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ABSTRACT 
 
1. Many museums curate vast collections of insect specimens. These collections represent 
invaluable records of biodiversity information, ecological patterns and phenotypic variation. 
However, traditional methods of imaging specimens and digitizing their metadata are 
labor-intensive and risk damaging delicate specimens. High-throughput imaging of entire 
specimen drawers integrated with computer vision artificial intelligence (AI) models can provide 
a potential solution. 
 
2. We present DrawerDissect, a python-based pipeline for processing high-resolution drawer 
photographs, and a workflow to use it in entomological collections. By using custom vision 
models trained in the platform Roboflow and LLM-based transcription with Claude, 
DrawerDissect can crop and segment specimens from images and extract metadata from 
specimen labels. DrawerDissect is flexible, tuneable and modular, allowing seamless integration 
with downstream analyses of phenotypic features (e.g. color, pattern, and size). 
 
3. We validated  Drawerdissect by digitizing the Field Museum of Natural History's (FMNH’s) 
entire tiger beetle (family Cicindelidae) collection, processing 13,484 specimens to generate 
high-resolution dorsal photographs, backgroundless specimen images, and basic body 
measurements. Geographic data were successfully extracted for 3,648 specimens. To 
demonstrate the utility of the masked images, we provide an example integration of 
DrawerDissect with existing image analysis methods in R and ImageJ. Finally, to show the 
research potential of high-quality specimen images, we trained a species identification model, 
Cicindel-ID, using ~7,000 images of specimens in the genus Cicindela. 
 
4. DrawerDissect’s novel multi-model AI workflow provides an efficient and reproducible 
framework that meets the demands of high-throughput digitization of natural history museum 
collections, unlocking the potential of vast specimen collections for future analyses. 
 
KEYWORDS: artificial intelligence, computer vision, digitization, high-throughput imaging, 
insects, image segmentation, machine learning, museum specimens 
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1 INTRODUCTION 
 
Natural history collections connect the past to the future. Each specimen contains a unique 
ecological and evolutionary history, and preserving these specimens carries their histories 
forward into the hands of future researchers - sometimes hundreds of years after their collection. 
Collections have been leveraged to track the impacts of climate change among plants and 
animals (Bates et al., 2023; Lister, 2011; Nj et al., 2023); to understand the ecological drivers of 
diverse morphological traits (Crowell et al., 2024; Holmes et al., 2016); and to estimate the sizes, 
ranges and compositions of past populations (Davis et al., 2023). They also provide important 
genomic data that can be leveraged for species identification and evolutionary studies (de 
Medeiros et al., 2025; Ruane & Austin, 2017). However, unlocking the abundance of natural 
history collections comes with significant challenges. Metadata digitization and specimen 
imaging are necessary for collections-based research, but they are infamously time- and 
labor-intensive, as they traditionally involve handling specimens one at a time. The challenge is 
magnified for hyper-diverse groups such as insects. In North America, for example, the pace of 
arthropod specimen digitization cannot keep up with new specimen accessions, let alone existing 
collections: only ~5% of arthropod specimens have data digitally available, and fewer than 2% 
have been imaged (Cobb et al., 2019). Given the ecological significance of insects (Losey & 
Vaughan, 2006; Scudder, 2017), and their perilous position in the face of rapid global change 
(Wagner, 2020; Yang et al., 2021), there is an increasingly urgent need to mobilize insect 
specimen data and images. 
 
Most digitization efforts in the past decades have focused on the transcription of specimen label 
metadata to standardized formats such as DarwinCore (Wieczorek et al., 2012). This has enabled 
the development of numerous portals and aggregators of biodiversity data, such as the Global 
Biodiversity Information Facility (GBIF, 2025) and unleashed vast possibilities for research 
relying on analyzing such metadata. Imaging specimens has often been a secondary goal. For 
example, at the Field Museum of Natural History (FMNH), we have historically digitized 
576,395 arthropod specimens, but only 19,998 (~3.5%) have images available. This means that 
only a tiny fraction (~0.15%) of an arthropod collection estimated to hold at least 12 million 
specimens has been photographed. The traditional focus on metadata is justifiable, as images 
have historically been time-consuming to generate and analyze, and the added value in relation 
to metadata alone was unclear. While machines can easily summarize millions of text or numeric 
records, extracting information from specimen images typically requires pre-processing steps 
like outlining or landmarking - traditionally done by hand (van den Berg et al., 2020; Watanabe, 
2018; Zelditch et al., 2012). However, recent advances in artificial intelligence (AI), particularly 
computer vision (CV) models for object detection, instance segmentation, and keypoint 
detection, make automating these pre-processing steps possible (Borowiec et al., 2022; Lürig, 
2022; Pichler & Hartig, 2023; Weinstein, 2018; Zhao et al., 2024). Other AI models can extract 
categorical data from specimen images, such as sex (Wilson et al., 2023) or taxonomic identity 
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(Wührl et al., 2022). With these new tools, images are not just byproducts of digitization with 
limited uses, but high-quality sources of data themselves. 
 
Image analysis has significantly improved, but image acquisition still represents a bottleneck that 
is a focus of active research. There are many existing solutions for high-throughput imaging in 
collections, depending on the type of organism and method of preservation. For example, many 
herbaria use conveyor-belt systems for quickly scanning paper-mounted plant specimens 
(Picturae, https://picturae.com/; Sweeney et al., 2018). Bespoke camera rigs have been employed 
for batch-photographing vertebrate skeletons (Weeks et al., 2023) as well as soil samples 
containing multiple small invertebrates (Sys et al., 2022). For dry, pinned insects that are stored 
in drawers, mass-digitization solutions are currently under development (LightningBug, 
https://www.lightningbug.tech/prog-orig; Picturae, https://picturae.com/; Steinke et al., 2024), 
but none are currently in widespread use. No matter how efficient individual specimen handling 
can be made, a much faster solution is to use the existing organization of specimens in drawers 
and simply photograph whole drawers at a time (Mantle et al., 2012). Several different 
approaches to “whole-drawer imaging” have been pursued in the last 10-15 years (reviewed in 
Holovachov et al., 2014). While some of these initial approaches suffered from image warping 
and stitching artifacts (Mantle et al., 2012), modern lenses and imaging systems are capable of 
producing incredibly clear, high-quality images of hundreds of specimens at a time (Fig. 1a). 
 
While high-throughput imaging can be accomplished in a fraction of the time taken to image 
individual specimens, this creates the challenge of processing bulk images to extract 
individual-level data. “Drawer" is not the unit of interest for researchers - “specimen” is. A 
possible solution to this processing bottleneck has been clear for over 10 years. Holovachov et al. 
(2014) presciently ask, “[c]an specimens in the image be analyzed and identified using a 
computer algorithm and machine learning?” Looking at the explosion of computer-vision based 
pipelines designed for specimen digitization in recent years, we can largely respond “yes” to this 
question in 2025. For example, LeafMachine2 uses a series of computer vision models to extract 
phenotypic data and transcribe labels from herbarium specimens (Weaver & Smith, 2023); 
Skelevision segments and measures bones from batch-imaged bird skeletons (Weeks et al., 
2023); CollembolAI detects and classifies small invertebrates in photographs of soil samples 
(Sys et al., 2022); and DiversityScanner combines robotic sorting and imaging of bulk insect 
samples with a classification model to predict each insect’s family-level identity (Wührl et al., 
2022). No doubt this list is incomplete, but from these examples alone, we can draw the 
conclusion that AI is an effective tool for mass-digitizing collections and extracting 
specimen-level data (Stenhouse et al., 2025). Applying the same concept to pinned insect 
collections, we wanted to create an AI-driven, user-friendly pipeline for processing 
whole-drawer images, with three key outputs:  
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(1) Individual specimen images linked to taxonomic identity. 
(2) Outlined specimen bodies without backgrounds (i. e. “masked” specimens) suitable  
for downstream phenotypic analysis. 
(3) A subset of precise specimen-level collection locations, extracted from any visible 
label text in a given specimen image. 

 
We call this multimodel pipeline “DrawerDissect.” DrawerDissect relies on a data annotation and 
AI model training service, Roboflow (Dwyer et al., 2014), for object detection and segmentation. 
For image-to-text transcription, we feed images to Anthropic’s large language model (LLM), 
Claude (https://console.anthropic.com/), with customizable prompts. We use these 
subscription-based services rather than open source models specifically because they are more 
accessible to a broader user base that may lack the coding experience or computing infrastructure 
to run AI models locally (Heron et al., 2013). Roboflow's intuitive graphical interface and image 
labeling tools make training and deploying computer vision models remarkably fast, with no 
back-end coding required. For transcription, LLMs like Claude are designed to understand 
conversational (“natural language”) instructions and can handle ambiguities and inconsistencies 
in text inputs (Naveed et al., 2024). We designed DrawerDissect to be flexible, with built-in 
toggles for different drawer setups and desired outputs; customizable, with the option to swap 
between different models, update existing models, and edit LLM prompts; and modular, with 
steps that can be run independently or combined into unique workflows.  
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Figure 1. (a) A top-down whole-drawer image taken by the GIGAMacro Magnify2, with key objects 
labeled 1-5: a filler object, color standard, framing filler, ruler, and top-down view of a pop-up label. (b) 
Standard FMNH unit tray header label. (c) A new pop-up unit tray label, which folds flat when stored. 
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2 METHOD 
 
To demonstrate the utility of DrawerDissect using a real example, we photographed and 
processed the FMNH’s entire collection (over 13,000 specimens) of pinned tiger beetles 
(Coleoptera: Cicindelidae; Duran & Gough, 2020). Tiger beetles are strikingly colorful insects, 
often with intricately patterned and iridescent elytra. The ecology and evolution of this group’s 
coloration has been the focus of much research, particularly with respect to 
background-matching, thermal physiology, morphological convergence, and a unique 
“pointillistic” method of structural color production (French et al., 2021; Pearson & Vogler, 
2001; Schultz & Bernard, 1989; Schultz & Hadley, 1987; Yamamoto & Sota, 2020). To test 
DrawerDissect’s ability to integrate with existing batch color analysis pipelines (Hancock et al., 
2025), we use the segmented images generated by DrawerDissect to investigate geographic and 
climatic patterns of color diversity in two subspecies of a well-represented species in our 
collection: Cicindela formosa. Finally, we use over 7,000 masked images generated by 
DrawerDissect to train a species ID model, Cicindel-ID, to help identify a set of unsorted 
specimens in the speciose genus Cicindela. This model highlights the value of natural history 
collections as rich data sources for AI-based biological identification tools. 
 
Our workflow involves three steps: (1) imaging drawers, (2) configuring DrawerDissect, (3) 
running images through DrawerDissect, and (4) optional post-curation. First, we describe our 
imaging set-up using a GIGAMacro Magnify2 system (Four Chambers Studio, California, USA, 
https://gigamacro.com/), and how the final whole-drawer images are generated. We then give a 
broad overview of DrawerDissect in terms of installation, configuration, and cost. We also 
describe how to train the CV models that we use throughout the pipeline. Finally, we describe the 
steps that occur during a standard DrawerDissect run. A streamlined user guide with quick-start 
instructions can be found at the DrawerDissect github: github.com/EGPostema/DrawerDissect. 
 
2.1 Whole-Drawer Imaging 
 
DrawerDissect was designed with images produced by a GIGAMacro Magnify2 imaging system, 
and uses Field Museum (FMNH) conventions for insect drawers. These conventions are typical 
of United States natural history collections, where specimens are grouped into trays (“unit trays”) 
based on shared taxonomic identity and geographical origin (Fig. 1b). Unit trays often have 
header labels with taxonomic and other information affixed to the tray interior (Fig. 1b). To make 
the labels visible for imaging, we developed "pop-up" versions that display the same information 
on both the interior and exterior of the tray. The pop-up portion is visible during imaging (Fig. 
1a), but folds down flat when trays are stored (Fig. 1c). Unit trays have also not traditionally 
received unique identifiers in the FMNH insect collection. As part of this workflow, we 
developed a system to create unique identifiers for unit trays, which refer to collection locations 
in the Field Museum KE EMu database (Fig. 1a).  

https://www.zotero.org/google-docs/?broken=Z7DfFb
https://www.zotero.org/google-docs/?broken=s41jLl
https://www.zotero.org/google-docs/?broken=s41jLl
https://github.com/EGPostema/DrawerDissect
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The only pre-curation step needed for drawer imaging is to generate an inventory of unit trays for 
each drawer, print the new pop-up labels, and replace the old labels with the new. In the FMNH 
collection, we assign unique identifiers and create 2D barcodes for each drawer using the KE 
EMu database system, but this is optional. Next, we arrange all unit trays for imaging on the 
GIGAMacro platform. We aim for the smallest possible footprint to reduce the imaging time. 
While DrawerDissect can handle natural variation in specimen positioning, we may adjust any 
specimens that are crooked or overlapping. While we describe our imaging methods based on 
this standard, DrawerDissect can be adapted to various configurations. At minimum, running the 
full pipeline requires a reasonably clear, high-quality image of an insect drawer, which can be 
achieved by a number of different whole-drawer imaging systems (Holovachov et al., 2014).  
 
2.2 Overview of DrawerDissect 
 

 
Figure 2.Visual overview of the main image and data outputs of DrawerDissect, with key python 
packages highlighted. 
 
DrawerDissect is a Python-based pipeline available from GitHub, including documentation on 
installation and usage at https://github.com/EGPostema/DrawerDissect. The package includes 
test data to familiarize new users with the pipeline’s steps, outputs, and organizational structure 
before they process new images. We specifically aimed to make the pipeline accessible to users 
who are not expert programmers. Only a rudimentary familiarity with their computer’s 

https://github.com/EGPostema/DrawerDissect
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command-line interface is required, to run the script and edit a single master configuration file. 
Overall, DrawerDissect can be installed and run in four simple steps: 

 
1. Create an environment for the program to run (~5 lines of command-line code) 
2. Add whole-drawer images to a folder 
3. Input API keys from Roboflow and Anthropic 
4. Run the full pipeline with a single command 

 
2.2.1 Third-party Packages and Dependencies 
 
Our pipeline is designed to run in a Python-based virtual environment (Python 3+) with a suite of 
required packages that are installed automatically upon installation. In general, we use pandas for 
generating, merging, and handling dataframes (pandas Development Team, 2024). Our main 
image processing packages are NumPy (Harris et al., 2020), Pillow (Clark, 2015), and OpenCV 
(Bradski, 2000). NumPy is used to convert images into arrays, which can then be used to 
translate specific areas of an image into full-color pixels or censored white pixels. We also use 
NumPy for some basic mathematical functions, such as calculating angles, distances, and areas 
in images. OpenCV is used in shape analysis (for the binary masks of specimen bodies) as well 
as for filtering out accidental partial segmentations. Pillow handles the vast majority of the 
image-based operations, including resizing, scaling, cropping, color conversion, mask 
application, drawing bounding boxes, and rotating images. We also use Matplotlib (Hunter, 
2007) to plot visual maps of specimen dimensions. For all AI-based processing steps, we utilize 
Roboflow (  Dwyer et al., 2024) and Anthropic (https://www.anthropic.com/api) Python packages. 
The last key package we use with DrawerDissect is pyYAML (https://github.com/yaml/pyyaml), 
which allows us to organize the pipeline with customizable inputs in a single master 
configuration file (hereafter, config file).  
 
2.2.2 Pipeline Configuration and Customization 
 
By editing the config file, new users can tailor the pipeline for their specific needs. Essential 
inputs for the config file are the user’s API Keys for Roboflow and Anthropic. Documentation 
for how to set up API access through these services can be found at 
https://inference.roboflow.com/quickstart/configure_api_key/ and 
https://docs.anthropic.com/en/api/admin-api/apikeys/get-api-key. The rest of the config file is set 
up to run using FMNH’s defaults. These defaults will work in most cases, but the settings can be 
edited as-needed for different configurations. We describe these settings in greater detail in the 
github documentation (https://github.com/EGPostema/DrawerDissect#user-settings), but, briefly, 
users can modify: (1) Roboflow-specific settings, (2) Toggles for transcription steps, (3) 
Claude-specific settings, and (4) Step-specific memory usage. 
 

https://inference.roboflow.com/quickstart/configure_api_key/
https://docs.anthropic.com/en/api/admin-api/apikeys/get-api-key
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2.2.3 Training Roboflow Models for Detection and Segmentation 
 
DrawerDissect relies on Roboflow models for all steps requiring vision-only models, such as 
object detection and segmentation. We have found that general foundation models perform 
poorly for our tasks, and therefore trained specialized models to annotate particular aspects of 
images. Reading labels using LLMs, however, is sufficiently accurate without specialized 
fine-tuning, and in this case no further training was required. Training the detection and 
segmentation models requires a set of images that have been labeled with the desired output. We 
use Roboflow’s free labeling tools, such as smart polygon and label assist, to make this step 
faster. Once annotated, we then split the images into training, validation, and test sets at a 
standard ratio of 70:20:10. We also employ image augmentations to increase model 
generalizability with respect to image lighting, background color, subject orientation, etc. 
(Borowiec et al., 2022). 
 
We trained our models using Roboflow servers. Training can take anywhere between a few 
minutes and several hours depending on the size and complexity of the model; 2 hours is typical 
for our largest models with datasets of  >3,000 images. When the model is finished training, 
Roboflow automatically reports the model’s precision and recall, as well as confusion matrices to 
determine rates of false positives/negatives (Table 1).  We trained and have provided public 
access to all the models used in our pipeline at universe.roboflow.com/field-museum. See Table 
1 for model-specific performance, and github.com/EGPostema/DrawerDissect/supplemental for 
the taxonomic groups included in each of our six public models. 
 
TABLE 1: Model composition and performance 
 

model id 
(*version)  

# of images 
(**train, valid, test)  

precision recall false positive 
rate 

false negative 
rate 

trayfinder-base 
(5) 

(180, 12, 6) 99.6% 99.1% 0.02% 0.01% 

trayfinder-popup 
(17) 

(162, 11, 6) 100.0% 100.0% 0.01% 0.00% 

labelfinder 
(7) 

(3555, 201, 103) 96.0% 99.0% ***0.02% ***0.01% 

bugfinder-kdn9e 
(13) 

(4235, 238, 120) 97.1% 96.7% 0.02% 0.02% 

bugmasker-all 
(5) 

(2035, 113, 62) 99.9% 97.3% 0.02% 0.02% 

pinmasker 
(6) 

(2210, 126, 67) 91.0% 93.0% 0.08% 0.07% 
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*Specifically, the model version that we used to produce the results in Section 3.1; not necessarily the 
most current version. 
**Includes augmented images, which increases the size of the training split x5. 
***Rate is averaged across the three detection classes (barcode, geocode, and label). 
 
2.2.4 Costs and Alternatives 
 
DrawerDissect uses API keys for paid AI services. By default, users are set up to use public 
FMNH models via Roboflow for image processing (universe.roboflow.com/field-museum), 
while all transcription steps are done via Anthropic. Therefore, the primary costs for using 
DrawerDissect are associated with API-based inference: i.e., sending an image to a trained model 
and getting the model’s output back. Roboflow pricing plans can be found at 
roboflow.com/pricing, including a free tier. We describe our exact per-specimen cost of unit tray- 
and specimen-level transcription in Section 3.1.4.  
 
We anticipate that using API services like Roboflow and Claude to run DrawerDissect will be the 
easiest and most cost-effective method for the average user. These services sidestep the 
challenges of setting up local servers or cloud computing, at the cost of not being fully 
open-source. Additionally, running AI models locally requires powerful servers with advanced 
GPUs, costing tens of thousands of dollars to set up and high energy costs to run. We have not 
added these options to DrawerDissect for two reasons: (1) this raises the technological barrier to 
our intended user base and (2) advanced users experienced in AI coding, or large institutional 
teams, would be able to update DrawerDissect open-source code themselves. These experienced 
users that could modify DrawerDissect code to use local processing instead of API calls, relying 
on open-source or otherwise freely available models such as Llama (https://www.llama.com/) 
and DeepSeek (https://www.deepseek.com/) as LLM replacements for Anthropic API, and 
pytorch (https://pytorch.org/), fastai (Howard & Gugger, 2020) and the timm library 
(https://timm.fast.ai/) as replacements for the vision tasks.  
 
2.3 Running DrawerDissect  
 
DrawerDissect consists of a series of steps (Fig. 2) that can be run automatically, in sequence, 
with a single command: ‘python process_images.py all’. For a full list of command-line steps, 
optional command-line arguments for running specific combinations of steps, and/or running 
DrawerDissect on specific drawers, see github.com/EGPostema/DrawerDissect#advanced-usage. 
 
2.3.1 Object Detection and Segmentation 
 
Drawerdissect uses Roboflow models (Table 1) in sequence to find and outline different objects 
in images, which we describe below. All models output a JSON file with coordinates that are 
then used by DrawerDissect functions to crop, measure, filter, or mask images, depending on the 

http://roboflow.com/pricing
https://www.llama.com/
https://www.deepseek.com/
https://pytorch.org/
https://timm.fast.ai/
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step. Due to file size and format constraints, all TIFs are converted to JPGs before processing, 
and large images are resized to fit within a 1000x1000px square (maintaining aspect ratio). 
During cropping steps, the coordinates from downsized images are mapped to the original, 
full-sized image based on the scaling factor recorded when images are initially resized.  
 
trayfinder-base 
This model detects unit trays from drawer images using a Roboflow 3.0 Object Detection model. 
It is used by default in the current version of DrawerDissect. 
Input: Resized whole-drawer images (without pop-up labels).  
Output: Bounding box coordinates around all unit trays. 
 
trayfinder-popup 
This model detects unit trays from drawer images using a Roboflow 3.0 Object Detection model. 
This is a FMNH-specific model, not used by default in the current version of DrawerDissect. 
Input: Resized whole-drawer images (with pop-up labels).  
Output: Bounding box coordinates around all unit trays, including the pop-up label.   
 

 
Figure 3. Left: unit trays in a drawer detected by trayfinder-base. Right: two examples of label detection 
by labelfinder. Top: labelfinder detects three classes of text from an FMNH pop-up label (a 5-digit 
barcode, the taxonomic identity, and the 3-letter geocode). Bottom: labelfinder detects a handwritten 
species name located within the unit tray. 
 
labelfinder 
This model detects three classes of text (taxonomic information, barcodes, and geocodes) if 
present (Fig. 3), using a Roboflow 3.0 Object Detection model. It is used by default in the 
current version of DrawerDissect. 
Input: Resized unit tray images. 
Output: Bounding box coordinates around the locations of tray-level text elements. 
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bugfinder-kdn9 
This model detects pinned insects (Fig. 4a) using a Roboflow 3.0 Object Detection model. It is 
used by default in the current version of DrawerDissect.  
Input: Resized unit tray images. 
Output: Bounding box coordinates around all pinned specimens, with a 10-pixel buffer. 
 
bugmasker-all 
This model outlines the main body of insects, excluding legs and antennae (Fig. 4b), using a 
Roboflow 3.0 Instance Segmentation model. It is used by default in the current version of 
DrawerDissect.  
Input: Dorsal images of insects on a neutral background. 
Output: Coordinates that represent points along the outline of the specimen’s body. 
 

 
Figure 4. (a) Tray guides produced from bugfinder-kdn9 coordinates. Specimens are automatically 
numbered from left to right, top to bottom. The number corresponds to the image name produced by 
DrawerDissect. (b) How Roboflow coordinates from bugmasker-all and pinmasker (the colored overlays) 
are translated into binary masks (black and white PNGs) by DrawerDissect, which are then used to create 
the final masked specimen images. 
 
pinmasker 
This model outlines the specimen pin (Fig. 4b), if present, using a Roboflow 3.0 Instance 
Segmentation model. It is used by default in the current version of DrawerDissect. 
Input: Masked, body-only dorsal images of insects with a solid white background. 
Output: Coordinates that represent points along the outline of the pin. 
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2.3.2 Generating Masks and Transparencies 
 
To create transparent versions of the masked specimens, coordinates from bugmasker-all and 
pinemasker are converted into numerical arrays, which are then used to generate binary masks: 
black and white images (PNGs) where all background pixels are black and all body pixels are 
white (Fig. 4b). We then run the masks through a filtering step to remove partial segmentations. 
The binary mask is applied to the full-color specimen, such that white portions of the mask clip 
out the full-color specimen, while the black portions are turned transparent. 
 
2.3.3 Measuring Specimens 
 
For each specimen mask, we get two length measurements: len1, which is the greatest distance 
between any two points on the outline, and len2, calculated as the maximum distance 
perpendicular to len1. These measurements are good estimates for length and width though the 
script is intentionally agnostic to orientation. We also calculate the area, in pixels squared, of the 
body mask. To verify these measurements, DrawerDissect outputs a map of len1 and len2 for 
each specimen mask (Fig. 5). If users know the pixel:unit ratio for their camera, len1, len2, and 
area can be converted for each specimen. 
 

 
Figure 5. A map of len1 (red) and len2 (blue) for the specimen on the right, generated by DrawerDissect. 
 
2.3.4 Claude (LLM) text transcription 
 
To transcribe image text, we use a combination of Claude API and customizable prompts. For 
the results in Section 3.1, we used the model claude-3-7-sonnet-20250219. Before transcription, 
all image inputs are preprocessed to enhance text visibility by converting to grayscale and 
increasing contrast. Both handwritten and typed material can be transcribed (Fig. 3), though 
transcription errors are more likely with handwriting. We review the results of all AI 
transcription steps manually. 
 



[EcoEvoRxiv PRE-PRINT] - Whole-Drawer Insect Digitization with AI - Postema et al. 15 

Unit tray label text is transcribed from cropped text images generated by labelfinder (Fig. 3). We 
have three separate prompts for each type of transcription, which are tailored to how these 
different types of information are structured. These prompts can be edited by users for their 
specific label structure in the config file, though our default setting to detect and transcribe 
taxonomic identity will likely work for most cases. 
 
In many cropped specimen images, text from the top label (usually containing geographic 
information) is visible. We tested a novel method of metadata extraction based solely on this 
fragmented information, using a multistep approach (Fig. 6). The prompts for each of these steps 
can be edited in the config file. The outputs of this process are transcriptions of the verbatim text, 
an initial location estimate, the model’s final location estimate, and an assessment of the 
estimation’s quality (Fig. 6). The quality ranks are defined as: (1) verified, meaning the location 
estimate is logical given the verbatim text, (2) unreliable, meaning there is not sufficiently 
specific verbatim text to justify the location estimate, and (3) unknown, meaning that there was 
not enough verbatim text to result in any location estimate at all. 
 

 
 
Figure 6. Our three-step process for LLM-based transcription of specimen location labels. Top: a 
successful transcription, resulting in a verified location with a standardized final location (despite a typo 
in the verbatim text). Middle: an unknown location and final location due to a lack of visible text in the 
image. Bottom: an unreliable location due to the verbatim text’s lack of geographic specificity, and thus 
an unknown final location.  
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2.3.5 Data outputs and databasing 
 
The final step of the pipeline compiles a time-stamped folder with data summaries at the drawer, 
tray, and specimen level for a given run. At the drawer level, we provide a simple summary of 
the number of trays, specimens, and masked specimens per drawer. DrawerDissect also generates 
a lookup table for tray-level information, such as barcode, geocode, taxonomic identity, 
specimen count, and masked specimen count. The last dataset merges all specimen-level data 
that were generated by the pipeline with tray-level data.  
 
To upload the specimen images and their metadata to KE EMu, we print specimen labels with 
FMNH-INS numbers and an associated QR code. We apply these labels to each pinned 
specimen, using the tray guides (Fig. 4b) to match the DrawerDissect specimen image (e.g. 
spec_001) to the FMNH-INS number. Lastly, we run a Python script to reorganize data to fit the 
metadata structure expected by KE EMu, and batch-import the images plus metadata. 
 
2.4 Use Case 1: Batch color analysis of the big sand tiger beetle 
 
Masked specimens are a key output of DrawerDissect. These images are useful for quickly 
extracting and analyzing phenotypic information from large numbers of specimens. To test the 
utility of these images, we targeted a specimen- and data-rich taxa within the FMNH tiger beetle 
collection: the big sand tiger beetle (Cicindela formosa). C. formosa has long been noted to 
possess a variety of color patterns across its range, with multiple purported subspecies (Pearson 
et al., 2006). There are clear regional variations in this species’ maculations (the distinctive white 
markings on the elytra) which are often used to justify subspecies (French et al., 2021; Gaumer, 
1977; Pearson et al., 2006). The FMNH tiger beetle collection includes >300 C. f. specimens 
collected across North America, and is particularly rich in two semi-sympatric subspecies: C. f. 
formosa and C. f. generosa. Due to a previous digitizing effort, the FMNH has records of the 
collection locations (most with coordinates) for all specimens of these subspecies. Given the 
uncertainty of the subspecies’ classification and their regional diversity in the FMNH collection, 
we used this complex to show how DrawerDissect’s outputs can be used in comparative 
phenotypic analyses. Given the use of color and pattern characteristics to identify C. f. formosa 
versus C. f. generosa, we might expect the two subspecies to significantly differ in appearance, 
even in regions where they overlap. However, the difference in color and maculation coverage 
between the subspecies could also be explained by local adaptation to certain biotic and/or 
abiotic pressures. In this case, we might expect the subspecies to differ only in the non-sympatric 
portions of their ranges, and for specimens from both subspecies to vary along environmental 
gradients that are known to impact animal coloration (Postema et al., 2023). 
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2.4.1 Phenotype extraction and statistical analysis 
 
We used an existing ImageJ batch-analysis pipeline (method from Hancock et al., 2025) to 
quantitatively measure CIELab color and pattern geometry in the masked C. formosa specimens 
(n = 374). As this phenotyping method outputs 36 different chromatic and geometric 
measurements, we used principal component analysis (PCA) to reduce the dimensionality of our 
dataset and to identify the main components of variation for our two tiger beetles. All statistical 
analyses were carried out using R (version 4.3.2). We used linear mixed models with PCs 1-3 as 
the dependent variables and both subspecies and sympatry as factors. We used the latitude and 
longitude data for each specimen to create a binary variable for sympatry: specimens were 
considered to be sympatric if they were within 3-degrees of one another. To further test the visual 
discreteness of the two subspecies we used k-means clustering of PCs 1-3 set to two clusters to 
determine whether or not the two subspecies could be naively identified within the dataset. Only 
specimens with coordinates were used in these analyses (n = 347). To compare the effect of 
latitude, mean annual temperature (celcius), and mean annual precipitation (mm) on the mean 
CIELab L* value (lower = darker) and the mean CIELab a* value (greater = redder), we again 
used linear mixed models. Mean annual temperature and precipitation measurements were 
collected from a guide to North American level III ecoregions (Wiken et al., 2011); we then 
mapped each specimen’s collection location (coordinates) to ecoregion using the Ecoregion 
Locator tool (https://bplant.org/). For all of our analyses, numeric variables were rescaled to a 
mean of 0 and a standard deviation of 1. The year the specimens were collected (to account for 
wear) and subspecies were used as random effects for the ecocline analyses. Residual plots were 
used to verify that all models met assumptions, and where required, data was transformed to 
match a normal distribution, e.g. square-root transformation.  
 
2.5 Use Case 2: Training a classification model to identify Cicindela specimens 
 
A major contribution of batch-imaging and image processing tools like DrawerDissect is their 
ability to supply taxonomic identification AI models (Spiesman et al., 2021; Sun et al., 2021; 
Truong & Van der Wal, 2024; Welch & Lundgren, 2024), and other curation tools, with the large 
amounts of training data they require. In our collection of tiger beetles, the majority of specimens 
(7000+) belong to the genus Cicindela, representing 239 unique species and subspecies across 2 
subgenera (Cicindela and Cicindelia). There are also a small number of specimens in our 
collection (12) that were identified to the genus Cicindela but not to species. As a proof of 
concept, here we train an image model to identify species and subspecies of Cicindela based on 
the masked images we produced with DrawerDissect. 
 
To train and evaluate a taxonomic classification model for Cicindela, we split all imaged and 
identified specimens into training, validation and test sets at an approximately 70:20:10 ratio. We 
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included taxa with single images in the training set but not validation or test sets. Our goal was to 
train a multilabel model that could simultaneously identify a given specimen to species and 
subspecies. The input data to the models were individual masked tiger beetle images with white 
backgrounds, associated with all species and subspecies labels. We primarily used the Python 
libraries pytorch (Paszke et al., 2019), fastai (Howard & Gugger, 2020), and timm (Wightman, 
2019) for deep learning, and computations were performed on 2 NVIDIA RTX A5000 GPUs 
with  24GB of memory each. One of the primary challenges with any biological dataset for 
taxonomic identification is data imbalance: some species are very abundant and represented by 
hundreds of specimens in our dataset, while others are rare and represented by unique specimens 
(Figure 15a). To circumvent this challenge, we applied methods similar to de Medeiros et al. 
(2025), who performed taxonomic identification based on an imbalanced dataset of images 
representing genome composition (Asprino et al., 2025). Additional details on our model 
architecture, augmentations, and our trained model weights can be found at 
huggingface.co/brunoasm/eva02_large_patch14_448.Cicindela_ID_FMNH and 
github.com/de-Medeiros-insect-lab/Cicindelinae_ID. We evaluated the final model using the test 
set, with a confidence threshold of 0.5 to make predictions. Finally, we also predicted labels for 
the 12 unknown samples. Before using the model to identify the 12 unknown samples, we 
manually identified each specimen using guides to the Cicindela for comparison (Table 3). 
 
3 RESULTS 
 
3.1 Digitizing the FMNH tiger beetle collection 
 
With DrawerDissect, we were able to produce a complete inventory of the FMNH tiger beetle 
collection. We processed the collection into 13,496 separate images of intact specimens obtained 
from 44 drawers of pinned tiger beetles from around the world (Fig. 7). All specimen photos are 
linked to taxonomic and broad biogeographic metadata. The majority of these specimens 
(13,484) were successfully masked and measured (length, width, and area, in mm). Over a 
quarter (3,627) of the specimen images are associated with more specific collection locations, as 
a result of automated transcription via DrawerDissect, manual transcriptions for one specimen 
per tray, or additional metadata transcriptions from a previous databasing effort. Our collection 
contains 56 unique genera and 663 unique species of tiger beetle. This represents nearly a third 
of the ~2,300 known species globally (Gough et al., 2018). FMNH tiger beetles were collected 
from at least 1,002 unique locations across 91 countries, and all continents excluding Antarctica 
(Fig. 7). The collection is strongly biased towards the Northern hemisphere (64.4% from the 
Nearctic). Among the specimens with transcribed locations, the vast majority were from the 
United States. The collection also contains a large proportion of Neotropical specimens (18.8%), 
particularly from Brazil. 
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Figure 7. (a) A world map showing the approximate number of FMNH specimens per country. The per 
country counts are estimated from the number of specimens in a given tray and the countries of 
representative specimens from the same tray whose locations were determined (manually or via LLM). 
Yellow = 500+ specimens, green = 100-500, teal = 30-100, blue = 10-30, dark blue = 5-10, purple = 1-5, 
and gray = 0. Specific known collection sites with coordinates are marked with red points. Middle: (b) 
Cicindela sexgutatta from Pine Hill, IL, USA. (c) Odontocheila iodopleura from the Pitilla Zoological 
Station, Costa Rica. (d) Lophyra flexuosa from Mazagón, Spain. (e) Hypaetha singularis from 
Ghoubbet-El-Bous, on the coast of the Gulf of Suez in Egypt. (f); Tricondyla aptera aptera from 
Jayapura, Indonesia; (g) Cicindela chinensis japonica from Ōdai, Japan. Specimens not to scale. (h) 
specimen counts by absolute latitude (n = 2159). 
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3.1.1 Unit tray cropping and transcription 
 
Out of 941 trays, trayfinder-popup made no detection errors. However, 36 trays (3.9%) required 
manual transcription of the taxonomic identity, geocode, and/or barcode. For the majority of 
trays, this happened because labelfinder failed to detect the information on the label (Fig. 3), 
meaning there were no cropped images for Claude to transcribe. In four instances, label 
information was detected, but the bounding box did not fully encompass the label information - 
thus some text had to be transcribed manually. We observed only two instances of taxonomic 
transcription typos at the tray level: the genus Manticora was misspelled as Mantichora, and the 
genus Distipsidera was misspelled as Distintipsidera. For barcodes, there were three instances 
where the numbers 5 and 6 were erroneously switched, likely due to their similar shape. For 
geocodes, there were 9 transcription errors that resulted in the incorrect biogeographical realm. 
All text in this transcription step was typed. 
 
3.1.2 Specimen detection 
 
Overall, bugfinder-kdn9e made 13,662 specimen detections. 153 (1.1%) of these were false 
positives, that is, non-specimens that were erroneously labeled as specimens. This is a slightly 
higher rate of false positives than the model’s roboflow test set (0.02%; Table 1). For the most 
part these detections could be filtered out using the results of the masking and measuring steps, 
as non-specimens tend to produce either an oddly-proportioned mask or no mask at all. To check 
for missed specimens, we visually scanned all 930 tray guides and counted any specimens that 
lacked a bounding box. No specimens were missed by the model, meaning the rate of false 
negatives was 0% (lower than the roboflow-calculated rate of 0.02%; Table 1). 
 
3.1.3 Specimen masking 
 
Out of the 13,662 cropped specimen photos generated from bugfinder-kdn9e, bugmasker-all 
found masks for 13,501 images (Fig. 8). Of the 161 images where no mask was found, 154 were 
true negatives, meaning they did not contain a specimen, or contained a heavily damaged 
specimen. Only 7 were false negatives, where no mask was found despite the image containing a 
complete, intact specimen. In the masked set, we found 12 false positives, where a mask was 
applied to a non-specimen (3) or heavily damaged specimen (9). In 5 cases a mask did not fully 
outline an intact specimen. Our actual rates of false positives (0.09%) and false negatives 
(0.05%) for our set of tiger beetles were below the rates reported for the model in the confusion 
matrix generated by Roboflow (Table 1) based on the test set with a broader taxonomic diversity. 
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Figure 8. Flowchart showing the outcomes of DrawerDissect masking for the tiger beetle collection. 
Solid lines indicate correct responses, such as masking intact specimens or failing to mask 
non-specimens. Dotted lines indicate incorrect responses, such as masking damaged 
specimens/non-specimens, or failing to mask intact specimens 
 
3.1.4 Specimen-level label transcription 
 
For the majority of specimens (80.3%), no location could be determined from the image alone, 
likely because either no text was visible, the specimen did not have a label with location 
information, or the location text was too fragmented (or too non-specific) to make a reliable 
determination (Fig. 6). In total we were able to reconstruct locations for 2,475 specimens 
(18.2%). This included both perfect transcriptions from the text available (9.4% of images), and 
cases where there was enough context from the LLM’s verbatim text transcription that a location 
could be determined manually by a human reviewer even if the model failed to make a 
determination (8.8% of images). Additionally, the frequency of false positives - incorrect 
location estimates that were incorrectly judged as ‘reliable’ by the LLM - was low, at 1.6% of all 
images. Of the 425 unique collection locations extracted from the specimen images by AI, the 
majority (69.6%) could be linked to a set of centroid coordinates (with up to a 20mi radius of 
uncertainty) on Google Maps. Running all available LLM-based steps on our set of >13,000 tiger 
beetle images cost ~$100. For a per-specimen breakdown of cost and speed, see Table 2. 
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TABLE 2: Time and cost of specimen transcription 
 

cost per specimen 
(USD) 

cost per 1000 
specimens (USD) 

processing time  
(1 specimen) 

processing time 
(1000 specimens) 

$0.00757 $7.57 2.7 seconds 45 minutes 

 
3.1.5 Size measurements 
 

 
Figure 9. (a) The relationship between manual and digital length for a set of randomly selected specimens 
(n = 143), both in mm. (b) The relationship between manual and digital width for the same set of 
specimens. (c) The average body length, in mm, +/- SE of each genera in the FMNH collection (n = 
13,484). *Indicates genus with an associated specimen icon (generated by DrawerDissect), ordered left to 
right by size. All specimen icons are to scale and are positioned roughly above their corresponding genus. 
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We were able to measure all specimens that were properly masked (Fig. 8), generating length, 
width, and area in mm/mm2 for 13,484 specimens. To assess the accuracy of the digital 
measurements, we compared them against a randomly selected subset of specimens (n = 79) that 
we hand-measured using calipers (Fig. 9a-b). We found that the digital and manual 
measurements were highly correlated (length: R² = 0.989, width: R² = 0.961). Body area, length, 
and width varied both within and across genera (Fig. 9c). The largest specimens were Manticora 
collected from South Africa (average length: 43.1mm) while the smallest were in the Neotropical 
genus Brasiella (average length: 7.2mm). 
 
3.1.6 Imaging and processing time 
 
Imaging all 44 drawers took approximately 2 weeks, including moving drawers, inventorying 
unit tray labels, and printing and replacing header labels (70 hours). This is equivalent to ~190 
specimens imaged per work-hour. On a Windows computer with an AMD RyzenTM 7 Processor 
7800X3D CPU and 32GB of RAM, DrawerDissect is able to fully process (i.e. produce all 
possible DrawerDissect outputs) a 8GB drawer image in 16 minutes. For 44 drawers it took ~10 
hours to fully process; batch image processing runs are more efficient per drawer due to parallel 
processing. We spent an additional 40 hours on data cleaning and validation, and another 35 
hours to manually transcribe location information for one specimen per unit tray - an optional 
step to supplement DrawerDissect’s location estimates. In total, the full workflow (imaging, 
processing, and data-cleaning) for the full tiger beetle collection took about 155 hours. This 
translates to ~3.5 hours per drawer or ~40 seconds per specimen. This is significantly faster than 
manually photographing, measuring, and outlining specimens. 
 
3.2 Use Case 1: Color variation between and within subspecies of Cicindela formosa 
 
Our PCs comprised 53% of variation within our coloration metrics. PC1 (22%) primarily 
consisted of luminance with higher values indicating lighter, more contrasting maculation; 
PC2(19%) consisted of CIE a* (red-green) with higher values indicating redder colouration; and 
PC3 (12%) consisted of lower spatial frequency patterns. Both subspecies varied considerably in 
PC1 (Fig. 10b). Meanwhile, C. f. formosa on average were redder in their body colouration than 
C. f. generosa  (Higher PC2, Fig. 10c). For both subspecies classifications, specimens at the 
highest latitudes had maculations that were unusually wide (Fig. 10a). 
 
For PC1, sympatry had a significant effect (B = 1.68, SE = 0.62, t-value287  = 2.72, p=0.007), 
likely due to increased maculation size in Northern regions where populations overlapped. For 
PC2, C. f. generosa were less red than C. f. formosa (B = -5.12, SE = 0.369, t-value304  = -13.93, 
p=<0.001). Individuals of both subspecies were less red in sympatric regions (B = -2.74, SE = 
0.430, t-value336 = -6.37 , p=<0.001), but less so for C. f. generosa (B = 2.77, SE = 0.604, 
t-value342 = 4.60 , p=<0.001). For PC3, no significant differences were observed. When using k 
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means clustering to assess variation in tiger beetles, cluster 1 comprised 63 of the 97 C. f. 
formosa and cluster 2 comprised 244 of the 250 C. f. generosa. Naïve clusters largely followed 
the same geographic gradient as the museum classifications. Luminance was not significantly 
affected by any of the geographic or environmental factors included in our analysis, while 
redness increased in regions with lower mean annual precipitation (B = -0.53, SE = 0.123, 
t-value245 = -4.33 , p=<0.001) and higher mean temperature (B = 0.53, SE = 0.133, t-value259 = 
3.97 , p=<0.001) (Figure 10c).  
 

 
Figure 10. A) geographic distribution of collected big sand tiger beetles, Cicindela formosa, subspecies 
C. f. formosa in the west and C. f. generosa in the east. Polygons show the convex hulls of the subspecies 
ranges. B) The phenotypic ranges of the subspecies expressed by PC1 (darker to lighter) and PC2 
(redness). C) linear model plots for CIE L* (luminance) and CIE a* (greater values = redder) for 
biogeographic variables: latitude, longitude, mean annual precipitation (mm), and mean annual 
temperature (°C). Significance is labeled on the plot (ns = non-significant). 
 
Overall, we found that the two subspecies are significantly different in appearance (C. f. formosa 
are significantly redder). However, this distinction decreases where specimens overlap in range. 
Further genetic analysis would be required to determine whether the similarity is due to 
hybridization between the subspecies and/or convergent evolution of less red elytra within 
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similar environments (French et al., 2021). The pattern of increased redness in hotter, more arid 
environments was mainly driven by the large populations of C. f. formosa in the western and 
southwestern United States. A thermoregulatory (heat-reducing) function of increased redness is 
unlikely, as metallic red portions of C. f. formosa elytra show increased IR absorbance compared 
to white portions; however, the thermodynamic properties have not been compared between 
redder versus browner elytra (Schultz & Hadley, 1987). Elytral cover may instead be linked to 
local background-matching camouflage, as in other tiger beetle species (Yamamoto & Sota, 
2020). This hypothesis is supported, anecdotally, by the presence of strikingly red soils in certain 
hotter, more arid C. f. formosa collection sites (Kansas, Texas, New Mexico, parts of Utah and 
Colorado; nrcs.usda.gov soil colors of the US dataset). 
 
3.3 Use Case 2: Results of Cicindel-ID specimen identification 
 
Overall, species and subspecies of Cicindela could be identified with high accuracy even for 
modest sample sizes in the training set. The average F1 score, which balances precision and 
recall, increases with availability of samples in the training set (Fig. 11b). However, most taxa 
resulted in high prediction accuracy even with modest sample sizes, with high precision 
throughout and recall more variable across labels (Fig. 11c). Specifically, we observed 97.0% 
precision and 96.4% recall for species when averaged over specimens (Fig. 11c), decreasing to 
96.8% and 80.9%, respectively, when averaging over labels. For subspecies, these numbers were 
somewhat smaller, 85.0% precision and 85.0% recall averaging over specimens and 89.0% 
precision and 66.5% recall when averaging over taxa. This means that most specimens can be 
predicted with very high accuracy, while the model may fail to recognize rare species and 
subspecies.  
 

 
Figure 11. Taxonomic identification based on an image classification model trained on images of 
Cicindela. (a) Distribution of species and subspecies label frequencies (log scale), showing high 
imbalance. (b) F1 score increases with sample size used in training. Points represent taxonomic labels, 
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including both species and subspecies, and the gray trend line shows smoothed mean scores. (c) Precision 
and recall for each taxon (circles), with averages across samples (╳), and across labels (+). A small jitter 
was added to individual labels in (b) and (c) to allow observation of overlapping records. 
 
Using Cicindel-ID to identify unknown samples reinforces this pattern. Among the 12 unknown 
samples, 10 were common species correctly predicted according to our identifications (Table 3). 
Of the two samples with no prediction, one was possibly a subspecies rare in the FMNH 
collection and not present in the training set (C. transbaicalica japanensis; Shiyake, 2017). The 
model correctly failed to make a prediction in this case. We identified the other unknown sample 
as C. sylvicola, which included 25 specimens in the training set. The trained model has a 
moderate accuracy in identifying this particular taxon (75% precision, 60% recall), so this seems 
to be a case of a false negative. 
 
TABLE 3. Model versus human identifications for 12 previously unidentified samples of 
Cicindela. (?) Indicates an uncertain human ID. 
 

# of samples Cicindel-ID predictions Human identification Identification source 

7 “ocellata”, 
“ocellata_ocellata” 

C. ocellata ocellata Pearson et al., 2006 

2 “sylvicola” C. sylvicola Trautner & Geigenmüller, 1987 

1 “Repanda”, 
“repanda_repanda” 

C. repanda repanda Pearson et al., 2006 

1 N/A C. transbaicalica 
japanensis (?) 

Shiyake, 2017  

1 N/A C. sylvicola Trautner & Geigenmüller, 1987 

 
4 DISCUSSION 
 
DrawerDissect is the first usage of general-purpose equipment for mass digitization of whole 
pinned insect drawers yielding specimen-level images, masks, and data. Using DrawerDissect, 
we were able to successfully image, segment, and extract data (taxonomic, morphometric, and 
geographic) from 13,484 pinned insect specimens in two weeks. This is a marked increase in 
digitization efficiency at the FMNH. For comparison, in the last 20 years, fewer than 20,000 
insect specimens were imaged in our entire pinned collection. Batch-imaging combined with AI 
processing is the clear way forward for large-scale digitization projects in natural history 
collections (Stenhouse et al., 2025; Weaver & Smith, 2023; Weeks et al., 2023). Through 
imaging services like Picturae, for example, several herbaria have already been imaged in full 
(e.g. the Smithsonian, which houses ~3.8 million specimens), and AI workflows have been 
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developed to further process the outputs of such digitization efforts (de la Hidalga et al., 2022; 
Herbst et al., 2025; Weaver & Smith, 2023). For insects, few alternatives exist. There are 
ongoing developments on mass-digitization of fluid-preserved insect collections based on 
bespoke imaging and robotic equipment (Wührl et al., 2022). Picturae 
(https://picturae.com/services/entomology-digitization/) also offers a solution for pinned insects 
including metadata digitization that purportedly can reach a rate of 5,000 specimens daily. 
However, it involves custom robotic equipment, a large installation footprint, and individual 
handling of each specimen. InSelect (Hudson et al., 2015) is another option for processing 
whole-drawer images into single-specimen images. This tool is excellent for highly standardized 
specimens, but lacks customizable AI models that perform well on many types of 
variably-positioned specimens. Additionally, InSelect does not include built-in tools for image 
segmentation or text transcription. 
 
Using a series of fine-tuned computer vision models (Table 1), DrawerDissect can produce 
high-quality images of specimens that exclude the background and insect pin (Fig. 4b). This 
automates a normally time-consuming image-preparation step that is necessary for most 
morphological analyses (Curlis et al., 2022; Van Belleghem et al., 2018; Weaver & Smith, 2023; 
Weeks et al., 2023; Weller et al., 2024). DrawerDissect’s masking step (model id: bugmasker-all) 
is able to segment pinned insects of various shapes, sizes, colors, orientations, and degrees of 
overlap with other specimens (Fig. 12). Given the taxonomic composition of the training data, 
DrawerDissect currently performs best on beetles, moths, and morphologically similar groups 
(Fig. 12a-g). However, retraining existing models to identify new taxa (or to improve predictions 
for underperforming taxa; Fig. 12h-j) is simple: for example, to train bugfinder-all to detect 
various moth families, we only had to annotate ~100 new images. We anticipate that the models 
we or others develop for DrawerDissect will only improve in taxonomic and morphological 
generalizability as more training data are added. 
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Figure 12. Example bugmasker-all predictions for various taxa photographed with different camera 
systems. The pink overlay shows the location of the specimen body and model confidence is shown as a 
percent. (a) A tiger beetle (Coleoptera: Cicindelidae) from the FMNH collection, photo by 
EGP/LB/CH/BM, (b) a weevil (Coleoptera: Curculionidae) (c) a cicada (Hemiptera: Cicadidae) from the 
Australian National Insect Collection (ANIC) (d) A noctuid moth, overlapping with other specimens 
(Lepidoptera: Noctuidae), photo by LDG/TE (e) a wasp (Hymenoptera: Vespidae), photo by KW, (f) a 
plume moth (Lepidoptera: Pterophoridae), photo by LDG/TE, (g) a small fly (Diptera) from the ANIC. 
(h) An earlier version (v5) of bugmasker-all had difficulty detecting and segmenting a set of grass moths 
(Lepidoptera: Crambidae) with white wings. (i) Adding training data that targeted underperforming 
categories significantly improved model performance (v8). 
 
One limitation of our approach is that the metadata collected is fragmentary. For example, 
DrawerDissect was only able to automatically transcribe collection locations for ~18% of our 
tiger beetles, and these locations are often partial (i.e. capturing only the state or county, but 
missing more precise location data). However, there are ongoing efforts to optimize the 
transcription of museum labels in terms of prompt engineering, model selection, and cost 
effectiveness (Herbst et al., 2025). We also demonstrate that this kind of data can still have 
research uses. As insect collections tend to have more metadata records than specimen images 
(Cobb et al., 2019), a possible strategy for batch-imaging is to target previously digitized groups 
that lack images, as we did in the case of Cicindela formosa. The combination of AI-driven 
phenotype extraction and traditional label transcription has the potential to produce rich datasets 
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to investigate the drivers of insect morphological diversity. For example, we were able to extract 
accurate length and width measurements from all 13,464 masked specimens (Fig. 9), as well as 
detailed color and pattern data from a subset of big sand tiger beetles (Cicindela formosa 
formosa and C. f. generosa; Fig. 10a-b). Using the latter dataset, combined with pre-digitized 
location records and climate data, we found significant differences both between subspecies and 
along environmental clines (Fig. 10b-c).  
 
Species identification models (Borowiec et al., 2022; Spiesman et al., 2021; Sun et al., 2021; 
Welch & Lundgren, 2024) are another promising use case for DrawerDissect’s masking step, as 
we demonstrate with the Cicindel-ID (Fig. 11). Cicindel-ID was able to achieve high precision 
(97%) and recall (96.4%) for species in the genus Cicindela, and 85.0% precision and recall for 
Cicindela subspecies (averaged across specimens). Masked museum specimens offer both 
quality and quantity as training data for species ID models: they are standardized, censored to 
avoid shortcut-learning (Geirhos et al., 2020; Weaver & Smith, 2023), taxonomically diverse, 
and intraspecifically varied. Backgroundless specimens can also be composited onto naturalistic 
backgrounds to simulate in situ photographs (Sun et al., 2021), potentially expanding training 
sets for field image classification. 
 
AI, in the form of both tailored CV models and LLMs, is a powerful tool that is changing the 
scale and nature of biological research (Borowiec et al., 2022). In DrawerDissect, AI can quickly 
perform repetitive tasks that are relatively simple from a human perspective, such as transcribing 
text, detecting specimens, and outlining objects. Chaining these simple-but-specialized models 
together, in an assembly-line fashion, produces powerful workflows for processing batch-imaged 
specimens (Weaver & Smith, 2023). The outputs of these “multi-model” pipelines can then be 
fed into existing image analysis pipelines or used to train new CV models (Chan et al., 2019; 
Lürig, 2022; Van Belleghem et al., 2018; van den Berg et al., 2024; Weller et al., 2024), opening 
the door to truly high-throughput digitization and analysis of museum specimens. 
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