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Abstract 

Modelling of simulated networks with generative network models plays a central role for our 
understanding of the emergence and consequences of network structures. Accessible 
software that generates simulated networks based on relevant processes can facilitate the 
use of this important approach in behavioural ecology, and can help drive forward our 
understanding of animal social structures.  

Here we present the R package ‘okaapi’. This package can generate simulated networks 
based on a key driver of real social networks in many species, namely trait preferences 
(where individuals differentially socialize with others that have certain trait values, such as 
their sex, age, body size, etc.). The package provides tools for generating, visualising and 
quantifying trait preference networks. It uses a flexible modelling approach, where many 
different trait preferences can be modelled, and multiple trait preferences can affect the 
network simultaneously (as in real networks). It can both generate purely simulated 
networks, and networks based on trait data from real populations. The package can also be 
used for modelling networks with other node attribute effects than trait preferences, and 
may be useful not only for animal social networks, but also human social networks and 
non-social networks. 

This paper provides an introduction to the okaapi package, including information on kinds 
of studies where the package may be useful, the content of the package, how to use the 
package, and examples of its use (with R code included). We hope that the okaapi R 
package will be useful in the field of behavioural ecology and other research areas, and that 
it will help facilitate the use of generative network modelling in the study of animal social 
systems and further the integration of this approach with empirical approaches. 
 

Keywords: Generative network models, network modelling, network simulation, node attributes, 
social networks, social preferences, R package, trait preferences. 
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1.     Introduction 

Social networks are fundamental components of social systems, both in humans and 
non-human animals. Social networks are studied by two main approaches: empirical data 
analysis, and generative network modelling of simulated networks. In this paper, we 
introduce a new software package for generative network modelling, which creates 
simulated networks based on trait preferences, an important driver of real social network 
structures. 

Generative network models (in the sense we consider them here) are algorithms that build 
artificial networks (Newman et al. 2018, Brask et al. 2025). In essence, a generative network 
model consists of rules for how network nodes link to each other, implemented as a 
computer code that can generate networks based on those rules. Generative network 
models have been used widely in network science and play a key role for our current 
understanding of the drivers and consequences of network structures (for an overview see 
Brask et al. 2025). For example, generative network models can be used to study how 
linking processes affect network properties (e.g. Barabási & Albert 1999, Caldarelli et al. 
2002, Ilany & Akçay 2016, Cantor & Farine 2018, Brask et al. 2024), how structural network 
features affect network transmission and robustness (e.g. Moore & Newman 2000, Miller 
2009, Sah et al. 2017, Romano et al. 2018, Evans et al. 2020, Cantor et al. 2021, Brask & 
Brask 2024), and how sampling biases affect inferred network structures (e.g. Franks et al. 
2010, Silk et al. 2015, Farine & Strandburg-Peskin 2016; Weiss et al. 2021). While generative 
network models have been used in behavioural ecology to study animal social structures 
(reviewed in Brask et al. 2025), their use in this field  is less prominent than in wider network 
science, and they may not currently be used to their full potential. An important prerequisite 
for their more widespread use is the availability of accessible software, which can generate 
simulated networks based on the generative processes that drive the real social structures 
(e.g. Silk & Gimenez 2023). One such process is trait preferences: behaviour where 
individuals differentially socialize with others that have certain trait values, such as their sex, 
age, body size, etc. (details in Section 3).  

Social networks have been studied empirically in many species (Krause et al. 2015), and this 
research has revealed that traits, such as the age, sex and body size of individuals, play a 
key role for how individuals are connected in their social networks (reviewed in Brask et al. 
2024). This prompted the development of a new generative network model, the trait 
preference model (Brask et al. 2024), which creates networks based on trait preferences. 
The model provides a flexible method for generating networks based on this key real-world 
generative process, where multiple traits can simultaneously affect the network via different 
preferences, as is the case in the real world (Brask et al. 2024). Network generation based 
on the trait preference model could be useful for studies of animal social networks in many 
species, as well as for human social networks, non-social networks and theoretical networks 
(details in next section). Therefore, we thought a software package with tools for using this 
model could be useful. 
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Here, we present the R package ‘okaapi’, which contains easy-to-use tools for generating, 
visualising and quantifying networks based on the trait preference model, along with 
detailed help pages and other accompanying resources. We hope that this package, 
together with other recent software (e.g. Silk & Gimenez 2023, Ross et al. 2024), can 
facilitate the use of generative network modelling in behavioural ecology, and can help 
drive forward our understanding of social and other networked systems.  

In the following, we first consider for which kinds of studies the okaapi package may be 
useful. We then give a general introduction to the package, and describe its content. We 
thereafter explain how to use the package, and provide examples with R code available. We 
end with a brief conclusion. 

 

2. Studies where the okaapi package may be useful 

The okaapi package may be useful for research on a range of systems. Given the 
importance of trait preferences across species (Brask et al. 2024), the package could be 
used for research on social networks of many different species (including humans), and it 
may also be useful for research concerning various types of non-social networks, and 
unspecified networks in theoretical studies. 

The package may also be used for different types of studies.  The most obvious use may be 
in studies that concern trait preferences (for example studies investigating how different 
trait preferences affect network structure, as in Brask et al. 2024). The package may, 
however, also be useful in other types of studies. Firstly, it may be used in studies where 
node effects other than trait preferences are relevant, as the generative processes modelled 
by okaapi can alternatively interpreted as other processes than trait preferences (for 
example, if the size and geographical position of airports affect their chance of them being 
linked by a flight route, then the airport network could be modelled with okaapi). Secondly, 
it may be used in studies where network structures that okaapi can create are in themselves 
useful, regardless of the generative processes behind them (for example studies 
investigating the effect of structural network features on processes such as the transmission 
of disease and information).  

While other R packages exist that include tools for modelling networks (e.g. igraph, Csárdi 
2006), the okaapi package provides tools that focus specifically on trait preferences (or 
more broadly interpreted, node attribute effects), and uses a new, flexible approach for 
modelling this key generative process. The package therefore complements the existing 
tools. 

Given the above, the okaapi package could potentially be useful for a range of research 
topics and questions, in behavioural ecology and other research areas.   
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3.     Introduction to the okaapi package  

The purpose of the okaapi package is to provide accessible tools for the generation and 
investigation of networks that are based on trait preferences (or node attribute effects more 
generally,  Section 2). The name ‘okaapi’ stands for ‘generation of networks based on social 
preferences for traits’, and is inspired by the okapi (a rare and elusive mammal also known 
as the zebra giraffe; Mallon et al. 2015). The package uses the trait preference model 
(presented in Brask et al. 2024) to produce the networks. The okaapi package is currently 
available for R (see the Code availability statement for how to download it). In addition to 
the package, several accompanying resources are also available (see Table 1). 

 

 

 

Table 1. An overview of currently available resources related to the okaapi R package.  
 

Ressource Description Location 

okaapi R package Provides tools for network generation 
based on trait preferences, as well as 
network visualisation and network 
measurements. 

See the Code availability 
statement in this paper. 

okaapi function help pages Provide detailed information about 
each function in the okaapi package, 
including function arguments 
(parameters), function output, and 
brief code examples demonstrating 
how to use the function. 

Within the okaapi package 
(accessed the same way as any R 
function help page). 

okaapi example R scripts Provide code examples demonstrating 
how to use the okaapi package, which 
are more extensive than the code 
examples in the okaapi function help 
pages. 

See the Code availability 
statement in this paper. 

okaapi introduction paper 
 

Provides a detailed introduction to the 
okaapi package. 

In front of you. 

Trait preference model paper 
 

Presents the generative network 
model which the okaapi package uses 
for network generation (the trait 
preference model) and uses it to 
investigate the effect of trait 
preferences on network structure and 
function. 

Brask et al. 2024 (see the 
reference list). 
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3.1. The trait preference framework used in okaapi 

Before using the okaapi package, it is helpful to be familiar with the terminology and 
definitions for trait preferences used in the package. They follow that of the underlying 
generative network model: the trait preference model. Here we describe the essentials; 
further details and mathematical description of trait preferences and the trait preference 
model can be found in Brask et al. 2024.  

3.1.1. Trait preferences 

In okaapi, the term trait preference (also known as trait-based social preference, Brask et al. 
2024) refers to behaviour where individuals differentially socialize with others that have 
certain trait values (such as a certain sex, age, body size, etc.). The term covers both active 
preferences, where individuals actively use the traits of others in their decisions of who to 
socialize with, and passive preferences, where the trait-based socializing is due to other 
factors than active choice (such as trait-dependent habitat preferences; see Brask et al. 2024 
for details). Trait preferences are considered in this broad sense because active and passive 
preferences can be modelled equivalently with the trait preference model. A trait 
preference consists of a preference type combined with a trait type. 

3.1.2. Preference types 

The okaapi package uses a categorisation of preferences into two general types: 1) 
similarity preferences, where individuals’ preference for others depends on how similar they 
are to themselves with regard to a trait, and 2) popularity preferences, where individuals 
prefer certain trait values regardless of their similarity to themselves. Each general type 
covers multiple similarity and popularity preference types. For example, similarity 
preferences cover preference for others that are similar to oneself (such as the same age), as 
well as preference for others that are dissimilar, moderately similar, etc.; and popularity 
preferences cover preference for others that have high trait values (such as old age), as well 
as preference for others that have low trait values, average trait values, etc.  

3.1.3. Trait types 

In okaapi, a trait type refers to a distribution of trait values, which may be interpreted as any 
trait that fits with the distribution. A given trait type can thus be used to model multiple 
real-world traits. An example of a trait type could be a categorical trait with two categories, 
which could e.g. be used to model the sex of individuals.  

3.1.4. Combining preference types and trait types to get trait preferences 

To model a trait preference in okaapi, the user combines a preference type with a trait type. 
For example, preference for socializing with one’s own sex may be modelled by combining 
a similarity preference with a categorical trait that has two categories. This gives a trait 
preference where individuals’ preference for others depends on whether they are of the 
same sex. 
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3.2. The functionality of okaapi in a nutshell 

The okaapi package generates networks where the way that individuals (network nodes) link 
to each other reflects trait preferences. The mechanisms of the underlying generative 
network model are described in detail in Brask et al. 2024. Briefly, it works by calculating a 
social attraction value for each pair of individuals based on their trait values and the 
preference types that are combined with each trait. The model then uses these social 
attraction values in the determination of which pairs of individuals will be socially connected 
and how strong their connections will be (i.e. the positions and weights of network links); 
pairs that have a higher social attraction are more likely to get a link, and the link is likely to 
be stronger.  

The package can both create fully simulated networks based on settings chosen by the user 
(i.e. without using any empirical data), as well as simulated networks based on empirically 
measured trait values (such as sexes, ages, etc. from real populations; details in the 
following sections). 

Key features of okaapi network modelling include the following: Firstly, it can model a 
range of different trait preferences: it includes both similarity and popularity preferences, 
and each of these can be combined with any type of trait (or other node attribute, Section 
2). Secondly, it can generate networks based on no trait preference (i.e. random social 
linking), a single trait preference, or multiple simultaneously acting trait preferences, 
reflecting that several traits are often simultaneously of importance in real social networks 
(Brask et al. 2024). For example, individuals may both prefer to socialise with individuals of 
their own sex, and with older individuals, with their social connections being based on a 
combination of these preferences. Thirdly, the trait preferences may be of different 
importance, both in the sense that trait preferences acting simultaneously do not need to 
have the same importance (reflecting real-world networks where one trait may be more 
important in driving social connection than another trait), and in the sense that the trait 
preferences may overall have more or less importance compared to random linking. The 
okaapi package thus provides a flexible method for modelling trait preference networks, 
where the networks may be based on different preferences, which may act alone or 
together, and may have different importance. 

 

3.3. Network structures generated by okaapi  

Different trait preferences (and their combinations) give rise to different structures, and the 
okaapi package can therefore generate network structures with different structural 
characteristics such as modularity and centralization, with trait-based patterns such as trait 
assortment and correlations between trait values and individual social centrality, and with 
increases or decreases in network metrics such as clustering, path length, and degree 
variation (see Brask et al. 2024 for how specific trait preferences affect some of these 
structural characteristics). It can also create networks across the range from random to 
highly structured (because the preferences can have more or less importance compared to 
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random linking), and it can create networks where structural characteristics occur alone or 
together in different ratios (depending on the combination of trait preferences used). See 
Fig. 1 for examples of network structures created with okaapi (note, these are only a limited 
set of possible structures). 

 

 

Figure 1. Examples of networks that can be generated with the okaapi package. Note that the package can 
create other network structures than those shown here, as the figure only includes networks based on a 
limited set of the possible trait types, preference types, and their combinations. The package can create 
networks based on different preference types, which can each be combined with different trait types (upper 
row); it can create networks based on a single or multiple trait preferences, which can be of different relative 
importance (middle row); and it can create networks from trait preferences that are overall of more or less 
importance compared to randomness (bottom row).  
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4.     Contents of the okaapi package 

Here we provide an overview and descriptions of the functions that the okaapi package 
contains. Detailed information about the arguments and output of each function is given in 
their respective help pages in R. See the next sections for how to use the functions. 

 

4.1. Overview of okaapi functions 

The current version of the okaapi package contains eight functions (listed in Table 2). There 
are two main functions: the traitnet function and the traitnetsmetrics function, which are 
respectively used to generate and plot a single network, and to quantify network metrics on 
an ensemble (a set) of networks. The remaining six functions are helper functions. The main 
purpose of these is that they are used by the two main functions (Fig. 2); but we have made 
them available as they may occasionally also be relevant to use as stand-alone functions. 

 

 

 

Table 2. An overview of all the functions in the current version of the okaapi package, and their purposes.  
The helper functions are used by the main functions and may not be relevant to most users. 
 

 Function name Function purpose 

Main functions traitnet Generate and plot a single network based on trait preferences 

 traitnetsmetrics Generate an ensemble of networks based on trait preferences and 
measure network metrics on them 

Helper functions traitvalues   Generate trait values (node attributes) 

 traitnetsociat Calculate social attraction values based on trait preferences 

 traitnetbuild   Build a network matrix based on social attraction values 

 contincols  Create network node colours based on values from a continuous 
scale 

 traitnetvisual Plot a trait preference network 

 netmetrics    Measure network metrics on a network* 

* This function only measures the metrics. To generate one or more networks based on trait preferences and 
measure metrics on it/them, use the traitnetsmetrics function. 
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Figure 2. Structure of the okaapi package. The figure shows which okaapi functions use each other. Functions 
that are used by another function are nested within that function. For example, the traitnetsmetrics function 
calls the traitnet function and the netmetrics function. All functions are also available for users to use 
separately (but note that helper functions should be used with caution). 

 

 

4.2.     Description of okaapi functions 

4.2.1. The traitnet function  

This is the central function in the package, as it generates the network. It produces a single 
network based on user-specified settings, which it outputs as an adjacency matrix (i.e. a 
matrix containing the link weight for each pair of individuals). It also outputs the trait values 
of all individuals (nodes), the social attraction values of all pairs of individuals (see Section 
3.2 and Brask et al. 2024), and (if desired) a visualisation of the network. The user can set a 
range of model parameters (which are given as arguments to the function), including the 
type(s) of trait(s), the type of preference used with each trait, and the importance of each 
trait preference (see Table 3 for overview of all the parameters). In addition to networks 
based on trait preferences, the function can also produce networks with random structure (if 
all preferences are set to zero importance). The traitnet function may be useful for example 
for visual exploration of networks based on different trait preferences, or for quantifying 
network features that are not included in the traitnetsmetrics function (see examples in 
Section 6). 

9 



Table 3. Parameter options for network generation with the okaapi package. For each parameter, the options that are available in the current version of the okaapi 
package are given and described, along with short names that are used in okaapi  (note, option short names only exist for options where the argument input should be a 
string, and are therefore only given for these). The user gives the desired parameter options as function arguments to the traitnet and traitnetsmetrics functions. They 
include parameters for the trait preferences (parameter 1-4), for the network (parameter 5-9), and (when relevant) for user-provided traits (parameter 10-11). See Section 5 
and the help files in R for further details about the parameters and parameter options (function arguments).  
 

 Parameter Parameter short 
name used in okaapi 

Parameter options Parameter option short 
names used in okaapi 

Description of parameter options 

1 Trait types traittypes    

   categorical ‘cate’ trait values are from a categorical distribution 

   normal ‘tnorm’ trait values are from a truncated normal distribution 

   ranks ‘ranks’ trait values are ranks (numbers with equal distance between them) 

   user-provided ‘own’ trait values are provided by the user 

2 Preference types preftypes    

   similarity ‘sim’ individuals with trait values similar to one’s own are preferred 

   popularity ‘pop’ individuals with high values of the trait are preferred 

3 Trait category numbers allncats    

   integer values or NA - the number of categories for categorical traits (NA for others) 

4 Importance weights wvals    

   values between 0 and 1 - the importance of each trait preference 

5 Network size n    

   integer value - the number of individuals (nodes) in the network 

6 Average degree  k    

   integer value smaller than the network size - the average number of links that each individual (node) has  
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(i.e. this tunes the density  of the network) 

7 Network link type linktype    

   stochastic weighted ‘stow’ link weights are drawn from distributions with the social attraction 
values* as means 

   deterministic weighted ‘detw’ link weights are equal the social attraction values* 

   unweighted ‘unw’ links are unweighted (binary) 

8 Network components onecomp    

   one component TRUE the network consists of a single component 

   one or more components FALSE the network can consist of one or more components 

9 Network visualisation visnet    

   network plot TRUE the network is visualised  

   no network plot FALSE the network is not visualised 

10 Classes for user-provided traits owntraitclasses    

   no user-provided traits NULL (default) no trait values are given as input by the user 

   categorical ‘cate’ the user-provided trait will be treated as categorical 

   continuous ‘cont’ the user-provided trait will be treated as continuous 

11 Values for user-provided traits owntraitvals    

   no user-provided traits  NULL (default) no trait values are given as input by the user 

   for categorical traits: integers that indicate 
categories. For continuous traits: numbers 
between 0 and 1. 

- trait values for one or more user-provided trait(s) 

* For explanation of social attraction values, see Section 3.2 and Brask et al. 2024. 
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4.2.2. The traitnetsmetrics function 
 
This is the second main function in the package. It quantifies network metrics (structural 
measures) on an ensemble of trait preference networks generated from a given set of 
parameters. This reflects a common approach in studies that involve simulated networks, 
where researchers work with a large set of networks of a given type (Brask et al. 2025): 
Generative network models are generally stochastic, in the sense that networks made from 
a given setting of model parameters are slightly different from one another (reflecting 
real-world random variation). This makes it possible to study distributions of network metrics 
from network ensembles rather than metrics from a single network, and thereby avoid 
biases. The networks in an ensemble may be considered as corresponding to replicates in 
an experimental treatment group. The traitnetsmetrics function uses the traitnet function to 
generate each network, and most of the parameters (arguments) are therefore the same as 
those of the traitnet function (Table 3). For the sake of efficiency, the network matrices are 
not retained; rather, the function generates and quantifies the networks sequentially, thus 
only requiring storage of a single network matrix at a time.  

4.2.3. The helper functions 

The remaining functions in the package (the helper functions, Table 2, Fig. 2) perform 
different parts of the network generation and metric quantification, and are used by the 
traitnet and traitnetsmetrics functions. These helper functions can also be used separately 
by the user (i.e. can be called directly), but they should in this case be used with caution 
due to requirements of their arguments, which must fit correctly together (for details see the 
R help pages of the respective functions). Of the helper functions, the traitvalues, 
netmetrics, and contincols functions may be particularly useful as stand-alone functions. The 
traitvalues function can be used to create sets of trait values (or more generally, node 
attributes or values drawn from different distributions). The netmetrics function can measure 
network metrics on a single input network (which does not have to be generated using the 
okaapi package). The contincols function can create colours from a continuous colour scale, 
which can be used to colour a network, and it is particularly useful for colouring networks 
visualised with the igraph R package (Csárdi 2006). 

 

5.     How to use the okaapi package 

We here provide information on how to use the functions in the okaapi package. This is 
accompanied by a brief demonstration R code showing how to use the two main functions 
(see Code availability statement). More extensive examples (also with code) are described in 
the next section. Detailed explanation of the function arguments are given in Table 3 and in 
the function help pages in R.  
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5.1.     Generating and quantifying networks using okaapi 

To generate a network using the traitnet function, the user needs to provide it with 
arguments concerning the network (the network size, the average degree, the link type, 
whether the network should consists of a single component, and whether a plot of the 
network should be created), and arguments concerning the trait preference(s) that the 
network should be based on (for each trait preference: the trait type, the number of trait 
categories, the preference type, and the importance). If using user-provided trait values for 
some or all traits, the user also needs to input trait values and classes for those traits (see 
Section 5.3 and 6.4 below). When the user has set the arguments, they can run the function.  

To quantify network metrics using the traitnetsmetrics function, the user needs to provide 
the same arguments as to the traitnet function, except for whether the network should be 
visualised (this is inconvenient for the purpose of traitnetsmetrics and therefore suppressed; 
a visualisation of the type of network that the metrics are measured on could be made by 
using the traitnet function with the same network generation settings). The user also needs 
to specify which network metrics should be computed, how many replicates (networks) they 
should be computed on (i.e. the size of the ensemble), and whether the current replicate 
number should be written to the console (this is to enable the user to follow the progression 
of the task, as this may take more than an instant, depending on the network size and 
number of replicates). The user can then run the function. 

 

5.2.     Setting function arguments correctly 

To ensure that the input arguments the user has provided fit with the requirements, the 
functions contain a number of checks of the arguments, and will give a message if an error 
is found. However, some types of errors are impossible to check for. We therefore 
encourage users to do the following two things, which should make the risk of errors 
minimal: 

1) Read the function help page and be sure that your arguments fit with the requirements.  
2) Make sure that values within each argument are in the same order. 

Regarding 1), the requirements of the arguments are described in detail in the function help 
pages. Regarding 2), when okaapi is used to generate or quantify networks based on more 
than one trait, then some arguments need to contain multiple values (one for each trait). For 
example, one argument will contain the trait type for each trait, another argument will 
contain the preference type used with each trait, a third will contain the importance of each 
trait, etc. For such arguments, the order of values in the arguments must be the same. For 
example, all the values at the first place of each argument must provide information that 
has to do with the same trait, all the ones on the second place must have to do with the 
next trait, etc. See examples in the function help pages and in the codes accompanying this 
paper. 
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5.3.     Using simulated and real trait data 

The trait values used in the network generation can either be generated by the traitnet or 
traitnetsmetrics function (based on the user’s trait type settings), or given as input to the 
functions by the user. These two possibilities can be combined, such that values for some of 
the traits are function-generated and others are user-provided. User-provided trait values 
may be data measured on a real-world population, or simulated data that have been 
generated in some other way than with okaapi. 

For function-generated traits, the user can select different trait types that are available in 
the package (Table 3). For each trait type that is set, a trait value for each network node 
(individual) will be drawn from the relevant distribution. The difference between the trait 
types lies in how their trait values are distributed (as explained in Section 3.1.3). To model a 
specific real-world trait, the user may choose a trait type with a trait value distribution that 
fits with that trait. For example, the user might set the trait type to ‘categorical’ to model 
the sex of individuals (note that the user also always needs to set the number of categories, 
which must be given as NA for non-categorical traits).  

For user-provided traits, the user provides a trait value for each network node. These values 
may correspond to any trait (or other node attribute), but may need to be transformed 
before being given as input, to fit with the argument requirements (details in the function 
help pages).  

 

6.     Examples of using the okaapi package  

Here we provide examples of how to use the okaapi package, with accompanying R code 
(see Code availability statement). Simpler demonstrations of how to use the functions are 
given the brief demonstration code and function help pages. 

For the examples, we focus on two trait preferences: preference for socializing with one's 
own sex, and  preference for socializing with individuals that have a large body size. We 
model the former by a similarity preference combined with a categorical trait with two 
categories, and we model the latter by a popularity preference combined with a 
continuous, normally distributed trait (Table 3). In the following, we refer to these two trait 
preferences as the sex similarity preference and the size popularity preference, respectively. 

Using these trait preferences, we show how to explore trait preference networks visually, 
and how to measure network properties on ensembles of trait preference networks. For the 
latter, we demonstrate how to do this for metrics that are available in okaapi, as well as for 
metrics and other network measures that are not currently implemented in okaapi. Finally, 
while all the above-mentioned demonstrations use trait values generated by okaapi, we end 
by showing how to generate and measure networks using user-provided trait values.  
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Case studies with accompanying code that uses the okaapi package can furthermore be 
found in Brask et al. 2025 (includes studies of network emergence, network robustness and 
statistical power analysis). 

 

6.1. Example: Visual exploration of trait preference networks 

First, we want to explore what networks based on the sex similarity preference and the size 
popularity preference look like. To do this, we use the traitnet function to create and 
visualise trait preference networks. Our approach is to set the function arguments according 
to the two trait preferences, generate networks, and look at the output network plots. We 
do this for the two trait preferences separately as well as both together. We could do this by 
writing code for the function three times (once for the sex similarity preference, once for the 
size popularity preference, and once for both); however, we find that it is more convenient 
to include both trait preferences, and then set the importance (Table 3) of either trait 
preference to zero when we want to explore the effect of the other trait preference by itself; 
in this way, we only need to write the code once (see the R code for details).    

While not all structural features are easily discernible by the human eye, the visual 
exploration gives us a general impression of the structures that arise from the two 
preferences (Fig. 3). The exploration suggests that: 1) the sex similarity preference leads to 
a modular structure with a module (network community) for each sex (Fig. 3a), 2) the size 
popularity preference leads  to a centralized structure with individuals of large body size 
being central (Fig. 3e), and 3) both preferences acting together leads to networks with a mix 
of these two structural features (Fig. 3b-d).  

 

 

Figure 3. Visual exploration of networks based on the sex similarity preference and the size popularity 
preference. The figure shows networks generated with the traitnet function, based on the two preferences. 
Networks were generated based on either preference alone (a, e), or both together with varying relative 
importance (b-d). The colours correspond to sexes, and the node sizes correspond to body size. The importance 
weights used for these examples are as follows: a: sim 0.95, pop 0.00. b: sim 0.60, pop 0.30. c: sim 0.50, pop 
0.50. d: sim 0.30, pop 0.60. e: sim 0.00, pop 0.95.  
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6.2. Example: Measuring structural aspects of trait preference networks with 
metrics that are available in okaapi 

Next, we want to measure structural aspects of networks that are based on the two trait 
preferences. Reasons for doing this could be for example to quantify the effect of the 
preferences on network structure (as in Brask et al. 2024), or to investigate whether 
networks generated with these settings have desirable structural properties (e.g. for using 
them to study how structure affects spreading processes).  

Our approach is to use the traitnetsmetrics function to generate large network ensembles 
and calculate metrics on them. We set the function arguments corresponding to the two 
trait preferences of interest (as above), and we also set arguments for the number of 
networks we want in the ensemble and the metrics we want to calculate (see R code for 
details). We then run the function and get the metric values for each network in the 
ensemble. We do this for four network ensembles: One for the sex similarity preference, 
one for the size popularity preference, one for both together, and one for no preferences, 
i.e. random networks (to have a baseline for comparison). For the ensembles with each 
preference alone, we choose to study the effect of the preferences when they have high 
importance, to see their effects most clearly. For the ensemble where they act 
simultaneously, we choose to study the case where the two preferences have equal 
importance, and we set the importance to the highest possible (which in this case is 
medium, because they have to share the importance). Similarly to above (Section 6.1), we 
find that instead of writing code for the function four times, it is more convenient to write it 
one time with both preferences included, and set the importance of either preference to 
zero when that preference should not be present (see R code for details).  

We find that the sex similarity preference leads to networks with increased clustering and 
path length, and somewhat increased degree assortativity, compared to the networks with 
no preferences (Fig. 4). In contrast, the metrics from networks based on the size popularity 
preference are much more similar to those of the networks with no preferences. 
Interestingly, networks with both preferences have metrics that are much more similar to the 
networks based on the size popularity preference than those based on the sex similarity  
preference - despite the fact that we set the two preferences to have equal importance. This 
may be explained by the fact that the measured metrics increase non-linearly with the 
importance of the sex similarity preference (shown in Brask et al. 2024), with relatively little 
effect when its importance is medium (which it is in this example when the two preferences 
are acting together) compared to when its importance is high (which it is in the example 
when the preference is acting alone). Interestingly, in our visual exploration (Section 6.1 
above), we saw that networks that were based on the two preferences with equal 
importance showed a clear pattern in terms of individuals of the same sex being closer in 
the network (Fig. 3c). This suggests that while the sex similarity preference with medium 
importance has limited effect on the three network metrics we measured here, it still has 
clear effects on the network, which could be quantified by measuring additional metrics 
(such as assortment by sex). 
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Here we used an approach where we made four network ensembles and compared them. 
An alternative to this would be to generate network ensembles across the whole range of 
importance for each trait preference (separately and together), and look at the metrics as a 
function of importance (as in Brask et al. 2024). The approach used here allows us to make 
easily interpretable box plots (Fig. 4); but it only tells us about the effect of the preferences 
for the specific importance settings we used for each ensemble. The other approach gives a 
fuller picture, as it shows the effect of the preferences across the full ranges of importance. 

 

 

 

Figure 4. Measuring structural aspects of networks based on the sex similarity preference and the size 
popularity preference. The figure shows three network metrics (clustering, path length and degree 
assortativity) measured on four network ensembles: none = no preferences, sim = sex similarity preference, 
pop = size popularity preference, both = both of those preferences. 

 

 

6.3. Example: Measuring aspects of trait preference networks with measures 
that are not available in okaapi 

During our visual exploration, we noticed that the networks based on the different 
preferences differed in their modularity (the extent to which the network consists of distinct 
communities). We would therefore like to quantify this structural property. In the help page 
for the traitnetsmetrics function, we can see that modularity is currently not included as a 
metric in the function. It can, however, be computed by the help of other R packages. 
Instead of using the traitnetsmetrics function, we therefore make a code which creates  
networks with the traitnet function and measures their modularity with a function from 
another R package (igraph, Csárdi 2006). By using loops, we can do this for large network 
ensembles, similarly to the traitnetsmetrics function (see the R code for details). 
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We find that the modularity of networks based on the size popularity preference is almost 
indistinguishable from the modularity of the networks without preferences (random 
networks). In contrast, as we suspected from the visual exploration, the modularity is clearly 
higher for the networks based on the sex similarity preference than for the random 
networks, and this is to a smaller extent also the case for networks based on both 
preferences (Fig. 5).  

We could use the same approach (combining the traitnet function with other code in loops) 
to investigate other properties of trait preference networks than metrics, such as their 
transmission efficiency and robustness. 

 

 

Figure 5. Measuring structural aspects of networks based on the sex similarity preference and the size 
popularity preference, using metrics that are not available in okaapi. The figure shows one network metric 
(modularity) measured on four network ensembles: none = no preferences, sim = sex similarity preference, pop 
= size popularity preference, both = both of those preferences. 

 

 

6.4. Example: Measuring structural aspects of trait preference networks using 
user-provided trait values 

We are here interested in a hypothetical, elusive study species. Preliminary observation has 
suggested that individuals of this species prefer to socialize with others of their own sex and 
who have a large body size (i.e. the two trait preferences used in the examples above). 
Luckily, a whole population of our elusive study species has just been spotted and their 
sexes and body sizes were recorded (we do not have data on their social network structure). 
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We can now use these observed trait data to investigate how the two presumed trait 
preferences may affect social structure, given the composition of individuals in the real 
population (i.e. the observed distributions of sex and body size trait values).  

To do this, we use the traitnetsmetrics function in the same way as above (Section 6.2), 
except that instead of letting the function generate the trait values, we use our own trait 
values. To input the trait values, we use the owntraitvals argument (Table 3). We have two 
traits, and we therefore need to input a matrix that has one column for each trait and a row 
for each individual. We also need to set the class of each trait, using the owntraitclasses 
argument (Table 3). Finally, we set the network size so that it fits with the number of 
observed individuals. We use the same four ensembles, the same importance settings, and 
the same network metrics as above (Section 6.2). 

The investigation gives us a base for understanding how social preferences observed in our 
species scale up to network properties, for the real trait value distributions. We find that the 
sex similarity preference has a strong influence on the network structure (all three metrics), 
whereas the size popularity preference has a much smaller effect. When both preferences 
are acting simultaneously (as the observations suggest that they do in our study 
population), then the networks are quite similar to random networks in terms of the three 
measured metrics. However, we should keep in mind that while we here let the two 
preferences share the importance equally when they were acting simultaneously, we do not 
know the relative importance of the two preferences in the real population. Given the 
strong effect of the sex similarity preference, the networks of the real population could 
potentially be farther from random networks, if that preference has higher importance in the 
real networks. Furthermore, our results only tell us about the three metrics that we have 
measured. Thus, next steps could be to investigate the effect of the two preferences across 
the range of their relative importance, and to measure more properties of the generated 
networks.  

When comparing the results to those where we used trait values generated by okaapi (Fig. 
6 versus Fig. 4), we see that for the networks with sex similarity preferences, degree 
assortativity is clearly higher when we used the observed trait values than when we used 
okaapi trait values. Thus, for the trait values of the observed population, the sex similarity 
preference leads to clearly increased degree assortativity, which was not the case when 
these preferences were combined with the okaapi trait values. This makes sense 
considering our observed trait data: compared to the okaapi trait values, the observed sex 
ratio was strongly skewed (whereas the observed body sizes were similar to the okaapi body 
sizes). When individuals then prefer to socialize with others of their own sex, the more 
numerous sex gets more connections, leading to increased assortment by degree. This 
demonstrates that using observed trait data can give additional insights about social 
networks for specific populations. 
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Figure 6. Measuring structural aspects of networks based on the sex similarity preference and the size 
popularity preference, using user-provided trait values. The figure shows three network metrics (clustering 
coefficient, path length and degree assortativity) measured on four network ensembles: none = no 
preferences, sim = sex similarity preference, pop = popularity size preference, both = both of those 
preferences. Here, the trait values used in the network generation were given as input rather than generated 
by okaapi. 

 

 

 

7.     Conclusion 

Here we have presented the R package okaapi, which provides tools for generating, 
visualising and quantifying networks that are based on trait preferences (or equivalent node 
attribute effects).  

In the future we may expand the functionalities of the package, for example by including 
additional similarity and popularity preference types, trait types and network metrics. We 
may also make an equivalent of the package for Python. 

The okaapi package fills a gap by providing flexible network simulation tools that focus on 
trait preferences - a key driver of real social networks which is ubiquitously of importance 
across species - and it may also be used in studies that do not focus on trait preferences. 
We hope that the package can be useful for the behavioural ecology community and 
elsewhere, and that it can contribute to exciting new discoveries about networks and 
sociality.  
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Code availability 

The currently available version of the okaapi package is the beta version, called okaapibeta. 
This will be updated to okaapi at a later stage. The okaapibeta package is available here: 
https://github.com/bohrbrask/okaapibeta. The package can be installed directly from within 
R. At the time of writing, this can be done by first installing the 'remotes' or 'devtools' 
package, and then running the following code: install_github("bohrbrask/okaapibeta"). 

R code for the brief demonstration and the examples can be found here: 
https://github.com/bohrbrask/okaapi-code-examples 

See Table 1 for further information on where to find okaapi resources. 
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