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ABSTRACT 47 

 48 

1. Natural history museums often curate large collections of pinned insects. These collections 49 

represent invaluable records of biodiversity information, ecological patterns and phenotypic 50 

variation. A common goal of museums is to create digital versions of these records for curation 51 

and research purposes. However, traditional methods of specimen imaging and metadata 52 

transcription are prohibitively labor-intensive. High-throughput imaging of entire specimen 53 

drawers integrated with computer vision (CV) artificial intelligence (AI) models provides a 54 

potential solution. 55 

 56 

2. Here we present DrawerDissect, a python-based pipeline for processing whole-drawer 57 

photographs, and a workflow to use it in entomological collections. By using custom CV models 58 

and large language models for text transcription, DrawerDissect can crop and segment specimens 59 

from images and extract metadata from specimen labels. DrawerDissect is flexible, 60 

customizable, and modular, allowing rapid downstream analyses of phenotypic features such as 61 

color, pattern, shape and size. 62 

 63 

3. We used DrawerDissect to digitize the Field Museum’s (FMNH’s) entire tiger beetle (family 64 

Cicindelidae) collection, resulting in 13,484 high-resolution dorsal photographs, masked 65 

specimen images, and basic body measurements. All specimens are linked to taxonomic and 66 

biogeographic data. We also extracted specific location metadata for 3,648 specimens. We then 67 

provide an example of using DrawerDissect outputs with existing color analysis methods in 68 

ImageJ to investigate taxonomic and geographic differences in coloration. Finally, we trained an 69 

accurate species identification model, Cicindel-ID, using ~7,000 masked images of specimens in 70 

the genus Cicindela. 71 

 72 

4. DrawerDissect’s novel multi-model AI workflow provides an efficient and reproducible 73 

framework that meets the demands of high-throughput digitization of natural history museum 74 

collections, unlocking the research potential of large specimen collections. 75 

 76 

DATA/CODE FOR PEER REVIEW: All python scripts can be found at 77 

github.com/EGPostema/DrawerDissect and github.com/de-Medeiros-insect-lab/Cicindelinae_ID. 78 

The ImageJ plugin used to extract color information is available at 79 

github.com/GeorgeHancock471/DrawerDissect-ImageJ-Plugins. All R code and datasheets used 80 

in this manuscript are available in the file drawerdissect_analyses.zip 81 

 82 

KEYWORDS: artificial intelligence, computer vision, digitization, high-throughput imaging, 83 

insects, image segmentation, machine learning, museum specimens 84 

 85 
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1 INTRODUCTION 87 

 88 

Natural history collections connect the past to the future. Each specimen preserves a unique 89 

ecological and evolutionary history, with some specimens maintaining their scientific value for 90 

centuries after their initial acquisition. Collections have been leveraged to track the impacts of 91 

climate change among plants and animals (Bates et al., 2023; Lister, 2011; Sanders et al., 2023); 92 

to elucidate the ecological drivers of diverse morphological traits (Crowell et al., 2024; Holmes 93 

et al., 2016); and to estimate the sizes, ranges and compositions of past populations (Davis et al., 94 

2023). Additionally, specimens provide critical genomic data that can be used for species 95 

identification and evolutionary studies (de Medeiros et al., 2025; Ruane & Austin, 2017). 96 

Despite their immense scientific value, natural history collections face a persistent digitization 97 

bottleneck. Metadata digitization and specimen imaging are necessary for collections-based 98 

research, but they are time- and labor-intensive, as they traditionally involve handling specimens 99 

one at a time. The challenge is magnified for hyper-diverse groups such as insects. In North 100 

America, for example, only ~5% of arthropod specimens have data digitally available, and fewer 101 

than 2% have been imaged (Cobb et al., 2019). Given the ecological significance of insects 102 

(Losey & Vaughan, 2006), and their perilous position in the face of rapid global change 103 

(Wagner, 2020; Yang et al., 2021), there is an urgent need to mobilize insect specimen data and 104 

images. 105 

 106 

Most digitization efforts in the past decades have focused on the transcription of specimen label 107 

metadata to standardized formats such as DarwinCore (Wieczorek et al., 2012), while imaging 108 

specimens has often been a secondary goal. For example, of the 576,502 specimens in the Field 109 

Museum (FMNH)’s insect collection with digital records, only 19,989 have associated images. 110 

The traditional focus on metadata is justifiable, as extracting information from specimen images 111 

normally requires labor intensive processing steps like outlining or landmarking (van den Berg et 112 

al., 2024; Watanabe, 2018). Advances in computer vision (CV) techniques have now made these 113 

steps automatable (Borowiec et al., 2022; Lürig, 2022; Weinstein, 2018; Wilson, 2023). With 114 

these new tools, images are not just byproducts of digitization with limited uses, but high-quality 115 

sources of data themselves. 116 

 117 

While image analysis capabilities have advanced dramatically, efficient image acquisition 118 

remains a bottleneck in mass digitization workflows. There are many existing solutions for high-119 

throughput imaging in collections, depending on the type of organism and method of 120 

preservation (Picturae, https://picturae.com/; Sys et al., 2022; Weeks et al., 2023). For pinned 121 

insects, mass-digitization solutions are under development (LightningBug, 122 

https://www.lightningbug.tech/prog-orig; Picturae; Steinke et al., 2024), but none are currently in 123 

widespread use. No matter how efficient individual specimen handling can be made, a faster 124 

solution is to photograph whole drawers (containing hundreds of specimens) at a time 125 

(Holovachov et al., 2014). While image resolution for individual specimens used to be a 126 

https://www.zotero.org/google-docs/?3eIP7x
https://www.zotero.org/google-docs/?3eIP7x
https://www.zotero.org/google-docs/?3eIP7x
https://www.zotero.org/google-docs/?6W9YjQ
https://www.zotero.org/google-docs/?6W9YjQ
https://www.zotero.org/google-docs/?EWhoSJ
https://www.zotero.org/google-docs/?EWhoSJ
https://www.zotero.org/google-docs/?rmGa1c
https://www.zotero.org/google-docs/?QmzxnW
https://www.zotero.org/google-docs/?m4JUmp
https://www.zotero.org/google-docs/?M7tAHK
https://www.zotero.org/google-docs/?M7tAHK
https://www.zotero.org/google-docs/?M7tAHK
https://www.zotero.org/google-docs/?M7tAHK
https://www.zotero.org/google-docs/?a8ZQRz
https://www.zotero.org/google-docs/?a8ZQRz
https://www.zotero.org/google-docs/?a8ZQRz
https://www.zotero.org/google-docs/?p7suEp
https://www.zotero.org/google-docs/?9dJqk6
https://www.zotero.org/google-docs/?WJ8xWU
https://www.zotero.org/google-docs/?WJ8xWU
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limitation for this approach, modern imaging systems are capable of producing high-quality 127 

whole-drawer images (Fig. 1a). 128 

 129 

High-throughput imaging is fast, but whole-drawer images create another challenge: extracting 130 

individual-level data. A possible solution to this processing bottleneck has been clear for over 10 131 

years. Holovachov et al. (2014) presciently ask, “[c]an specimens in the [whole-drawer] image 132 

be analyzed and identified using a computer algorithm and machine learning?” Looking at the 133 

recent explosion of CV-based pipelines for specimen digitization, we can largely respond “yes” 134 

to this question in 2025 (Stenhouse et al., 2025). For example, LeafMachine2 uses a series of 135 

computer vision models to extract phenotypic data and transcribe labels from herbarium 136 

specimens (Weaver & Smith, 2023); Skelevision segments and measures bones from batch-137 

imaged bird skeletons (Weeks et al., 2023); CollembolAI detects and classifies small 138 

invertebrates in photographs of soil samples (Sys et al., 2022); and DiversityScanner combines 139 

robotic sorting and imaging of bulk insect samples with a classification model to predict family-140 

level identity (Wührl et al., 2022). Applying the same concept to pinned insect collections, we 141 

wanted to create an AI-driven, user-friendly pipeline for processing whole-drawer images, with 142 

two key outputs:  143 

 144 

(1) Individual specimen images, linked to taxonomic identity and, when possible, 145 

 sampling locations extracted from label text. 146 

(2) Specimen images with censored backgrounds and pins (“masked specimens”) suitable 147 

for downstream morphological analysis. 148 

 149 

We call this multi-model pipeline “DrawerDissect.” DrawerDissect relies on an AI service, 150 

Roboflow (Dwyer et al., 2014), for object detection and segmentation models. For text 151 

transcription, we use Anthropic’s large language model (LLM), Claude 152 

(https://console.anthropic.com/). We designed DrawerDissect to be flexible, with built-in toggles 153 

for different desired outputs; customizable, with the option to swap between different models, 154 

update existing models, and edit LLM prompts; and modular, with steps that can be run 155 

independently or combined in unique workflows. 156 

 157 

 158 

  159 

https://www.zotero.org/google-docs/?IH2aKa
https://www.zotero.org/google-docs/?dn0fKt
https://www.zotero.org/google-docs/?ZWtqnI
https://www.zotero.org/google-docs/?mx0q6N
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 160 
Figure 1. (a) A top-down whole-drawer image taken by the GIGAMacro Magnify2, with key objects 161 

labeled. (b) Standard FMNH unit tray header label. (c) A new pop-up unit tray label, here folded flat 162 

when stored. 163 

 164 

  165 
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2 MATERIALS AND METHOD 166 

 167 

Our workflow involves three steps: (1) imaging drawers, (2) running images through 168 

DrawerDissect, and (3) optional post-curation. First, we describe our imaging set-up using a 169 

GIGAMacro Magnify2 system (Four Chambers Studio, https://gigamacro.com/). We then give a 170 

broad overview of DrawerDissect in terms of installation, configuration, and model 171 

training/selection. Finally, we describe the steps that occur during a standard DrawerDissect run. 172 

A streamlined user guide with quick-start instructions can be found at the DrawerDissect github: 173 

github.com/EGPostema/DrawerDissect. 174 

 175 

To demonstrate the utility of DrawerDissect we photographed and processed the FMNH’s entire 176 

44-drawer collection of pinned tiger beetles (Coleoptera: Cicindelidae; Duran & Gough, 2020). 177 

Tiger beetles are colorful insects, often with intricately patterned and iridescent elytra. The 178 

ecology and evolution of this group’s coloration has been the focus of much research, 179 

particularly with respect to background-matching, thermal physiology, and morphological 180 

convergence (French et al., 2021; Pearson & Vogler, 2001; Schultz & Bernard, 1989; Schultz & 181 

Hadley, 1987; Yamamoto & Sota, 2020). To test DrawerDissect’s ability to integrate with 182 

existing batch color analysis pipelines (Hancock et al., 2025), we use the masked images 183 

generated by DrawerDissect to investigate geographic and climatic patterns of color diversity in 184 

two subspecies of a well-represented species in the collection, Cicindela formosa. Finally, we 185 

used over 7,000 masked images generated by DrawerDissect to train a taxonomic identification 186 

model, Cicindel-ID, for the speciose genus Cicindela. 187 

 188 

2.1 Whole-Drawer Imaging 189 

 190 

DrawerDissect was designed with images produced by a GIGAMacro Magnify2 imaging system, 191 

and uses FMNH conventions for insect drawers where specimens are grouped into trays (“unit 192 

trays”) based on shared taxonomic identity and geographical origin (Fig. 1b). FMNH unit trays 193 

have header labels that display this information, typically affixed to the upper tray wall (Fig. 1b). 194 

To make the tray-level data visible for imaging, we developed pop-up headers that display the 195 

same information; the pop-up portion is visible during imaging (Fig. 1a), but folds down flat 196 

when trays are stored (Fig. 1c). The only pre-curation step needed for drawer imaging is to 197 

generate an inventory of unit trays for each drawer, replace the old labels with the new ones, and 198 

then arrange all unit trays for imaging on the GIGAMacro platform. For further imaging details 199 

(e.g. camera specifications, file formats), see supplemental materials Section S1. 200 

 201 

While we describe our digitization methods based on this standard, DrawerDissect can be 202 

adapted to various configurations. At minimum, running the pipeline requires a reasonably clear, 203 

high-quality image of an insect drawer, achievable with a number of different imaging systems 204 

(Holovachov et al., 2014). 205 

https://github.com/EGPostema/DrawerDissect
https://www.zotero.org/google-docs/?broken=0cM9AH
https://www.zotero.org/google-docs/?broken=pn3F2H
https://www.zotero.org/google-docs/?broken=pn3F2H
https://www.zotero.org/google-docs/?9jCfWw
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2.2 Overview of DrawerDissect 206 

 207 

 208 
Figure 2. Overview of DrawerDissect, with key python packages highlighted. 209 

 210 

DrawerDissect is a Python-based pipeline available from GitHub, including documentation on 211 

installation and usage at github.com/EGPostema/DrawerDissect. The repository includes test 212 

data to familiarize new users with the pipeline’s steps and organizational structure. We aimed to 213 

make the pipeline accessible to users who are not expert programmers. Only a rudimentary 214 

familiarity with their computer’s command-line interface is required to run the script. Overall, 215 

DrawerDissect can be installed and run in four steps: 216 

 217 

1. Create an environment for the program to run (5 lines of command-line code) 218 

2. Add whole-drawer images to a folder 219 

3. Set up API keys from Roboflow and Anthropic (up to 2 lines of command-line code) 220 

4. Run the full pipeline with a single command 221 

 222 

2.2.1 Models Used in DrawerDissect 223 

 224 

DrawerDissect relies on Roboflow models for all steps requiring vision-only models, such as 225 

object detection and segmentation. We found that general foundation models perform poorly for 226 

our tasks, and therefore trained our own specialized models for detection and segmentation. 227 

Reading labels using LLMs, however, is sufficiently accurate without specialized fine-tuning. 228 

Training the detection and segmentation models requires a set of images that have been labeled 229 

https://github.com/EGPostema/DrawerDissect
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with the desired output. We use Roboflow’s labeling tools to make this step faster. Once 230 

annotated, we then split the images into training, validation, and test sets at a standard ratio of 231 

70:20:10. We also employ image augmentations to increase model generalizability (Borowiec et 232 

al., 2022). 233 

 234 

We trained our models using Roboflow servers. Training can take anywhere between a few 235 

minutes and several hours depending on the size and complexity of the model; 4-5 hours was 236 

typical for our largest models with datasets of  >3,000 images. When the model is finished 237 

training, Roboflow automatically reports the model’s precision and recall, as well as rates of 238 

false positives/negatives (Table 1). We trained and have provided public access to all the models 239 

used in our pipeline at the time of manuscript submission using the Roboflow Universe platform. 240 

See Table 1 for model-specific performance, and supplemental Table S1 for the taxonomic 241 

groups included in each of our six public models. 242 

 243 

TABLE 1: Model Composition and Performance 244 

 245 

model id 

(*version)  

# of images 

(**train, valid, test)  

precision recall false positive 

rate 

false negative 

rate 

trayfinder-base 

(5) 

(180, 12, 6) 99.6% 99.1% 0.02% 0.01% 

trayfinder-popup 

(17) 

(162, 11, 6) 100.0% 100.0% 0.01% 0.00% 

labelfinder 

(7) 

(3555, 201, 103) 96.0% 99.0% 0.02% 0.01% 

bugfinder-kdn9e 

(13) 

(4235, 238, 120) 97.1% 96.7% 0.02% 0.02% 

bugmasker-all 

(5) 

(2035, 113, 62) 99.9% 97.3% 0.02% 0.02% 

pinmasker 

(6) 

(2210, 126, 67) 91.0% 93.0% 0.08% 0.07% 

*The version used to produce the results in Section 3.1.  246 

**Includes augmented images, which increases the size of the training split x5. 247 

 248 

By default, users are set up with public FMNH models via Roboflow for image processing, while 249 

all transcription steps are done with an Anthropic LLM. We use these subscription-based 250 

services rather than open source models because they are more accessible to a broader user base 251 

that may lack the coding experience or computing infrastructure to run AI models locally (Heron 252 

et al., 2013). Running AI models locally requires powerful servers with advanced GPUs, which 253 

can cost tens of thousands of dollars to set up and high energy costs to run. Advanced users 254 

experienced in AI coding, or large institutional teams, could modify DrawerDissect code to use 255 

https://www.zotero.org/google-docs/?ZbMuTc
https://www.zotero.org/google-docs/?ZbMuTc
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local processing instead of API calls. For open-source model recommendations, see 256 

supplemental materials Section S2. 257 

 258 

2.3 Running DrawerDissect  259 

 260 

DrawerDissect consists of a series of steps (Fig. 2) that can be run automatically, in sequence, 261 

with a single command: ‘python process_images.py all’. The github documentation includes a 262 

full list of command-line steps, optional arguments for running specific step combinations, and 263 

how to process specific drawer(s). 264 

 265 

2.3.1 Object Detection and Segmentation 266 

 267 

DrawerDissect uses Roboflow models (3.0 Object Detection and 3.0 Instance Segmentation; 268 

Table 1) to find and outline objects in images (Fig. 3-4), described below. An asterisk marks 269 

models used by default in the current version of DrawerDissect.  270 

 271 

trayfinder-base * 272 

This model detects unit trays from drawer images (Fig. 3a). 273 

 274 

trayfinder-popup 275 

This model detects unit trays (with pop-up labels) from drawer images. This is a FMNH-specific 276 

model alternative to trayfinder-base. 277 

 278 

labelfinder * 279 

This model can detect the locations of taxonomic information, barcodes, and geocodes. This 280 

model can detect both pop-up label text (Fig. 3b) and taxonomic text within trays (Fig. 3c). 281 

 282 

bugfinder-kdn9 * 283 

This model detects pinned insects (Fig. 4a). 284 

 285 

bugmasker-all * 286 

This model outlines the main body of insects, excluding legs and antennae (Fig. 4b). 287 

 288 

pinmasker * 289 

This model outlines the specimen pin (Fig. 4b), if present. 290 
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 291 
Figure 3. (a) Trays in a drawer detected by trayfinder-base, (b) labelfinder detects multiple text classes 292 

for a pop-up label, (c) labelfinder detects a handwritten species name in a tray. 293 

 294 

 295 
Figure 4. (a) Tray guides produced from bugfinder-kdn9 coordinates. Specimens are automatically 296 

numbered from left to right, top to bottom. (b) Roboflow coordinates from bugmasker-all and pinmasker 297 

are translated into binary masks by DrawerDissect to create the final masked specimen images. 298 

 299 

All CV models output coordinates in a JSON file that are used by DrawerDissect to crop, 300 

measure, or mask images. Due to file size and format constraints, all TIFs are temporarily 301 

converted to JPGs before processing, and large images are resized to fit within a 1000x1000px 302 
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square. During cropping, the coordinates from reduced-size images are always rescaled to the 303 

original, full-sized image. 304 

 305 

2.3.2 Masking and Measuring Specimens 306 

 307 

To create transparent versions of the masked specimens, coordinates from bugmasker-all and 308 

pinmasker are used to generate binary masks: black and white images (PNGs) where all 309 

background pixels are black and all body pixels are white (Fig. 4b). We then run the masks 310 

through a filtering step that fills in any partial segmentations. To create the final masked image, 311 

the white pixels clip out the full-color specimen, while the black pixels become transparent. 312 

 313 

For each specimen mask, we measure len1, which is the greatest distance between any two 314 

points on the outline, and len2, the maximum distance perpendicular to len1. These 315 

measurements are good estimates for length and width, though the script is intentionally agnostic 316 

to orientation. We also calculate the area, in pixels squared, of the body. DrawerDissect can 317 

output a map of len1 and len2 for each specimen mask if desired. 318 

 319 

2.3.3 LLM-Based Transcription 320 

 321 

To transcribe different kinds of text from images, we use Anthropic’s API with customizable 322 

prompts. For the results in Section 3.1, we used the model claude-3-7-sonnet-20250219. Before 323 

transcription, all images are preprocessed to enhance text visibility by converting to grayscale 324 

and increasing contrast. Both handwritten and typed material can be transcribed (Fig. 3b-c). We 325 

review all AI-generated transcriptions manually. 326 

 327 

Unit tray label text is transcribed from cropped images generated by labelfinder (Fig. 3). We 328 

have three separate prompts for each type of transcription, which are tailored to how these 329 

different types of information are structured. These prompts can be edited by users for their 330 

specific label structure in the config file, though our default settings will work for most cases. 331 

 332 

In many specimen images, partial text from the top label is visible. We tested a novel method of 333 

metadata extraction based solely on this fragmentary information. The outputs of this method are 334 

transcriptions of the verbatim text, an initial location estimate, the model’s final location 335 

estimate, and an assessment of the estimation’s quality (Fig. 5). The quality ranks are defined as: 336 

(a) verified, when the location estimate is logical given the verbatim text, (b) unreliable, when 337 

there is not sufficiently specific verbatim text to justify the location estimate, and (c) unknown, 338 

when there was not enough verbatim text to result in a location estimate. 339 

 340 
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 341 
Figure 5. (a) A successful transcription, resulting in a verified location, despite a typo in the verbatim 342 

text. (b) An unknown location and final location from a specimen with no visible label. (c) An unreliable 343 

location due to the verbatim text’s lack of geographic specificity. 344 

 345 

2.3.4 Databasing 346 

 347 

The final step of the pipeline compiles a time-stamped folder with data summaries at the drawer, 348 

tray, and specimen level for a given run. To upload the specimen images and their metadata to 349 

KE EMu, we print specimen labels with FMNH numbers and an associated QR code. We apply 350 

these labels to each pinned specimen, using the tray guides (Fig. 4b) to match the DrawerDissect 351 

specimen image (e.g. spec_001) to the FMNH number. Lastly, we run a Python script to 352 

reorganize data to fit the metadata structure expected by KE EMu, and batch-import the images 353 

plus metadata. 354 

 355 

2.4 Use Case 1: Batch Color Analysis of Cicindela formosa 356 

 357 

To test the utility of DrawerDissect’s masked image outputs, we targeted a specimen- and data-358 

rich taxa within the FMNH tiger beetle collection: the big sand tiger beetle (Cicindela formosa). 359 

C. formosa exhibits a variety of color patterns across its range, with multiple purported 360 

subspecies (Pearson et al., 2006). There are clear regional variations in this species’ maculations, 361 

which are often used to justify subspecies delineations (French et al., 2021; Gaumer, 1977; 362 

Pearson et al., 2006). The FMNH collection includes more than 300 C. formosa collected across 363 

North America, with two semi-sympatric subspecies: C. f. formosa and C. f. generosa. Due to a 364 

previous digitizing effort, the FMNH has records of the collection locations for all specimens of 365 

https://www.zotero.org/google-docs/?CoHVBD
https://www.zotero.org/google-docs/?CoHVBD
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these taxa. Given the historical use of color and pattern characteristics to identify C. f. formosa 366 

versus C. f. generosa, we might expect the two subspecies to significantly differ in appearance, 367 

even in regions where they overlap. However, color differences between the subspecies could 368 

also be explained by local adaptation. In this case, we might expect sympatric individuals to be 369 

more phenotypically similar, and for color to vary along environmental gradients known to 370 

impact animal coloration (Postema et al., 2023). To analyze phenotypic variation between and 371 

among the two subspecies, we used an existing ImageJ batch-analysis pipeline (see Hancock et 372 

al., 2025) to quantitatively measure CIELab color and pattern geometry in the masked C. 373 

formosa specimens (n = 374). For a full description of our phenotyping method and statistical 374 

test, see supplemental materials Section S3.1-2. 375 

 376 

2.5 Use Case 2: Training a Classification Model to Identify Cicindela Specimens 377 

 378 

Batch-imaging and image processing tools like DrawerDissect can supply taxonomic 379 

identification models with the large amounts of training data they require (Spiesman et al., 2021; 380 

Sun et al., 2021; Truong & Van der Wal, 2024; Welch & Lundgren, 2024). In our collection of 381 

tiger beetles, the majority of specimens (7000+) belong to the genus Cicindela, representing 239 382 

unique species and subspecies. There are also a small number of specimens in our collection (12) 383 

that were identified as Cicindela but lacked a species identification. As a proof of concept, here 384 

we train a model to identify species and subspecies of Cicindela based on the masked images 385 

produced with DrawerDissect, and apply this model to the unidentified specimens. To train and 386 

evaluate this model, we split all identified specimens into training, validation and test sets using 387 

a 70:20:10 ratio for each species or subspecies. Single-image taxa were only included in the 388 

training set. Our full training method (model architecture, augmentations, model weights, etc.) is 389 

described in supplemental materials Section S4. We evaluated the final model using the test set, 390 

with a confidence threshold of 0.5. We also predicted labels for the 12 unknown samples and 391 

compared results to manual identifications (Table S2) using guides to the Cicindelidae (Pearson 392 

et al., 2006; Shiyake, 2017; Trautner & Geigenmüller, 1987) 393 

 394 

3 RESULTS 395 

 396 

3.1 Digitizing the FMNH Tiger Beetle Collection 397 

 398 

With DrawerDissect, we were able to produce a complete inventory of the FMNH tiger beetle 399 

collection. We processed the collection into 13,496 separate images of intact specimens obtained 400 

from 44 drawers of pinned tiger beetles from around the world (Fig. 7). All specimen photos are 401 

linked to taxonomic and biogeographic metadata. The majority of these specimens (13,484) were 402 

successfully masked and measured (length, width, and area, in mm). Over a quarter (3,627) of 403 

the specimen images are associated with more specific collection locations, as a result of 404 

automated transcription via DrawerDissect, manual transcriptions for one specimen per tray, and 405 

https://www.zotero.org/google-docs/?AwX1Ow
https://www.zotero.org/google-docs/?N234Sx
https://www.zotero.org/google-docs/?N234Sx
https://www.zotero.org/google-docs/?N234Sx
https://www.zotero.org/google-docs/?N234Sx
https://www.zotero.org/google-docs/?CAzLoY
https://www.zotero.org/google-docs/?CAzLoY
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additional metadata from a previous databasing effort (see Section 2.4). Our collection contains 406 

56 unique genera and 663 unique species of tiger beetle. This represents nearly a third of the 407 

~2,300 known species globally (Gough et al., 2019). FMNH tiger beetles were collected from at 408 

least 1,002 unique locations across 91 countries, and all continents excluding Antarctica (Fig. 7).  409 

 410 

 411 
Figure 6. (a) A world map showing the approximate number of FMNH specimens per country. The per 412 

country counts are estimated from the number of specimens in a given tray and the countries of specimens 413 

from the same tray with known countries. Collection sites with known coordinates are marked with red 414 

points. Middle: (b) Cicindela sexgutatta from Pine Hill, IL, USA. (c) Odontocheila iodopleura from the 415 

Pitilla Zoological Station, Costa Rica. (d) Lophyra flexuosa from Mazagón, Spain. (e) Hypaetha 416 
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singularis from Ghoubbet-El-Bous, on the coast of the Gulf of Suez in Egypt. (f); Tricondyla aptera 417 

aptera from Jayapura, Indonesia; (g) Cicindela chinensis japonica from Ōdai, Japan. (h) Specimen 418 

distribution by latitude (n = 2159). 419 

 420 

3.1.1 Unit Tray Cropping and Transcription 421 

 422 

Out of 941 trays, trayfinder-popup made no detection errors. 36 trays (3.9%) required manual 423 

transcription of one or more pieces of tray label text. For the majority of trays, missed 424 

transcriptions occured when labelfinder failed to detect text. In four instances, label information 425 

was detected, but the bounding box did not fully encompass the text. We observed only two 426 

instances of taxonomic transcription typos: Manticora misspelled as Mantichora, and 427 

Distipsidera misspelled as Distintipsidera. For barcodes, there were three instances where the 428 

numbers 5 and 6 were erroneously switched. For geocodes, there were 9 transcription errors that 429 

resulted in the incorrect biogeographical realm. All tray-level text was typed, not handwritten. 430 

 431 

3.1.2 Specimen Detection and Masking 432 

 433 

Overall, bugfinder-kdn9e made 13,662 specimen detections. 153 (1.1%) of these were false 434 

positives, where non-specimens were erroneously detected. This is a higher rate of false positives 435 

than the model’s roboflow test set (0.02%; Table 1). No specimens were missed by the model, 436 

meaning the rate of false negatives was 0% (lower than the roboflow-calculated rate of 0.02%; 437 

Table 1). 438 

 439 

Out of the 13,662 cropped specimen photos generated from bugfinder-kdn9e, bugmasker-all 440 

found masks for 13,501 images (Fig. 8). Of the 161 images where no mask was found, 154 were 441 

true negatives, meaning they did not contain a specimen, or contained a damaged specimen. 442 

Therefore, we used masking to mitigate false positive errors in specimen detection. Only 7 were 443 

false negatives, where no mask was found despite the image containing a complete, intact 444 

specimen. In the masked set, we found 12 false positives, where a mask was applied to a non-445 

specimen (3) or heavily damaged specimen (9). In 5 cases a mask did not fully outline an intact 446 

specimen. Our actual rates of false positives (0.09%) and false negatives (0.05%) for our set of 447 

tiger beetles were below the rates reported for the model by Roboflow (Table 1). 448 

 449 
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 450 
Figure 7. Flowchart showing the outcomes of DrawerDissect masking. Solid lines = correct responses, 451 

dotted lines = incorrect responses. 452 

 453 

3.1.3 Specimen-level Label Transcription 454 

 455 

For the majority of specimens (80.3%), no location could be determined from the image alone 456 

(Fig. 6). In total we were able to reconstruct locations for 2,475 specimens (18.2%). This 457 

includes correct estimates from the verbatim text that were judged as verified by the LLM (9.4% 458 

of images), and cases where there was enough context from the verbatim text that a location 459 

could be determined by a human reviewer even if the final location was judged as 460 

unknown/unreliable by the LLM (8.8% of images). Bad location estimates that were judged as 461 

reliable by the LLM (false positives) were infrequent, at 1.6% of all images. Of the 425 unique 462 

collection locations extracted from the specimen images by the LLM, most (69.6%) could be 463 

linked to a set of centroid coordinates (with up to a 20mi radius of uncertainty) on Google Maps.  464 

 465 

3.1.4 Size Measurements 466 

 467 

We were able to measure all masked specimens (13,484; Fig. 8), generating length, width, and 468 

area in mm/mm2. To assess the accuracy of the digital measurements, we compared them against 469 

a random subset of specimens (n = 79) that we hand-measured using calipers (Fig. 9a-b). We 470 
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found that the digital and manual measurements were highly correlated (length: R² = 0.989, 471 

width: R² = 0.961). Body area, length, and width varied both within and across genera (Fig. 9c). 472 

 473 

 474 
Figure 8. (a) The relationship between manual and digital length for a set of randomly selected specimens 475 

(n = 143), both in mm. (b) The relationship between manual and digital width for the same set of 476 

specimens. (c) The average body length, in mm, +/- SE of each genera in the FMNH collection (n = 477 

13,484). *Indicates genus with an associated icon generated by DrawerDissect. 478 

 479 

3.1.5 Total Time and Cost 480 

 481 

Imaging all 44 drawers took ~70 hours, including moving drawers, inventorying unit tray labels, 482 

and printing and replacing header labels. On a Windows computer with an AMD RyzenTM 7 483 

Processor 7800X3D CPU and 32GB of RAM, DrawerDissect is able to fully process an 8GB 484 

drawer image in 16 minutes. For 44 drawers it took ~10 hours to fully process, with the benefit 485 

of parallel processing. We spent an additional 40 hours on data validation, and another 35 hours 486 
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to manually transcribe location information for one specimen per unit tray - an optional step to 487 

guide our manual review of DrawerDissect’s location estimates. In total, the full workflow 488 

(imaging, processing, and data-cleaning) for the tiger beetle collection took ~155 hours. This 489 

translates to ~42 seconds per specimen. This is significantly faster than manually photographing, 490 

outlining, measuring, and transcribing partial metadata for 13,484 specimens. 491 

 492 

The costs for whole-drawer imaging and DrawerDissect digitization are human labor (for pre-493 

curation, equipment operation, and data validation), the up-front cost of the imaging system 494 

(GIGAMacro Magnify2 with telecentric lens: ~$60k), annual software license fees (Adobe 495 

Lightroom, PTGui), and AI inference fees (Table 2). Anthropic API does not have a free tier, but 496 

Roboflow includes 360,000 annual inferences for users with free accounts.  497 

 498 

TABLE 2: Time and Cost Estimates 499 

 500 

Step 
cost per 

specimen* 

cost for all  

Cicindelidae* 

processing time  

per specimen 

processing time for 

all Cicindelidae 

Transcription $0.00757 ~$100 1.6 seconds 6 hours 

CV Image 

Processing 

2.1 inferences 29,228 inferences 1.1 seconds 4 hours 

DrawerDissect 

SUBTOTAL 

$0.00757 + 

2.1 inferences 

~$100 +  

29,228 inferences 

2.7 seconds 10 hours 

Pre-Curation, 

Imaging** 

$0.31 $4,235.00 19 seconds 70 hours 

Data Cleaning** $0.34 $4,537.50 20 seconds 75 hours 

TOTAL $0.66 + 

2.1 inferences 

$8,872.5 +  

29,228 inferences 

41.7 seconds 155 hours 

*Does not include the up-front cost of the imaging rig or image-processing software licenses. 501 

**Costs for these steps were calculated from the hourly wages of one postdoc ($26/hr) and two 502 

paid interns ($17/hr and $17.50/hr). 503 

 504 

3.2 Use Case 1: Phenotypic Variation in Subspecies of Cicindela formosa 505 

 506 

Overall, we found that the two C. formosa subspecies are significantly different in appearance 507 

(Fig. 10a-b), with C. f. formosa being significantly redder than C. f. generosa. However, this 508 

distinction decreases in the overlapping parts of their ranges; sympatric individuals exhibit 509 

lighter, less red elytra regardless of subspecies (Fig. 10a). In these areas, color features may be 510 

less useful for distinguishing subspecies. Further genetic analysis would be required to determine 511 
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whether the sympatric similarity is due to hybridization and/or convergent evolution (French et 512 

al., 2021). In terms of climatic factors, there was a significant pattern of increased redness in 513 

hotter, more arid locations. This was mainly driven by the large populations of C. f. formosa in 514 

the western and southwestern United States (Fig. 10a). A thermoregulatory (heat-reducing) 515 

function of increased redness is unlikely, as metallic red portions of C. f. formosa elytra show 516 

increased IR absorbance compared to white portions (Schultz & Hadley, 1987). Elytral color 517 

may instead be driven by local background-matching camouflage, as in other tiger beetle species 518 

(Yamamoto & Sota, 2020). For the full statistical analysis of these differences, see supplemental 519 

materials Section S3.3. 520 

 521 

 522 
Figure 9. (a) A map of the collection locations of C. f. formosa and generosa. (b) Specimens of each 523 

subspecies plotted by PC1 (darker to lighter) and PC2 (greener to redder). (c) Relationships between 524 

phenotypic and abiotic variables for all C. formosa specimens (n=374). Significant relationships are 525 

labeled within plots; ns = non-significant. 526 

 527 

 528 

https://www.zotero.org/google-docs/?QSzjCT
https://www.zotero.org/google-docs/?FrMxYV
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3.3 Use Case 2: Results of Cicindel-ID Specimen Identification 529 

 530 

Species and subspecies of Cicindela could be identified with high accuracy even for modest 531 

sample sizes in the training set (supplemental materials, Fig. S2a). The average F1 score, which 532 

balances precision and recall, increases with availability of samples in the training set (Fig. S2b), 533 

with high precision throughout (Fig. S2c). Specifically, we observed 97.0% precision and 96.4% 534 

recall for species when averaged over specimens (Fig. S2c). For subspecies, these numbers were 535 

somewhat smaller, at 85.0% precision and recall averaging over specimens (Fig. S2c). This 536 

means that most specimens can be predicted with very high accuracy, while the model may fail 537 

to recognize rare species and subspecies. Using Cicindel-ID to identify unknown samples 538 

reinforces this pattern. Among the 12 unidentified specimens, 10 were common species that 539 

Cicindel-ID predicted correctly (supplemental Table S2). Of the two samples that resulted in no 540 

prediction, one was a subspecies not in the FMNH collection and therefore not present in the 541 

training set (C. transbaicalica japanensis). The model correctly failed to make a prediction in 542 

this case. We identified the other unknown sample as C. sylvicola, which included 25 specimens 543 

in the training set. The trained model has a moderate accuracy in identifying this taxon (75% 544 

precision, 60% recall), so this result was a false negative. 545 

 546 

4 DISCUSSION 547 

 548 

DrawerDissect is the first usage of general-purpose equipment for mass digitization of whole 549 

pinned insect drawers yielding specimen-level images, masks, and data. Using DrawerDissect, 550 

we were able to successfully image, segment, and extract data (taxonomic, morphometric, and 551 

geographic) from 13,484 pinned insect specimens in about three weeks. This is a major increase 552 

in efficiency: in the last 20 years, fewer than 20,000 insect specimens were imaged in the entire 553 

FMNH pinned collection. Batch-imaging combined with AI processing is the clear way forward 554 

for large-scale digitization projects in natural history collections (Stenhouse et al., 2025; Weaver 555 

& Smith, 2023; Weeks et al., 2023).  556 

 557 

For insects, few mainstream options for mass digitization exist. There are ongoing developments 558 

for bulk digitization of fluid-preserved insect collections based on bespoke imaging and robotic 559 

equipment (Wührl et al., 2022). Picturae (https://picturae.com/services/entomology-digitization/) 560 

also offers a solution for pinned insects including metadata digitization that can purportedly 561 

reach a rate of 5,000 specimens daily. However, it involves custom robotic equipment, a large 562 

installation footprint, and individual handling of each specimen. InSelect (Hudson et al., 2015) is 563 

another option for processing whole-drawer images into single-specimen images, but it lacks 564 

customizable models that perform well on variably-positioned and overlapping specimens. 565 

Additionally, InSelect does not include tools for segmentation or text transcription. Currently, 566 

DrawerDissect is the only bulk insect digitization method that (a) works with general-use 567 

https://www.zotero.org/google-docs/?8WOadI


Whole-Drawer Insect Digitization with AI - 21 

imaging equipment, (b) offers built-in, adjustable image-processing and text transcription steps, 568 

and (c) does not require handling individual specimens.. 569 

 570 

 571 
Figure 10. Example bugmasker-all predictions for various taxa. The pink overlay shows the location of 572 

the specimen body and model confidence is shown as a percent. (a) A tiger beetle from the FMNH 573 

collection, photo by EGP/LB/CH/BM, (b) a weevil, photo by BM, (c) a cicada from the Australian 574 

National Insect Collection (ANIC), (d) a noctuid moth photo by LDG/TE (e) a wasp, photo by KW, (f) a 575 

plume moth, photo by LDG/TE, (g) a fly (Diptera) from the ANIC. (h) Prediction made by bugmasker-all 576 

(v5). (i) Adding targeted training data significantly improved bugmasker-all (v8)’s performance. 577 

 578 

Using multiple CV models (Table 1), DrawerDissect produces high-quality dorsal images of 579 

specimens that exclude the background and insect pin (Fig. 4b). This automates a time-580 

consuming step that is necessary for most morphological analyses (Correa-Carmona, 2025; Van 581 

Belleghem et al., 2018; Weaver & Smith, 2023; Weeks et al., 2023; Weller et al., 2024). 582 

Notably, DrawerDissect’s masking step (model id: bugmasker-all) is able to segment pinned 583 

insects of various shapes, sizes, colors, orientations, and degrees of overlap with other 584 

specimens, and does not require a standardized background (Fig. 12). Additionally, retraining 585 

existing models to identify new taxa (or to improve predictions for underperforming groups; Fig. 586 

12h-i) is simple. For example, to train bugfinder-all to successfully detect moths, we only had to 587 

annotate ~100 new images. We anticipate that the models we or others develop for insect 588 

https://www.zotero.org/google-docs/?j3Kd6l
https://www.zotero.org/google-docs/?j3Kd6l
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segmentation (Correa-Carmona, 2025; Mráz et al., 2023) will only improve in taxonomic and 589 

morphological generalizability over time. 590 

 591 

One limitation of our approach is that the metadata collected is fragmentary. For example, 592 

DrawerDissect was only able to automatically transcribe collection locations for ~18% of our 593 

tiger beetles, and these locations were often partial. However, there are ongoing efforts to 594 

optimize the transcription of museum labels in terms of prompt engineering, model selection, 595 

and cost effectiveness (Herbst et al., 2025). We also demonstrate that this kind of data can still 596 

have research uses. As insect collections tend to have more metadata records than specimen 597 

images (Cobb et al., 2019), a possible strategy for batch-imaging is to target previously digitized 598 

groups that lack images, as we did in the case of Cicindela formosa. The combination of AI-599 

driven phenotype extraction and traditional label transcription has the potential to produce rich 600 

datasets to investigate the drivers of insect morphological diversity. For example, we were able 601 

to extract accurate length and width measurements from all 13,484 masked specimens (Fig. 9), 602 

as well as detailed color and pattern data from a subset of big sand tiger beetles (C. f. formosa 603 

and C. f. generosa; Fig. 10a-b). Using the latter dataset, combined with existing location records 604 

and climate data, we found significant differences both between subspecies and along 605 

environmental clines (Fig. 10b-c).  606 

 607 

Species identification models (Borowiec et al., 2022; Spiesman et al., 2021; Sun et al., 2021; 608 

Welch & Lundgren, 2024) are another promising use case for DrawerDissect’s masking step, as 609 

we demonstrate with the Cicindel-ID (Fig. 11). Cicindel-ID was able to achieve high precision 610 

(97%) and recall (96.4%) for species in the genus Cicindela. Masked museum specimens offer 611 

both quality and quantity as training data for species ID models: they are standardized, censored 612 

to avoid shortcut-learning (Geirhos et al., 2020; Weaver & Smith, 2023), taxonomically diverse, 613 

and intraspecifically varied. Backgroundless specimens can also be composited onto naturalistic 614 

backgrounds to simulate in situ photographs (Sun et al., 2021), potentially expanding training 615 

sets for field image classification. 616 

 617 

AI, in the form of both tailored CV models and LLMs, is changing the scale and nature of 618 

biological research (Borowiec et al., 2022). Chaining these simple-but-specialized models 619 

together, in an assembly-line fashion, produces powerful workflows for processing batch-imaged 620 

specimens (Weaver & Smith, 2023). The outputs of these multi-model pipelines can then be fed 621 

into existing image analysis pipelines or used to train new CV models, opening the door to truly 622 

high-throughput digitization and analysis of preserved specimens (Lürig, 2022; Van Belleghem 623 

et al., 2018; van den Berg et al., 2024). 624 

 625 

 626 

 627 

 628 

 629 

https://www.zotero.org/google-docs/?NLpnvb
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