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Highlights 22	

• Recent advances in climate and ecological modelling are converging to enable a predictive 23	

understanding of how extreme heat affects ecological communities. 24	

• Heatwaves increasingly drive complex biological responses, yet existing models rarely integrate the 25	

direct and indirect effects of heat across scales. 26	



• Mechanistic biophysical and physiological models now allow estimation of thermal exposure, 27	

damage, and repair at the individual level. These outputs can be used to predict population and 28	

community dynamics, enabling species-specific and community wide forecasting under climate 29	

extremes. 30	

• A systems-modelling framework offers a more calculated understanding of the impacts that extreme 31	

heat will have on organisms, populations, and communities along with how to mitigate these impacts 32	

to preserve diverse systems now and into the future 33	

Abstract 34	

Anthropogenic climate change is leading to more frequent and extreme heat waves. These short-term but 35	

large-scale events are radically re-shaping interactions among organisms – impacting biodiversity, 36	

community composition and ecosystem services crucial to natural systems and food security. Predicting heat 37	

wave impacts on interacting species requires an understanding of the processes driving differential exposure 38	

and sensitivity of organisms to extreme heat events in a life-cycle context. To achieve this predictive 39	

capacity, we need to integrate models across scales while capturing species-specific responses at the level of 40	

individuals. We show how existing models in disparate fields can be linked to achieve a level of 41	

understanding necessary for calculated responses to extreme heat from individuals to socioecological 42	

systems, now and into the future. 43	

Heat waves within a multidisciplinary modelling framework 44	

Climate change is leading to warmer and more variable thermal environments globally [1,2]. Greater thermal 45	

variability is resulting in organisms experiencing extreme heat waves that lead to thermal stress impacting 46	

organismal growth, survival and reproduction, with cascading effects on population dynamics, species 47	

interactions, community composition and ecosystem structure and function [3,4]. Climate variability has 48	

already been linked to dramatic declines in pollinator abundance [5] and crop yields globally [6–8], but the 49	

causes underlying such declines, and their ramifications through communities and society, are not fully 50	

understood. The impacts of extreme heat on species and communities are driven by a combination of direct 51	

effects of heat stress on the physiology and fitness of organisms [9–11] and indirect effects on interactions 52	

(both positive and negative) among species [e.g., 12]. For instance, direct effects of heat stress on microbial 53	

communities can resulting in compounding effects on associated plant species [13]. Understanding the 54	

dynamic interplay between direct effects and indirect species interactions, and how these are mediated by 55	

environmental factors, has been hampered by the complexity of community interactions and the lack of an 56	



integrated modelling framework that translates short-term physiological damage into changes in fitness and 57	

population growth across species [13]. Predicting how extreme heat impacts population dynamics and 58	

communities requires the coupling of biophysical, physiological, population and community ecology models. 59	

Here we argue that such a feat is becoming increasingly tangible and will provide powerful new ways of 60	

predicting how extreme heat shapes community dynamics. Physiological models can now be seamlessly 61	

integrated with biophysical models of heat and mass exchange to characterize temperatures experienced by 62	

organisms and simulate the effects of extreme heat events on the entire life cycle of species within ecological 63	

communities [14–18]. Physiological models that incorporate estimates of thermal sensitivity across species 64	

can capture the delicate balance between damage and repair in physiological systems [10,11,19,20], yielding 65	

predictions of the immediate and cumulative impacts of extreme heat on growth, survival and reproduction. 66	

Importantly, mechanistic physiological models provide outputs at the individual level (e.g., energy and water 67	

requirements, waste production, activity constraints, vital rates) that can be integrated into population and 68	

community ecology models to capture how extreme heat events perturb interactions among species [21,22]. 69	

We bring together modelling approaches across diverse fields as a first step towards establishing a new, 70	

integrative framework for predicting how extreme heat will affect ecological communities and society. We 71	

focus on plants, insects and microbes given the strong interconnections between them, the relative ease with 72	

which they can be studied, and their significance to natural ecosystem health and agricultural productivity. 73	

Importantly, ‘extreme heat’ can take on a different meaning for these diverse organisms. For example, plants 74	

and animals have different thermal tolerances or can exploit microthermal environments in different ways to 75	

offset the effects of extreme atmospheric heat events. Thermal tolerances also vary among life cycle 76	

stages/developmental processes of individual organisms; for example, in plants, vegetative tissues generally 77	

exhibit greater tolerance to high temperatures than pollen [23]. As such, ‘extreme’ will be relative to the 78	

biology of the organism in question. Our modelling framework can capture these complexities and be 79	

extended to incorporate other, diverse interactions including the socioecological systems in which ecological 80	

communities and production systems are embedded. 81	

A systems-modelling approach to modelling biotic impacts of heatwaves 82	

We propose a systems-modelling approach to model biotic impacts of heatwaves (Figure 1), starting with the 83	

assumption that the impacts of extreme heat events on an ecological community are driven by responses of 84	

individuals, which then cascade upwards to other levels. Ultimately, the impacts of extreme heat events on a 85	

community are driven by responses of individuals. Therefore, to understand extreme heat impacts on a 86	

community of organisms, we must characterize the proximal thermal environments – the ‘microclimates’ – 87	



experienced by individuals of different species under a given atmospheric event. These microclimates must 88	

then be translated into physiological and behavioral responses, including the processes of thermal damage 89	

and repair, and how individuals mitigate their exposure to extreme heat through habitat selection and other 90	

avoidance strategies. Finally, dynamic energy budgets translate these individual responses into growth and 91	

reproduction trajectories across life cycles to drive population and community models of the resulting 92	

interactions. 93	

In the next sections, we outline new developments to model all components in Figure 1, such that a truly 94	

systems-based approach to modelling biotic impacts of heatwaves is now possible. We highlight the 95	

opportunities such an integration may provide through a greater understanding of the ways in which extreme 96	

heat stress manifests across species. Integration will help elucidate how and why interactions among species 97	

can change, with implications for natural and agricultural systems, food security and ecosystem services. We 98	

discuss the challenges of applying such an integrated modelling framework and how it can incorporate other 99	

critical features that capture evolutionary change and plasticity. 100	

 



Figure 1- A new, integrative framework for predicting the effects of extreme heat on ecological 

communities. The modelling approach developed here integrates (1) climate/biophysical models to predict 

the different temperatures species experience in their respective microhabitats. (2) Temperatures 

experienced by organisms then provide inputs for damage-repair and vegetation growth or animal dynamic 

energy budget models that integrate temperature exposure with explicit physiological models that simulate 

development, behavior, survival and reproduction in response to temperature dynamics across life history 

stages. Physiological models can be built around the unique life cycles of the diverse species in 

communities, capturing lagged responses to extreme heat, phenological mismatches and mechanistically 

informed responses to extreme heat for species of the system in question. Outputs (behavior, growth rate, 

biomass accumulation, survival and reproduction) from physiological models of individual organisms can 

then be integrated into (3) population and community ecology models to predict population growth and 

community composition under a specific type of change (either to the environment or suite of interacting 

organisms). We then discuss how (4) environment-mediated feedback loops influence organism thermal 

exposure and sensitivity (e.g., water availability, microbiota), which can vary across different life stages 

and organs. This novel integration of existing models in this novel way will allow simulations at the 

organismal level to generate emergent predictions for entire communities. In turn, such simulations will 

allow quantitative predictions to be made on how extreme heatwaves perturb biological systems and allow 

for the development and implementation of strategies to enhance both biological and socioecological 

system resilience to extreme heat. Created with BioRender.com. 

The current state of extreme weather modelling 101	

An understanding of heatwave impacts on biology requires environmental inputs about weather conditions. 102	

These data may come from weather stations or climate models. Weather station observations of air 103	

temperature, radiation, wind speed, cloud cover and humidity are readily available as raw timeseries from the 104	

stations themselves, and as interpolated products such as WorldClim [24]. 105	

Weather stations can only document past heat wave events at their specific locations. Climate modelling and 106	

weather event forecasting is achieved through General Circulation Models (GCMs) – large partial differential 107	

equation networks of atmospheric, oceanic and biospheric energy and mass exchange processes. Future 108	

climate change scenarios are generally produced at monthly timescales but can be superimposed on historical 109	

weather patterns to infer the nature of future heatwaves. Historical analyses are facilitated by GCMs via 110	

‘reanalysis’ datasets produced by calibrating GCMs with observations to produce continuous gridded 111	

weather data, including ‘surface’ temperatures, soil temperatures and profiles of temperature, pressure, wind 112	



speed and humidity at different levels in the atmosphere [25–29]. The most state-of-the-art of these are 113	

ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5), hourly products 114	

at ~31km and ~9km resolutions, respectively. 115	

Historically, GCMs were coded in fast but inflexible languages like Fortran and C. The emergence of the 116	

Julia language [30] for scientific computing has created an opportunity to rebuild climate models in a more 117	

modular manner, allowing easier interfacing between discipline-specific models. The translation of GCMs 118	

and associated land-surface models into more accessible and modular languages opens new opportunities for 119	

collaboration between biologists and earth scientists to better integrate processes in the atmosphere and the 120	

biosphere to improve predictions of weather events and their biological impacts. 121	

From weather to microclimates: predicting community wide exposure to 122	

extreme heat 123	

Extreme weather events are experienced differently across species in a community. For example, while air 124	

temperature may be 50°C, an organism a metre below the soil surface may be exposed to temperatures 25°C 125	

cooler (Figure 1). Exactly how much the soil lags and dampens the atmospheric dynamics depends on the 126	

soil properties, especially its moisture level. Conditions above ground depend on the nature of the vegetation, 127	

especially through shading, changes in wind profiles and evaporative cooling (transpiration rates). Vegetation 128	

and soil also interact strongly. Past soil moisture regimes and heat wave events can lead to leaf loss and 129	

hence increased radiation exposure of the soil surface, while stomatal behavior alters transpiration rate and 130	

hence soil moisture. Past weather conditions can determine how a given heat wave manifests, so the same 131	

atmospheric heat wave can have different implications for microclimatic conditions depending on the recent 132	

history of rainfall and temperature. Despite the complexity and non-linearity of these interactions across the 133	

soil-plant-atmosphere continuum, there is existing capacity, and growing potential, to model them and 134	

determine individual-specific exposure to extreme heat. 135	

To some extent, and at large spatial scales (e.g. 0.5 ∘ grid cells), GCMs have these dynamics built into them 136	

via modules called ‘land-surface models’ (LSMs), which aim to capture feedbacks between the land surface 137	

and associated vegetation. LSMs will at minimum represent air, soil and canopy temperatures. LSMs that 138	

represent multiple layers of the plant canopy will represent the change in leaf temperature with canopy depth; 139	

models may also represent thermal gradients through the soil [31]. Land surface schemes will typically do 140	

this using energy balance approaches. Early generations of LSMs assumed vegetation was static, with fixed 141	

plant functional types (PFTs) and leaf area index (LAI), but most LSMs are moving towards dynamic 142	



representations of vegetation properties, allowing large-scale feedbacks between vegetation and climate to be 143	

represented [32]. 144	

The primary role of LSMs is to better understand overall atmospheric dynamics rather than resolve the 145	

details of microclimates to which organisms are exposed. Thus, agronomists and ecologists have developed 146	

microclimate models that can provide more detailed inferences of environmental exposure. These 147	

microclimate models take the atmospheric conditions as independent forcing variables, together with detailed 148	

information on terrain (slope, aspect, hill shade), vegetation [plant-area index (PAI), stomatal behaviour, leaf 149	

reflectance] and soil properties (thermal and hydraulic) to predict how radiation, wind speed, air temperature, 150	

humidity, soil temperature and soil moisture vary on small scales. The available models vary in the physical 151	

processes they incorporate yet can be powerful in predicting relevant microclimates to organisms [33–39]. 152	

Our Supplementary Online Material provides a tutorial on how to predict microclimates from climate data 153	

using existing open access software and datasets [33,35,36]. 154	

Advancements in microclimate modelling have created opportunities to more closely couple the dynamics of 155	

the atmosphere and vegetation. In particular, plant water use dynamics during heatwaves can amplify or 156	

reduce high temperatures via effects on photosynthetic capacity, stomatal decoupling, cuticular conductance, 157	

leaf damage and plant mortality [17,40]. These impacts are important for the plants themselves, but also for 158	

thermal regimes within the plant canopy. Forecasting future thermal regimes is challenging because it 159	

involves forecasting future vegetation dynamics, including changes in key vegetation properties such as leaf 160	

area index, as a function of plant growth, plant population dynamics and shifts in community composition. A 161	

wide range of vegetation models is available for this purpose, from crop growth models that simulate growth 162	

and yield of crops over a season (e.g. APSIM, [41]) up to the dynamic global vegetation models (DGVMs) 163	

that simulate vegetation function and distribution at local to global scales [42]. 164	

Translating exposure to organism temperature: biophysics to the rescue! 165	

Once microclimates are quantified, heat budgets of organisms can be computed as a function of their traits 166	

using the principles of biophysical ecology. Biophysical models have a long history [17,e.g. 43,44] but have 167	

become more widely applied in ecology in the past 20 years, facilitated by developments in environmental 168	

datasets, microclimate modelling, and the emergence of high-level programming languages such as R [18]. 169	

Biophysical models of ectothermic animals can account for complex radiative heat transfer and the role of 170	

evaporative water loss across surfaces [33,45]. Equivalent models of leaves incorporate the dynamic role of 171	

stomata [17,46], while models of endotherms can account for the role of insulation and metabolic heat 172	

production [47]. Future developments in biophysical modelling of organismal temperature under extreme 173	

https://daniel1noble.github.io/thermal_tol_interactions/


heat will involve understanding the nuances of plastic physiological and behavioral responses. For example, 174	

lizards may pant when exposed to high temperatures [48], birds may ‘wind surf’ or seek thermal micro-175	

refugia [49], and stomatal behavior may depart from the typical responses to vapor pressure and light 176	

intensity to allow emergency cooling [40], though this response may depend on prior soil moisture conditions 177	

[50]. The application of biophysical heat budget models in concert with microclimate models can thus be 178	

used to infer the thermal conditions to which members of the same ecological community are exposed with 179	

different degrees of detail. Realised thermal exposure can then be linked to physiological models of damage 180	

and repair. 181	

Capturing both physiological damage and repair to predict multi-species 182	

thermal sensitivity 183	

Translating how heat waves impact plants and animals not only depends on modelling temperature exposure 184	

but also the varying sensitivity of organisms to extreme heat [19,51]. Sensitivity to extreme heat can be 185	

captured by thermal load sensitivity (TLS) / thermal death time (TDT) models that explicitly account for 186	

how heat stress depends on both the temperature experienced and and its duration [19,20]. Typically, these 187	

models focus on endpoints that include survival (e.g., lethal temperatures, 𝐿𝑇"# or 𝐿𝑇$#) or some measure of 188	

reduced fertility, but this need not be the case [20]. Endpoints are predicted by assuming the effect of time at 189	

a given temperature decreases survival or fertility exponentially [10,11,19,51]. For example, Ørsted et al. 190	

[11] show that both mortality and fecundity follow a clear exponential relationship with time in Drosophila 191	

suzuki, with survival and fecundity being compromised most for long thermal exposures at high 192	

temperatures. Importantly, Ørsted et al. [11] show that reproductive sensitivity can be higher than mortality, 193	

with heat injury accumulating faster to impact productivity earlier than survival. TLS theory also applies well 194	

to photosynthetic function in plants [52,53], highlighting the potential generality of the TLS framework and 195	

its capacity to explore plastic responses (e.g., acclimation and priming) of organisms. TLS models explicitly 196	

acknowledge that thermal sensitivity depends on the relative accumulation of damage to cellular and sub-197	

cellular systems that compromise physiological function. Without periods of recovery, where damage can be 198	

repaired, organisms accumulate damage over time that reduces growth, and impacts survival and 199	

reproduction. 200	

The concept of damage and repair is important for understanding how heat waves affect organisms because 201	

both processes can result in lagged responses to heat stress – a common feature of extreme heat events 202	

[20,54]. Once the thermal sensitivity (i.e., the slope 𝑧, Figure 1) for a particular endpoint has been quantified 203	

it can be used to predict the accumulation of damage during stressful temperatures experienced under 204	



realistic conditions [10,11,20,51]. Several approaches can be used to capture the accumulation of damage 205	

[10,11,51], but a simplistic way follows Ørsted et al. [11]: 206	

𝐻𝐼 = )
100 ⋅ (𝑡%&' − 𝑡%)

10()
'
*⋅,-.(0!;0!"#)&34

0$50%

%6'

  (1) 207	

Equation 1 summarizes heat injures (HI) sustained across time, 𝑡, during heat stress events (i.e., when body 208	

temperatures are greater than the critical temperatures, 𝑇7 > 𝑇8) using information about the maximum 209	

temperature, 𝑇, experienced between time point 𝑡% and 𝑡%&' and the thermal sensitivity (i.e., 𝑧 and 𝛼). Once 210	

an organism accumulates damage to reach a given threshold the endpoint has been reached. Arnold et al [20] 211	

recently proposed a framework for integrating repair processes into these models more explicitly. 212	

Environmental factors that impact thermal sensitivity can also be incorporated into TLS models (Box 1, see 213	

also [20]). Modelling the intricate balance between damage and repair for a suite of different species can help 214	

identify susceptible species, life stages and tissues that are most at risk from extreme heat events due to direct 215	

sensitivity to extreme heat, which allows for more accurate predictions of the varying levels of species 216	

sensitivity within a community under particular types of climate events. 217	



Box 1: Sensitivity to extreme heat is mediated by environmental feedbacks 

Natural and anthropogenic environments shape thermal sensitivity and should be considered in any 

systems modelling approach to assessing community responses to extreme heat [20]. Some of the biotic 

and abiotic interactions likely to mediate plant and animal community responses include: 

Microbial Interactions: Heat tolerance of animals and plants can be increased and decreased through 

changes in the gut microbiome and/or through associated microbes within or around tissues. Interactions 

between plants and microorganisms, such as plant growth-promoting rhizobacteria (PGPR), arbuscular 

mycorrhizal fungi (AMF), and bacterial or fungal endophytes are known to impact growth, defense, and 

heat tolerance in plants [55,56] (Figure 2A). These interactions are usually achieved by provision and 

priming of the production of essential phytohormones, secondary metabolites, organic acids, amino acids 

and osmolytes that help the plant to mitigate heat stress [57]. Heat tolerance in animals can also be 

influenced by gut microbiota or other associated symbiotes. For example, Bacillus subtilis residing in the 

gut of the nematode Caenorhabditis elegans provides protection against heat shock as reflected by effects 

on fecundity [58] (Figure 2B). 

Drought and Water Stress: Drought, often associated with periods of extreme heat, can reduce thermal 

tolerance in plants by triggering stomata closure, impacting plants’ ability to cool through transpiration, 

leading to leaf damage from excessive heat [59] (Figure 2C). Drought and water stress also have impacts 

on nectar flow with cascading effects on nectivores. Impact of drought on plants can be mitigated by plant 

signaling which enriches microbial supply of osmolytes [60]. Extended periods of water stress (e.g., 

several days or more) have also been shown to increase thermal sensitivity in insects, reducing tolerance 

of extreme heat [61] (Figure 2D). 

Nutrition and Diet: Nutritional composition of a diet has been shown to affect the heat tolerances of 

insects and plants. Possible mechanisms of this feedback include the modification of lipid membranes, 

substrate availability for ATP synthesis, availability of key amino acids and the alleviation of oxidative 

stress. For example, a key mineral, magnesium (Mg), is crucial for photosynthesis with Mg deficiency in 

plants leading to increased oxidative cellular damage. Mengutay et al [62] show how supplementation of 

Mg can improve heat tolerance in maize and wheat, with visual leaf damage being aggravated in both 

species under heat stress when Mg supply is low (Figure 2E). Similar examples have been identified in 

insects. For example, in Drosophila melanogaster larvae fed a high protein diet were able to withstand 

higher temperatures compared to those fed a high carbohydrate diet [63] (Figure 2F). 

The above list is not exhaustive. Many environmental stressors, such as pollution and salinity, along with 

interactions between environmental stressors and cross-trophic interactions among species exposed to 



those stressors can also impact thermal sensitivity can also impact thermal sensitivity [20,54]. The point 

we make here is that to fully model heat sensitivity, it is important to account for the abiotic and biotic 

environment in which an organism experiences heat stress where possible. 

 

Figure 2- Examples of environmental factors impacting thermal sensitivty in plants and animals. 

A & B) microbial interactions. C & D) drought and water stress. E & F) nutrition and diet. See text for 

more explanation. Created with BioRender.com. 
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Glossary 

Coexistence: Coexistence occurs when two populations of two species are able to persist in each other’s 

presence indefinitely under constant, equilibrium conditions. Coexistence can be defined by differences in 

how species compete or through the ability of species to invade environments successfully when the other 

species is present at low abundances. The majority of known models of coexistence rely on equilibrium 

conditions. A condition at odds with extreme heat events and directional climate change. However, the 

emphasis of many coexistence models on the importance of species interactions in variable environments 

makes coexistence models and associated frameworks for understanding community assembly and 

diversity maintenance are potentially useful for exploring whole community responses to extreme events. 

Microclimate: Microclimates are the local atmospheric conditions experienced by organisms, which can 

differ substantially from the broader atmospheric conditions. Microclimates are influenced by factors 

such as vegetation cover, soil properties, and topography, and can significantly affect the thermal 

environment experienced by organisms 

Functional traits: Functional traits are the measurable characteristics of organisms that influence their 

performance and fitness, such as body size, reproductive output, and metabolic rates. In the context of 

extreme heat, functional traits can be used to categorize species based on their responses to thermal stress 

Biophysical models: Biophysical models capture the balances of heat, water, and other aspects of energy 

and mass exchange between organisms and their microclimatic environmment to predict how organisms 

function, survive, and behave in varying environments. 

Thermal load sensitivity (TLS) models: Models that use biophysical principles to quantify thermal 

exposure and thermal load and integrate them with physiological models that capture the dynamics of 

damage and repair processes in driving lethal and sublethal impacts on tissues, organs and whole 

organisms. 

Vital rates: Demographic parameters that determine how populations change over time. They include 

measures of birth, death, growth, and reproduction. 

Physiological models that capture the effects of extreme heat across life 219	

Dynamic Energy Budget (DEB) models are physiologically explicit life-cycle models of energy and mass 220	

uptake and conversion that predict key life-history transitions, growth, reproduction and survival 221	

(senescence) through time [14,64]. DEB models consider organisms as a thermodynamic system (adhering to 222	

energy-mass balance) capturing the exchange of food, water, respiratory gases and metabolic waste 223	



throughout the life cycle [18]. DEB models can translate short-term (hourly) variation in factors such as 224	

temperature, toxins (e.g., toxicants, [65]) and resource availability (nutrients) [66,67] into long-term (days, 225	

months, years) effects on development, growth, reproduction and survival [15,18]. DEB theory, when 226	

combined with biophysical models more generally, allows the full water budget to be computed to account 227	

for heat stress impacts of a hydric nature [18]. Perhaps most importantly, DEB theory calculates the life cycle 228	

trajectory of an organism and so can account for the effects of timing of heat wave impacts relative to life 229	

stage. Applied to multi-species assemblages, DEB models can capture how different species’ life cycles are 230	

impacted by heat and interact with each other to predict how traits such as birth, age at maturity, reproductive 231	

events, energy flow and lifespan vary across species. DEB models integrate many processes in a parameter-232	

sparse manner, and necessary parameters have been estimated for > 6000 species already (although there are 233	

taxonomic biases) [68,69]. New analytical approaches using phylogenetic imputation methods show promise 234	

for calculating energy budgets for species without data. Such methods have, for instance, already been used 235	

to predict DEB parameters for over 1.3 million animal species [see, 70]. In addition, software packages such 236	

as NicheMapR [33,71] allow for simulations of life-cycles using parameters for diverse species. DEB model 237	

outputs, such as body mass and size, reproductive success and timing, and survival, can be used to 238	

parameterize vital rates needed for population and community models, with additional options to incorporate 239	

eco-evolutionary feedbacks (see Box 2). 240	

Analogously, physiologically-based vegetation models simulate plant growth over time as a function of 241	

carbon, water and nutrient uptake and use, following mass balance principles [31]. Model drivers typically 242	

include incident radiation, humidity, rainfall, and soil properties as well as air temperature. The models 243	

capture the direct effects of temperature on key physiological processes, such as photosynthesis, respiration 244	

and phenology, as well as the indirect effects via feedbacks on the vegetation water balance and soil nutrient 245	

availability. Short-term responses to temperature are captured well in these models through representations of 246	

enzyme kinetics, but representation of longer-term responses remains challenging because plants show high 247	

flexibility in their ability to acclimate to ambient temperatures [72]. Another area under active research is 248	

capturing plant damage and death from hot-dry weather extremes. Considerable progress has been made by 249	

representing the plant hydraulic system explicitly, enabling the risk of hydraulic failure to be predicted under 250	

conditions of low rainfall and high evaporative demand [73]. Direct damage to plant tissue from extreme heat 251	

has yet to be represented in such models, but the thermal death time framework outlined above offers a 252	

promising way forward. 253	



Mechanistic approaches that ‘speak’ to population and community ecology 254	

under extreme heat 255	

Coexistence frameworks offer an intriguing approach that can bring the many elements discussed above 256	

together to understand whole community responses to extreme climate events. Modern coexistence theory 257	

[MCT; [74]] uses simple two-species individual-based population growth models, such as Beverton-Holt or 258	

Ricker models [75,76], to determine how interactions between species at the individual level lead to 259	

“coexistence”. 260	

Population dynamic models calculate the individual fitness effect of interactions [77]. These models can 261	

incorporate variation in the environment [21] and in the outcome of interactions themselves [78]. As these 262	

models use the same fitness measures as DEB models they offer a population modelling framework to add 263	

thermal biology to community diversity predictions. This is because population dynamical models can be 264	

combined, for example as networks [79], and compared between microsites with different biophysical 265	

properties and composed of species with different thermal responses to their microenvironment. For example, 266	

Bimler et al [79] used this approach to determine which species were keystone species under shady and 267	

sunny portions of the same plant communities. 268	

Modified vital rate functions (which can be used with any measure of fitness) can be used in population 269	

growth models to compare population growth predictions for individuals in areas with different biophysical 270	

properties and/or thermal tolerances. The outcomes from DEB models could be used to directly parameterise 271	

growth rate models or used to predict functional traits, which at a community scale can be used to 272	

categorize species with different response and effect profiles. Horizontal interaction networks can then be 273	

used to determine how important microclimates with different biophysical properties are for species 274	

interactions (defined by their fitness responses to their thermal environment) within the context of whole 275	

ecologocial communities. These networks can also be made to target particular types of interaction effects or 276	

responses to extreme heat events, or used to compare how species interact in areas with different thermal 277	

landscapes. The limitation of these methods is that they are data hungry, but even this can be handled by 278	

categorizing species by ‘trait’ or shared phylogenetic relationships, which are simplifications shown to be 279	

effective at reducing model complexity without sacrificing model accuracy [80]. 280	

Population growth models used in coexistence frameworks are best suited to sessile organisms as there is no 281	

mechanism within them to capture the effects of individuals moving to different environments or changing 282	

who they interact with. Recent advances of coexistence modelling have resulted in the development of 283	

coexistence models that incorporate variance in interaction outcomes and intrinsic fitness within the context 284	

of heterogeneous environments [e.g., 22]. 285	



Box 2: Integrating eco-evolutionary feedback within a systems-modelling framework 

Extreme environments can act as a potent selective force triggering evolutionary change in populations 

[81–83]. Evolutionary responses will depend on the amount of phenotypic and genetic variation present 

in a population and exposed to natural selection along with the strength of selection on phenotypes. 

Extreme environments pose unique challenges for predicting evolutionary change because they are, by 

definition, rare events. Adaptive evolution will therefore depend on the frequency of extreme 

environments and the underlying genetic correlation between traits expressed across environments and 

other conditions [81]. In addition, phenotypic plasticity can result in both maladaptive and adaptive 

outcomes by either shielding selection on genetic variation or by facilitating persistence and selection, 

making it difficult to predict the long term effects of plasticity and adaptive evolution in building 

population resilience [82,84–87]. 

Plasticity and evolution can be incorporated into a systems modelling framework by allowing 

environments to govern ‘trait’ development (plasticity) and by incorporating selection and genetic 

(co)variance estimates for ‘traits’ within these models (evolution). We speak of ‘traits’ broadly here 

because these need not be traits typically thought of by evolutionary ecologists (e.g., body mass, vital 

rates). Rather, ‘traits’ can include the parameters within models that establish functional traits within a 

population (e.g., DEB parameters)[88]. Plasticity can be captured by mapping trait development to the 

environment. In contrast, evolutionary change takes place in multivariate trait space where genetic 

variance and covariance between traits (i.e., constraints) along with varying patterns of selection can be 

used to predict trait changes across generations. One simple way to make such predictions is by using the 

multivariate breeders equation [89]: 

𝛥𝐳‾ = 𝐆 ⋅ 𝛃  (2) 

where 𝛥𝐳‾ is the vector of changes in the mean trait values, 𝐆 is the genetic covariance matrix and 𝛃 is the 

vector of standardised selection gradients that regress each trait on relative fitness (i.e., 𝛚 = 𝛂 + 𝛃𝐓 ⋅ 𝐳 +

𝐞; [90]). While the multivariate breeders equation can be useful for predicting short term evolutionary 

responses (i.e., one or a few generations) it likely has limited in predictive power over longer timespans 

because of changes in heritability and selection through time [83,90]. 

Measuring and incorporating both plasticity and evolution into our proposed systems modelling 

framework is challenging because such models usually focus on one or a few ‘traits’. Studies that have 

attempted to measure plasticity and evolutionary potential in traits demonstrate how such processes can 

shape outcomes in important ways [61,91–95]. For example, applying a TDT framework to isogenic lines 

of Drosophila melanogaster, Leiva et al [95] show evidence for genetic (co)variation in both upper 



thermal limits (𝐶𝑇,-.) and also thermal sensitivity (i.e, 𝑧, slope from TDT curves). Thermal sensitivity in 

Drosophila species is also known to respond plastically to temperature [91]. In the alpine plant 

Wahlenbergia ceracea there is little genetic variation in plasticity, despite ample plasticity in response to 

warming. Thus adaptive evolution of plasticity is unlikely in this species [96]. Beyond these examples, 

few studies have attempted to quantify genetic variation in plastic responses to warming effects including 

extreme heat events, and among those that have, evidence that such plasticity is adaptive remains elusive 

[96,97]. One challenge in assessing the adaptive evolution of plasticity is that trait values themselves are 

also under selection in the different environments that elicit a plastic response; thus, selection on 

plasticity reflects both selection on trait means in a given environment and selection on the full range of 

phenotypes across environments [89,96]. 
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Box 3: Interacting species interacting with people: social-ecological systems 

Extreme heat may threaten the services that natural and agricultural ecosystems provide to people [98]. 

For example, loss of output from production ecosystems will have substantial economic consequences for 

a local area. Degradation of natural ecosystems may affect their regulating services, such as flood 

mitigation. Impacts on cultural services may be severe for communities that are closely connected to a 

landscape Figure 3. 

People may respond to the impacts of extreme heat on ecosystems in a variety of ways. Farmers or 

ecosystem managers may introduce new species, alter management practices or farm remaining 

unaffected areas more intensively. Thermal stress may ultimately result in people leaving areas, 

potentially making remaining human communities more vulnerable through loss of resources, services 

and community [99]. Thermal risks to ecosystems may also precipitate declines in individual wellbeing, 

and these consequences may accrue differently across regions and peoples [100]. Many of these impacts 

and responses, however, are poorly understood. 

Thermal stress on ecosystems can affect not only local communities but also human dominated systems, 

such as cities, far away from affected ecosystems. Cities are intrinsically connected to and rely on other 

regions to maintain their functionality [101,102]. For example, extreme heat stress may affect essential 

ecosystem services, such as food production [103], which can in turn affect price and access to food for 

people living in urban centers, with financial, economic and health consequences. The impacts on local 

agricultural communities could lead to loss of livelihood, pushing people in rural areas to migrate to cities 

[104]. These external pressures will interact with a system that is already constrained by multiple 

stressors, including direct impacts imposed by extreme heat and other aspects of climate change such as 

extreme rainfall and flooding. If sufficiently widespread, economic and political destabilisation may 

occur as has already been observed in some parts of the world [105]. 

Understanding the relationships between people and nature requires adopting a social-ecological systems 

perspective, where people and nature are interdependent and intertwined [106]. Social-ecological models 

aim to capture social and natural systems along with their interactions [107]. They are conventionally 

built using process-based modelling frameworks such as agent-based models, dynamical systems models 

or state-and-transition models [108]. Process-based approaches are critical to understanding how 

emergent social-ecological phenomena develop [109], such as tipping points, traps or other dynamics. 

Such models can display complex emergent behavior resulting from interactions within the social-

ecological system. For example, responding to decreased productivity from extreme heat by farming 

more intensively could lead to a maladaptation or ‘lock-in’ from which it is difficult to escape [110]. 



 

Figure 3- Impacts of extreme heat on natural and production ecosystems will cascade to affect 

people, both locally and in distant human-dominated systems such as cities. Decisions made by 

people in these communities in response to these changes will affect the ecosystems on which they rely, 

creating an interdependent social-ecological system. Created with BioRender.com. 
	

‘Hot’ solutions for a changing world 287	

Extreme heat will have dramatic and widespread effects on the socioecological systems that humans rely 288	

upon (Box 3). For example, under current global climate change scenarios, each degree Celsius increase in 289	

global mean temperature is estimated to reduce the global yield of wheat by 6.0% and soybean by 3.1% 290	

[103], exacerbating food shortages. A systems modelling approach can provide us with quantitative tools to 291	

make informed predictions, plan interventions and evaluate various scenarios for mitigating the impacts of 292	

extreme heat. For example, microclimate and biophysical models can allow for informed predictions about 293	

how to mitigate heat stress to crops (e.g. with irrigation interventions), while also considering how such 294	

interventions impact pests and beneficial insects (see Figure 4 and Case Study 4 & 5 in the Supplementary 295	

Online Material). Identifying and/or modifying the thermal suitability of landscapes to benefit plants and 296	

animals under extreme heat shows immense promise [18]. Additionally, as our understanding of the 297	

mechanisms associated with heat tolerance improve, genetic tools, environmental manipulations and artificial 298	

breeding can be used to enhance thermal tolerance creating more resilience to extreme heat events [e.g., 56], 299	

although the extent to which resilience can be actively manipulated remains unknown in many species. 300	

Integrating these solutions into a systems modelling framework will then allow for a calculated 301	

understanding of the viability of such approaches in real world situations. 302	

https://daniel1noble.github.io/thermal_tol_interactions/
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Figure 4- How a systems modelling approach to extreme heat can be used to inform solutions. A 

hypothetical example of an insect-plant interaction. (A) To counteract an extreme heat wave event, 

different watering scenarios to cool plants of agricultural importance during heat stress could be applied. 

Of critical importance is understanding how much water to apply to a system to keep plants cool while 

minimizing: 1) water use, given that heat waves are often associated with extreme drought conditions and 

2) pest outbreaks, given watering may create more ideal conditions for pest insects. (B) We can obtain 

actual or predicted future climate data from weather stations or climate models for rainfall and create 

alternative scenarios where rainfall layers are manipulated by modifying the watering regimes during a 

heatwave event. We could then assess how adding 2, 5, 10, or 20 mm d-1 of water and compares to original 

rainfall. (C) Adding water during an extreme heat event should result in cooling effects and by using 

microclimate and biophysical models we can quantify how much cooling would occur by calculating leaf 

temperature across all scenarios. Adding 5 mm of water can result in a 3.63°C decrease in leaf temperature. 

Adding more water does not result in significant gains in cooling. Note, in this simple example, we have 

assumed vegetation properties to remain constant; by linking in a crop growth model we could also 

estimate how the additional water would affect plant growth and yield, enabling the trade-offs between 

plant shading, leaf temperatures, crop health and yield to be explored. (D) We can then use the 

microclimatic conditions created by the plant to better understand how these different microclimates 

impact grasshopper pest body temperatures using biophysical models in combination with dynamic energy 

budget models that simulate the entire life-cycle of the grasshopper keeping tabs on how energy and mass 

flow between growth (struture) and (reproduction) during adult stages. These models also include survival 

estimates through time (senesence) using hazards functions allowing us to estimate an intrinsic growth rate 

parameter (i.e., 𝑟,-.) for the pest under the different watering scenarios. (E) Using estimates of intrinsic 



growth rate we can then estimate the population growth rate of grasshoppers using a simple Ricker’s 

population growth model applied to the different scenarios. Assuming we would add 5 mm d-1 each season 

during heatwave events, grasshopper populations would be suppressed over time whereas adding 2 mm d-1 

results in grasshopper population growth, leading to heatwave associated outbreaks. Here, the optimal 

solution is thus 5 mm d-1 of water added to both 1) cool plants to protect them during a heat wave and 2) 

supress pest outbreaks. Created with BioRender.com. 

Outstanding Questions 

1. For data deficient species, can we use parameters of closely related species at predicting the 

impacts of extreme heat for species lacking data? 

2. How can we capture rapid and longer-term evolutionary responses of interacting species to 

extreme heat in a systems-modelling framework? 

3. Can we use thermal load sensitivity models to describe heat damage to plant tissues? 

4. For plant species, can we build and couple dynamic energy budget models to predict how extreme 

heat will impact tissue and life cycle dynamics more accurately? 

5. How do multiple stressors in anthropogenically modified environments interact with extreme heat 

to impact organisms, populations and communities? 

6. How will extreme heat impact species coexistence and functional trait diversity in natural and 

agricultural systems? 

7. How can we quantify microhabitat complexity to robustly and accurately capture the heat 

responses of animal, plants and microbes and their interactions? 

8. How will thermal stress to natural ecosystems and food production systems impact people? 

Concluding Remarks 303	

We have discussed ways in which a better understanding of the impacts of extreme heat on plant and animal 304	

systems can be captured through the coupling of models from diverse research fields – models that translate 305	

the effects of atmospheric conditions to the biophysical experiences of organisms and how this then scales up 306	

to impact individuals, populations and communities. As part of demonstrating the ways in which these 307	

models can be coupled, we have developed a series of case studies to show how a systems modelling 308	

framework can be approached (see Supplementary Online Material). While our case studies are necessarily 309	

hypothetical, they move us one step closer to implementing a systems modelling approach in real-world 310	

systems. However, many challenges and gaps remain (see Outstanding Questions). Developing a systems 311	

modelling framework will require collaboration between different research fields, including biophysics, 312	

https://daniel1noble.github.io/thermal_tol_interactions/


physiology, ecology and evolutionary biology as well as collaboration with socio-ecologists. Nonetheless, by 313	

working collaboratively and integratively we can develop a more quantitative and predictive understanding 314	

of the impacts that extreme heat will have on organisms, populations, and communities along with how to 315	

mitigate these impacts to preserve diverse systems now and into the future. 316	
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