-level

programming languages such as R [21]. Biophysical models of ectothermic animals make use of equations
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for energy and mass exchange between an organism and its environment and can account for complex
radiative heat transfer and the role of evaporative water loss across surfaces [21,25,43]. Equivalent models of
leaves incorporate the dynamic role of stomata [20, 44] (Box 1). Biophysical models are powerful because,
by translating microclimate conditions to organism body temperature and hydric states, simple regulatory
decision-making models can be used [45,46]. For example, given an understanding of an organism’s thermal
activity windows, thermal optima, and critical thermal limits we can determine what microclimates the
organism should chose to get close to its target body temperature [e.g., 45,46]. Such behavioural
thermoregulatory decision making is crucial for mitigating the negative impacts of extreme heat.
Incorporating it into models can inherently capture the trade-offs such a strategy entails through reduced
foraging time [21,45]. Similarly, changes in stomatal behaviour can mitigate or exacerbate the extreme
temperatures leaf tissue experiences while simultaneously shaping the microclimate conditions for other
organisms [20,47] (Box 1). Future developments in biophysical modelling of organismal temperature under
extreme heat will involve understanding the nuances of plastic physiological and behavioral responses. For
example, lizards may pant when exposed to high temperatures [48], birds may ‘wind surf” or seek thermal
micro-refugia [49], and stomata can enact emergency cooling, departing from the typical responses to vapor
pressure and light intensity [38], though this response may depend on prior soil moisture conditions [50].
Although biophysical models require many traits for parameterization, the models and parameters can be
tailored to the question and organism of interest [21]. In addition, many traits can be approximated based on
traits of similar species, and then validated and updated as more species-specific data become available. The
application of biophysical models in concert with microclimate models can thus be used to infer the thermal
conditions to which members of the same ecological community are exposed with different degrees of detail.

Realised thermal exposure can then be linked to physiological models.

Capturing both physiological damage and repair to predict multi-species

thermal sensitivity

Translating how heat waves impact plants and animals not only depends on modelling temperature exposure
but also the varying sensitivity of organisms to extreme heat [22,51]. Sensitivity to extreme heat can be
captured by thermal load sensitivity (TLS) / thermal death time (TDT) models that explicitly account for
how heat stress depends on both the body temperature experienced and its duration [13,22]. TLS models
predict the relative accumulation of damage to cellular and sub-cellular systems that compromise
physiological function. Without periods of recovery, where damage can be repaired, organisms accumulate
damage over time, reducing growth and impacting survival and reproduction (Box 2). Typically, TLS models

focus on endpoints that include survival (e.g., lethal temperatures, LT, or LTg,) or some measure of reduced



148 fertility, but this need not be the case [13]. Endpoints are predicted by assuming the effect of time at a given
149  temperature decreases survival and/or fertility exponentially, and have been shown to have high predictive
150 power [10,11,22,51]. For example, Orsted et al. [11] show that both mortality and fecundity follow a clear
151  exponential relationship with time in the Spotted Wing Drosophila (Drosophila suzukii), with survival and
152  fecundity being compromised most for long thermal exposures at high temperatures. Importantly, they also
153  show that heat injury impacts accumulate faster for reproduction than survival [11]. TLS theory also applies
154  well to photosynthetic function in plants [52,53], highlighting its generality. TLS models are crucial for

155  predicting how heat waves affect organisms because accumulated damage to physiological systems can result
156  in lagged responses to heat stress or exacerbate future stress (i.e., future heat waves / droughts) —a common

157  feature of extreme heat events [13,54].

158  Environmental factors known to impact thermal sensitivity, such as water and drought stress [e.g., 55,56],
159  along with nutritional and dietary changes [e.g., 57,58], can be incorporated into systems modelling

160  approaches through their impacts on thermal sensitivity and tolerance [13] (Figure 1). Indeed, an exciting
161  potential application of a systems-modelling approach is to explore how microclimatic conditions mediate
162  changes to interactions between plant and animal microbial communities. Interactions between plants and
163  microorganisms, such as plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi
164  (AMF), and bacterial or fungal endophytes, are known to enhance growth, defense, and heat tolerance in
165  plants [59,60], and gut microbiota can improve heat tolerance in animals [61]. Additionally, modelling the
166 intricate balance between damage and repair for a suite of different species can help identify susceptible
167  species, life stages and tissues that are most at risk from extreme heat events due to direct sensitivity to
168  extreme heat, allowing more accurate predictions of the varying levels of species sensitivity within a

169  community [13].



Box 1: Building a systems modelling approach to capture multi-species exposure to extreme heat

Here we outline how a systems-modelling approach can be developed, illustrated with a simple
hypothetical community (Figure IA). The focus is on how climate, microclimate, and biophysical models
can predict the differential exposure to extreme heat events across species, how species can alter each
other’s microclimates, and the incorporation of ‘behavioural’ responses of species in response to
temperature (e.g., stomatal behaviour, thermoregulation). Predicted organismal temperatures are used
from these models to then predict life-cycles for species, incorporate differences in thermal sensitivity,

and ultimately estimate vital rates for population and community ecology models (Box 2).

The context is a heatwave event in January 2018/19 at Renmark, South Australia (Calperum Station). The
historical SILO climate dataset (0.05° resolution, 1889 to present) [62] was used as input to the
micro_silo function in NicheMapR [20,63], in conjunction with microclima [26,27] in the R statistical
language to compute microclimates. Microclimates are calculated at various heights above ground (20cm-
1.2m, relevant to our plants and insects) and soil depths (for burrowers) with varying levels of shade (we
use 40% and 80%). Simulating these varied conditions captured the diversity of microclimates that
different species in a community might experience and provided opportunities to build in behavioural

plasticity.

With available microclimates predicted, we can compute leaf and body temperatures using biophysical
models. However, plant temperatures will impact the temperatures experienced by the grasshoppers
because plant stomatal conductance changes in response to extreme heat events. Stomatal responses of
leaves to their environment can be captured with the help of the plantecophys package [44] and used in
conjunction with the ectotherm function in NicheMapR to compute realistic leaf temperatures as stomata
open and close in response to temperature and vapor pressure deficit (Figure IB). The combination of
microclimate, leaf traits (e.g., shape, leaf conductance, emissivity) and stomatal behaviour thereby

produces realistic leaf temperature estimates during the heatwave event.

Calculated leaf temperature can then become part of the microclimate of the insects (Figure IC). The
ectotherm function of NicheMapR can be used to compute insect body temperature, given the
microclimate (including plant leaf temperature) and insect traits. The insect temperature calculations
incorporate their capacity to thermoregulate behaviourally. For example, Species B moves to cooler parts
of the plant to minimize thermal stress, when possible (Figure IA), given a range of available
microclimates and using information on their thermal preferences. All code to demonstrate this process is

available at: https://daniel Inoble.github.io/thermal tol interactions/.
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Glossary

Biophysical models: Biophysical models capture the balances of heat, water, and other aspects of energy
and mass exchange between organisms and their microclimatic environment to predict how organisms

function, survive, and behave in varying environments.

Coexistence: Coexistence occurs when populations of two or more species are able to persist in each

other’s presence indefinitely at steady state under constant abiotic conditions.

Functional traits: Functional traits are the characteristics of organisms that influence their performance
and fitness, such as body size, reproductive output, and metabolic rates. In the context of extreme heat,

functional traits can be used to categorize species based on their responses to thermal stress.

Modern Coexistence Theory: A theoretical framework derived from population ecology describing the
conditions under which species can coexist mathematically. It has resulted in the development of
population growth models using criteria based on niche and fitness differences, mutual invasibility and

feasibility domains.

Microclimate: Microclimates are the local conditions experienced by organisms, which can differ
substantially from the broader atmospheric conditions. Microclimates are influenced by factors such as
vegetation cover, soil properties, and topography, and can significantly affect the thermal and hydric

environment experienced by organisms.

Thermal load sensitivity (TLS) / thermal death time (TDT) models: Models that calculate thermal
stress load from a time series of body temperatures to quantify lethal and sublethal impacts on tissues,

organs and whole organisms.

Vital rates: Demographic parameters that determine how populations change over time. They include

measures of birth, death, growth, and reproduction.

Physiological models that capture the effects of extreme heat across life

Accumulated damage to an organism from experiencing extreme heat events will impact survival probability

in the future and needs to be integrated with a full account of growth, development and reproduction through

life to scale effects to populations and communities. Dynamic Energy Budget (DEB) models are
physiologically-explicit life-cycle models of energy and mass uptake and conversion that predict key life-
history transitions, growth, reproduction and survival (senescence) through time [18,64]. DEB models

consider organisms as a thermodynamic system (fully obeying energy-mass conservation) capturing the
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exchange of food, water, respiratory gases and metabolic waste throughout the life cycle [21]. DEB models
can translate short-term (hours) variation in factors such as temperature, toxins (e.g., toxicants, [65]) and
resource availability (nutrients) [66,67] into long-term (days, months, years) effects on development, growth,
reproduction and survival [19,21]. DEB theory, when combined with biophysical models more generally,
allows the full water budget to be computed to account for heat stress impacts of a hydric nature [21].
Perhaps most importantly, DEB theory calculates the life cycle trajectory of an organism and so can account
for the effects of timing of heat wave impacts relative to life stage. Applied to multi-species assemblages,
DEB models can capture how different species’ life cycles are affected by heat and interact with each other
to predict how traits such as birth, age at maturity, reproductive events, energy flow and lifespan vary across
species (Box 2). DEB models integrate many fundamental physiological processes and are parameter-sparse
(one parameter per process). Moreover, the necessary parameters have already been estimated for > 7000
species already (although there are taxonomic biases) [68,69]. New analytical approaches using phylogenetic
imputation methods show promise for calculating energy budgets for species without data. Such methods
have, for instance, already been used to predict DEB parameters for over 1.3 million animal species [see, 70].
In addition, software packages such as NicheMapR [25,63] allow for simulations of life-cycles using
parameters for diverse species. DEB model outputs, such as body mass and size, reproductive success and
timing, and survival, can be used to parameterize vital rates needed for population and community models,

with additional options to incorporate eco-evolutionary feedbacks (see Box 3).

Analogously, physiology-based vegetation models simulate plant growth over time as a function of carbon,
water and nutrient uptake and use, following mass balance principles [71]. Model drivers typically include
incident radiation, humidity, rainfall, and soil properties, as well as air temperature. The models capture the
direct effects of temperature on key physiological processes, such as photosynthesis, respiration and
phenology, as well as the indirect effects via feedbacks on vegetation water balance and soil nutrient
availability. Short-term responses to temperature are captured well in these models through representations of
enzyme kinetics, but representation of longer-term responses remains challenging because plants show high
flexibility in their ability to acclimate to ambient temperatures [72]. Another area under active research is
capturing plant damage and death from hot-dry weather extremes. Considerable progress has been made by
representing the plant hydraulic system explicitly, enabling the risk of hydraulic failure to be predicted under
conditions of low rainfall and high evaporative demand [73]. Direct damage to plant tissue from extreme heat
has yet to be represented in such models, but the thermal death time framework outlined above offers a

promising way forward.
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Mechanistic approaches that ‘speak’ to population and community ecology

under extreme heat

Modelling tools developed as part of Modern Coexistence Theory (MCT) [16] offer a promising suite of
approaches for combining biophysical, physiological, and population ecology models to predict whole
community responses to extreme heat events. Population growth models are core to predicting species
coexistence within this framework. In their most recent applications, these simple pairwise population
growth models have been used to underpin horizontal network models that allow one to examine how species
in a community interact and create stable communities [15,74]. Other extensions of MCT tools have
integrated environmental variation [24], traits [75] and cross-trophic dynamics [76,77] in predicting the
outcomes of species interactions in community contexts. Fundamentally, this approach relies on simple two-
species individual-based population growth models [78,79], but key extensions involve the use of whole
communities as one “species” [80,81] or the grouping of species to simplify interaction matrices while

accounting for a small number of dominant species [77].

Population dynamic models that are used as part of MCT can calculate the individual fitness effect of
interactions in relation to environments experienced by organisms [23,77,82]. As these models use the same
fitness measures as DEB models, they offer a population modelling framework to add thermal biology to
community diversity predictions. This is because population dynamical models can be combined, for
example as networks [15] and compared between microsites with different biophysical properties and
harbouring species with different thermal responses to their microenvironment. For example, Bimler et a/
[15] used this approach to determine which species were keystone species under shady and sunny portions of

the same plant communities.

Modified vital rate functions (which can incorporate any measure of fitness) can be used in population
growth models to compare population dynamics for individuals in areas with different biophysical properties
and/or thermal tolerances. Indeed, the predicted traits from DEB models could be used to directly
parameterise growth rate models (Box 2) or to predict functional traits which, at a community scale, can be
used to categorise species with different response and effect profiles. Horizontal interaction networks can
then be used to determine how important microclimates with different biophysical properties are for species
interactions (defined by their fitness responses to their thermal environment) within the context of whole
communities. These networks can be made to target particular types of interaction effects or responses to
extreme heat events, or used to compare how species interact in areas with different thermal landscapes. The

main limitation of these methods is that they are data hungry, but even this can be handled by categorizing



240  species by ‘traits’ or shared phylogenetic relationships, which are simplifications shown to be effective at

241  reducing model complexity without sacrificing model accuracy [83].



Box 2: Scaling up extreme heat effects from impacts on individuals to populations and communities

We use predicted organismal temperatures (Figure I in Box 1) to take stock of how thermal heat stress
accumulation impacts survival probability and simulate life cycles for two interacting grasshopper species

under their respective microclimates.

To start, using existing parameters for a dynamic energy budget (DEB) model for grasshoppers [84], we
can use the ectotherm function in NicheMapR to simulate life cycles for each of the two species. We
assume that both species have similar DEB parameters but vary in their life-history, thermal physiology,

size and reproduction.

DEB models incorporate a simple Gompertz mortality function to capture senescence, but do not
integrate the effects of thermal load accumulation in response to extreme heat events into survival
functions. We assume reproduction is not impacted by heat for simplicity, but thermal load on
reproduction can also be incorporated in a similar way [11]. By using thermal sensitivity parameters for
mortality endpoints from TLS models (i.e. z, slope and a = critical thermal limit), they can be used to
predict the accumulation of damage through time during stressful temperatures (environmental
temperatures T, > critical temperatures T,) experienced under realistic conditions for each species by
calculating heat injury (HI) accumulated between time point ¢; and t;,; across the insect’s life (using an

LT, threshold)(Equation 1) (‘red lines’ in Figure I1A) [10,11,13,51].

To>T,

oI = Z 100 - (tj41 — ) 1)

1 O(—%-max(Ti;Ti+1)+a)

i=1

After calculating HI accounting for repair [85], and converting to the probability of mortality through
time, we can calculate the total probability of survival (i.e., from senescence, thermal stress, and activity-
based mortality) for each age/stage class. In combination with the DEB model outputs on total
reproduction across life, we can build a simple age/stage-structured population matrix (day of life or
developmental stage) (Figure IIB) to estimate population growth rate [7;,4, = In(4)] for each species
under their respective microclimates. 1,4, can then be included in a two-species, density dependent
Ricker model (a model commonly used as the basis for coexistence modelling in the MCT framework) to

predict their population growth under competition (Equation 2).

Ni+ Yjs aith]> @

K;

Nti+1 = Ntl Texp [rmax,i (1 -



where N/ is the population size of species i at time t, Tinax; 18 the intrinsic growth rate of species i, K; is
the carrying capacity of species i, and @;; is the competition coefficient that describes how much species

J affects species i. Note that, because mechanistic physiological models are used, the population matrix
can be updated each generation to reflect changes in vital rates (survival and reproduction) under different

microclimates in the future.
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Figure II: A systems approach to using mechanistic physiological models to capture life-cycle vital
rates and thermal load stress on survival to scale up to multi-species population dynamics. A) Green
(species A) and brown lines (Species B) represent realized body temperatures for each grasshopper
species. Red lines capture the accumulation of heat damage from TLS models with red rectangles
showing a heatwave event. B) Changes to survival probability and fecundity can be captured by an

age/stage structured model that can then be used to estimate parameters (€.g, Tqx; and 4) for

prediction population dynamics through time (C). Created with BioRender.com.
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‘Hot’ solutions for a changing world

Extreme heat will have dramatic and widespread effects on biological and socioecological systems that
humans rely upon. For example, under current global climate change scenarios, each degree Celsius increase
in global mean temperature is estimated to reduce the global yield of wheat by 6.0% and soybean by 3.1%
[86], exacerbating food shortages.

A systems-modelling approach can help us develop suitable interventions, predict the varied consequences of
such interventions, and allow for adjustments that can improve decision making for mitigating the impacts of
extreme heat in real world situations. As a simple example (Figure 2A), a systems modelling approach can
allow for informed predictions about how to mitigate heat stress to crops while also considering the potential
for pest outbreaks. In essence, we want to add a minimal amount of water to a system to cool leaves while
avoiding depleting limited water supplies and/or creating better microclimate conditions for pests. Making
use of real weather data to predict microclimates and organism temperatures, we can assess how adding 2, 5,
10, or 20 mm d'! of water to a system affects leaf temperatures and the life-cycle for a grasshopper species
that is a known pest (Figure 2). We can see that adding 2-5 mm d'! of water can decrease leaf temperature by
up to 3.87°C (Figure 2B), but adding more water does not result in significant gains in cooling. In addition,
2-5 mm of water added each day results in the grasshopper population being suppressed over time, whereas
not adding water at all results in grasshopper population growth, leading to potential heatwave-associated
outbreaks. Here, the optimal solution is adding 2-5 mm d™! of water to both cool plants and protect them from
pests. Identifying and/or modifying the thermal suitability of landscapes, such as in our simple example, may
dramatically benefit plants and animals under extreme heat and is a promising feature of a systems-thinking
approach [21]. Additionally, as our understanding of the mechanisms associated with heat tolerance improve,
genetic tools, environmental manipulations (e.g., promoting beneficial microbes) and targeted plant breeding

can be used to enhance thermal tolerance, creating more resilience to extreme heat events [e.g., 60].

Systems modelling can also help understand how people’s responses to the impacts of extreme heat could
lead to accelerating changes in plants, animals and landscapes. Farmers or ecosystem managers may
introduce new species, alter management practices or farm remaining unaffected areas more intensively.
Thermal stress may ultimately result in people leaving areas, potentially making remaining communities
more vulnerable through loss of resources and services [87]. Thermal risks to ecosystems may also
precipitate declines in individual wellbeing, and these consequences may accrue differently across regions

and peoples [88].
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Figure 2 - How a systems modelling approach to extreme heat can be used to inform solutions. Heat
stress to crops can result in foliage loss and crop failure, but also weaken crops to pests. Using a
hypothetical case study of a crop and associated pest, we explore how different watering regimes affect
plant temperatures and the flow on effects such regimes have for pest dynamics (A). Using a site near
Renmark, South Australia, we use microclimate and biophysical models to estimate leaf temperatures
(detailed in Boxes 1 & 2). We see that, compared to original rainfall conditions, certain watering regimes
can significantly reduce leaf temperatures by nearly 4°C, providing protection to leaves (B). Modelling
how these changed microclimate conditions translate to grasshopper body temperatures, we can then
estimate changes to grasshopper life cycles and use the vital rates to predict population dynamics, showing,
in this case, that even small amounts of water can indirectly suppress pest growth through lower body

temperatures (C). Created with BioRender.com.



Box 3: An important frontier: integrating eco-evolutionary feedback within a systems-modelling

framework

Extreme climactic events, such as heatwaves and droughts, can result in intense episodes of selection
which can lead to rapid evolution of heritable traits [89]. Given the intensity of selection associated with
extreme climatic events, these events have the potential to radically alter the phenotypic and genetic
variability available to selection [90], potentially impacting population resilience to future events.
Predicting evolutionary responses from extreme heat events is challenging because of their rarity and
stochasticity which makes quantifying the strength of selection difficult as it often can only be

opportunistically measured [89].

Predicting evolutionary responses also relies on our ability to predict heatwaves and how organisms
experience them in the future — a task that is becoming more feasible with new climate models [e.g.,
91,92]. Evolutionary consequences of extreme heat events will depend on the characteristics of these
events (e.g., frequency, timing, exposure intensity and duration), the traits under selection and their levels
of genetic (co)variation, as well as the demographic and ecological context in which the event occurs
[93-95]. Considering various forms of plastic responses (e.g., behavioural, developmental, and
physiological plasticity) as environments change through time is also crucial because plasticity can
weaken selection and shelter genetic variation while also promoting persistence [96,97]. Many of these
processes can now be incorporated into a systems modelling framework (e.g, behavioural plasticity), to

capture environment-phenotype feedbacks.

A more complete systems modelling approach that captures eco-evolutionary dynamics needs to treat
‘traits’ more broadly than is typically done in evolutionary ecology (e.g., body mass). For example,
‘traits’ can include the parameters within models that establish functional traits within a population (e.g.,
DEB parameters)[98,99], which may provide predictions for suites of resulting traits that emerge from
such parameters. Furthermore, it is important to consider the evolution of suites of traits as can be done

using the multivariate breeders equation [100]:
AZ=G-B (3)

where AZ is the vector of changes in the mean trait values, G is the genetic covariance matrix and f8 is the
vector of standardised selection gradients that regress each trait on relative fitness (i.e., ® = a + BT -z +
e; [101]). Plasticity can be captured by mapping trait development to the environment and incorporating
environmental variability into the breeders equation [see also, 102]. While the multivariate breeders

equation can be useful for predicting short-term evolutionary responses (i.e., one or a few generations) it
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likely has limited predictive power over longer timespans because of changes in heritability and selection

through time, which is a future challenge [95,101].

Concluding Remarks

Implementing a systems-modelling approach will no doubt be challenging, particularly for complex
communities, and knowledge gaps remain (see Outstanding Questions). But, more than ever, we need
mechanistic approaches that can capture key biological processes (physiology, behaviour, phenology, species
interactions and eco-evolutionary dynamics - Box 3) to better predict biological responses to extreme heat
[54,103]. Coupled mechanistic models within and across species are expected to have improved predictive
power when projected to new environmental conditions and will better capture interacting processes
[21,103]. Nonetheless, application of a systems modelling approach will require a solid foundation of species
natural history, diverse modelling expertise, and a concerted effort to collect and collate trait and

environmental data for model building and validation.

There are exciting new tools and data that are helping to overcome these challenges [26], and careful
consideration of the key processes important to a system can help alleviate these challenges [21]. For
example, large databases of physiological traits for both plants and animals now exist [e.g., 104,105] and
advanced missing data approaches can help estimate likely parameters for data deficient species [70,74,106].
Ever more sophisticated and powerful computational pipelines (e.g. NicheMapR, TrenchR, mceral, terra in
R) make it easier to implement and connect models. Model selection and validation are important steps in
any modelling process and will be more complicated when applied to entire systems; however, starting with a
simple model, validating predictions with empirical data, and then adding complexity as needed can make
building systems models more tractable [21]. Even simple models that compare counterfactual scenarios may
provide important quantitative insights into the impacts of extreme heat on organisms, populations and
communities [107-109]. Such insights can form the basis for prediction-driven solutions to mitigate the
impacts of extreme heat on biodiversity. By working collaboratively we can develop a more quantitative and
predictive understanding of the impacts that extreme heat will have on organisms, populations, and

communities, and decide how to mitigate these impacts to preserve diverse systems now and into the future.
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