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1. ABSTRACT 11 

Climate velocity—the speed and direction species must move to track climate 12 

change—is often estimated without accounting for vegetation-driven microclimatic variation. 13 

Using airborne lidar data from a tropical montane rainforest, we generated high-resolution 3D 14 

maps of topography and canopy structure to mechanistically model near-ground and within-15 

canopy microclimates. Microclimate-derived temperature velocities were slower, revealing 16 

reduced dispersal demands. For terrestrial species, fine-scale maximum temperature velocities 17 

were frequently oriented toward dense vegetation patches in addition to higher elevations, 18 

contrasting traditional macroclimate-based predictions. Arboreal organisms could further 19 

reduce velocities by moving vertically within the canopy to cooler microhabitats, highlighting 20 

the role of 3D habitat structure in mitigating exposure. These results demonstrate that 21 

vegetation complexity creates localized microrefugia, enabling species persistence under 22 

warming by altering both the magnitude and direction of required range shifts. Our findings 23 

emphasize the need to integrate fine-scale habitat heterogeneity into climate resilience 24 

strategies to more accurately forecast biodiversity responses. 25 

  26 



Climate change is causing the redistribution of species globally, with range shifts 27 

generally occurring toward higher latitudes and elevations1–3. Climate velocity indicates how 28 

quickly and in which direction suitable climatic conditions for species are shifting locally4,5 29 

and estimates the distance per year a species occurring at any given location would have to 30 

move to keep pace with climate change4,5. However, range shifts often lag behind rates of 31 

climate velocity or occur in directions opposing dominant climate gradients, suggesting 32 

species are unable to migrate fast enough to keep pace with the effects of global warming2,6–8. 33 

Local climate velocity is calculated as the temporal rate of climate change divided by 34 

the spatial rate of climate change, with climate variables typically extracted from global 35 

databases of free-air conditions at relatively coarse spatial scales4,5,9. However, these data 36 

overlook the role of climatic buffering by forest canopies, which may reduce velocities and 37 

alter their direction by providing local refugia that allow species to persist in increasingly 38 

inhospitable landscapes10–13. A better understanding of local climate velocities that account 39 

for microclimate variability is therefore urgently needed to provide insight into the impacts of 40 

climate change on range shifts14,15. 41 

Forests are three-dimensional ecosystems where complex vegetative structures 42 

produce microclimatic variability, both horizontally along the forest floor and vertically 43 

within the canopy12,16,17. By reducing solar radiation and airflow, vegetation reduces 44 

temperature extremes, which can produce highly heterogeneous microclimates beneath 45 

structurally complex canopies that influence the distribution of terrestrial and arboreal 46 

species12,17–19. As the climate warms, species may move along microclimate gradients 47 

produced by vegetation to maintain their thermal niche20,21. Building upon previous research 48 

addressing macroclimate velocities4,5,22,23, we model microclimates to examine how 49 

vegetation impacts the speed and direction of microclimate velocities along forest floors and 50 

within the three-dimensional structure of forest canopies at three spatial grains, as climate 51 



change may impact species at the scale of a few centimeters or hundreds of meters, depending 52 

on organism size24,25. 53 

Tropical forests are threatened by novel high temperatures, which are contributing to 54 

species’ redistribution26,27. Our study focused on tropical montane forests in northern 55 

Trinidad, where an airborne lidar scan allowed us to generate a digital elevation model 56 

(DEM), canopy height model (CHM), and map of the vertical distribution of plant area 57 

density across 1300 km2 of the mountain range, spanning 900 m in elevation (Supplementary 58 

fig. Error! Reference source not found.). We integrate these maps with ERA5 macroclimate 59 

data in a mechanistic microclimate model to predict maximum temperature of the warmest 60 

month and minimum temperature of the coldest month across the land surface and within the 61 

canopy at 20 m, 100 m, and 1 km resolutions within forests for 1960 and 2015 (Fig. 1; 62 

Supplementary figs. 2, 3). We then calculate microclimate velocities across spatial scales over 63 

the land surface and advance microclimate research by extending the climate velocity 64 

algorithm to three-dimensions within the canopy. These velocities represent the distance and 65 

direction that a ground-dwelling or arboreal species at any given location would need to move 66 

locally to track warming temperatures (see methods). 67 

2. LOCAL VARIATION IN FOREST STRUCTURE REDUCES CLIMATE 68 

VELOCITY 69 

In montane ecosystems, including in the tropics, species are lagging behind rates of 70 

climate change6,28. By decoupling microclimate from macroclimate conditions and/or 71 

increasing spatial microclimate heterogeneity, vegetation could reduce microclimate 72 

velocities. To examine impacts of vegetation on climate velocities, we compared the average 73 

temporal rate of climate change, spatial rate of climate change, and climate velocity calculated 74 

based on free-air and microclimate conditions at 1 km and 100 m spatial resolutions (see 75 

methods). 76 



Accounting for impacts of vegetation on microclimates reduced climate velocities for 77 

maximum temperatures across spatial scales (Fig. 2; Extended data table 1; Extended data 78 

fig. 1). These reductions could have arisen from decreases in the temporal rate or increases in 79 

the spatial rate of climate change, recalling that climate velocity is calculated as the temporal 80 

rate divided by the spatial rate. We found that changes in temporal rates were not responsible, 81 

as they were similar to, or exceeded, free-air warming rates (Fig. 2, Supplementary fig. 4). 82 

Given that understories are experiencing novel temperatures across the tropics26, it is 83 

unsurprising that the temporal rate does not substantially contribute to climate velocity 84 

declines. 85 

Instead, strong increases in the spatial rate of climate change generated by local 86 

variation in canopy structure and therefore buffering capacity were responsible for reducing 87 

microclimate velocities29,30 (Fig. 2; Supplementary fig. 5). Across the land surface, maximum 88 

temperature velocities were 1.6-times slower than free-air velocities at a 1 km resolution and 2 89 

times slower than free-air velocities at a 100 m resolution (Fig. 2; Extended data table 1). 90 

Over 55 years, these reduced velocities shorten the distance that maximum temperature 91 

isotherms shift from 4.2 km to 2.7 km at a 1 km resolution and from 1.1 km to 540 m at a 100 92 

m resolution. Differences were greater between free-air and 3D microclimate velocities due to 93 

the additional vertical microclimatic heterogeneity. Relative to free-air velocities, 3D 94 

microclimate velocities were 161.3-times slower at a 1 km resolution and 52-times slower at a 95 

100 m resolution. These declines translated into shifts of only 15 m and 11 m over 55 years. 96 

Similar patterns were observed for minimum temperatures (Fig. 2; Extended data fig. 2). 97 

Increases in the spatial rate of climate change reduced land-surface and within-canopy 98 

velocities relative to free-air velocities across spatial resolutions, though the temporal rate of 99 

microclimate change was also slower than free-air conditions (Extended data table 1; 100 

Supplementary figs. 6, 7). 101 



Slower microclimate velocities suggest that species’ ranges may not have to shift as 102 

quickly as previously thought to keep pace with rates of climate change, because high 103 

microclimate heterogeneity produced by variation in vegetation density shortens the distance 104 

organisms must move to reach cooler climates. Examining range shifts in the context of free-105 

air velocities may therefore overestimate climatic lags in redistribution. Overestimation may 106 

be particularly prevalent in tropical lowland forests, where low free-air temperature variation 107 

produces high climate velocities5. Accounting for variation in vegetation structure and 108 

understory microclimate may improve our understanding of species’ redistribution patterns in 109 

these regions. 110 

3. GRANULARITY OF CLIMATE ESTIMATES 111 

Within forests, species respond to climatic conditions at a variety of spatial scales 112 

from centimeters to kilometers depending on the size of the organism25,31. We examine the 113 

impact of spatial grain on microclimate velocities by comparing velocities calculated at 1 km, 114 

100 m, and 20 m resolutions. 115 

Maximum temperature velocities mirrored patterns previously observed for 116 

macroclimate velocities, increasing at coarser spatial grains due to the inverse relationship 117 

between spatial grain and climatic heterogeneity9,23,31. At fine spatial grains, the capacity to 118 

detect variation in the structural complexity of vegetation increases microclimate 119 

heterogeneity12. Microclimate velocities at a 20 m resolution across the land surface were 120 

therefore low, at a median rate of only 3.4 m/yr. At coarser spatial grains, microclimate 121 

variability declined as pixels were averaged over space, while the temporal rate of climate 122 

change was less affected (Fig. 3). Lower spatial rates of climate change therefore increased 123 

microclimate velocities to median rates of 9.8 m/yr at a 100 m resolution and 48.4 m/yr at a 1 124 

km resolution. However, the impact of spatial grain largely disappeared in three-dimensions, 125 

with over 99% of within-canopy velocities under 1 m/yr, due to high microclimatic 126 



heterogeneity imposed by the vertical thermal gradient (Fig. 3; Extended Data Table 1). 127 

Minimum temperature velocities exhibited a similar pattern (Fig. 3; Extended Data Table 1). 128 

The rate at which species are expected to move thus depends on the spatial grain at 129 

which they perceive microclimate. Species that respond to microclimate at larger spatial 130 

grains will need to shift ranges more quickly to keep pace with climate change, because fine-131 

grained microclimate heterogeneity may not provide thermal refuge. In contrast, species 132 

responding to climate conditions at finer spatial scales or in three-dimensions may be able to 133 

move shorter distances to remain in suitable climate conditions. For example, heavily shaded 134 

understory environments, as well as structural microhabitats, including tree holes and leaf 135 

litter, provide cool microclimates that reduce exposure to extreme temperatures32,33. These 136 

slower velocities at fine spatial grains may represent opportunities for thermoregulatory 137 

behavior rather than range shifts to reduce exposure to temperature extremes within thermally 138 

variable local environments21. 139 

4. LOCAL VARIATION IN FOREST STRUCTURE ALTERS THE DIRECTION OF 140 

CLIMATE VELOCITY 141 

Traditional views of species range shifts assume movement toward higher latitudes 142 

and elevations as species track their preferred thermal niche14. However empirical evidence 143 

challenges this notion2,7,8. For example, a recent study by Rubenstein et al.8 found that only 144 

47% of documented range shifts align with these expectations, which may be attributed to 145 

numerous factors, including persistence in local microclimates12 or range shifts along thermal 146 

gradients that oppose latitudinal or elevational gradients13. To explore the impact of 147 

vegetation on the direction of climate velocity, we examined whether climate velocities were 148 

directed upslope or toward areas with denser vegetation using circular correlations34,35 149 

between the angle of climate velocity in the latitude-longitude plane and the angle a species 150 

would need to move to reach higher elevations or denser vegetation. We then graphed the 151 



distribution of differences between the angle of climate velocity and the direction of higher 152 

elevation or denser vegetation to visualize these correlations (Fig. 4). 153 

The direction of free-air velocities for maximum and minimum temperatures at 1 km 154 

and 100 m spatial resolutions were directed upslope, exhibiting strong positive correlations 155 

with the direction needed to reach higher elevations and not with the direction needed to reach 156 

denser vegetation (Figs. 4; Extended Data Table 1). Small differences between the direction of 157 

free-air climate velocities and the direction of higher elevations support the pervasive view 158 

that species will shift upslope in the tropics36. 159 

At the same spatial resolutions, land surface velocities for maximum temperatures 160 

exhibited positive correlations with both the direction of higher elevation and the direction of 161 

denser vegetation (Figs. 4; Extended Data Table 1). Reducing the spatial resolution to 20 m 162 

produced greater variability in velocity directions, but maintained positive correlations with 163 

denser vegetation, while exhibiting negative correlations with the direction of higher 164 

elevation. Dense vegetation may therefore reverse the direction of range shifts by altering 165 

local climate gradients. 166 

When dispersal capacity, biotic interactions, or life history traits prevent upslope range 167 

shifts at a pace matching that of climate change1,6,7, species may find refuge from increasing 168 

maximum temperatures by moving to locally denser forest patches. Forest density is a strong 169 

predictor of microclimatic decoupling, reducing diurnal temperature ranges and increasing 170 

maximum temperature offsets relative to more sparsely vegetated areas19,37. These 171 

vegetatively dense microclimatic refugia may function similarly to topoclimate refugia, which 172 

are found in convergent environments, such as valley bottoms, and have provided thermal 173 

refuge to species during past periods of climatic instability22. Maintaining dense forest patches 174 

within structurally diverse environments may therefore slow range contraction and extirpation 175 

of heat-intolerant species and reduce thermophilization of understory communities38. 176 



However, movement to denser vegetation may not protect populations at warm range 177 

edges, which may already be restricted to the coolest microhabitats in the local landscape13. 178 

These populations are unable to respond to slow microclimate velocities directed toward 179 

dense vegetation and must instead shift upslope to reach cooler environments. Furthermore, 180 

populations at warm range edges that are increasingly restricted to denser forest patches may 181 

face density declines as the extent of suitable habitat shrinks. Therefore, while dense forest 182 

patches may increase short-term persistence in the landscape, populations may face 183 

extirpation as the geographic extent of locally suitable microclimates shrink with increasing 184 

temperatures. Species responding to fine scale climate gradients will thus depend on the 185 

conservation and restoration of forests with complex vegetative structure where taller and 186 

denser patches offset maximum temperatures that may otherwise exceed the narrow critical 187 

thermal limits of tropical understory species39,40. 188 

Land surface velocities for minimum temperatures were also directed upslope at a 100 189 

m resolution, but in contrast to maximum temperatures, exhibited negative correlations with 190 

the direction of denser vegetation at 100 m and 20 m resolutions (Extended Data Table 1), 191 

because understory thermal minima are generally warmer than macroclimate conditions41,42. 192 

Minimum temperatures have strong impacts on species distribution limits at cold range edges, 193 

particularly at higher latitudes43. While potentially having a lower impact on range dynamics 194 

than maximum temperatures in the tropics, the direction of minimum temperature velocities 195 

may therefore be especially applicable to expansion dynamics at cold range edges in 196 

temperate and boreal forests, and reflect local reductions in minimum temperature constraints 197 

that could broaden microhabitat use for peripheral populations. 198 



5. 3D VELOCITIES DEMONSTRATE ADDITIONAL REFUGIA FOR ARBOREAL 199 

SPECIES 200 

In response to climate change, species may move across multi-dimensional climate 201 

gradients20. In addition to elevational gradients, arboreal species can move across vertical 202 

thermal gradients, which can exhibit temperature increases from the ground to the canopy up 203 

to 1.6 times the change in temperature across 200 m in elevation44. To examine how the 204 

spatial dimensionality of climate influences velocities, we calculated the direction of 3D 205 

temperature velocities, which represent directions in which arboreal species would need to 206 

move to keep pace with climate change. Rather than being directed toward higher elevations 207 

or denser vegetation (Fig. 4), over 88% of maximum temperature velocities across spatial 208 

scales were directed vertically downward. However, downward shifts in temperature 209 

isotherms were not ubiquitous for either maximum or minimum temperatures. Maximum 210 

temperature velocities directed vertically upward occurred more frequently in areas with 211 

sparser vegetation (Extended Data Fig. 3), where vertical temperature gradients are reversed, 212 

such that the understory is warmer than the canopy16 (Extended Data Fig. 4). Furthermore, 213 

only 52.4%, 66.9%, and 77.8% of minimum temperature velocity vectors exhibited downward 214 

movement at 20 m, 100 m, and 1 km spatial scales, respectively, due to weaker vertical 215 

gradients in minimum temperatures (Extended Data Fig. 4). 216 

For tropical arboreal species whose ranges will be most impacted by increasing 217 

maximum temperatures, slow downward-directed velocities indicate opportunities for 218 

organisms to dwell further down forest canopies without the need to migrate over the land 219 

surface. Indeed, vertical shifts in habitat use have been documented across short spatial and 220 

temporal gradients for arboreal frogs, which shift toward the ground at lower elevations and 221 

during the dry season44,45. Whether these thermoregulatory behaviors persist over longer time 222 

spans in response to warming climates remains unknown. 223 



Yet, the full 3D forest environment is not available to all species. Resource 224 

distributions, including food and light, limit vertical habitat availability for arboreal plants and 225 

animals. For example, low light in the lower canopy may prevent colonization by epiphytes, 226 

and predator-prey, mutualistic, and competitive interactions may prevent vertical 227 

reorganization of animal communities despite changing climates46. Furthermore, arboreal 228 

species have evolved mobility traits, such as flying and gliding locomotion and adhesive toe 229 

pads46, which may compromise their success in lower canopy or terrestrial environments 230 

where vegetation structure differs. If species are unable to extend their vertical habitat use, 231 

ranges could become vertically compressed into narrower canopy strata47. After reaching the 232 

lower limit of suitable vertical habitat, arboreal species would be expected to move in the 233 

speed and direction of 2D velocities within the canopy, which exceed velocities across the 234 

land surface (Supplementary methods; Supplementary table 1; Supplementary Fig. 8). 235 

Although georeferenced occurrence records for numerous taxa are now readily accessible 236 

through platforms such as GBIF48, these records rarely contain information regarding height 237 

above the ground. Combining our models with empirical data on shifts in vertical habitat use 238 

will be critical to evaluate the extent to which species follow 3D climate velocities. 239 

6. TOWARD A GENERAL UNDERSTANDING OF MICROCLIMATE VELOCITY 240 

Overall, we found that accounting for impacts of vegetation on climate variability 241 

reduces velocities and alters their direction. Notably, microclimate velocities revealed an 242 

additional dimension to isotherm shifts determined by the density of vegetation and height 243 

above ground. In addition to shifting across elevations, maximum temperature velocities were 244 

often directed toward denser vegetation or toward the ground, while minimum temperature 245 

velocities were often directed toward sparser vegetation at fine spatial resolutions. Species 246 

may therefore reduce exposure to warming maximum temperatures by increasing their use of, 247 

or becoming restricted to, understory habitats beneath dense vegetation, reflecting the multi-248 



dimensionality of range shift dynamics that are increasingly recognized as critical for 249 

understanding species’ redistribution in a changing climate20. 250 

While our study is restricted to temperature velocities within a tropical montane 251 

system, the mechanistic nature of the microclimate model and climate velocity calculations 252 

allows our conclusions to be generalized to other biomes, such as temperate and boreal forests 253 

where minimum temperatures strongly impact cold range limits43. Our approach could also be 254 

used to evaluate the velocity of microclimate variables associated with water stress, such as 255 

vapor pressure deficit. At macroclimate scales, diverging precipitation and temperature 256 

velocity may prevent species from maintaining their historical climatic niche and cause 257 

reshuffling of ecological communities9,49. However, at microclimatic scales, the forest 258 

understory is both cooler and more humid than macroclimate conditions16,17,19. Moving under 259 

dense vegetation to seek refuge from high maximum temperatures would therefore 260 

simultaneously reduce hydric stress, preventing substantial mismatches between the direction 261 

of microclimate velocity vectors representing thermal and hydric conditions. 262 

The capacity to escape high temperatures by exploiting thermally complex landscapes 263 

will be critical for species with limited dispersal capacity and species living in landscapes 264 

with homogeneous macroclimate gradients, such as lowland tropical rainforests5,36. However, 265 

predicted increases in thermal offsets that provide refuge are contingent upon forests 266 

maintaining constant buffering capacity42. Deforestation combined with tree mortality due to 267 

increasing disturbances from droughts, wildfires, and insect outbreaks are reducing canopy 268 

cover globally50,51, yet our models assume constant vegetation cover due to lack of repeat lidar 269 

surveys. Vegetation declines could increase land surface and within-canopy climate velocities 270 

by increasing rates of microclimate warming52 and homogenizing microclimate variability. 271 

Forest understory communities would thus be expected to exhibit faster rates of change 272 

relative to predictions made assuming constant vegetation structure53. Maintaining and 273 



restoring structurally complex forests will therefore be critical to reduce microclimate 274 

velocities and provide microclimatic refugia beneath dense vegetation that offer alternative 275 

routes to prolonging maintenance of climatic niches under global warming. 276 

7. ONLINE METHODS 277 

All analyses took place in the Northern Range of Trinidad, a Caribbean Island that lies 278 

off the coast of Venezuela, due to the availability of a wall-to-wall lidar survey of the island. 279 

7.1. Climate grids 280 

We mechanistically modeled maximum temperature of the warmest month and 281 

minimum temperature of the coldest month for 1960 and 2015, as climate extremes have a 282 

greater impact on species recruitment and survival than climate means54–56. The microclimate 283 

models were initially produced at a 20 m resolution using the R package ‘microclimf’57,58, 284 

which uses the physical laws of thermodynamics to connect macroclimate data to local 285 

microclimate conditions based on the impacts of topography and vegetation on solar radiation 286 

and windspeed, and allows approximation of microclimate conditions in regions of the world 287 

lacking in-situ microclimate sensor networks59. We chose the years 1960 and 2015 because 288 

they best represent average temperature during the decades 1951-1960 and 2011-2020, and a 289 

20 m resolution based on a sensitivity analysis to determine a cell size that captured fine-scale 290 

variation in vegetation structure while minimizing outliers (Supplementary Methods). These 291 

models were produced at 2 m above the ground for land-surface climate estimates, and then 292 

from 5 m to 40 m above the ground at 5 m intervals (i.e. 2 m, 5 m, 10 m, etc.) to estimate 293 

within-canopy conditions (see supplementary methods for detailed description). We then 294 

coarsened these microclimate models to 100 m and 1 km resolutions by aggregating and 295 

averaging grid cells. Regardless of spatial resolution, we refer to these as microclimate 296 

models, as they represent climate conditions experienced by terrestrial or arboreal organisms. 297 



We obtained free-air temperatures at a 100 m spatial resolution, by mechanistically 298 

modelling climate conditions, accounting for impacts of topography, but not vegetation, using 299 

the R package ‘microclima’60. We obtained free-air climate conditions at an ~ 1 km resolution 300 

from CHELSA version 2.161,62 to represent a readily accessible and frequently used 301 

macroclimate data source. Because CHELSA data were not available for 1960, we estimated 302 

the 1960 climate based on offsets between CHELSA and ERA5 data in 1980. We do not 303 

model free-air conditions at a finer resolution because the processes mediating the relationship 304 

between topography and climate act at scales from hundreds of meters to kilometers63. 305 

However, in doing so, we may miss identifying localized thermal extremes in extremely 306 

heterogeneous terrain64. 307 

The climate models are based on first principles of energy conservation57. They first 308 

apply a topographic correction for adiabatic lapse rate and then estimate microclimate 309 

parameters by solving the Penmen-Monteith equation assuming the relationships between 310 

sensible heat fluxes and latent heat fluxes remain in balance. Microclimf has been validated 311 

against over 400 in situ temperature loggers spanning four continents in different land cover 312 

types, including 70 loggers in tropical rainforests, yielding more accurate predictions than 313 

other global climate models (e.g., Worldclim and ERA5)26,65. 314 

Model inputs included spatially gridded data describing macroclimate, topography, 315 

vegetation structure and characteristics, soil type, and habitat type. Gridded climate data were 316 

obtained from ERA566 using the ‘mcera5’ R package67 at an ~25 km resolution and at hourly 317 

time intervals for 1960 and 2015. Topography and vegetation layers were derived from 318 

discrete return Light Detection and Ranging (LiDAR) data, which was collected in June 2014. 319 

The consultant provided classifications for last return ground points and non-ground points, 320 

which were then kriged in ArcMap 10.5 to develop a digital elevation model (DEM) of 321 

ground points and a digital surface model (DSM) of non-ground points at a 1 m resolution. A 322 



canopy height model was developed by subtracting the DEM from the first-return non-ground 323 

points. The height of each point above the ground was computed in LASTools using the 324 

‘lasheight’ function68. The DEM and canopy height model were then aggregated and averaged 325 

to a 20 m resolution. Plant area index (PAI; m2/m2) and plant area density (PAD; m2/m3) 326 

were calculated at a 20 m horizontal resolution and 1 m vertical resolution based on the Beer-327 

Lambert law for light transmittance through a turbid medium and assuming an extinction 328 

coefficient of 0.569. We estimated PAI and PAD seasonality by modeling monthly fluctuations 329 

in MODIS LAI with a generalized additive mixed model and applying a standard offset across 330 

all months based on the difference in MODIS LAI and LiDAR PAI (see supplementary 331 

methods for further details). 332 

We mapped soil type according to the USDA soil classification triangle with sand, silt, 333 

and clay content obtained from the SoilGrids database at a 250 m resolution70,71. We obtained 334 

habitat type data from a classification of Trinidadian vegetation72 and reclassified habitat 335 

types to those specified in the ‘microclimf’ R package to estimate other vegetation 336 

parameters, including the ratio of vertical to horizontal leaf foliage, maximum stomatal 337 

conductance, leaf reflectance, canopy clumsiness, and leaf diameter57 (Supplementary 338 

Material). 339 

To model microclimates in the Northern Range from remotely sensed data, we had to 340 

make assumptions that compromised model accuracy. First, the lack of repeat lidar surveys 341 

required that we assume constant vegetation over time. We also assume that soil and 342 

vegetation properties are constant within broad categories and concur with average parameters 343 

identified by the model. Furthermore, we note that our models are limited to a small area 344 

relative to the global tropics. This is due to computing limitations, as our models at a 20 m 345 

resolution include over 2 million climate velocity estimates across the land surface and over 346 

4.5 million estimates in three dimensions within the canopy spanning the Northern mountain 347 



range of Trinidad for both maximum and minimum temperatures. However, the mechanistic 348 

nature of the climate models and climate velocity calculations allows our conclusions to be 349 

generalized to other regions.  350 

7.2. Climate Velocity 351 

Climate velocity is calculated as the temporal rate of climate change divided by the 352 

spatial rate of climate change4,5 353 

𝛥𝑥

𝛥𝑡
=

𝛥𝐶/𝛥𝑡

𝛥𝐶/𝛥𝑥
 

(Equation 1) 

where 𝑥 is distance, 𝐶 is the climate variable of interest, and 𝑡 is time. We calculated 354 

two-dimensional (land surface) and three-dimensional (within-canopy) microclimate 355 

velocities for maximum temperature of the warmest month (°C) and minimum temperature of 356 

the coldest month (°C) at three spatial scales — 1 km, 100 m, and 20 m resolutions. The 357 

vertical resolution of all 3D velocities was 5 m. We restrict 3D microclimate velocities to the 358 

upper half of the forest as measured from the ground to the canopy, because species 359 

occupying the lower canopy can only move a few meters downwards in response to warming. 360 

We compared 100 m and 1 km microclimate velocities to two-dimensional free-air velocities 361 

at a 100 m resolution (calculated from free-air climate models) and at an ~1 km resolution 362 

(calculated from CHELSA climate data). 363 

Climate velocity calculations were conducted in the R programming language73 364 

adapting code from García Molinos et al.74 (Supplementary methods). We calculated the 365 

temporal rate of climate change as the slope of temperature change between 1960 and 2015. 366 

The spatial rate of climate change represents the average temperature change in °C/m between 367 

neighboring grid cells. For each grid cell, the spatial rate in 2D is defined based on a 3 x 3 368 

grid around the central cell. For each pair of adjacent cells, the temperature differences are 369 

calculated and divided by the distance between cell centers. Differences between cells that 370 

neighbor each other to the west and east were averaged to produce the x dimension of the 371 



spatial gradient, and differences between cells that neighbor each other to the north and south 372 

were averaged to produce the y dimension of the spatial gradient. When calculating averages, 373 

differences that did not include the focal cell were weighted by 1/√2. The 2D spatial rate for 374 

each grid cell, i, is then calculated as 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑟𝑎𝑡𝑒𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2, where 𝑥𝑖 represents the east-375 

west dimension of the spatial gradient for grid cell i, and 𝑦𝑖 represents the north-south 376 

dimentsion of the spatial gradient for grid cell i (Supplementary methods). 377 

To calculate the 3D spatial rate of climate change, we took a similar approach, but 378 

made calculations based on adjacent voxels in a 3 x 3 x 3 cube (i.e., the central voxel and the 379 

6 voxels that share a surface with the central one in the cube). We similarly calculated mean 380 

temperature differences in the x and y dimensions, but additionally calculated the differences 381 

between the central voxel and the voxel below it and the central voxel and the voxel above it. 382 

Vertical differences were divided by the height of each voxel (5 m) to obtain the ℃/m that 383 

temperature changes vertically. These vertical differences were averaged to produce the z 384 

dimension of the spatial rate of climate change. The 3D spatial rate of climate change for each 385 

voxel, i, is then calculated as 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑟𝑎𝑡𝑒𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2. For 2D and 3D calculations at 386 

a 20 m resolution, we applied an elevational correction to account for the increase in distance 387 

that must be traveled if moving parallel to a slope (Supplementary methods). 388 

To calculate climate velocity (m/yr), we took the absolute value of the temporal rate of 389 

climate change divided by the spatial rate of climate change. For 3D velocities, we only 390 

considered vectors that fell within the canopy, which we defined as falling between 50% and 391 

100% of the relative height of the forest (where relative height is calculated as height of the 392 

climate velocity vector divided by canopy height). Additionally, we excluded velocities 393 

occurring in non-forested grid cells, as identified by a habitat classification for Trinidad72, as 394 

well as those that exceeded the 99th quantile. These high values occur when the spatial rate of 395 



climate change is extremely small and do not accurately represent projected range shifts, 396 

particularly when temporal rates of climate change are relatively small. 397 

The direction of climate velocity is the direction of the 2D or 3D vector describing the 398 

spatial rate of climate change. We calculated the direction of climate velocity in the 399 

latitude/longitude plane as the angle from north (i.e., 0∘ = north, 180∘ = south). For 3D 400 

velocities, we additionally calculated the vertical angle of movement from horizontal (where 401 

horizontal is parallel to the ground). The vertical angle ranges from -90∘ to 90∘, where -90∘ 402 

indicates that the velocity vector is pointed directly toward the ground with no horizontal 403 

movement, and 90∘ indicates the velocity vector is pointed directly upward with no horizontal 404 

movement. 405 

To determine whether climate velocities were directed upslope, we calculated the 406 

angular difference between the direction opposite to the aspect and the direction of climate 407 

velocity. To determine whether climate velocities were directed toward denser vegetation, we 408 

calculated the average direction of denser vegetation using the same method that we used to 409 

calculate the spatial rate of climate velocity. We then took the angular difference between the 410 

average direction of denser vegetation and the direction of climate velocity. We plotted 411 

angular differences using proportional histograms to show the proportion of grid cells where 412 

climate velocity is directed toward higher elevations or denser vegetation. An angular 413 

difference of 0∘ indicates climate velocities are directed upslope or toward denser vegetation 414 

and a difference of 180∘ indicates that climate velocities are directed downslope or toward 415 

sparser vegetation. Finally, we calculated the circular correlation between the direction of 416 

climate velocity and the direction of higher elevation or denser vegetation34,35. 417 

  418 



8. FIGURES 419 

 420 

Figure 1: a) Plant area index in the northern mountain range of Trinidad. b) Three 421 

representations of climate and climate velocity at a 100 m resolution. Free-air climates at 100 422 

m were mechanistically modelled and represent conditions accounting for impacts of 423 

topography but not vegetation. Land surface microclimates represent conditions 2 m above the 424 

ground and were mechanistically modelled accounting for impacts of topography and 425 

vegetation. 3D within canopy microclimates were modelled at 5 m intervals from the ground 426 



to the top of the canopy. Climate velocity is represented by the red arrows. The length of the 427 

arrow represents the speed of climate velocity. For 2D climate velocities, which were 428 

calculated using free-air and land surface climate maps, the angle of the arrow from north (θ) 429 

represents the direction of climate velocity. For 3D microclimate velocities calculated from 430 

within-canopy climate maps, the angle of the arrow from north represents the horizontal 431 

direction of velocity and the angle of the arrow from horizontal represents the vertical 432 

direction of velocity. 433 

 434 

Figure 2: Climate velocity (m/yr), the temporal rate of climate change (°C/yr), and the spatial 435 

rate of climate change (°C/m) in the Northern Range of Trinidad calculated for free-air, land 436 

surface, and within-canopy climate conditions at 1 km and 100 m spatial resolutions. Free-air 437 

and land-surface velocities are calculated in two dimensions and within-canopy velocities are 438 

calculated in three-dimensions. Boxplots display median and 25th and 75th percentiles, with 439 

upper and lower whiskers corresponding to 1.5 times the IQR from the 25th or 75th 440 

percentiles. Note that y-axes differ between maximum and minimum temperatures. 441 



 442 

Figure 3: Microclimate velocity (m/yr), the temporal rate of climate change (°C/yr), and the 443 

spatial rate of climate change (°C/m) in the Northern Range of Trinidad calculated at 1 km, 444 

100 m, and 20 m spatial resolutions within the forest. Land-surface velocities are calculated in 445 

two dimensions at 2 m above the ground and within-canopy velocities are calculated in three-446 

dimensions at 5 m vertical intervals within the upper half of the canopy. Boxplots display 447 

median and 25th and 75th percentiles, with upper and lower whiskers corresponding to 1.5 448 

times the IQR from the 25th or 75th percentiles. Note that y-axes differ between maximum 449 

and minimum temperatures. 450 



 451 

Figure 4: The proportion of grid cells with climate velocity directed toward a higher elevation 452 

or toward denser vegetation. The x-axis represents the angular difference between the 453 

direction of maximum or minimum temperature velocity and the direction a species would 454 

need to move to reach a higher elevation or denser vegetation. An angular difference of zero 455 

indicates that the direction of climate velocity is pointed toward a higher elevation (i.e., 456 

upslope) or toward denser vegetation. An angular difference of 180 indicates that the direction 457 

of climate velocity is pointed downslope or away from denser vegetation. The y-axis 458 

represents the proportion of grid cells exhibiting a given angular difference. Proportions were 459 

calculated based on 15-degree intervals. Land surface velocities are 2 m above the ground and 460 

within-canopy velocities are 3D velocities in the top half of the forest structure measured from 461 

the ground to the canopy. 462 

  463 
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11. EXTENDED DATA TABLES 633 

Extended Data Table.  1: Climate velocity for maximum and minimum temperatures calculated from free-air, land-surface, and within-canopy 634 

climate conditions and the correlation between the direction of climate velocity and the direction of higher elevation or denser vegetation. Rhoveg 635 

and rhoelev represent correlation coefficients from circular correlations and pveg and pelev represent corresponding p-values. 636 

Variable Proximity Resolution Velocity (m/yr) 
Temporal 

gradient 
(°C/yr) 

Spatial 
gradient 

(m/yr) 
rhoveg pveg rhoelev pelev 

Maximum 
temperature (°C) 

Free-air 
1km 76.145 0.025 <0.001 0.296 <0.001 0.921 <0.001 

100m 19.352 0.020 0.001 0.016 <0.001 0.957 <0.001 

Land-surface 

1km 48.362 0.023 <0.001 0.438 <0.001 0.638 <0.001 

100m 9.821 0.023 0.002 0.366 <0.001 0.477 <0.001 

20m 3.442 0.024 0.007 0.141 <0.001 -0.289 <0.001 

Within-canopy 

1km 0.472 0.027 0.057 0.138 <0.001 0.459 <0.001 

100m 0.372 0.027 0.072 0.112 <0.001 0.137 <0.001 

20m 0.280 0.027 0.096 -0.055 <0.001 -0.092 <0.001 

Minimum 
temperature (°C) 

Free-air 
1km 27.950 0.010 <0.001 -0.106 <0.001 0.629 <0.001 

100m 9.485 0.009 0.001 0.017 <0.001 0.948 <0.001 

Land-surface 1km 10.127 0.002 <0.001 0.042 0.22 -0.538 <0.001 



Variable Proximity Resolution Velocity (m/yr) 
Temporal 

gradient 
(°C/yr) 

Spatial 
gradient 

(m/yr) 
rhoveg pveg rhoelev pelev 

100m 1.267 0.002 0.002 -0.123 <0.001 0.379 <0.001 

20m 0.339 0.002 0.005 -0.238 <0.001 0.004 <0.001 

Within-canopy 

1km 0.446 0.004 0.009 -0.277 <0.001 0.112 <0.001 

100m 0.425 0.004 0.01 -0.086 <0.001 -0.445 <0.001 

20m 0.329 0.004 0.012 -0.023 <0.001 -0.072 <0.001 

637 
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12. EXTENDED DATA FIGURES 638 

 639 

Extended Data Fig. 1: Maps of maximum temperature velocity in the Northern Range of 640 

Trinidad at different spatial scales for free-air, land surface, within-canopy conditions. Within 641 

canopy velocities represent the average velocity in the top half of the canopy. 642 
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 643 

Extended Data Fig. 2: Maps of minimum temperature velocity in the Northern Range of 644 

Trinidad at different spatial scales for free-air, land surface, and within-canopy conditions. Within 645 

canopy velocities represent the average velocity in the top half of the canopy. 646 
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 647 

Extended Data Fig. 3: Distribution of plant area index (PAI) of upward and downward directed 648 

3D velocity vectors at 1 km, 100 m, and 20 m spatial resolutions for maximum and minimum 649 

temperatures. Lines indicate means. PAI of downward directed maximum temperature velocities 650 

was consistently higher than upward directed velocities across spatial grains (1 km: t175.43 = -8.17, 651 

p < 0.001, 100 m: t22390 = -86.05, p < 0.001, 20 m: t363815 = -287.17, p < 0.001). PAI of downward 652 

directed minimum temperature velocities was lower than upward directed velocities across spatial 653 

grains (1 km: t1038.9 = 11.36, p < 0.001, 100 m: t147917 = 69.35, p < 0.001, 20 m: t4305019 = 274.61, 654 

p < 0.001) 655 
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 656 

Extended Data Fig. 4: Vertical gradients (mean ± SD) for minimum and maximum temperatures 657 

in the Northern Range of Trinidad at different spatial resolutions. Relative height indicates the 658 

absolute height divided by the height of the canopy. Solid lines represent temperature mean and 659 

SD of velocity vectors directed downward and dashed lines represent temperature mean and SD 660 

of velocity vectors directed upward. 661 



Supplementary material 

S1 Plant area density maps 

Plant area index (PAI) and plant area density (PAD) were estimated at a 1 m vertical resolution 

using a variant of the MacArthur-Horn method based on the Beer-Lambert law for light 

transmittance through a turbid medium1,2. The MacArthur-Horn method calculates PAD of voxels 

(i.e., spatial cubes) as the natural log of the ratio of pulses entering to pulses exiting a voxel of 

canopy space divided by the product of voxel height and the extinction coefficient. Milodowski et 

al.2 modify the basic method to accommodate for the fact that each laser pulse gives rise to several 

returns. They weight points by the number of returns per pulse (Eq. 1): 

𝑃𝐴𝐷 =  
1

𝜅𝛥𝑧
𝑙𝑛 (

∑ 𝑤𝑖
𝑧=𝑧𝑖−1
𝑧=0

∑ 𝑤𝑖
𝑧=𝑧𝑖
𝑧=0

)            Eq. 1 

 

Where Κ is the extinction coefficient, Δz is the voxel height, and wi represents the points weighted 

by the number of returns associated with their respective LiDAR pulse. This approach assumes 

that the same area of foliage is intercepted by each return in a pulse3 and therefore that pulses with 

more returns intercept less foliage at each return than pulses with fewer returns. 

The extinction coefficient (K) is influenced by canopy characteristics, such as leaf angle, 

clumping, and reflectance. Field measurements are typically used to calibrate K, which varies with 

vegetation type but is well approximated by 0.5 for broadleaf tropical forests4, as shown by 

comparisons of LAI estimates derived from airborne lidar scanning and field data2,5,6.  

We conducted a sensitivity analysis of PAI and PAD to determine the resolution at which 

microclimates would be modelled. PAI and PAD were estimated at 10 m, 20 m, 50 m, and 100 m 

resolutions. As resolution was coarsened, the variability of PAI and PAD within a 500 m x 500 m 

square extent decreased but finer details were lost. We chose to proceed modelling at a 20 m 

resolution, which eliminated extraneous outliers that appeared at a 10 m resolution while retaining 

the fine-scale variation in canopy structure that we wished to evaluate. We eliminated voxels below 

2 m above the ground from PAI calculations as there were not consistently enough lidar returns in 



understory layers to provide accurate estimations of vegetation density. At a 20 m resolution, 

ground returns and low-level returns were not present in several pixels. When this occurred, the 

resolution was iteratively expanded for the given height until lower level returns were present2. 

 We estimated PAI and PAD seasonality based on leaf area index (LAI) derived from 

MODIS data. MODIS LAI corresponds well with ground-based LAI measurements in relatively 

open forests7, and can therefore be used to predict PAI seasonality. Leaf area index for the Northern 

Range of Trinidad was downloaded from MCD15A3H Version 8 MODIS Level 48 at 4-day 

intervals from 1 January 2011 to 31 December 2020. LAI was averaged by day across 1000 

randomly selected points within the study area. The ‘mgcv’ R package9 was used to fit a 

generalised additive mixed model (GAMM) for mean LAI as a function of month. A first order 

auto-regressive moving-average (ARMA) correlation structure was used to account for temporal 

autocorrelation within each year. The order for the autoregression was determined by comparing 

first, second, and third order models with an ANOVA. 

 The seasonality pattern depicted in the MODIS LAI data was used to estimate PAI and 

PAD seasonality from the LiDAR based estimates. The offset between the MODIS-derived LAI 

and LiDAR-derived PAI and PAD were calculated in August for each grid cell. These offset values 

were then applied for each month of modelled LAI to estimate PAI and PAD seasonality at fine 

spatial scales. Note that we used August rather than June, which is when the LiDAR data were 

obtained, because the LiDAR data had a time stamp of August. We were only later informed that 

the LiDAR data were obtained in June. As both months occur during the wet season, the difference 

between MODIS and LiDAR measurements in June and August should be minimal. 

S2 Macroclimate data from ERA5 

ERA5 is an hourly climate dataset at a ~30 km resolution produced by the Copernicus 

Climate Change Service at ECMWF, and couples an atmospheric model with a land surface model 

to produce parameters such as temperature at 2 m above the ground that represent climate 

conditions in open fields. We obtained ERA5 data for two ten-year time periods: 1 January 1951 

to 31 December 1960 (hereafter ‘past’) and 1 January 2011 to 31 December 2020 (hereafter 

‘present’)10. Temperature at 2 m, dewpoint temperature at 2 m, surface pressure, the u and v 

components of mean windspeed (the east-west and north-south components), total precipitation, 



total cloud cover, mean surface net longwave radiation flux, mean surface downward long wave 

radiation flux, total sky direct solar radiation at surface, and surface solar radiation were 

downloaded using the 'mcera5' R package11. Climatic variables, including temperature (℃), 

relative humidity (kPa), total incoming shortwave radiation (W/m2), diffuse radiation (W/m2), sky 

emissivity (0-1), windspeed (m/s), and wind direction (decimal degrees), were calculated for each 

ERA5 tile using the ‘microctools’ R package12.  

To increase computational efficiency, we selected one representative year from the past 

and present periods to use as input for the microclimate models. To select these years, we produced 

a generalised additive model of temperature at 2 m above the ground as a function of day of the 

year for each time period. The year for each time period with the lowest mean residuals was then 

selected to be used in the microclimate models. 1960 and 2015 were selected for past and present 

models, respectively. Climate change analyses therefore refer to changes that have occurred over 

a 55-year time period. 

S3 Climate velocity  

Temporal rate of climate change 

For each climate variable (i.e., maximum temperature of the warmest month and minimum 

temperature of the coldest month), we calculated the temporal rate of change (°C/yr) for each grid 

cell, as the slope for the given climate variable between 1960 and 2015.  

2D spatial rate of climate change 

The spatial rate of climate change (°C/m) represents the average distance and direction in which 

climate is moving over the specified time interval. The 2D spatial rate is defined by vectors in the 

x (east-west) and y (north-south) directions. Each vector is calculated as the weighted average of 

pairwise differences between cells divided by the distance between the cell centres. We applied a 

weight of 1/√2 to all pairwise differences that did not include the centre (focal) cell. This weight 

was chosen based trigonometric relationships in a 45-45-90 triangle. The x component of the 

spatial gradient for a given grid cell, i, is calculated as: 



  

𝑥𝑖 = (
𝑐 − 𝑤

𝑟1
+

𝑒 − 𝑐

𝑟2
+

𝑛 − 𝑛𝑤

𝑟3√2
+

𝑛𝑒 − 𝑛

𝑟4√2
+

𝑠 − 𝑠𝑤

𝑟5√2
+

𝑠𝑒 − 𝑠

𝑟6√2
)/6 

where c refers to the centre grid cell; n, s, e, and w refer to cells immediately north, south, east or 

west of the centre grid cell; ne, nw, se, and sw refer to cells sharing a corner with the centre grid 

cell; and ri is the distance between the centres of the respective grid cells, which we adjusted based 

on simple trigonometric relationships to account for the impact of elevation on the distance 

between grid cells (Figure 1,2). This method is modified from Burrows et al.13. 

The y component of the spatial gradient is defined as:   

𝑦𝑖 =  (
𝑛 − 𝑐

𝑟1
+

𝑐 − 𝑠

𝑟2
+

𝑛𝑤 − 𝑤

𝑟3√2
+

𝑤 − 𝑠𝑤

𝑟4√2
+

𝑛𝑒 − 𝑒

𝑟5√2
+

𝑒 − 𝑠𝑒

𝑟6√2
)/6 

 

We then calculated the spatial rate for each grid cell, i, as 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑖  =  √𝑥𝑖
2 + 𝑦𝑖

2. 

 

 

Figure 1. Components of the 2D spatial rate of climate change 

Here, c refers to the centre (focal) cell. 

 

3D spatial rate of climate change 

The 3D spatial rate is defined by vectors in the x, y, and z (canopy to ground) dimensions. There 

are six components to the three-dimensional spatial rate, each defined by the climatic difference 

between the centre focal cell and an adjacent cell and the spatial distance between the centres of 

the two cells (Figure 3). The spatial rate in each dimension is then calculated as the mean between 

the two contributing rates. For example, the east-west gradient is:   



(
𝑒 − 𝑓𝑜𝑐𝑎𝑙

𝑟1
+

𝑓𝑜𝑐𝑎𝑙 − 𝑤

𝑟2
)/2 

Distance in the vertical dimension was determined by the height difference between the focal cell 

and the cell above or below.  

Note that the climate velocity at 5 m above the ground was calculated using a vertical 

resolution of 3 m below the focal layer and 5 m above the focal layer, because 2 m above the 

ground was the lowest microclimate layer modelled. Additionally, top and bottom climate layers 

(2 m and 40 m above the ground) were excluded because there was no layer below or above, 

respectively, that could be used for the calculation. We adjusted the spatial distance based on 

simple trigonometric relationships to account for elevational change between cells using the same 

method as 2D velocities. From the three vectors, we calculated the spatial rate for each grid cell, 

i: 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑒𝑖  =  √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2. 

The 3D methods differ slightly from the 2D methods and those described in Burrows et 

al.13 because they only include cells adjacent to the focal cell and do not include cells that touch at 

a corner. We chose to only include adjacent cells in calculations of 3D velocity because they have 

the most direct effect on the spatial rate of the focal cell and comply more intuitively with a 3D 

framework. 

 

 

 

Figure 2. Elevation correction for the distance between cells 

The climatic difference is calculated as e - c. The triangle represents the elevational adjustment. 

The resolution (r) is the distance between cell centres that would be observed from above, and h 

e c 



is the elevational gain moving from the east cell to the focal cell. Therefore, the distance required 

to move from b to a is  𝑑 = √ℎ2 + 𝑟2. The spatial rate, s, between these two cells is then calculated 

as 𝑠 = (𝑒 − 𝑐)/√ℎ2 + 𝑟2. This method is modified from Burrows et al. 13.   

 

 

Figure 3. Voxels to calculate the spatial rate of 3D microclimate velocity. 

Velocity 

Climate velocity is calculated by dividing the temporal rate by the spatial rate. Positive values 

indicate the climate is warming and negative values indicate the climate is cooling. The direction 

of climate velocity is based on the direction of the spatial and temporal rates. For example, if 

temperature only changes in the east-west direction, if the climate is warming over time (positive 

temporal rate) and temperature increases from west to east (positive spatial rate), the direction of 

climate velocity should point due west. In contrast if the climate is cooling over time (negative 

temporal rate) and the temperature still increases from west to east, the direction of climate velocity 

should point due east. We therefore multiplied the vectors describing the spatial gradient by -1 if 

the temporal gradient was positive, so that the directional vectors always point toward cooler 

climates when the climate is warming over time and warmer climates when the climate is cooling 

over time. Using these adjusted vectors, we calculated the direction of climate movement in the 

latitude/longitude plane as the angle from north and in the vertical dimension for 3D vectors as 

angle from horizontal, where horizontal is in reference to the ground. (Horizontal can therefore 

refer to non-horizontal movement if on a slope.) The vertical-dimension angle ranges from -90° to 



90°, where -90° indicates movement directly downward with no horizontal movement and 90° 

indicates movement directly upward with no horizontal movement. 
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S4 Supplementary tables and figures 

Table S 1: Median 2D climate velocities (m/yr), temporal gradients (°C/yr), and spatial gradients 

(°C/m) for maximum and minimum temperatures in the top quarter of the canopy (canopy) and 

at 2 m above the ground (land surface). 

Resolution Variable Height 
Velocity 

(m/yr) 

Temporal 
gradient 

(°C/yr) 

Spatial 
gradient 

(°C/m) 

100m 

Maximum temperature 
Canopy 19.362 0.028 0.001 

Land surface 9.818 0.023 0.002 

Minimum temperature 
Canopy 4.114 0.004 0.001 

Land surface 1.239 0.002 0.002 

1km 

Maximum temperature 
Canopy 99.422 0.027 <0.001 

Land surface 43.695 0.023 <0.001 

Minimum temperature 
Canopy 20.134 0.004 <0.001 

Land surface 9.827 0.002 <0.001 

20m Maximum temperature Canopy 3.114 0.028 0.009 



Resolution Variable Height 
Velocity 

(m/yr) 

Temporal 
gradient 

(°C/yr) 

Spatial 
gradient 

(°C/m) 

Land surface 4.259 0.023 0.005 

Minimum temperature 
Canopy 1.251 0.005 0.004 

Land surface 0.331 0.002 0.005 

 

  



 

Fig. S1: Elevation (m), plant area index (PAI), and the canopy height model (CHM) for the 

northern mountain range of Trinidad. Maps were derived from a LiDAR survey of the northern 

range conducted in June 2014. 

 



 

Fig. S2: Maximum temperatures for free-air conditions at 1 km and 100 m resolutions, land 

surface temperatures at 2 m above the ground and at 1 km, 100 m, and 20 m resolutions, and 

within-canopy temperatures in the upper half of the canopy (as measured from the ground to the 

top of the canopy) at 1 km, 100 m, and 20 m spatial resolutions. 



 

Fig. S3: Minimum temperatures for free-air conditions at 1 km and 100 m resolutions, land 

surface temperatures at 2 m above the ground and at 1 km, 100 m, and 20 m resolutions, and 

within-canopy temperatures in the upper half of the canopy (as measured from the ground to the 

top of the canopy) at 1 km, 100 m, and 20 m spatial resolutions. 



 

Fig. S4: Temporal gradient of maximum temperature velocity for free-air temperatures, land 

surface temperatures at 2 m above the ground, and within-canopy temperatures at 1 km, 100 m, 

and 20 m spatial resolutions. 

 



 

Fig. S5: Spatial gradient of maximum temperature velocity for free-air temperatures, land 

surface temperatures at 2 m above the ground, and within-canopy temperatures at 1 km, 100 m, 

and 20 m spatial resolutions. 

 



 

Fig. S6: Temporal gradient of minimum temperature velocity for free-air temperatures, land 

surface temperatures at 2 m above the ground, and within-canopy temperatures at 1 km, 100 m, 

and 20 m spatial resolutions. 

 



 

Fig. S7: Spatial gradient of minimum temperature velocity for free-air temperatures, land surface 

temperatures at 2 m above the ground, and within-canopy temperatures at 1 km, 100 m, and 20 m 

spatial resolutions. 

  



 

Fig. S8: 2D climate velocities for maximum and minimum temperatures in the top quarter of the 

canopy (canopy) and 2 m above the ground (land surface) at 1 km, 100 m, and 20 m spatial 

scales in the Northern Range of Trinidad. 

  

 


