

A systems-modelling approach to predict biological responses to extreme heat

Daniel W.A. Noble¹ ‡, Margaret Mayfield² †, Ary Hoffmann² †, Zhong-Hua Chen^{3,4} †, Steven J. Lade^{5,6} †, Xuemei Bai⁵ †, Danielle Way⁷ †, Belinda Medlyn³ †, Owen K. Atkin^{7,8} †, Adrienne Nicotra^{1,7} †, James M. Cook³, Brajesh Singh³, Alison Bentley⁷, Ian Wright³, Michael R. Kearney² ‡

Affiliations:

¹ Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia

² School of BioSciences, The University of Melbourne, Australia

³ Hawkesbury Institute for the Environment, Western Sydney University, Australia

⁴ School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia

⁵ Fenner School of Environment and Society, The Australian National University, Canberra ACT 2602, Australia

⁶ Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

⁷ Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra ACT 2602, Australia

⁸ Agrifood Innovation Institute, Australian National University, Canberra, ACT 2601, Australia

‡ Correspondence: daniel.noble@anu.edu.au & m.kearney@unimelb.edu.au

† These authors contributed equally to this work.

Keywords: plant-animal interactions, microclimate, biophysical models, thermal load sensitivity, dynamic energy budget models, coexistence theory, ecological modelling, population dynamic models

26 Abstract

27 Anthropogenic climate change is leading to more frequent and extreme heat waves. These large-scale events
28 are radically re-shaping interactions among organisms – impacting biodiversity, community composition and
29 ecosystem services crucial to natural systems and food security. Predicting heat wave impacts on interacting
30 species requires an understanding of the processes driving differential exposure and sensitivity of organisms
31 to extreme heat events in a life-cycle context. To achieve this predictive capacity, we need to integrate
32 models across scales while capturing species-specific responses at the individual level. We review and
33 demonstrate how existing models in disparate fields can be linked to achieve an increased understanding of
34 how individuals and communities will respond to extreme heat, now and into the future.

35 A systems-modelling approach to understand the biotic impacts of heatwaves

36 Climate change is leading to warmer and more variable thermal environments globally [1,2]. Greater thermal
37 variability is resulting in organisms experiencing extreme heat waves that lead to thermal stress impacting
38 organismal growth, survival and reproduction, with cascading effects on population dynamics, species
39 interactions, community composition and ecosystem structure and function [3,4]. Climate variability has
40 already been linked to dramatic global declines in pollinator abundance [5] and crop yields [6–8], but the
41 causes underlying such declines, and their ramifications through communities and society, are not fully
42 understood. The impacts of extreme heat on species and communities are driven by a combination of direct
43 effects of heat stress on the physiology and fitness of organisms within a given species [9–11] and indirect
44 effects on interactions (both positive and negative) among species [e.g., 12]. Understanding the dynamic
45 interplay between direct and indirect effects of extreme heat, and how these are mediated by environmental
46 factors (e.g., water and food availability, microbial community), has been hampered by inadequate coupling
47 of models that predict short-term physiological damage on a given species' fitness with population and
48 community dynamic models across species [11,13,14]. A systems-thinking approach is now needed to tackle
49 the multifaceted nature with which extreme heat manifests within a community. This approach will require
50 interdisciplinary collaboration to integrate biophysical, physiological, population and community ecology
51 processes so that we can capture and model the dynamic feedbacks, nonlinearities and interactions between
52 species that drive responses across scales [15,16].

53 Using plants and insects as examples, we review broad classes of models across subfields of ecology and
54 evolution and discuss how they can be linked to effectively model the biotic impacts of heatwaves from
55 individuals to communities (Figure 1). We focus on plant and insect communities given the strong
56 interconnections between them, the ease with which they can and have been studied, and their importance to

57 socioecological systems [17]. Physiological models can now be seamlessly integrated with biophysical
 58 models to characterize temperatures experienced by organisms and simulate the effects of extreme heat
 59 events on the entire life cycle of species within ecological communities [18–21] (Figure 1). Physiological
 60 models that incorporate estimates of thermal sensitivity across species can capture the delicate balance
 61 between damage and repair of physiological systems [10,11,13,22], yielding predictions of the immediate
 62 and cumulative impacts of extreme heat on growth, survival and reproduction. Importantly, mechanistic
 63 physiological models provide outputs at the individual level (e.g., energy and water requirements, waste
 64 production, activity constraints, vital rates) that can be integrated into population and community ecology
 65 models to capture how extreme heat events perturb interactions among species and across whole, complex
 66 communities [23,24]. We demonstrate how such a coupling can be made within and across species and
 67 highlight the opportunities it presents to develop a greater understanding of the ways in which extreme heat
 68 stress manifests across species. We discuss the challenges of coupling models across diverse species in
 69 communities, and of capturing the eco-evolutionary feedbacks that will be necessary for accurate predictions
 70 in the future.

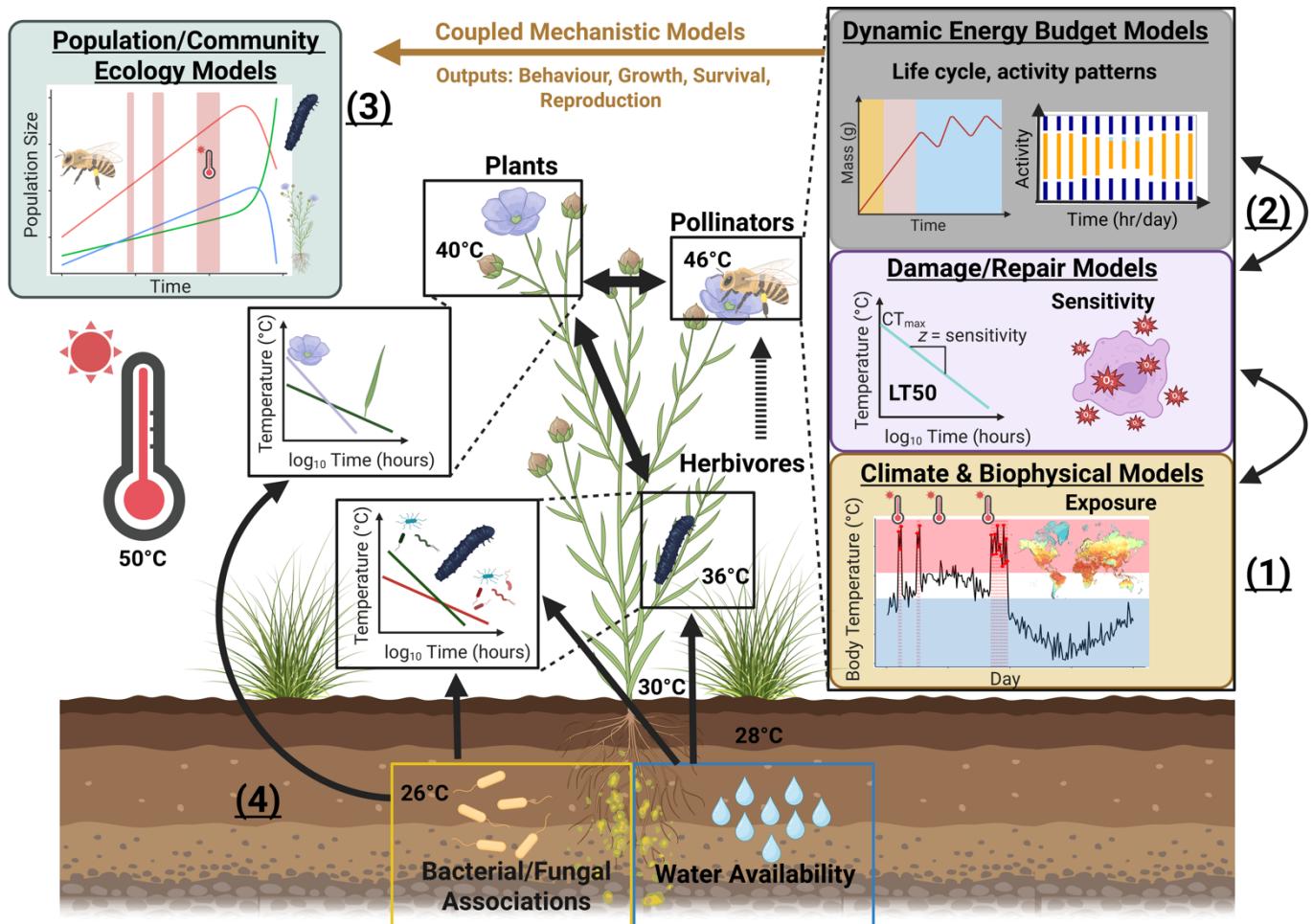


Figure 1- A coupled systems modelling framework for predicting the effects of extreme heat on ecological communities. A systems modelling approach first integrates (1) climate/biophysical models to predict the different microclimates species experience. (2) Microclimates experienced by organisms then provide inputs for physiological models that integrate temperature exposure with explicit physiological processes that simulate development, behaviour, survival (e.g., 50% survival thresholds, LT50) and reproduction in response to microclimate dynamics across life history stages. Physiological models can be built around the unique life cycles of the diverse species in communities, capturing lagged responses to extreme heat, phenological mismatches and mechanistically informed responses to extreme heat for species of the system in question. Outputs (behaviour, growth rate, biomass accumulation, survival and reproduction) from physiological models of individual organisms can then be integrated into (3) population and community ecology models (such as those developed with in the Modern Coexistence Theory Framework – see text) to predict population growth and community composition under a specific type of change (either to the environment or suite of interacting species). Environment-mediated feedback loops (4) influence organism thermal exposure and sensitivity, including water availability and microbial communities, which can vary across different life stages and organs depending on the microclimates occupied. Coupling existing models will allow for quantitative predictions to be made on how extreme heatwaves perturb biological systems and for the development and implementation of strategies to enhance biological system resilience to extreme heat. Created with BioRender.com.

71 **From weather to microclimates: predicting community wide exposure to 72 extreme heat**

73 Extreme weather events such as heatwaves are measured by climate re-analysis or predicted by Global
74 Circulation Models (GCMs), typically at large spatial scales (e.g. 0.5°grid cells), and can be regionalized by
75 downscaling to smaller spatial scales. However, species within communities experience heatwaves
76 differently because of the varied microhabitats they occupy. For example, while air temperature may be
77 50°C, an organism a metre below the soil surface may be exposed to temperatures ~20°C cooler (Figure 1).
78 Therefore, to understand how extreme heat affects a community of organisms, we must characterize the
79 **microclimates** (see **Glossary**) experienced by individuals of different species under a given atmospheric
80 event. Microclimate predictions are made by taking the atmospheric conditions as independent forcing
81 variables and combining them with detailed information on terrain (slope, aspect, hill shade), vegetation
82 [plant-area index (PAI), stomatal behaviour, leaf reflectance] and soil hydrothermal properties to predict how
83 radiation, wind speed, air temperature, humidity, soil temperature and soil moisture vary on small spatial

84 scales [25–32]. Capturing the interaction between soil moisture and temperature in microclimate models is
85 critical because the same atmospheric heat wave can have different implications for microclimatic conditions
86 depending on the recent history of rainfall and temperature [33]. Downscaling to microclimate conditions
87 requires the specification of key environmental properties (e.g. % shade, soil characteristics, surface albedo)
88 at a fine scale (metres) for the local area of interest. Depending on the organism and question of interest, not
89 all input variables are needed to parameterize a given microclimate calculation, as recent guides to
90 microclimate modelling illustrate [e.g., 34,35,36].

91 Beyond parameterization, the benefit of a systems-thinking approach in the context of microclimate
92 modelling is its ability to capture vegetation and soil dynamics which can dramatically shape microclimate
93 conditions within and between species dynamically across time. While the large-scale feedbacks from plant
94 and soil dynamics to heatwave development are captured in GCMs [e.g. 37], these dynamics are also
95 important in determining thermal regimes at micro-scales. For example, plant water use dynamics can
96 amplify or reduce within-canopy temperatures via effects on photosynthetic capacity, stomatal decoupling,
97 cuticular conductance, leaf damage and plant mortality [20,38]. These impacts are important for the plants
98 themselves and for thermal regimes available to other organisms. Forecasting future thermal regimes is
99 challenging because it involves forecasting future vegetation dynamics, including changes in key vegetation
100 properties such as leaf area index, as a function of plant growth, phenology, plant population dynamics and
101 shifts in community composition. Despite the complexity and non-linearity of these interactions across the
102 soil-plant-atmosphere continuum, there is existing capacity, and growing potential, to model them and
103 determine individual-specific exposure to extreme heat. For example, a wide range of vegetation models is
104 available for this purpose, from crop growth models that simulate growth and yield of crops over a season
105 (e.g. Agricultural Production Systems sIMulator (APSIM); [39]) up to the dynamic global vegetation models
106 (DGVMs) that simulate vegetation function and distribution at local to global scales [40].

107 **Translating exposure to organism temperature: biophysics to the rescue!**

108 Once microclimates are quantified, it is crucial to estimate the heat and water budgets of organisms to
109 determine how microclimate variability within a system translates to realized organismal temperatures and
110 hydration states. Heat and water budgets can be computed using a combination of species functional traits
111 (e.g., body mass, metabolic rate, surface area, solar absorptivity) along with how heat energy and water are
112 exchanged with the environment – dependent on the microclimate experienced. Such **biophysical models**
113 have a long history [41,42] but have become more widely applied in ecology in the past 20 years, facilitated
114 by developments in environmental datasets, microclimate modelling, and the emergence of high-level
115 programming languages such as R [21]. Biophysical models of ectothermic animals make use of equations

116 for energy and mass exchange between an organism and its environment and can account for complex
117 radiative heat transfer and the role of evaporative water loss across surfaces [21,25,43]. Equivalent models of
118 leaves incorporate the dynamic role of stomata [20, 44] (**Box 1**). Biophysical models are powerful because,
119 by translating microclimate conditions to organism body temperature and hydric states, simple regulatory
120 decision-making models can be used [45,46]. For example, given an understanding of an organism's thermal
121 activity windows, thermal optima, and critical thermal limits we can determine what microclimates the
122 organism should chose to get close to its target body temperature [e.g., 45,46]. Such behavioural
123 thermoregulatory decision making is crucial for mitigating the negative impacts of extreme heat.
124 Incorporating it into models can inherently capture the trade-offs such a strategy entails through reduced
125 foraging time [21,45]. Similarly, changes in stomatal behaviour can mitigate or exacerbate the extreme
126 temperatures leaf tissue experiences while simultaneously shaping the microclimate conditions for other
127 organisms [20,47] (**Box 1**). Future developments in biophysical modelling of organismal temperature under
128 extreme heat will involve understanding the nuances of plastic physiological and behavioral responses. For
129 example, lizards may pant when exposed to high temperatures [48], birds may 'wind surf' or seek thermal
130 micro-refugia [49], and stomata can enact emergency cooling, departing from the typical responses to vapor
131 pressure and light intensity [38], though this response may depend on prior soil moisture conditions [50].
132 Although biophysical models require many traits for parameterization, the models and parameters can be
133 tailored to the question and organism of interest [21]. In addition, many traits can be approximated based on
134 traits of similar species, and then validated and updated as more species-specific data become available. The
135 application of biophysical models in concert with microclimate models can thus be used to infer the thermal
136 conditions to which members of the same ecological community are exposed with different degrees of detail.
137 Realised thermal exposure can then be linked to physiological models.

138 **Capturing both physiological damage and repair to predict multi-species 139 thermal sensitivity**

140 Translating how heat waves impact plants and animals not only depends on modelling temperature *exposure*
141 but also the varying *sensitivity* of organisms to extreme heat [22,51]. Sensitivity to extreme heat can be
142 captured by **thermal load sensitivity (TLS) / thermal death time (TDT)** models that explicitly account for
143 how heat stress depends on both the body temperature experienced and its duration [13,22]. TLS models
144 predict the relative accumulation of damage to cellular and sub-cellular systems that compromise
145 physiological function. Without periods of recovery, where damage can be repaired, organisms accumulate
146 damage over time, reducing growth and impacting survival and reproduction (**Box 2**). Typically, TLS models
147 focus on endpoints that include survival (e.g., lethal temperatures, LT_{50} or LT_{80}) or some measure of reduced

148 fertility, but this need not be the case [13]. Endpoints are predicted by assuming the effect of time at a given
149 temperature decreases survival and/or fertility exponentially, and have been shown to have high predictive
150 power [10,11,22,51]. For example, Ørsted *et al.* [11] show that both mortality and fecundity follow a clear
151 exponential relationship with time in the Spotted Wing Drosophila (*Drosophila suzukii*), with survival and
152 fecundity being compromised most for long thermal exposures at high temperatures. Importantly, they also
153 show that heat injury impacts accumulate faster for reproduction than survival [11]. TLS theory also applies
154 well to photosynthetic function in plants [52,53], highlighting its generality. TLS models are crucial for
155 predicting how heat waves affect organisms because accumulated damage to physiological systems can result
156 in lagged responses to heat stress or exacerbate future stress (i.e., future heat waves / droughts) – a common
157 feature of extreme heat events [13,54].

158 Environmental factors known to impact thermal sensitivity, such as water and drought stress [e.g., 55,56],
159 along with nutritional and dietary changes [e.g., 57,58], can be incorporated into systems modelling
160 approaches through their impacts on thermal sensitivity and tolerance [13] (Figure 1). Indeed, an exciting
161 potential application of a systems-modelling approach is to explore how microclimatic conditions mediate
162 changes to interactions between plant and animal microbial communities. Interactions between plants and
163 microorganisms, such as plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi
164 (AMF), and bacterial or fungal endophytes, are known to enhance growth, defense, and heat tolerance in
165 plants [59,60], and gut microbiota can improve heat tolerance in animals [61]. Additionally, modelling the
166 intricate balance between damage and repair for a suite of different species can help identify susceptible
167 species, life stages and tissues that are most at risk from extreme heat events due to direct sensitivity to
168 extreme heat, allowing more accurate predictions of the varying levels of species sensitivity within a
169 community [13].

Box 1: Building a systems modelling approach to capture multi-species exposure to extreme heat

Here we outline how a systems-modelling approach can be developed, illustrated with a simple hypothetical community (Figure IA). The focus is on how climate, microclimate, and biophysical models can predict the differential exposure to extreme heat events across species, how species can alter each other's microclimates, and the incorporation of 'behavioural' responses of species in response to temperature (e.g., stomatal behaviour, thermoregulation). Predicted organismal temperatures are used from these models to then predict life-cycles for species, incorporate differences in thermal sensitivity, and ultimately estimate vital rates for population and community ecology models (Box 2).

The context is a heatwave event in January 2018/19 at Renmark, South Australia (Calperum Station). The historical SILO climate dataset (0.05° resolution, 1889 to present) [62] was used as input to the `micro_silo` function in *NicheMapR* [20,63], in conjunction with *microclima* [26,27] in the R statistical language to compute microclimates. Microclimates are calculated at various heights above ground (20cm-1.2m, relevant to our plants and insects) and soil depths (for burrowers) with varying levels of shade (we use 40% and 80%). Simulating these varied conditions captured the diversity of microclimates that different species in a community might experience and provided opportunities to build in behavioural plasticity.

With available microclimates predicted, we can compute leaf and body temperatures using biophysical models. However, plant temperatures will impact the temperatures experienced by the grasshoppers because plant stomatal conductance changes in response to extreme heat events. Stomatal responses of leaves to their environment can be captured with the help of the *plantecophys* package [44] and used in conjunction with the `ectotherm` function in *NicheMapR* to compute realistic leaf temperatures as stomata open and close in response to temperature and vapor pressure deficit (Figure IB). The combination of microclimate, leaf traits (e.g., shape, leaf conductance, emissivity) and stomatal behaviour thereby produces realistic leaf temperature estimates during the heatwave event.

Calculated leaf temperature can then become part of the microclimate of the insects (Figure IC). The `ectotherm` function of *NicheMapR* can be used to compute insect body temperature, given the microclimate (including plant leaf temperature) and insect traits. The insect temperature calculations incorporate their capacity to thermoregulate behaviourally. For example, Species B moves to cooler parts of the plant to minimize thermal stress, when possible (Figure IA), given a range of available microclimates and using information on their thermal preferences. All code to demonstrate this process is available at: https://daniel1noble.github.io/thermal_tol_interactions/.

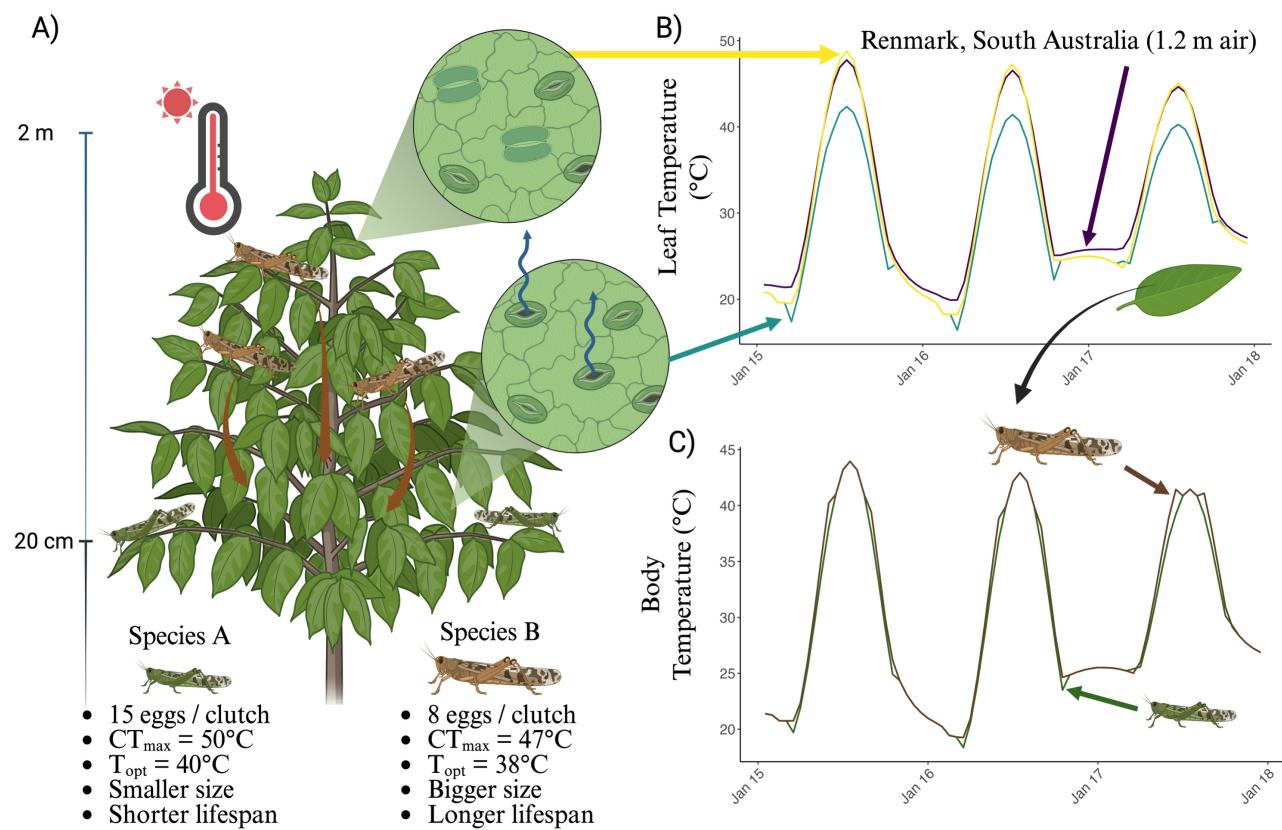


Figure I: Predicting and coupling microclimate and biophysical models of a plant and two grasshopper species that vary in their thermal tolerance and life history (A). Biophysical and thermoregulatory models use microclimate data to predict leaf (B) and grasshopper (C) temperatures through time (coloured lines) incorporating changes in insect and stomatal behaviour. Created with BioRender.com.

Glossary

Biophysical models: Biophysical models capture the balances of heat, water, and other aspects of energy and mass exchange between organisms and their microclimatic environment to predict how organisms function, survive, and behave in varying environments.

Coexistence: Coexistence occurs when populations of two or more species are able to persist in each other's presence indefinitely at steady state under constant abiotic conditions.

Functional traits: Functional traits are the characteristics of organisms that influence their performance and fitness, such as body size, reproductive output, and metabolic rates. In the context of extreme heat, functional traits can be used to categorize species based on their responses to thermal stress.

Modern Coexistence Theory: A theoretical framework derived from population ecology describing the conditions under which species can coexist mathematically. It has resulted in the development of population growth models using criteria based on niche and fitness differences, mutual invasibility and feasibility domains.

Microclimate: Microclimates are the local conditions experienced by organisms, which can differ substantially from the broader atmospheric conditions. Microclimates are influenced by factors such as vegetation cover, soil properties, and topography, and can significantly affect the thermal and hydric environment experienced by organisms.

Thermal load sensitivity (TLS) / thermal death time (TDT) models: Models that calculate thermal stress load from a time series of body temperatures to quantify lethal and sublethal impacts on tissues, organs and whole organisms.

Vital rates: Demographic parameters that determine how populations change over time. They include measures of birth, death, growth, and reproduction.

171 **Physiological models that capture the effects of extreme heat across life**

172 Accumulated damage to an organism from experiencing extreme heat events will impact survival probability
173 in the future and needs to be integrated with a full account of growth, development and reproduction through
174 life to scale effects to populations and communities. Dynamic Energy Budget (DEB) models are
175 physiologically-explicit life-cycle models of energy and mass uptake and conversion that predict key life-
176 history transitions, growth, reproduction and survival (senescence) through time [18,64]. DEB models
177 consider organisms as a thermodynamic system (fully obeying energy-mass conservation) capturing the

178 exchange of food, water, respiratory gases and metabolic waste throughout the life cycle [21]. DEB models
179 can translate short-term (hours) variation in factors such as temperature, toxins (e.g., toxicants, [65]) and
180 resource availability (nutrients) [66,67] into long-term (days, months, years) effects on development, growth,
181 reproduction and survival [19,21]. DEB theory, when combined with biophysical models more generally,
182 allows the full water budget to be computed to account for heat stress impacts of a hydric nature [21].

183 Perhaps most importantly, DEB theory calculates the life cycle trajectory of an organism and so can account
184 for the effects of timing of heat wave impacts relative to life stage. Applied to multi-species assemblages,
185 DEB models can capture how different species' life cycles are affected by heat and interact with each other
186 to predict how traits such as birth, age at maturity, reproductive events, energy flow and lifespan vary across
187 species (**Box 2**). DEB models integrate many fundamental physiological processes and are parameter-sparse
188 (one parameter per process). Moreover, the necessary parameters have already been estimated for > 7000
189 species already (although there are taxonomic biases) [68,69]. New analytical approaches using phylogenetic
190 imputation methods show promise for calculating energy budgets for species without data. Such methods
191 have, for instance, already been used to predict DEB parameters for over 1.3 million animal species [see, 70].
192 In addition, software packages such as *NicheMapR* [25,63] allow for simulations of life-cycles using
193 parameters for diverse species. DEB model outputs, such as body mass and size, reproductive success and
194 timing, and survival, can be used to parameterize vital rates needed for population and community models,
195 with additional options to incorporate eco-evolutionary feedbacks (see **Box 3**).

196 Analogously, physiology-based vegetation models simulate plant growth over time as a function of carbon,
197 water and nutrient uptake and use, following mass balance principles [71]. Model drivers typically include
198 incident radiation, humidity, rainfall, and soil properties, as well as air temperature. The models capture the
199 direct effects of temperature on key physiological processes, such as photosynthesis, respiration and
200 phenology, as well as the indirect effects via feedbacks on vegetation water balance and soil nutrient
201 availability. Short-term responses to temperature are captured well in these models through representations of
202 enzyme kinetics, but representation of longer-term responses remains challenging because plants show high
203 flexibility in their ability to acclimate to ambient temperatures [72]. Another area under active research is
204 capturing plant damage and death from hot-dry weather extremes. Considerable progress has been made by
205 representing the plant hydraulic system explicitly, enabling the risk of hydraulic failure to be predicted under
206 conditions of low rainfall and high evaporative demand [73]. Direct damage to plant tissue from extreme heat
207 has yet to be represented in such models, but the thermal death time framework outlined above offers a
208 promising way forward.

209 **Mechanistic approaches that ‘speak’ to population and community ecology**
210 **under extreme heat**

211 Modelling tools developed as part of **Modern Coexistence Theory** (MCT) [16] offer a promising suite of
212 approaches for combining biophysical, physiological, and population ecology models to predict whole
213 community responses to extreme heat events. Population growth models are core to predicting species
214 **coexistence** within this framework. In their most recent applications, these simple pairwise population
215 growth models have been used to underpin horizontal network models that allow one to examine how species
216 in a community interact and create stable communities [15,74]. Other extensions of MCT tools have
217 integrated environmental variation [24], traits [75] and cross-trophic dynamics [76,77] in predicting the
218 outcomes of species interactions in community contexts. Fundamentally, this approach relies on simple two-
219 species individual-based population growth models [78,79], but key extensions involve the use of whole
220 communities as one “species” [80,81] or the grouping of species to simplify interaction matrices while
221 accounting for a small number of dominant species [77].

222 Population dynamic models that are used as part of MCT can calculate the individual fitness effect of
223 interactions in relation to environments experienced by organisms [23,77,82]. As these models use the same
224 fitness measures as DEB models, they offer a population modelling framework to add thermal biology to
225 community diversity predictions. This is because population dynamical models can be combined, for
226 example as networks [15] and compared between microsites with different biophysical properties and
227 harbouring species with different thermal responses to their microenvironment. For example, Bimler *et al*
228 [15] used this approach to determine which species were keystone species under shady and sunny portions of
229 the same plant communities.

230 Modified **vital rate** functions (which can incorporate any measure of fitness) can be used in population
231 growth models to compare population dynamics for individuals in areas with different biophysical properties
232 and/or thermal tolerances. Indeed, the predicted traits from DEB models could be used to directly
233 parameterise growth rate models (**Box 2**) or to predict **functional traits** which, at a community scale, can be
234 used to categorise species with different response and effect profiles. Horizontal interaction networks can
235 then be used to determine how important microclimates with different biophysical properties are for species
236 interactions (defined by their fitness responses to their thermal environment) within the context of whole
237 communities. These networks can be made to target particular types of interaction effects or responses to
238 extreme heat events, or used to compare how species interact in areas with different thermal landscapes. The
239 main limitation of these methods is that they are data hungry, but even this can be handled by categorizing

240 species by ‘traits’ or shared phylogenetic relationships, which are simplifications shown to be effective at
241 reducing model complexity without sacrificing model accuracy [83].

Box 2: Scaling up extreme heat effects from impacts on individuals to populations and communities

We use predicted organismal temperatures (Figure I in Box 1) to take stock of how thermal heat stress accumulation impacts survival probability and simulate life cycles for two interacting grasshopper species under their respective microclimates.

To start, using existing parameters for a dynamic energy budget (DEB) model for grasshoppers [84], we can use the `ectotherm` function in *NicheMapR* to simulate life cycles for each of the two species. We assume that both species have similar DEB parameters but vary in their life-history, thermal physiology, size and reproduction.

DEB models incorporate a simple Gompertz mortality function to capture senescence, but do not integrate the effects of thermal load accumulation in response to extreme heat events into survival functions. We assume reproduction is not impacted by heat for simplicity, but thermal load on reproduction can also be incorporated in a similar way [11]. By using thermal sensitivity parameters for mortality endpoints from TLS models (i.e. z , slope and α = critical thermal limit), they can be used to predict the accumulation of damage through time during stressful temperatures (environmental temperatures $T_e >$ critical temperatures T_c) experienced under realistic conditions for each species by calculating heat injury (HI) accumulated between time point t_i and t_{i+1} across the insect's life (using an LT_{50} threshold)(Equation 1) ('red lines' in Figure IIA) [10,11,13,51].

$$HI = \sum_{i=1}^{T_e > T_c} \frac{100 \cdot (t_{i+1} - t_i)}{10^{(-\frac{1}{z} \max(T_i, T_{i+1}) + \alpha)}} \quad (1)$$

After calculating HI accounting for repair [85], and converting to the probability of mortality through time, we can calculate the total probability of survival (i.e., from senescence, thermal stress, and activity-based mortality) for each age/stage class. In combination with the DEB model outputs on total reproduction across life, we can build a simple age/stage-structured population matrix (day of life or developmental stage) (Figure IIB) to estimate population growth rate [$r_{max} = \ln(\lambda)$] for each species under their respective microclimates. r_{max} can then be included in a two-species, density dependent Ricker model (a model commonly used as the basis for coexistence modelling in the MCT framework) to predict their population growth under competition (Equation 2).

$$N_{t+1}^i = N_t^i \cdot \exp \left[r_{max,i} \left(1 - \frac{N_t^i + \sum_{j \neq i} \alpha_{ij} N_t^j}{K_i} \right) \right] \quad (2)$$

where N_t^i is the population size of species i at time t , r_{max_i} is the intrinsic growth rate of species i , K_i is the carrying capacity of species i , and α_{ij} is the competition coefficient that describes how much species j affects species i . Note that, because mechanistic physiological models are used, the population matrix can be updated each generation to reflect changes in vital rates (survival and reproduction) under different microclimates in the future.

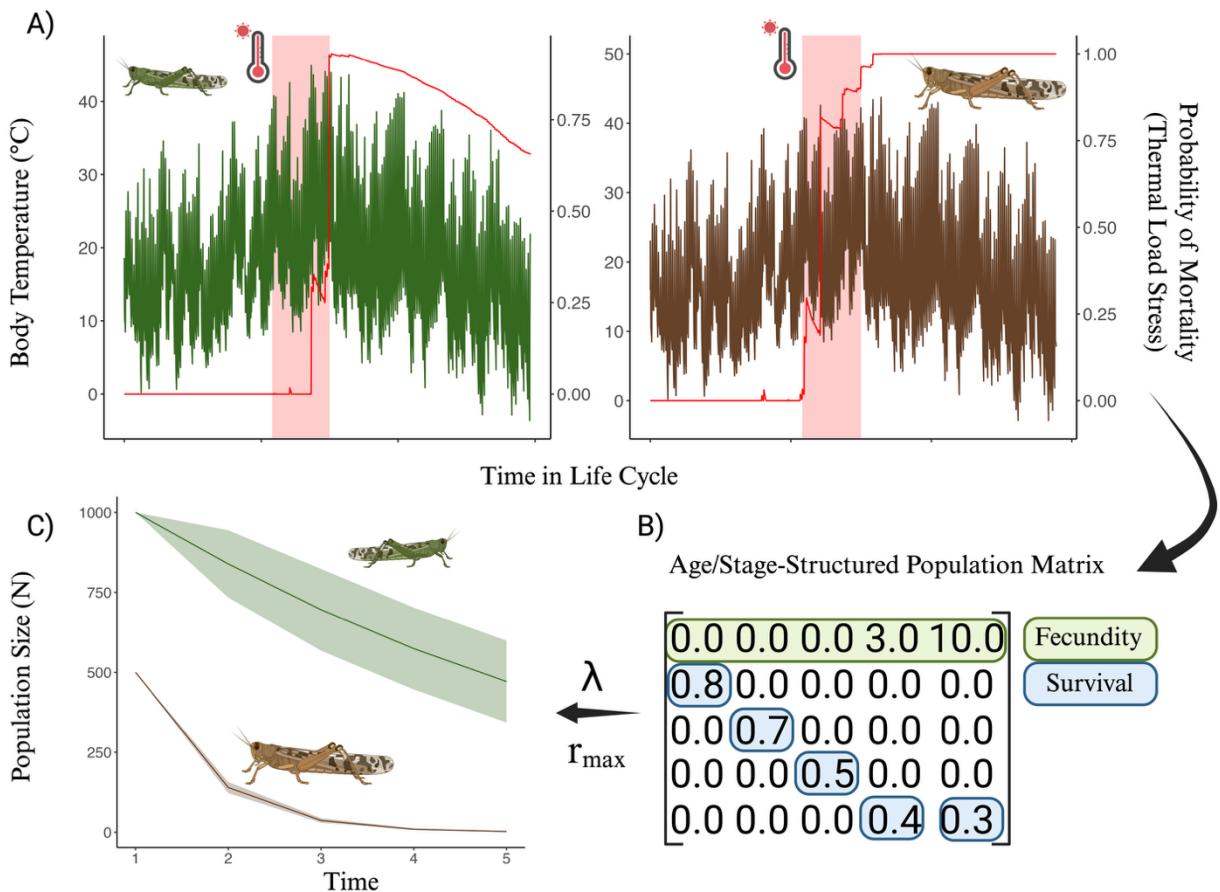


Figure II: A systems approach to using mechanistic physiological models to capture life-cycle vital rates and thermal load stress on survival to scale up to multi-species population dynamics. A) Green (species A) and brown lines (Species B) represent realized body temperatures for each grasshopper species. Red lines capture the accumulation of heat damage from TLS models with red rectangles showing a heatwave event. B) Changes to survival probability and fecundity can be captured by an age/stage structured model that can then be used to estimate parameters (e.g., r_{max_i} and λ) for prediction population dynamics through time (C). Created with BioRender.com.

242 ‘Hot’ solutions for a changing world

243 Extreme heat will have dramatic and widespread effects on biological and socioecological systems that
244 humans rely upon. For example, under current global climate change scenarios, each degree Celsius increase
245 in global mean temperature is estimated to reduce the global yield of wheat by 6.0% and soybean by 3.1%
246 [86], exacerbating food shortages.

247 A systems-modelling approach can help us develop suitable interventions, predict the varied consequences of
248 such interventions, and allow for adjustments that can improve decision making for mitigating the impacts of
249 extreme heat in real world situations. As a simple example (Figure 2A), a systems modelling approach can
250 allow for informed predictions about how to mitigate heat stress to crops while also considering the potential
251 for pest outbreaks. In essence, we want to add a minimal amount of water to a system to cool leaves while
252 avoiding depleting limited water supplies and/or creating better microclimate conditions for pests. Making
253 use of real weather data to predict microclimates and organism temperatures, we can assess how adding 2, 5,
254 10, or 20 mm d⁻¹ of water to a system affects leaf temperatures and the life-cycle for a grasshopper species
255 that is a known pest (Figure 2). We can see that adding 2-5 mm d⁻¹ of water can decrease leaf temperature by
256 up to 3.87°C (Figure 2B), but adding more water does not result in significant gains in cooling. In addition,
257 2-5 mm of water added each day results in the grasshopper population being suppressed over time, whereas
258 not adding water at all results in grasshopper population growth, leading to potential heatwave-associated
259 outbreaks. Here, the optimal solution is adding 2-5 mm d⁻¹ of water to both cool plants and protect them from
260 pests. Identifying and/or modifying the thermal suitability of landscapes, such as in our simple example, may
261 dramatically benefit plants and animals under extreme heat and is a promising feature of a systems-thinking
262 approach [21]. Additionally, as our understanding of the mechanisms associated with heat tolerance improve,
263 genetic tools, environmental manipulations (e.g., promoting beneficial microbes) and targeted plant breeding
264 can be used to enhance thermal tolerance, creating more resilience to extreme heat events [e.g., 60].

265 Systems modelling can also help understand how people’s responses to the impacts of extreme heat could
266 lead to accelerating changes in plants, animals and landscapes. Farmers or ecosystem managers may
267 introduce new species, alter management practices or farm remaining unaffected areas more intensively.
268 Thermal stress may ultimately result in people leaving areas, potentially making remaining communities
269 more vulnerable through loss of resources and services [87]. Thermal risks to ecosystems may also
270 precipitate declines in individual wellbeing, and these consequences may accrue differently across regions
271 and peoples [88].

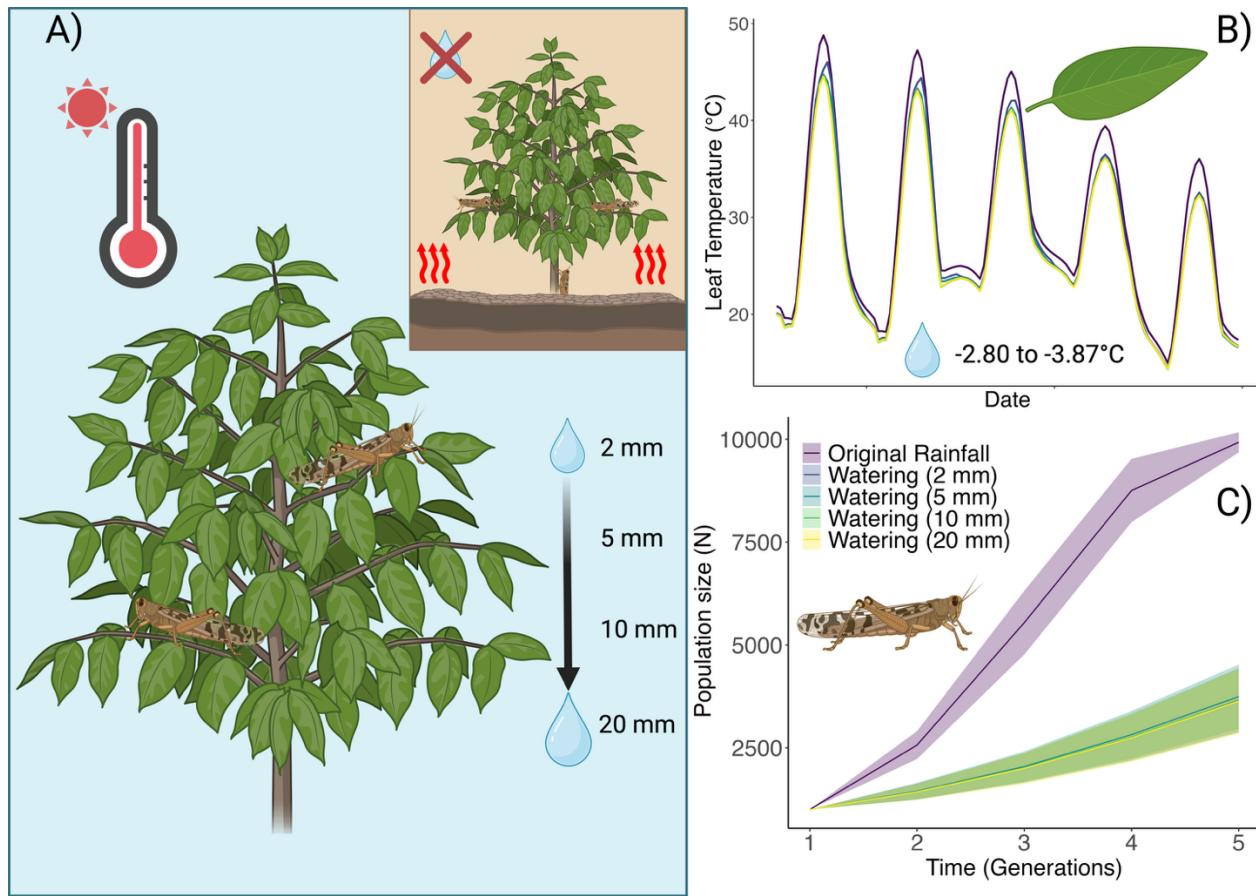


Figure 2 - How a systems modelling approach to extreme heat can be used to inform solutions. Heat stress to crops can result in foliage loss and crop failure, but also weaken crops to pests. Using a hypothetical case study of a crop and associated pest, we explore how different watering regimes affect plant temperatures and the flow on effects such regimes have for pest dynamics (A). Using a site near Renmark, South Australia, we use microclimate and biophysical models to estimate leaf temperatures (detailed in Boxes 1 & 2). We see that, compared to original rainfall conditions, certain watering regimes can significantly reduce leaf temperatures by nearly 4°C, providing protection to leaves (B). Modelling how these changed microclimate conditions translate to grasshopper body temperatures, we can then estimate changes to grasshopper life cycles and use the vital rates to predict population dynamics, showing, in this case, that even small amounts of water can indirectly suppress pest growth through lower body temperatures (C). Created with BioRender.com.

Box 3: An important frontier: integrating eco-evolutionary feedback within a systems-modelling framework

Extreme climactic events, such as heatwaves and droughts, can result in intense episodes of selection which can lead to rapid evolution of heritable traits [89]. Given the intensity of selection associated with extreme climactic events, these events have the potential to radically alter the phenotypic and genetic variability available to selection [90], potentially impacting population resilience to future events. Predicting evolutionary responses from extreme heat events is challenging because of their rarity and stochasticity which makes quantifying the strength of selection difficult as it often can only be opportunistically measured [89].

Predicting evolutionary responses also relies on our ability to predict heatwaves and how organisms experience them in the future – a task that is becoming more feasible with new climate models [e.g., 91,92]. Evolutionary consequences of extreme heat events will depend on the characteristics of these events (e.g., frequency, timing, exposure intensity and duration), the traits under selection and their levels of genetic (co)variation, as well as the demographic and ecological context in which the event occurs [93–95]. Considering various forms of plastic responses (e.g., behavioural, developmental, and physiological plasticity) as environments change through time is also crucial because plasticity can weaken selection and shelter genetic variation while also promoting persistence [96,97]. Many of these processes can now be incorporated into a systems modelling framework (e.g, behavioural plasticity), to capture environment-phenotype feedbacks.

A more complete systems modelling approach that captures eco-evolutionary dynamics needs to treat ‘traits’ more broadly than is typically done in evolutionary ecology (e.g., body mass). For example, ‘traits’ can include the parameters within models that establish functional traits within a population (e.g., DEB parameters)[98,99], which may provide predictions for suites of resulting traits that emerge from such parameters. Furthermore, it is important to consider the evolution of suites of traits as can be done using the multivariate breeders equation [100]:

$$\Delta \bar{\mathbf{z}} = \mathbf{G} \cdot \boldsymbol{\beta} \quad (3)$$

where $\Delta \bar{\mathbf{z}}$ is the vector of changes in the mean trait values, \mathbf{G} is the genetic covariance matrix and $\boldsymbol{\beta}$ is the vector of standardised selection gradients that regress each trait on relative fitness (i.e., $\boldsymbol{\omega} = \boldsymbol{\alpha} + \boldsymbol{\beta}^T \cdot \mathbf{z} + \mathbf{e}$; [101]). Plasticity can be captured by mapping trait development to the environment and incorporating environmental variability into the breeders equation [see also, 102]. While the multivariate breeders equation can be useful for predicting short-term evolutionary responses (i.e., one or a few generations) it

likely has limited predictive power over longer timespans because of changes in heritability and selection through time, which is a future challenge [95,101].

272 Concluding Remarks

273 Implementing a systems-modelling approach will no doubt be challenging, particularly for complex
274 communities, and knowledge gaps remain (see **Outstanding Questions**). But, more than ever, we need
275 mechanistic approaches that can capture key biological processes (physiology, behaviour, phenology, species
276 interactions and eco-evolutionary dynamics - **Box 3**) to better predict biological responses to extreme heat
277 [54,103]. Coupled mechanistic models within and across species are expected to have improved predictive
278 power when projected to new environmental conditions and will better capture interacting processes
279 [21,103]. Nonetheless, application of a systems modelling approach will require a solid foundation of species
280 natural history, diverse modelling expertise, and a concerted effort to collect and collate trait and
281 environmental data for model building and validation.

282 There are exciting new tools and data that are helping to overcome these challenges [26], and careful
283 consideration of the key processes important to a system can help alleviate these challenges [21]. For
284 example, large databases of physiological traits for both plants and animals now exist [e.g., 104,105] and
285 advanced missing data approaches can help estimate likely parameters for data deficient species [70,74,106].
286 Ever more sophisticated and powerful computational pipelines (e.g. *NicheMapR*, *TrenchR*, *mcera5*, *terra* in
287 R) make it easier to implement and connect models. Model selection and validation are important steps in
288 any modelling process and will be more complicated when applied to entire systems; however, starting with a
289 simple model, validating predictions with empirical data, and then adding complexity as needed can make
290 building systems models more tractable [21]. Even simple models that compare counterfactual scenarios may
291 provide important quantitative insights into the impacts of extreme heat on organisms, populations and
292 communities [107–109]. Such insights can form the basis for prediction-driven solutions to mitigate the
293 impacts of extreme heat on biodiversity. By working collaboratively we can develop a more quantitative and
294 predictive understanding of the impacts that extreme heat will have on organisms, populations, and
295 communities, and decide how to mitigate these impacts to preserve diverse systems now and into the future.

296 Acknowledgements

297 We would like to thank Pieter Arnold, Joel Treutlein and Patrice Pottier for helpful comments on previous
298 versions of this manuscript. We would also like to thank the Editor, Andrea Stephens, and three anonymous
299 reviewers who provided very constructive feedback on earlier versions of our manuscript. DWAN, SJL and

300 DW are supported by an ARC Future Fellowship (FT220100276 to DWAN, FT200100381 to SJL and
301 FT230100193 to DW), and MRK by an ARC Laureate Fellowship (FL240100088). We would also like to
302 thank The Australian National University, the University of Melbourne and Western Sydney University for
303 funding to support workshops that helped develop this manuscript.

304 **References**

1. Barriopedro, D. *et al.* (2023) Heat waves: Physical understanding and scientific challenges. *Rev. Geophys.* 61, e2022RG000780
2. Perkins-Kirkpatrick, S. and Lewis, S.C. (2020) Increasing trends in regional heatwaves. *Nat. Comm.* 11, 3357
3. Evans, M.E.K. *et al.* (2025) Scaling plant responses to heat: From molecules to the biosphere. *Science* 388, 1167–1173
4. Margalef-Marrase, J. *et al.* (2020) Relationship between heatwave-induced forest die-off and climatic suitability in multiple tree species. *Glob. Chang. Biol.* 26, 3134–3146
5. Kazenel, M.R. *et al.* (2024) Heat and desiccation tolerances predict bee abundance under climate change. *Nature* 628, 342–348
6. Zhao, C. *et al.* (2017) Temperature increase reduces global yields of major crops in four independent estimates. *Proc. Natl. Acad. Sci. U. S. A.* 114, 9326–9331
7. Tito, R. *et al.* (2018) Global climate change increases risk of crop yield losses and food insecurity in the tropical andes. *Glob. Chang. Biol.* 24, e592–e602
8. Bernacchi, C.J. *et al.* (2025) Safeguarding crop photosynthesis in a rapidly warming world. *Science* 388, 1153–1160
9. Martinez, L.D. *et al.* (2023) Effect of simulated heat waves on the behaviour of two mirid predators. *J. Appl. Entomol.* 147, 486–498
10. Rezende, E.L. *et al.* (2020) Predicting temperature mortality and selection in natural *Drosophila* populations. *Science* 369, 1242–1245
11. Ørsted, M. *et al.* (2024) Thermal limits of survival and reproduction depend on stress duration: A case study of *Drosophila suzukii*. *Ecol. Lett.* 27, e14421

327 12. López-Goldar, X. *et al.* (2024) Heat waves induce milkweed resistance to a specialist herbivore via
328 increased toxicity and reduced nutrient content. *Plant Cell Environ.* 47, 4530–4542

329 13. Arnold, P.A. *et al.* (2025) A framework for modelling thermal load sensitivity across life. *Glob.*
330 *Chang. Biol.* 31, e70315

331 14. Trivedi, P. *et al.* (2022) Plant–microbiome interactions under a changing world: Responses,
332 consequences and perspectives. *New Phytol.* 234, 1951–1959

333 15. Bimler, M.D. *et al.* (2024) Plant interaction networks reveal the limits of our understanding of
334 diversity maintenance. *Ecol. Lett.* 27, e14376

335 16. Chesson, P. (2000) General theory of competitive coexistence in spatially-varying environments.
336 *Theor. Popul. Biol.* 58, 211–237

337 17. Dicks, L.V. *et al.* (2021) A global-scale expert assessment of drivers and risks associated with
338 pollinator decline. *Nat. Ecol. Evol.* 5, 1453–1461

339 18. Kooijman, S.A.L.M. (2010) Dynamic energy budget theory for metabolic organisation, Cambridge
340 University Press.

341 19. Kearney, M. and Porter, W. (2009) Mechanistic niche modelling: Combining physiological and
342 spatial data to predict species' ranges. *Ecol. Lett.* 12, 334–350

343 20. Kearney, M.R. and Leigh, A. (2024) Fast, accurate and accessible calculations of leaf temperature
344 and its physiological consequences with NicheMapR. *Methods Ecol. Evol.* 15, 1516–1531

345 21. Briscoe, N.J. *et al.* (2023) Mechanistic forecasts of species responses to climate change: The promise
346 of biophysical ecology. *Glob. Chang. Biol.* 29, 1451–1470

347 22. Rezende, E.L. *et al.* (2014) Tolerance landscapes in thermal ecology. *Funct. Ecol.* 28, 799–809

348 23. Bimler, M.D. *et al.* (2018) Accurate predictions of coexistence in natural systems require the
349 inclusion of facilitative interactions and environmental dependency. *J. Ecol.* 106, 1839–1852

350 24. Bowler, C.H. *et al.* (2022) Accounting for demographic uncertainty increases predictions for species
351 coexistence: A case study with annual plants. *Ecol. Lett.* 25, 1618–1628

352 25. Kearney, M.R. and Porter, W.P. (2017) NicheMapR – an R package for biophysical modelling: The
353 microclimate model. *Ecography (Cop.)* 40, 664–674

354 26. Maclean, I.M.D. *et al.* (2019) Microclima: An R package for modelling meso- and microclimate.
355 *Methods Ecol. Evol.* 10, 280–290

356 27. Kearney, M.R. *et al.* (2020) A method for computing hourly, historical, terrain-corrected
357 microclimate anywhere on earth. *Methods Ecol. Evol.* 11, 38–43

358 28. Maclean, I.M.D. *et al.* (2021) On the measurement of microclimate. *Methods Ecol. Evol.* 12, 1397–
359 1410

360 29. Buckley, L.B. *et al.* (2023) TrenchR: An R package for modular and accessible microclimate and
361 biophysical ecology. *PLOS Clim* 2, e0000139

362 30. Bramer, I. *et al.* (2018) Advances in monitoring and modelling climate at ecologically relevant scales.
363 *Adv. Ecol. Res.* 58, 101–161

364 31. Levy, O. *et al.* (2016) A dynamically downscaled projection of past and future microclimates.
365 *Ecology* 97, 1888–1888

366 32. Choi, F. *et al.* (2019) Mapping physiology: Biophysical mechanisms define scales of climate change
367 impacts. *Conserv. Physiol.* 7, coz028

368 33. Lorenz, R. *et al.* (2010) Persistence of heat waves and its link to soil moisture memory. *Geophys. Res.*
369 *Lett.* 37, L09703

370 34. De Frenne, P. *et al.* (2024) Ten practical guidelines for microclimate research in terrestrial
371 ecosystems. *Methods Ecol. Evol.* 16, 269–294

372 35. Meyer, A.V. *et al.* (2023) A guide and tools for selecting and accessing microclimate data for
373 mechanistic niche modeling. *Ecosphere* 14, e4506

374 36. Klings, D.H. *et al.* (2025) Matching climate to biological scales. *Trends Ecol. Evol.* in press

375 37. Hirsch, A.L. *et al.* (2019) Amplification of australian heatwaves via local land-atmosphere coupling.
376 *J. Geophys. Res.* 124, 13625–13647

377 38. Drake, J.E. *et al.* (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and
378 increased leaf thermal tolerance. *Glob. Chang. Biol.* 24, 2390–2402

379 39. Holzworth, D. *et al.* (2018) APSIM next generation: Overcoming challenges in modernising a
380 farming systems model. *Environ. Model. Softw.* 103, 43–51

381 40. Medlyn, B.E. *et al.* (2011) Reconciling the optimal and empirical approaches to modelling stomatal
382 conductance. *Glob. Chang. Biol.* 17, 2134–2144

383 41. Porter, W.P. *et al.* (1973) Behavioral implications of mechanistic ecology : Thermal and behavioral
384 modeling of desert ectotherms and their microenvironment. *Oecologia* 13, 1–54

385 42. Porter, W.P. and Gates, D.M. (1969) Thermodynamic equilibria of animals with environment. *Ecol.*
386 *Monogr.* 39, 227–244

387 43. Riddell, E.A. *et al.* (2017) Physical calculations of resistance to water loss improve predictions of
388 species range models. *Ecol. Monogr.* 87, 21–33

389 44. Duursma, R.A. (2015) Plantecophys—an R package for analysing and modelling leaf gas exchange
390 data. *PLoS One* 10, e0143346

391 45. Wild, K.H. *et al.* (2025) Climate change and the cost-of-living squeeze in desert lizards. *Science* 387,
392 303–309

393 46. Briscoe, N.J. *et al.* (2022) Too hot to hunt: Mechanistic predictions of thermal refuge from cat
394 predation risk. *Conserv. Lett.* 15, e12906

395 47. Duursma, R.A. *et al.* (2019) On the minimum leaf conductance: Its role in models of plant water use,
396 and ecological and environmental controls. *New Phytol.* 221, 693–705

397 48. Loughran, C.L. and Wolf, B.O. (2020) The functional significance of panting as a mechanism of
398 thermoregulation and its relationship to the critical thermal maxima in lizards. *J. Exp. Biol.* 223, jeb224139

399 49. Sharpe, L.L. *et al.* (2022) In the hot seat: Behavioral change and old-growth trees underpin an
400 australian songbird's response to extreme heat. *Front. Ecol. Evol.* 10, 813567

401 50. Posch, B.C. *et al.* (2024) Intensive leaf cooling promotes tree survival during a record heatwave.
402 *Proc. Natl. Acad. Sci. U. S. A.* 121, e2408583121

403 51. Ørsted, M. *et al.* (2022) Finding the right thermal limit: A framework to reconcile ecological,
404 physiological and methodological aspects of CTmax in ectotherms. *J. Exp. Biol.* 225, jeb244514

405 52. Jagadish, S.V.K. *et al.* (2021) Plant heat stress: Concepts directing future research. *Plant Cell*
406 *Environ.* 44, 1992–2005

407 53. Faber, A.H. *et al.* (2024) Application of the thermal death time model in predicting thermal damage
408 accumulation in plants. *J. Exp. Bot.* 75, 3467–3482

409 54. Martínez-De León, G. and Thakur, M.P. (2024) Ecological debts induced by heat extremes. *Trends*
410 *Ecol. Evol.* 39, 1024–1034

411 55. Marchin, R.M. *et al.* (2022) Extreme heat increases stomatal conductance and drought-induced
412 mortality risk in vulnerable plant species. *Glob. Chang. Biol.* 28, 1133–1146

413 56. Youngblood, J.P. *et al.* (2025) Dehydration worsens heat tolerance of locusts and amplifies predicted
414 impacts of climate change. *Funct. Ecol.* 39, 1194–1207

415 57. Mengutay, M. *et al.* (2013) Adequate magnesium nutrition mitigates adverse effects of heat stress on
416 maize and wheat. *Plant Soil* 368, 57–72

417 58. Andersen, L.H. *et al.* (2010) Protein and carbohydrate composition of larval food affects tolerance to
418 thermal stress and desiccation in adult drosophila melanogaster. *J. Insect Physiol.* 56, 336–340

419 59. Chouhan, D. *et al.* (2023) Plant-microbe interaction and their role in mitigation of heat stress. In
420 *Rhizosphere biology*, pp. 127–147, Springer Nature Singapore

421 60. Márquez, L.M. *et al.* (2007) A virus in a fungus in a plant: Three-way symbiosis required for thermal
422 tolerance. *Science* 315, 513–515

423 61. Hoang, K.L. *et al.* (2019) The effects of bacillus subtilis on caenorhabditis elegans fitness after heat
424 stress. *Ecol. Evol.* 9, 3491–3499

425 62. Jeffrey, S.J. *et al.* (2001) Using spatial interpolation to construct a comprehensive archive of
426 australian climate data. *Environ. Model. Softw.* 16, 309–330

427 63. Kearney, M.R. and Porter, W.P. (2020) NicheMapR – an R package for biophysical modelling: The
428 ectotherm and dynamic energy budget models. *Ecography (Cop.)* 43, 85–96

429 64. Nisbet, R. *et al.* (2000) From molecules to ecosystems through dynamic energy budget models.
430 *Journal of Animal Ecology* 69, 913–926

431 65. Jager, T. (2020) Revisiting simplified DEBtox models for analysing ecotoxicity data. *Ecol. Modell.*
432 416, 108904

433 66. Kearney, M.R. *et al.* (2013) Balancing heat, water and nutrients under environmental change: A
434 thermodynamic niche framework. *Funct. Ecol.* 27, 950–966

435 67. Kearney, M. *et al.* (2010) Modelling the ecological niche from functional traits. *Philos. Trans. R. Soc.*
436 *Lond. B Biol. Sci.* 365, 3469–3483

437 68. Marques, G.M. *et al.* (2018) The AmP project: Comparing species on the basis of dynamic energy
438 budget parameters. *PLoS Comput. Biol.* 14, e1006100

439 69. Kooijman, S.A.L.M. *et al.* (2021) Multidimensional scaling for animal traits in the context of
440 dynamic energy budget theory. *Conserv. Physiol.* 9, coab086

441 70. Bruggeman, J. *et al.* (2009) PhyloPars: Estimation of missing parameter values using phylogeny.
442 *Nucleic Acids Research* 37, W179–W184

443 71. Bonan, G. (2019) Climate change and terrestrial ecosystem modeling. Cambridge University Press

444 72. Kumarathunge, D.P. *et al.* (2019) Acclimation and adaptation components of the temperature
445 dependence of plant photosynthesis at the global scale. *New Phytol.* 222, 768–784

446 73. De Kauwe, M.G. *et al.* (2020) Identifying areas at risk of drought-induced tree mortality across south-
447 eastern australia. *Glob. Chang. Biol.* 26, 5716–5733

448 74. Bimler, M.D. *et al.* (2023) Estimating interaction strengths for diverse horizontal systems using
449 performance data. *Methods Ecol. Evol.* 14, 968–980

450 75. Kraft, N.J.B. *et al.* (2015) Plant functional traits and the multidimensional nature of species
451 coexistence. *Proc. Natl. Acad. Sci. U. S. A.* 112, 797–802

452 76. Buche, L. *et al.* (2024) Multitrophic higher-order interactions modulate species persistence. *Am. Nat.*
453 203, 458–472

454 77. Buche, L. *et al.* (2025) A continuum from positive to negative interactions drives plant species'
455 performance in a diverse community. *Ecol. Lett.* 28, e70059

456 78. Ricker, W.E. (1954) Stock and recruitment. *J. Fish. Res. Board Can.* 11, 559–623

457 79. Beverton, R.J.H. and Holt, S. (2012) On the dynamics of exploited fish populations. Springer

458 80. Levine, J.M. and HilleRisLambers, J. (2009) The importance of niches for the maintenance of species
459 diversity. *Nature* 461, 254–257

460 81. Wainwright, C.E. *et al.* (2019) Distinct responses of niche and fitness differences to water availability
461 underlie variable coexistence outcomes in semi-arid annual plant communities. *J. Ecol.* 107, 293–306

462 82. Mayfield, M. and Stouffer, D.B. (2017) Higher-order interactions capture unexplained complexity in
463 diverse communities. *Nat. Ecol. Evol.* 1, 0062

464 83. Martyn, T.E. *et al.* (2021) Identifying “useful” fitness models: Balancing the benefits of added
465 complexity with realistic data requirements in models of individual plant fitness. *Am. Nat.* 197, 415–433

466 84. Llandres, A.L. *et al.* (2015) A dynamic energy budget for the whole life-cycle of holometabolous
467 insects. *Ecol. Monogr.* 85, 353–371

468 85. Arnold, P.A. *et al.* (2019) Sparse evidence for selection on phenotypic plasticity in response to
469 temperature. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 374, 20180185

470 86. Shekhawat, K. *et al.* (2022) Beat the heat: Plant- and microbe-mediated strategies for crop
471 thermotolerance. *Trends Plant Sci.* 27, 802–813

472 87. Dandy, J. *et al.* (2019) Leaving home: Place attachment and decisions to move in the face of
473 environmental change. *Reg. Environ. Change* 19, 615–620

474 88. Leviston, Z. *et al.* (2018) Linkages between ecosystem services and human wellbeing: A nexus webs
475 approach. *Ecol. Indic.* 93, 658–668

476 89. Baeckens, S. and Donihue, C.M. (2025) Evolutionary consequences of extreme climate events. *Curr.*
477 *Biol.* 35, R850–R864

478 90. Urban, M.C. (2024) Climate change extinctions. *Science* 386, 1123–1128

479 91. Muñoz-Sabater, J. *et al.* (2021) ERA5-land: A state-of-the-art global reanalysis dataset for land
480 applications. *Earth Syst. Sci. Data* 13, 4349–4383

481 92. Eyring, V. *et al.* (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6)
482 experimental design and organization. *Geosci. Model Dev.* 9, 1937–1958

483 93. Chevin, L.-M. and Hoffmann, A.A. (2017) Evolution of phenotypic plasticity in extreme
484 environments. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 372, 20160138

485 94. Hoffmann, A.A. and Bridle, J. (2022) The dangers of irreversibility in an age of increased
486 uncertainty: Revisiting plasticity in invertebrates. *Oikos* 2022, e08715

487 95. Hoffmann, A.A. and Sgrò, C.M. (2011) Climate change and evolutionary adaptation. 470, 479–485

488 96. Catullo, R.A. *et al.* (2019) The potential for rapid evolution under anthropogenic climate change.
489 *Curr. Biol.* 29, R996–R1007

490 97. Ghalambor, C. *et al.* (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene
491 expression in nature. *Nature* 525, 372–375

492 98. Sousa, T. *et al.* (2010) Dynamic energy budget theory restores coherence in biology. *Philos. Trans. R.*
493 *Soc. Lond. B Biol. Sci.* 365, 3413–3428

494 99. Kearney, M. *et al.* (2009) Integrating biophysical models and evolutionary theory to predict climatic
495 impacts on species' ranges: The dengue mosquito *aedes aegypti* in australia. *Funct. Ecol.* 23, 528–538

496 100. Lande, R. (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size
497 allometry. *Evolution* 33, 402–416

498 101. Walsh, B. and Lynch, M. (2018) Evolution and selection of quantitative traits. Oxford University
499 Press

500 102. McGlothlin, J. and Galloway, L. (2014) The contribution of maternal effects to selection response:
501 An empirical test of competing models. *Evol.* 68, 549–558

502 103. Urban, M.C. *et al.* (2016) Improving the forecast for biodiversity under climate change. *Science* 353,
503 aad8466–aad8466

504 104. Kattge, J. *et al.* (2020) TRY plant trait database - enhanced coverage and open access. *Glob. Chang.*
505 *Biol.* 26, 119–188

506 105. Leiva, F.P. *et al.* (2025) ShareTrait: Towards interoperable and reusable individual trait-based data in
507 ectotherms. *Funct. Ecol.* 39, 3124–3138

508 106. Weiss-Lehman, C.P. *et al.* (2022) Disentangling key species interactions in diverse and
509 heterogeneous communities: A bayesian sparse modelling approach. *Ecol. Lett.* 25, 1263–1276

510 107. Dudney, J. *et al.* (2025) A causal inference framework for climate change attribution in ecology.
511 *Ecol. Lett.* 28, e70192

512 108. Carroll, T. *et al.* (2023) Biodiversity change under adaptive community dynamics. *Glob. Chang. Biol.*
513 29, 3525–3538

514 109. Dornhaus, A. *et al.* (2022) How can we fully realize the potential of mathematical and biological
515 models to reintegrate biology? *Integr. Comp. Biol.* 61, 2244–2254

516