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Abstract 26	

Anthropogenic climate change is leading to more frequent and extreme heat waves. These large-scale events 27	

are radically re-shaping interactions among organisms – impacting biodiversity, community composition and 28	

ecosystem services crucial to natural systems and food security. Predicting heat wave impacts on interacting 29	

species requires an understanding of the processes driving differential exposure and sensitivity of organisms 30	

to extreme heat events in a life-cycle context. To achieve this predictive capacity, we need to integrate 31	

models across scales while capturing species-specific responses at the individual level. We review and 32	

demonstrate how existing models in disparate fields can be linked to achieve an increased understanding of 33	

how individuals and communities will respond to extreme heat, now and into the future. 34	

A systems-modelling approach to understand the biotic impacts of heatwaves 35	

Climate change is leading to warmer and more variable thermal environments globally [1,2]. Greater thermal 36	

variability is resulting in organisms experiencing extreme heat waves that lead to thermal stress impacting 37	

organismal growth, survival and reproduction, with cascading effects on population dynamics, species 38	

interactions, community composition and ecosystem structure and function [3,4]. Climate variability has 39	

already been linked to dramatic global declines in pollinator abundance [5] and crop yields [6–8], but the 40	

causes underlying such declines, and their ramifications through communities and society, are not fully 41	

understood. The impacts of extreme heat on species and communities are driven by a combination of direct 42	

effects of heat stress on the physiology and fitness of organisms within a given species [9–11] and indirect 43	

effects on interactions (both positive and negative) among species [e.g., 12]. Understanding the dynamic 44	

interplay between direct and indirect effects of extreme heat, and how these are mediated by environmental 45	

factors (e.g., water and food availability, microbial community), has been hampered by inadequate coupling 46	

of models that predict short-term physiological damage on a given species’ fitness with population and 47	

community dynamic models across species [11,13,14]. A systems-thinking approach is now needed to tackle 48	

the multifaceted nature with which extreme heat manifests within a community. This approach will require 49	

interdisciplinary collaboration to integrate biophysical, physiological, population and community ecology 50	

processes so that we can capture and model the dynamic feedbacks, nonlinearities and interactions between 51	

species that drive responses across scales [15,16]. 52	

Using plants and insects as examples, we review broad classes of models across subfields of ecology and 53	

evolution and discuss how they can be linked to effectively model the biotic impacts of heatwaves from 54	

individuals to communities (Figure 1). We focus on plant and insect communities given the strong 55	

interconnections between them, the ease with which they can and have been studied, and their importance to 56	



socioecological systems [17]. Physiological models can now be seamlessly integrated with biophysical 57	

models to characterize temperatures experienced by organisms and simulate the effects of extreme heat 58	

events on the entire life cycle of species within ecological communities [18–21] (Figure 1). Physiological 59	

models that incorporate estimates of thermal sensitivity across species can capture the delicate balance 60	

between damage and repair of physiological systems [10,11,13,22], yielding predictions of the immediate 61	

and cumulative impacts of extreme heat on growth, survival and reproduction. Importantly, mechanistic 62	

physiological models provide outputs at the individual level (e.g., energy and water requirements, waste 63	

production, activity constraints, vital rates) that can be integrated into population and community ecology 64	

models to capture how extreme heat events perturb interactions among species and across whole, complex 65	

communities [23,24]. We demonstrate how such a coupling can be made within and across species and 66	

highlight the opportunities it presents to develop a greater understanding of the ways in which extreme heat 67	

stress manifests across species. We discuss the challenges of coupling models across diverse species in 68	

communities, and of capturing the eco-evolutionary feedbacks that will be necessary for accurate predictions 69	

in the future. 70	

 



Figure 1- A coupled systems modelling framework for predicting the effects of extreme heat on 

ecological communities. A systems modelling approach first integrates (1) climate/biophysical models to 

predict the different microclimates species experience. (2) Microclimates experienced by organisms then 

provide inputs for physiological models that integrate temperature exposure with explicit physiological 

processes that simulate development, behaviour, survival (e.g., 50% survival thresholds, LT50) and 

reproduction in response to microclimate dynamics across life history stages. Physiological models can be 

built around the unique life cycles of the diverse species in communities, capturing lagged responses to 

extreme heat, phenological mismatches and mechanistically informed responses to extreme heat for 

species of the system in question. Outputs (behaviour, growth rate, biomass accumulation, survival and 

reproduction) from physiological models of individual organisms can then be integrated into (3) population 

and community ecology models (such as those developed with in the Modern Coexistence Theory 

Framework – see text) to predict population growth and community composition under a specific type of 

change (either to the environment or suite of interacting species). Environment-mediated feedback loops 

(4) influence organism thermal exposure and sensitivity, including water availability and microbial 

communities, which can vary across different life stages and organs depending on the microclimates 

occupied. Coupling existing models will allow for quantitative predictions to be made on how extreme 

heatwaves perturb biological systems and for the development and implementation of strategies to enhance 

biological system resilience to extreme heat. Created with BioRender.com. 

From weather to microclimates: predicting community wide exposure to 71	

extreme heat 72	

Extreme weather events such as heatwaves are measured by climate re-analysis or predicted by Global 73	

Circulation Models (GCMs), typically at large spatial scales (e.g. 0.5°grid cells), and can be regionalized by 74	

downscaling to smaller spatial scales. However, species within communities experience heatwaves 75	

differently because of the varied microhabitats they occupy. For example, while air temperature may be 76	

50°C, an organism a metre below the soil surface may be exposed to temperatures ~20°C cooler (Figure 1). 77	

Therefore, to understand how extreme heat affects a community of organisms, we must characterize the 78	

microclimates (see Glossary) experienced by individuals of different species under a given atmospheric 79	

event. Microclimate predictions are made by taking the atmospheric conditions as independent forcing 80	

variables and combining them with detailed information on terrain (slope, aspect, hill shade), vegetation 81	

[plant-area index (PAI), stomatal behaviour, leaf reflectance] and soil hydrothermal properties to predict how 82	

radiation, wind speed, air temperature, humidity, soil temperature and soil moisture vary on small spatial 83	



scales [25–32]. Capturing the interaction between soil moisture and temperature in microclimate models is 84	

critical because the same atmospheric heat wave can have different implications for microclimatic conditions 85	

depending on the recent history of rainfall and temperature [33]. Downscaling to microclimate conditions 86	

requires the specification of key environmental properties (e.g. % shade, soil characteristics, surface albedo) 87	

at a fine scale (metres) for the local area of interest. Depending on the organism and question of interest, not 88	

all input variables are needed to parameterize a given microclimate calculation, as recent guides to 89	

microclimate modelling illustrate [e.g., 34,35,36]. 90	

Beyond parameterization, the benefit of a systems-thinking approach in the context of microclimate 91	

modelling is its ability to capture vegetation and soil dynamics which can dramatically shape microclimate 92	

conditions within and between species dynamically across time. While the large-scale feedbacks from plant 93	

and soil dynamics to heatwave development are captured in GCMs [e.g. 37], these dynamics are also 94	

important in determining thermal regimes at micro-scales. For example, plant water use dynamics can 95	

amplify or reduce within-canopy temperatures via effects on photosynthetic capacity, stomatal decoupling, 96	

cuticular conductance, leaf damage and plant mortality [20,38]. These impacts are important for the plants 97	

themselves and for thermal regimes available to other organisms. Forecasting future thermal regimes is 98	

challenging because it involves forecasting future vegetation dynamics, including changes in key vegetation 99	

properties such as leaf area index, as a function of plant growth, phenology, plant population dynamics and 100	

shifts in community composition. Despite the complexity and non-linearity of these interactions across the 101	

soil-plant-atmosphere continuum, there is existing capacity, and growing potential, to model them and 102	

determine individual-specific exposure to extreme heat. For example, a wide range of vegetation models is 103	

available for this purpose, from crop growth models that simulate growth and yield of crops over a season 104	

(e.g. Agricultural Production Systems sIMulator (APSIM); [39]) up to the dynamic global vegetation models 105	

(DGVMs) that simulate vegetation function and distribution at local to global scales [40]. 106	

Translating exposure to organism temperature: biophysics to the rescue! 107	

Once microclimates are quantified, it is crucial to estimate the heat and water budgets of organisms to 108	

determine how microclimate variability within a system translates to realized organismal temperatures and 109	

hydration states. Heat and water budgets can be computed using a combination of species functional traits 110	

(e.g., body mass, metabolic rate, surface area, solar absorptivity) along with how heat energy and water are 111	

exchanged with the environment – dependent on the microclimate experienced. Such biophysical models 112	

have a long history [41,42] but have become more widely applied in ecology in the past 20 years, facilitated 113	

by developments in environmental datasets, microclimate modelling, and the emergence of high-level 114	

programming languages such as R [21]. Biophysical models of ectothermic animals make use of equations 115	



for energy and mass exchange between an organism and its environment and can account for complex 116	

radiative heat transfer and the role of evaporative water loss across surfaces [21,25,43]. Equivalent models of 117	

leaves incorporate the dynamic role of stomata [20, 44] (Box 1). Biophysical models are powerful because, 118	

by translating microclimate conditions to organism body temperature and hydric states, simple regulatory 119	

decision-making models can be used [45,46]. For example, given an understanding of an organism’s thermal 120	

activity windows, thermal optima, and critical thermal limits we can determine what microclimates the 121	

organism should chose to get close to its target body temperature [e.g., 45,46]. Such behavioural 122	

thermoregulatory decision making is crucial for mitigating the negative impacts of extreme heat. 123	

Incorporating it into models can inherently capture the trade-offs such a strategy entails through reduced 124	

foraging time [21,45]. Similarly, changes in stomatal behaviour can mitigate or exacerbate the extreme 125	

temperatures leaf tissue experiences while simultaneously shaping the microclimate conditions for other 126	

organisms [20,47] (Box 1). Future developments in biophysical modelling of organismal temperature under 127	

extreme heat will involve understanding the nuances of plastic physiological and behavioral responses. For 128	

example, lizards may pant when exposed to high temperatures [48], birds may ‘wind surf’ or seek thermal 129	

micro-refugia [49], and stomata can enact emergency cooling, departing from the typical responses to vapor 130	

pressure and light intensity [38], though this response may depend on prior soil moisture conditions [50]. 131	

Although biophysical models require many traits for parameterization, the models and parameters can be 132	

tailored to the question and organism of interest [21]. In addition, many traits can be approximated based on 133	

traits of similar species, and then validated and updated as more species-specific data become available. The 134	

application of biophysical models in concert with microclimate models can thus be used to infer the thermal 135	

conditions to which members of the same ecological community are exposed with different degrees of detail. 136	

Realised thermal exposure can then be linked to physiological models. 137	

Capturing both physiological damage and repair to predict multi-species 138	

thermal sensitivity 139	

Translating how heat waves impact plants and animals not only depends on modelling temperature exposure 140	

but also the varying sensitivity of organisms to extreme heat [22,51]. Sensitivity to extreme heat can be 141	

captured by thermal load sensitivity (TLS) / thermal death time (TDT) models that explicitly account for 142	

how heat stress depends on both the body temperature experienced and its duration [13,22]. TLS models 143	

predict the relative accumulation of damage to cellular and sub-cellular systems that compromise 144	

physiological function. Without periods of recovery, where damage can be repaired, organisms accumulate 145	

damage over time, reducing growth and impacting survival and reproduction (Box 2). Typically, TLS models 146	

focus on endpoints that include survival (e.g., lethal temperatures, 𝐿𝑇!" or 𝐿𝑇#") or some measure of reduced 147	



fertility, but this need not be the case [13]. Endpoints are predicted by assuming the effect of time at a given 148	

temperature decreases survival and/or fertility exponentially, and have been shown to have high predictive 149	

power [10,11,22,51]. For example, Ørsted et al. [11] show that both mortality and fecundity follow a clear 150	

exponential relationship with time in the Spotted Wing Drosophila (Drosophila suzukii), with survival and 151	

fecundity being compromised most for long thermal exposures at high temperatures. Importantly, they also 152	

show that heat injury impacts accumulate faster for reproduction than survival [11]. TLS theory also applies 153	

well to photosynthetic function in plants [52,53], highlighting its generality. TLS models are crucial for 154	

predicting how heat waves affect organisms because accumulated damage to physiological systems can result 155	

in lagged responses to heat stress or exacerbate future stress (i.e., future heat waves / droughts) – a common 156	

feature of extreme heat events [13,54]. 157	

Environmental factors known to impact thermal sensitivity, such as water and drought stress [e.g., 55,56], 158	

along with nutritional and dietary changes [e.g., 57,58], can be incorporated into systems modelling 159	

approaches through their impacts on thermal sensitivity and tolerance [13] (Figure 1). Indeed, an exciting 160	

potential application of a systems-modelling approach is to explore how microclimatic conditions mediate 161	

changes to interactions between plant and animal microbial communities. Interactions between plants and 162	

microorganisms, such as plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi 163	

(AMF), and bacterial or fungal endophytes, are known to enhance growth, defense, and heat tolerance in 164	

plants [59,60], and gut microbiota can improve heat tolerance in animals [61]. Additionally, modelling the 165	

intricate balance between damage and repair for a suite of different species can help identify susceptible 166	

species, life stages and tissues that are most at risk from extreme heat events due to direct sensitivity to 167	

extreme heat, allowing more accurate predictions of the varying levels of species sensitivity within a 168	

community [13]. 169	



Box 1: Building a systems modelling approach to capture multi-species exposure to extreme heat 

Here we outline how a systems-modelling approach can be developed, illustrated with a simple 

hypothetical community (Figure IA). The focus is on how climate, microclimate, and biophysical models 

can predict the differential exposure to extreme heat events across species, how species can alter each 

other’s microclimates, and the incorporation of ‘behavioural’ responses of species in response to 

temperature (e.g., stomatal behaviour, thermoregulation). Predicted organismal temperatures are used 

from these models to then predict life-cycles for species, incorporate differences in thermal sensitivity, 

and ultimately estimate vital rates for population and community ecology models (Box 2). 

The context is a heatwave event in January 2018/19 at Renmark, South Australia (Calperum Station). The 

historical SILO climate dataset (0.05° resolution, 1889 to present) [62] was used as input to the 

micro_silo function in NicheMapR [20,63], in conjunction with microclima [26,27] in the R statistical 

language to compute microclimates. Microclimates are calculated at various heights above ground (20cm-

1.2m, relevant to our plants and insects) and soil depths (for burrowers) with varying levels of shade (we 

use 40% and 80%). Simulating these varied conditions captured the diversity of microclimates that 

different species in a community might experience and provided opportunities to build in behavioural 

plasticity. 

With available microclimates predicted, we can compute leaf and body temperatures using biophysical 

models. However, plant temperatures will impact the temperatures experienced by the grasshoppers 

because plant stomatal conductance changes in response to extreme heat events. Stomatal responses of 

leaves to their environment can be captured with the help of the plantecophys package [44] and used in 

conjunction with the ectotherm function in NicheMapR to compute realistic leaf temperatures as stomata 

open and close in response to temperature and vapor pressure deficit (Figure IB). The combination of 

microclimate, leaf traits (e.g., shape, leaf conductance, emissivity) and stomatal behaviour thereby 

produces realistic leaf temperature estimates during the heatwave event. 

Calculated leaf temperature can then become part of the microclimate of the insects (Figure IC). The 

ectotherm function of NicheMapR can be used to compute insect body temperature, given the 

microclimate (including plant leaf temperature) and insect traits. The insect temperature calculations 

incorporate their capacity to thermoregulate behaviourally. For example, Species B moves to cooler parts 

of the plant to minimize thermal stress, when possible (Figure IA), given a range of available 

microclimates and using information on their thermal preferences. All code to demonstrate this process is 

available at: https://daniel1noble.github.io/thermal_tol_interactions/. 



 

Figure I: Predicting and coupling microclimate and biophysical models of a plant and two grasshopper 

species that vary in their thermal tolerance and life history (A). Biophysical and thermoregulatory 

models use miroclimate data to predict leaf (B) and grasshopper (C) temperatures through time 

(coloured lines) incorporating changes in insect and stomatal behaviour. Created with BioRender.com. 
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Glossary 

Biophysical models: Biophysical models capture the balances of heat, water, and other aspects of energy 

and mass exchange between organisms and their microclimatic environment to predict how organisms 

function, survive, and behave in varying environments. 

Coexistence: Coexistence occurs when populations of two or more species are able to persist in each 

other’s presence indefinitely at steady state under constant abiotic conditions. 

Functional traits: Functional traits are the characteristics of organisms that influence their performance 

and fitness, such as body size, reproductive output, and metabolic rates. In the context of extreme heat, 

functional traits can be used to categorize species based on their responses to thermal stress. 

Modern Coexistence Theory: A theoretical framework derived from population ecology describing the 

conditions under which species can coexist mathematically. It has resulted in the development of 

population growth models using criteria based on niche and fitness differences, mutual invasibility and 

feasibility domains. 

Microclimate: Microclimates are the local conditions experienced by organisms, which can differ 

substantially from the broader atmospheric conditions. Microclimates are influenced by factors such as 

vegetation cover, soil properties, and topography, and can significantly affect the thermal and hydric 

environment experienced by organisms. 

Thermal load sensitivity (TLS) / thermal death time (TDT) models: Models that calculate thermal 

stress load from a time series of body temperatures to quantify lethal and sublethal impacts on tissues, 

organs and whole organisms. 

Vital rates: Demographic parameters that determine how populations change over time. They include 

measures of birth, death, growth, and reproduction. 

Physiological models that capture the effects of extreme heat across life 171	

Accumulated damage to an organism from experiencing extreme heat events will impact survival probability 172	

in the future and needs to be integrated with a full account of growth, development and reproduction through 173	

life to scale effects to populations and communities. Dynamic Energy Budget (DEB) models are 174	

physiologically-explicit life-cycle models of energy and mass uptake and conversion that predict key life-175	

history transitions, growth, reproduction and survival (senescence) through time [18,64]. DEB models 176	

consider organisms as a thermodynamic system (fully obeying energy-mass conservation) capturing the 177	



exchange of food, water, respiratory gases and metabolic waste throughout the life cycle [21]. DEB models 178	

can translate short-term (hours) variation in factors such as temperature, toxins (e.g., toxicants, [65]) and 179	

resource availability (nutrients) [66,67] into long-term (days, months, years) effects on development, growth, 180	

reproduction and survival [19,21]. DEB theory, when combined with biophysical models more generally, 181	

allows the full water budget to be computed to account for heat stress impacts of a hydric nature [21]. 182	

Perhaps most importantly, DEB theory calculates the life cycle trajectory of an organism and so can account 183	

for the effects of timing of heat wave impacts relative to life stage. Applied to multi-species assemblages, 184	

DEB models can capture how different species’ life cycles are affected by heat and interact with each other 185	

to predict how traits such as birth, age at maturity, reproductive events, energy flow and lifespan vary across 186	

species (Box 2). DEB models integrate many fundamental physiological processes and are parameter-sparse 187	

(one parameter per process). Moreover, the necessary parameters have already been estimated for > 7000 188	

species already (although there are taxonomic biases) [68,69]. New analytical approaches using phylogenetic 189	

imputation methods show promise for calculating energy budgets for species without data. Such methods 190	

have, for instance, already been used to predict DEB parameters for over 1.3 million animal species [see, 70]. 191	

In addition, software packages such as NicheMapR [25,63] allow for simulations of life-cycles using 192	

parameters for diverse species. DEB model outputs, such as body mass and size, reproductive success and 193	

timing, and survival, can be used to parameterize vital rates needed for population and community models, 194	

with additional options to incorporate eco-evolutionary feedbacks (see Box 3). 195	

Analogously, physiology-based vegetation models simulate plant growth over time as a function of carbon, 196	

water and nutrient uptake and use, following mass balance principles [71]. Model drivers typically include 197	

incident radiation, humidity, rainfall, and soil properties, as well as air temperature. The models capture the 198	

direct effects of temperature on key physiological processes, such as photosynthesis, respiration and 199	

phenology, as well as the indirect effects via feedbacks on vegetation water balance and soil nutrient 200	

availability. Short-term responses to temperature are captured well in these models through representations of 201	

enzyme kinetics, but representation of longer-term responses remains challenging because plants show high 202	

flexibility in their ability to acclimate to ambient temperatures [72]. Another area under active research is 203	

capturing plant damage and death from hot-dry weather extremes. Considerable progress has been made by 204	

representing the plant hydraulic system explicitly, enabling the risk of hydraulic failure to be predicted under 205	

conditions of low rainfall and high evaporative demand [73]. Direct damage to plant tissue from extreme heat 206	

has yet to be represented in such models, but the thermal death time framework outlined above offers a 207	

promising way forward. 208	



Mechanistic approaches that ‘speak’ to population and community ecology 209	

under extreme heat 210	

Modelling tools developed as part of Modern Coexistence Theory (MCT) [16] offer a promising suite of 211	

approaches for combining biophysical, physiological, and population ecology models to predict whole 212	

community responses to extreme heat events. Population growth models are core to predicting species 213	

coexistence within this framework. In their most recent applications, these simple pairwise population 214	

growth models have been used to underpin horizontal network models that allow one to examine how species 215	

in a community interact and create stable communities [15,74]. Other extensions of MCT tools have 216	

integrated environmental variation [24], traits [75] and cross-trophic dynamics [76,77] in predicting the 217	

outcomes of species interactions in community contexts. Fundamentally, this approach relies on simple two-218	

species individual-based population growth models [78,79], but key extensions involve the use of whole 219	

communities as one “species” [80,81] or the grouping of species to simplify interaction matrices while 220	

accounting for a small number of dominant species [77]. 221	

Population dynamic models that are used as part of MCT can calculate the individual fitness effect of 222	

interactions in relation to environments experienced by organisms [23,77,82]. As these models use the same 223	

fitness measures as DEB models, they offer a population modelling framework to add thermal biology to 224	

community diversity predictions. This is because population dynamical models can be combined, for 225	

example as networks [15] and compared between microsites with different biophysical properties and 226	

harbouring species with different thermal responses to their microenvironment. For example, Bimler et al 227	

[15] used this approach to determine which species were keystone species under shady and sunny portions of 228	

the same plant communities. 229	

Modified vital rate functions (which can incorporate any measure of fitness) can be used in population 230	

growth models to compare population dynamics for individuals in areas with different biophysical properties 231	

and/or thermal tolerances. Indeed, the predicted traits from DEB models could be used to directly 232	

parameterise growth rate models (Box 2) or to predict functional traits which, at a community scale, can be 233	

used to categorise species with different response and effect profiles. Horizontal interaction networks can 234	

then be used to determine how important microclimates with different biophysical properties are for species 235	

interactions (defined by their fitness responses to their thermal environment) within the context of whole 236	

communities. These networks can be made to target particular types of interaction effects or responses to 237	

extreme heat events, or used to compare how species interact in areas with different thermal landscapes. The 238	

main limitation of these methods is that they are data hungry, but even this can be handled by categorizing 239	



species by ‘traits’ or shared phylogenetic relationships, which are simplifications shown to be effective at 240	

reducing model complexity without sacrificing model accuracy [83]. 241	



Box 2: Scaling up extreme heat effects from impacts on individuals to populations and communities 

We use predicted organismal temperatures (Figure I in Box 1) to take stock of how thermal heat stress 

accumulation impacts survival probability and simulate life cycles for two interacting grasshopper species 

under their respective microclimates. 

To start, using existing parameters for a dynamic energy budget (DEB) model for grasshoppers [84], we 

can use the ectotherm function in NicheMapR to simulate life cycles for each of the two species. We 

assume that both species have similar DEB parameters but vary in their life-history, thermal physiology, 

size and reproduction. 

DEB models incorporate a simple Gompertz mortality function to capture senescence, but do not 

integrate the effects of thermal load accumulation in response to extreme heat events into survival 

functions. We assume reproduction is not impacted by heat for simplicity, but thermal load on 

reproduction can also be incorporated in a similar way [11]. By using thermal sensitivity parameters for 

mortality endpoints from TLS models (i.e. 𝑧, slope and 𝛼 = critical thermal limit), they can be used to 

predict the accumulation of damage through time during stressful temperatures (environmental 

temperatures 𝑇$ > critical temperatures 𝑇%) experienced under realistic conditions for each species by 

calculating heat injury (HI) accumulated between time point 𝑡& and 𝑡&'( across the insect’s life (using an 

𝐿𝑇!" threshold)(Equation 1) (‘red lines’ in Figure IIA) [10,11,13,51]. 

𝐻𝐼 = +
100 ⋅ (𝑡&'( − 𝑡&)

10)*
(
+⋅-./(1!;1!"#)'45

1$61%

&7(

  (1) 

After calculating HI accounting for repair [85], and converting to the probability of mortality through 

time, we can calculate the total probability of survival (i.e., from senescence, thermal stress, and activity-

based mortality) for each age/stage class. In combination with the DEB model outputs on total 

reproduction across life, we can build a simple age/stage-structured population matrix (day of life or 

developmental stage) (Figure IIB) to estimate population growth rate [𝑟-./ = ln(𝜆)] for each species 

under their respective microclimates. 𝑟-./ can then be included in a two-species, density dependent 

Ricker model (a model commonly used as the basis for coexistence modelling in the MCT framework) to 

predict their population growth under competition (Equation 2). 

 𝑁8'(& =	𝑁8& ∙ 𝑒𝑥𝑝	 ;𝑟-./,& <1 −	
𝑁8& +	∑ 𝛼&:𝑁8

:
:;&

𝐾&
@A (2) 



where 𝑁8& is the population size of species 𝑖 at time 𝑡, 𝑟-./! is the intrinsic growth rate of species 𝑖, 𝐾& is 

the carrying capacity of species 𝑖, and 𝛼&: is the competition coefficient that describes how much species 

𝑗 affects species 𝑖. Note that, because mechanistic physiological models are used, the population matrix 

can be updated each generation to reflect changes in vital rates (survival and reproduction) under different 

microclimates in the future. 

 

Figure II: A systems approach to using mechanistic physiological models to capture life-cycle vital 

rates and thermal load stress on survival to scale up to multi-species population dynamics. A) Green 

(species A) and brown lines (Species B) represent realized body temperatures for each grasshopper 

species. Red lines capture the accumulation of heat damage from TLS models with red rectangles 

showing a heatwave event. B) Changes to survival probability and fecundity can be captured by an 

age/stage structured model that can then be used to estimate parameters (e.g, 𝑟-./! and 𝜆) for 

prediction population dynamics through time (C). Created with BioRender.com. 
	



‘Hot’ solutions for a changing world 242	

Extreme heat will have dramatic and widespread effects on biological and socioecological systems that 243	

humans rely upon. For example, under current global climate change scenarios, each degree Celsius increase 244	

in global mean temperature is estimated to reduce the global yield of wheat by 6.0% and soybean by 3.1% 245	

[86], exacerbating food shortages. 246	

A systems-modelling approach can help us develop suitable interventions, predict the varied consequences of 247	

such interventions, and allow for adjustments that can improve decision making for mitigating the impacts of 248	

extreme heat in real world situations. As a simple example (Figure 2A), a systems modelling approach can 249	

allow for informed predictions about how to mitigate heat stress to crops while also considering the potential 250	

for pest outbreaks. In essence, we want to add a minimal amount of water to a system to cool leaves while 251	

avoiding depleting limited water supplies and/or creating better microclimate conditions for pests. Making 252	

use of real weather data to predict microclimates and organism temperatures, we can assess how adding 2, 5, 253	

10, or 20 mm d-1 of water to a system affects leaf temperatures and the life-cycle for a grasshopper species 254	

that is a known pest (Figure 2). We can see that adding 2-5 mm d-1 of water can decrease leaf temperature by 255	

up to 3.87°C (Figure 2B), but adding more water does not result in significant gains in cooling. In addition, 256	

2-5 mm of water added each day results in the grasshopper population being suppressed over time, whereas 257	

not adding water at all results in grasshopper population growth, leading to potential heatwave-associated 258	

outbreaks. Here, the optimal solution is adding 2-5 mm d-1 of water to both cool plants and protect them from 259	

pests. Identifying and/or modifying the thermal suitability of landscapes, such as in our simple example, may 260	

dramatically benefit plants and animals under extreme heat and is a promising feature of a systems-thinking 261	

approach [21]. Additionally, as our understanding of the mechanisms associated with heat tolerance improve, 262	

genetic tools, environmental manipulations (e.g., promoting beneficial microbes) and targeted plant breeding 263	

can be used to enhance thermal tolerance, creating more resilience to extreme heat events [e.g., 60]. 264	

Systems modelling can also help understand how people’s responses to the impacts of extreme heat could 265	

lead to accelerating changes in plants, animals and landscapes. Farmers or ecosystem managers may 266	

introduce new species, alter management practices or farm remaining unaffected areas more intensively. 267	

Thermal stress may ultimately result in people leaving areas, potentially making remaining communities 268	

more vulnerable through loss of resources and services [87]. Thermal risks to ecosystems may also 269	

precipitate declines in individual wellbeing, and these consequences may accrue differently across regions 270	

and peoples [88]. 271	



 

Figure 2 - How a systems modelling approach to extreme heat can be used to inform solutions. Heat 

stress to crops can result in foliage loss and crop failure, but also weaken crops to pests. Using a 

hypothetical case study of a crop and associated pest, we explore how different watering regimes affect 

plant temperatures and the flow on effects such regimes have for pest dynamics (A). Using a site near 

Renmark, South Australia, we use microclimate and biophysical models to estimate leaf temperatures 

(detailed in Boxes 1 & 2). We see that, compared to original rainfall conditions, certain watering regimes 

can significantly reduce leaf temperatures by nearly 4°C, providing protection to leaves (B). Modelling 

how these changed microclimate conditions translate to grasshopper body temperatures, we can then 

estimate changes to grasshopper life cycles and use the vital rates to predict population dynamics, showing, 

in this case, that even small amounts of water can indirectly suppress pest growth through lower body 

temperatures (C). Created with BioRender.com. 

 



Box 3: An important frontier: integrating eco-evolutionary feedback within a systems-modelling 

framework 

Extreme climactic events, such as heatwaves and droughts, can result in intense episodes of selection 

which can lead to rapid evolution of heritable traits [89]. Given the intensity of selection associated with 

extreme climatic events, these events have the potential to radically alter the phenotypic and genetic 

variability available to selection [90], potentially impacting population resilience to future events. 

Predicting evolutionary responses from extreme heat events is challenging because of their rarity and 

stochasticity which makes quantifying the strength of selection difficult as it often can only be 

opportunistically measured [89]. 

Predicting evolutionary responses also relies on our ability to predict heatwaves and how organisms 

experience them in the future – a task that is becoming more feasible with new climate models [e.g., 

91,92]. Evolutionary consequences of extreme heat events will depend on the characteristics of these 

events (e.g., frequency, timing, exposure intensity and duration), the traits under selection and their levels 

of genetic (co)variation, as well as the demographic and ecological context in which the event occurs 

[93–95]. Considering various forms of plastic responses (e.g., behavioural, developmental, and 

physiological plasticity) as environments change through time is also crucial because plasticity can 

weaken selection and shelter genetic variation while also promoting persistence [96,97]. Many of these 

processes can now be incorporated into a systems modelling framework (e.g, behavioural plasticity), to 

capture environment-phenotype feedbacks. 

A more complete systems modelling approach that captures eco-evolutionary dynamics needs to treat 

‘traits’ more broadly than is typically done in evolutionary ecology (e.g., body mass). For example, 

‘traits’ can include the parameters within models that establish functional traits within a population (e.g., 

DEB parameters)[98,99], which may provide predictions for suites of resulting traits that emerge from 

such parameters. Furthermore, it is important to consider the evolution of suites of traits as can be done 

using the multivariate breeders equation [100]: 

𝛥𝐳‾ = 𝐆 ⋅ 𝛃  (3) 

where 𝛥𝐳‾ is the vector of changes in the mean trait values, 𝐆 is the genetic covariance matrix and 𝛃 is the 

vector of standardised selection gradients that regress each trait on relative fitness (i.e., 𝛚 = 𝛂 + 𝛃𝐓 ⋅ 𝐳 +

𝐞; [101]). Plasticity can be captured by mapping trait development to the environment and incorporating 

environmental variability into the breeders equation [see also, 102]. While the multivariate breeders 

equation can be useful for predicting short-term evolutionary responses (i.e., one or a few generations) it 



likely has limited predictive power over longer timespans because of changes in heritability and selection 

through time, which is a future challenge [95,101]. 

Concluding Remarks 272	

Implementing a systems-modelling approach will no doubt be challenging, particularly for complex 273	

communities, and knowledge gaps remain (see Outstanding Questions). But, more than ever, we need 274	

mechanistic approaches that can capture key biological processes (physiology, behaviour, phenology, species 275	

interactions and eco-evolutionary dynamics - Box 3) to better predict biological responses to extreme heat 276	

[54,103]. Coupled mechanistic models within and across species are expected to have improved predictive 277	

power when projected to new environmental conditions and will better capture interacting processes 278	

[21,103]. Nonetheless, application of a systems modelling approach will require a solid foundation of species 279	

natural history, diverse modelling expertise, and a concerted effort to collect and collate trait and 280	

environmental data for model building and validation. 281	

There are exciting new tools and data that are helping to overcome these challenges [26], and careful 282	

consideration of the key processes important to a system can help alleviate these challenges [21]. For 283	

example, large databases of physiological traits for both plants and animals now exist [e.g., 104,105] and 284	

advanced missing data approaches can help estimate likely parameters for data deficient species [70,74,106]. 285	

Ever more sophisticated and powerful computational pipelines (e.g. NicheMapR, TrenchR, mcera5, terra in 286	

R) make it easier to implement and connect models. Model selection and validation are important steps in 287	

any modelling process and will be more complicated when applied to entire systems; however, starting with a 288	

simple model, validating predictions with empirical data, and then adding complexity as needed can make 289	

building systems models more tractable [21]. Even simple models that compare counterfactual scenarios may 290	

provide important quantitative insights into the impacts of extreme heat on organisms, populations and 291	

communities [107–109]. Such insights can form the basis for prediction-driven solutions to mitigate the 292	

impacts of extreme heat on biodiversity. By working collaboratively we can develop a more quantitative and 293	

predictive understanding of the impacts that extreme heat will have on organisms, populations, and 294	

communities, and decide how to mitigate these impacts to preserve diverse systems now and into the future. 295	
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