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Abstract 42 

1. Human activities are endangering animal species globally and implementing 43 

effective conservation strategies requires understanding animal behavior and 44 

ecology. Advancements in GPS tracking technology, accelerometry, and 45 

machine learning algorithms are allowing the in-situ study of animal movement 46 

and behavior remotely. However, the challenge of building supervised machine 47 

learning algorithms and collecting the large datasets required to train them is 48 

hampering the widespread use of these tools. Additionally, the reliability of these 49 

models in classifying unobserved behaviors is rarely validated, resulting in 50 

possible classification errors.  51 

2. We built a supervised accelerometer-based behavioral classification model for 52 

griffon vultures (Gyps fulvus). Similarly to most other avian scavenger 53 

populations worldwide, griffons are critically endangered in Israel and 54 

neighboring countries, mostly due to feeding on poisoned carcasses. Thus, 55 

identifying this scavenger’s feeding behavior and foraging areas is crucial for their 56 

conservation.  57 

3. We trained a Random Forest model on acceleration data of 14 captive and 17 58 

free-roaming griffons. We classified 5783 behavioral observations into 6 classes: 59 

feeding, lying, standing, other ground behaviors, flapping and soaring flight. The 60 

model performed well (0.96 accuracy, 0.89 precision and 0.82 recall) and, 61 

importantly, feeding behaviors were accurately classified (0.87 precision, 0.92 62 

recall). We calculated an observation-specific confidence score and 63 

demonstrated its effectiveness in identifying true- and false-positive 64 

classifications, in both captive and free-roaming individuals. Finally, we used our 65 

model to reliably identify feeding hotspots, where vultures can be at higher risk 66 

of poisoning.  67 
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4. Synthesis and applications. We provide a tool to help identify vulture feeding 68 

hotspots, supporting carcass management efforts to prevent poisoning. 69 

Integrated with near real-time tracking, our model can support global efforts to 70 

combat scavenger poisoning. The training dataset, model and codes are 71 

provided in a user-friendly platform, along with a conceptual framework, to 72 

encourage use by ecologists and conservation practitioners. 73 

Resumen 74 

1. Las actividades humanas suponen una amenaza para la fauna a escala global e 75 

implementar estrategias de conservación efectivas al respecto requiere entender 76 

el comportamiento y la ecología animal. Avances en tecnologías como el 77 

seguimiento GPS, los acelerómetros y los algoritmos de aprendizaje automático 78 

facilitan el estudio remoto in situ de los movimientos y comportamientos 79 

animales. Sin embargo, elaborar algoritmos supervisados de aprendizaje 80 

automático y recopilar la gran cantidad de datos necesarios para entrenarlos son 81 

retos que dificultan el uso generalizado de estas herramientas. Además, la 82 

fiabilidad de estos modelos al clasificar comportamientos no observados no 83 

suele validarse, lo que pueda dar lugar a errores de clasificación. 84 

2. Elaboramos un modelo supervisado de clasificación de comportamientos de 85 

buitre leonado (Gyps fulvus) con datos de acelerómetro. En consonancia con la 86 

mayoría de las poblaciones de carroñeros en el mundo, los buitres están 87 

críticamente amenazados en Israel y países vecinos, principalmente por 88 

consumir carroñas envenenadas. Por tanto, identificar comportamientos y áreas 89 

de alimentación de estos carroñeros es clave para su conservación. 90 

3. Entrenamos un modelo “Random Forest” con datos de 14 buitres en cautividad 91 

y 17 en libertad, clasificando 5.783 comportamientos observados en 6 clases: 92 

alimentación, tumbado, posado, otros comportamientos en suelo, aleteo y 93 

planeo. El modelo funcionó bien (exactitud: 0,96, precisión: 0,89 y sensibilidad: 94 
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0,82), identificando con exactitud los comportamientos de alimentación 95 

(precisión: 0,87 y sensibilidad: 0,92). Calculamos un índice de confianza 96 

específico de cada observación, que discriminó con solvencia verdaderos y 97 

falsos positivos tanto en buitres en cautividad como en libertad. Finalmente 98 

usamos el modelo para identificar zonas de alimentación, dónde el riesgo de 99 

envenenamiento de los buitres pudiera incrementarse. 100 

4. Síntesis y aplicaciones: Proporcionamos una herramienta útil para identificar 101 

zonas de alimentación de buitres, apoyando así tareas de gestión para prevenir 102 

su envenenamiento. Junto con el seguimiento casi en tiempo real, nuestro 103 

modelo puede ayudar en la lucha contra el envenenamiento de fauna carroñera. 104 

Los datos de entrenamiento, el modelo y los códigos, junto con un marco 105 

conceptual, están disponibles en una plataforma de fácil uso para fomentar su 106 

utilización por ecólogos y profesionales de la conservación.  107 

 108 

Keywords (up to 8): 109 

Accelerometer, Behavior classification, Random Forest, Griffon Vulture, Poisoning, 110 

Conservation, Biotelemetry, Supervised machine learning. 111 

  112 
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Introduction 113 

Anthropogenic activities are endangering animals around the world (Venter et al., 2016). 114 

To combat the current wave of species extinction, we need to understand animal 115 

behavior and ecology to minimize threats and conflicts, and to implement effective 116 

conservation strategies (Fehlmann et al., 2023; van Eeden et al., 2018). Over the last 117 

couple of decades, technological advances have provided tremendous insights into 118 

animal ecology and behavior (Kays et al., 2015; Nathan et al., 2022), often with direct 119 

implications for conservation (Tuia et al., 2022). The use of GPS-tracking technology, for 120 

instance, has contributed to a deeper understanding of animal movements and space 121 

use, which can inform the design and administration of protected areas (Hays et al., 122 

2019). GPS-tracking has also helped identifying the locations of animal mortality (Sergio 123 

et al., 2019) and location-specific causes of mortality (Serratosa et al., 2024). Uncovering 124 

the location and spatial extent of animal threats is critical for managing endangered 125 

species (Kane et al., 2022; Olea & Mateo-Tomás, 2014) and for mitigating human-126 

induced mortality (Serratosa et al., 2024). 127 

While GPS tracking provides valuable insights into where and when animals use 128 

particular habitats, it does not provide direct information on the specific behaviors 129 

animals perform within those habitats. For instance, a site where an individual stops 130 

could be used for resting, foraging, or other behaviors - which cannot be distinguished 131 

using GPS data alone. Complementing GPS-tracking data with additional sensors offers 132 

insights into the behavior and energy use of elusive and cryptic animals (Shepard et al., 133 

2008; Smith & Pinter-Wollman, 2021; Spiegel et al., 2015; Tuia et al., 2022; Williams et 134 

al., 2020). Tri-axial accelerometers (ACC) are widely used in behavioral research, among 135 

other sensors (Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These devices 136 

measure acceleration in three orthogonal axes (sway – x; surge – y; and heave - z) that 137 

change according to the animal’s posture and locomotion. These measurements can be 138 

recorded either continuously or in “bouts” (i.e., sampling units) of a few seconds at 139 
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varying resolution (i.e., frequency, in Hz) and intervals (for example, recording for 5 140 

seconds at 20Hz, every 10 minutes). Different acceleration signatures enable the 141 

measurement of movement-related energy expenditure (Gleiss et al., 2011; Halsey et 142 

al., 2009) and can be used to distinguish among different behaviors (Shepard et al., 143 

2008), for example, for estimating flight duration in small migratory passerines (Bäckman 144 

et al., 2017). 145 

Machine learning algorithms are used to classify raw acceleration bouts into 146 

different behavioral classes (Nathan et al., 2012; Resheff et al., 2014; Valletta et al., 147 

2017; Wang, 2019; Yu et al., 2021). These algorithms can operate in an unsupervised 148 

manner, identifying similarities in acceleration data to produce unlabeled clusters of 149 

similar measurements that subsequently need to be manually classified into specific 150 

behaviors (Chimienti et al., 2016; Wang, 2019). Alternatively, supervised learning 151 

involves training an algorithm with a dataset in which each behavior is labeled, allowing 152 

the algorithm to ‘learn’ the distinctive acceleration patterns of different behaviors (Nathan 153 

et al., 2012; Wang, 2019; Yu et al., 2021). However, depending on the level of detail 154 

required and on how distinctive the behaviors are, assembling a training dataset can be 155 

laborious, as it typically requires direct observations of animals in the wild or in captivity, 156 

synchronized with the ACC measurements (Campbell et al., 2013; Dickinson et al., 157 

2021). Despite these difficulties, supervised machine learning algorithms have been 158 

successfully used to classify behaviors across diverse animal groups, including baboons 159 

(Fehlmann et al., 2023), large pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et 160 

al., 2020),  condors, and other vultures (Rast et al., 2024; Spiegel et al., 2013; Williams 161 

et al., 2015). Commonly used algorithms include artificial neural networks, extreme 162 

gradient boosting, and random forests (Resheff et al., 2014; Yu et al., 2021). Random 163 

forests have the advantage of being able to model complex interactions between the, 164 

often correlated, predictor variables, therefore not requiring the pre-processing and 165 

filtering of variables (Cutler et al., 2007), and simplifying behavioral classification. 166 
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Once a machine learning model is trained, it can classify new, unseen 167 

accelerometer data into the trained behavioral classes, invariably resulting in some 168 

classification errors (Glass et al., 2020; Jeantet et al., 2020). Errors emerge from a few, 169 

non-mutually exclusive, processes. First, acceleration bouts, particularly long ones, may 170 

include transitions among behaviors resulting in a mixture of different acceleration 171 

signatures (Resheff et al., 2024). Second, rare behaviors may be underrepresented or 172 

missing from the limited training dataset (e.g., seasonal and rare behaviors such as 173 

copulation). Third, the behavioral repertoire of some individuals may be broader than 174 

what the algorithm is trained for. Because some behaviors might be difficult to observe 175 

in captivity (e.g., flight behaviors, Williams et al., 2015), this last error is particularly 176 

relevant for algorithms trained on captive individuals that are used to predict the 177 

behaviors of wild animals (Dickinson et al., 2021). Still, the models must choose the best 178 

fitting behavioral class among the available options, even if none provides a particularly 179 

good fit. These errors demand a mechanism to verify the accuracy of each behavioral 180 

classification, allowing the model to distinguish between true-positive and false-positive 181 

classifications (Bidder et al., 2014; Glass et al., 2020). While some studies offer guidance 182 

on how to best use and analyze large acceleration datasets (e.g., Leos-Barajas et al., 183 

2017; Resheff et al., 2014; Williams, Taylor, et al., 2020), the complexity of these tools 184 

remains a barrier for non-experts, hindering their use in conservation science and 185 

practice.  186 

Here we develop an accelerometer-based behavioral classification tool and 187 

validate its real-world application in ecology and conservation, using griffon vultures 188 

(Gyps fulvus) as a case study. As obligate scavengers, vultures support key ecosystem 189 

functions by consuming carcasses and recycling nutrients (Buechley & Şekercioğlu, 190 

2016). Yet, around the world, 70% of vulture species are in danger of extinction, with 191 

poisoning driven by consuming carcasses containing toxic substances being one of the 192 

leading causes for population declines (Ives et al., 2022; Ogada et al., 2012; Plaza et al., 193 
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2019). Poisoning can be either intentional or unintentional. For instance, poachers may 194 

lace carcasses with poison to prevent these raptors from alerting environmental 195 

authorities of poached wildlife (Mateo-Tomás & López-Bao, 2020; Ogada et al., 2016), 196 

and farmers may do so for combating pests and mammalian carnivores. Anti-197 

inflammatory drugs used to treat cattle are also lethal to vultures, leading to poisoning at 198 

these carcasses (López-Bao & Mateo-Tomás, 2022; Ogada et al., 2012; Plaza et al., 199 

2019). Several hundred vultures may quickly gather to eat at a single carcass, increasing 200 

their vulnerability to mass poisoning events (McNutt & Bradley, 2014). Other scavenger 201 

species also feed on carcasses (Olea et al., 2019), exposing them to similar risks of 202 

poisoning (Katzner et al., 2024; López-Bao & Mateo-Tomás, 2022). Early detection of 203 

carcasses might facilitate their proper management to, for example, prevent vultures and 204 

other wild species from feeding on carrion with toxic substances by removing these from 205 

the environment. Moreover, when poisoning events are promptly detected, vultures and 206 

other animals can undergo medical intervention (Acácio et al., 2023; Anglister et al., 207 

2023). Considering the vulture’s large roaming areas (Spiegel et al., 2015), tracking 208 

technology and behavioral classification are essential tools to identify vultures’ feeding 209 

events. Vultures can therefore act as sentinels, facilitating carcass detection, and 210 

maximizing prompt intervention efforts to reduce detrimental effects associated with 211 

consumption of contaminated carrion. For instance, by reducing the number of fatalities 212 

at a poisoning event to avoid long-term effects on species’ populations (Acácio et al., 213 

2023; Slabe et al., 2022).  214 

In this study, our goals are to 1) develop an ACC-based behavioral classification 215 

algorithm, which, together with the training dataset and a conceptual framework of the 216 

methodological workflow, is made freely available to conservationists and ecologists; 2) 217 

validate the algorithm’s classifications, by comparing the confidence scores of true-218 

positive and false-positive classifications, using both the training dataset and data from 219 

free-roaming vultures; and 3) apply our novel algorithm to real-life scenarios with 220 



10 
 

important conservation implications – i.e., rapid carcass detection to prevent vulture 221 

poisoning. Ultimately, our goal is to combine technological advancements in GPS and 222 

accelerometry to improve wildlife conservation efforts, and to develop a tool that is easily 223 

transferable to other systems. 224 

 225 

Materials and Methods 226 

Study system 227 

The study took place in Israel, where griffon vultures are critically endangered (Mayrose 228 

et al., 2017). A historical population of thousands of griffons is currently declining; three 229 

decades ago, there were only 400 griffons in this population, and fewer than 200 230 

individuals remain today (Hatzofe, 2020). Pesticide poisoning from consuming laced 231 

carcasses is the leading cause of griffon mortality, accounting for 45% of documented 232 

deaths between 2010-2021 in this region (Anglister et al., 2023). Lead poisoning and 233 

ingestion of animals treated with anti-inflammatory drugs each contribute to 6% of 234 

mortality events, posing additional threats to this population (Anglister et al., 2023). To 235 

prevent the local extinction of this species, the Israel Nature and Parks Authority (INPA) 236 

runs an intricate management program, including the provisioning of contaminant-free 237 

food at supplementary feeding stations (Spiegel et al., 2013, 2015), the release of 238 

captive-bred and translocated griffons (Efrat et al., 2020), and individually tracking 239 

vultures using GPS-Accelerometer transmitters, to identify poisoning events and other 240 

threats. When wild carcasses are detected in a random location within areas of known 241 

pastoral activity and poisoning history, or when vultures exhibit minimal movement, 242 

suggesting they are unwell, rangers are sent to the field to remove the carcasses and/or 243 

transport affected individuals to a wildlife hospital, underscoring the critical role of GPS-244 

tracking data for the conservation of this population (Acácio et al., 2023). 245 
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 Every year, approximately 100 free-roaming griffons are captured by the INPA 246 

using a cage trap, to identify the individuals with metal and color rings and with patagial 247 

tags. In these trapping events, a few individuals are fitted with a GPS-ACC transmitter 248 

(Ornitela OT-50) using a Teflon harness in a leg-loop configuration. The transmitters are 249 

equipped with solar panels that recharge the batteries, and transmit the collected data 250 

via the GSM network, eliminating the need for recapturing individuals to retrieve 251 

information. The current study did not require additional ethical approval, since it uses 252 

tracking data collected from these GPS-ACC tags and no captures of free-roaming 253 

vultures were conducted specifically for this study. The capture and tagging procedures 254 

were approved by ethics committee of the Israel Nature and Parks Authority (permit 255 

number 42166). 256 

 257 

Conducting observations to build an ACC training dataset 258 

Between January 2020 and February 2022, we deployed GPS-ACC transmitters on 31 259 

griffon vultures, 14 captive vultures and 17 free-roaming individuals. The captive vultures 260 

were housed in in 4 breeding programs, rehabilitation or wildlife facilities, in Israel and in 261 

Spain: Ramat Hanadiv (Israel, n = 4), Hai-Bar Carmel (Israel, n = 4), Cabárceno Wildlife 262 

Park (Spain, n = 3) and GREFA wildlife hospital (Spain, n = 3). In each cage, there were 263 

6 to 12 vultures. Additional behavioral data was collected in Israel for 17 free-roaming 264 

griffon vultures. One individual dropped his transmitter and was deployed with another 265 

device (thus there were 31 individuals but 32 transmitters).  In Israel, the transmitters 266 

were deployed using a leg-loop harness and in Spain the loggers were deployed using 267 

a backpack harness. 268 

The transmitters were programmed to collect GPS and ACC at independent 269 

schedules, and differently for captive and free-roaming griffons. The transmitters of 270 

captive griffons were programmed to collect tri-axial accelerometer data at 20Hz almost 271 
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continuously (10-min-long periods, with a 1 sec interval in between). These 10min bouts 272 

were parsed into 5 sec bouts to match the free-roaming dataset. Bouts of 5 sec at 20Hz 273 

were recorded for free-roaming griffons every 10 min, depending on the transmitter’s 274 

battery charge (see Supplementary Material for details).  275 

To classify each 5 sec ACC bout as a particular behavior, we conducted direct 276 

observations and video recordings of the tagged griffons, both in captivity and in the wild. 277 

In total, we performed observations for 79 days. Direct observations of captive and wild 278 

griffons were conducted with a spotting scope (Swarovski ATX spotting scope 85mm), 279 

ensuring a sufficient distance to not disturb the vulture’s natural behavior. The video 280 

recordings were captured using a camera mounted on a wall support in Spain, and with 281 

nest cameras at the captive breeding facilities, or live streaming nest cameras at wild 282 

nests in Israel (BirdLife Israel, 2022). The direct observations of wild vultures were 283 

performed at roosting sites, at approximately 250 of the individuals.  284 

We recorded six ecologically important behavioral classes: ‘Standing’ - vulture is 285 

resting upright (could be roosting, and may include minor preening and changes in body 286 

posture); ‘Lying’ - vulture is lying parallel to the ground, either resting or incubating; 287 

‘Feeding’ – vulture is either directly eating from a carcass, or engaged in intense social 288 

interactions next to the carcass (e.g., fighting or posturing towards other vultures before 289 

eating); ‘Ground’ - includes all other active ground behaviors which are not directly 290 

related to feeding or resting (e.g., walking, running, hopping, etc.); ‘Flapping’ - active 291 

flight with wingbeats; and ‘Soaring’ - passive flight (e.g., thermal soaring, gliding, etc.). 292 

Because long flights do not occur in captivity, we used GPS-ACC data from 17 free-293 

roaming griffons in southern Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active) 294 

flight behaviors. We identified segments of continuous flight using the GPS ground speed 295 

(ground speed >4m/sec) and plotted the acceleration measurements taken during these 296 

flights. The acceleration signatures of soaring and passive flights are so distinctive 297 

(Figure 1B,C, Williams et al., 2015) that there was no need to ground-truth these 298 
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behaviors with visual sightings (which would be challenging, considering their large 299 

roaming areas).  300 

 301 

 302 

Figure 1 - Examples of accelerometer-based classification of griffon vulture’s 303 

behaviors. Acceleration measurements of bouts classified as: (A) ‘Ground, (B) ‘Soaring’ 304 

flight, (C), ‘Flapping’ flight, (F) ‘Feeding’, (G) ‘Lying’ and (H) ‘Standing’. The acceleration 305 

data was collected at 20Hz during 5 seconds for three orthogonal axes (D): sway – X 306 
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(red), surge – Y (green), and heave - Z (blue). (E) GPS-tracking of a griffon vulture over 307 

one day. The colors of the GPS locations match the behaviors recorded on that location: 308 

‘Ground’ – red; ‘Soaring’ – green; ‘Flapping’ – violet; ‘Feeding’ – yellow; ‘Lying’ – light 309 

blue; ‘Standing’ – black. This illustrates the large daily movements of griffon vultures, 310 

emphasizing the logistical challenges associated with surveillance in the desert study 311 

area. Photo credit: Yacov Ben Bunan. 312 

 313 

Pre-processing the ACC data and model training 314 

Before deployment on the griffons, 50 transmitters were calibrated on a leveled surface, 315 

in all six possible perpendicular orientations. This calibration allowed us to obtain a 316 

transmitter-specific instrument error for translating raw acceleration data (in mV) into 317 

acceleration units (m/sec2). For 14 transmitters (out of 32) without specific error values, 318 

we used the average error across the measured transmitters (n = 50). The calibration 319 

values used are publicly available on GitHub. 320 

We identified the start and end of each accelerometer bout and excluded from 321 

the ACC behavioral dataset all bouts shorter than 5 sec, as well as all bouts that matched 322 

more than one behavioral class during the 5 sec period. Each acceleration bout was 323 

summarized into 47 statistical features commonly used in other studies using machine 324 

learning algorithms to perform behavioral classifications of ACC data (e.g., Nathan et al., 325 

2012; Yu et al., 2021). For a full list of features, see Supplementary Table S1. All 326 

analyses were performed in R (R Core Team, 2023). 327 

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip (Kuhn & 328 

Vaughan, 2024), we built a random forest model to classify behaviors using the 329 

annotated acceleration bouts. We started by splitting this dataset into ‘training’ (67%) 330 

and ‘testing’ (33%) subsets, an ad hoc measure commonly found in other machine-331 

learning applications (e.g., (Jeantet et al., 2020). Using the ‘training subset’, we built a 332 
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random forest model and we evaluated the performance of our model using the ‘testing’ 333 

subset. We built a confusion matrix and calculated three performance metrics, for the full 334 

model and for each behavior: (i) accuracy; (ii) precision; and (iii) recall. The equations 335 

and descriptions for each metric can be found in Table 1. For example, a model may 336 

have 0.90 accuracy (i.e., 90% of all behaviors were predicted correctly), 0.85 precision 337 

for a specific behavior (e.g., 85% of all ‘Feeding’ predictions were indeed ‘Feeding’ 338 

observations and 15% were a different behavior and wrongly identified as ‘Feeding’), 339 

and 0.80 recall of a specific behavior (e.g., 80% of ‘Feeding’ observations were correctly 340 

predicted as ‘Feeding’ and 20% were wrongly classified as another behavior).  341 

After training and evaluating the performance of the algorithm with the split 342 

annotated dataset, we built the final random forest model using the full dataset for 343 

training, likely improving the performance of the algorithm. This full algorithm was then 344 

used to classify unobserved accelerometer bouts to identify feeding in free roaming 345 

vultures (see below).  346 

More details of the model building sequence can be found in Supplementary 347 

Material 2, and a full description of the model building process can be found in Figure 2. 348 

All the training data and the code necessary to train and build the algorithm are publicly 349 

available on Zenodo (Acácio et al., 2025) and GitHub. The repository includes a tutorial 350 

suitable for two types of users: those who may wish to apply our (already-trained) model 351 

to their own data (e.g., researchers and conservationists working on similar vulture/raptor 352 

species), and those wishing to use our pipeline for training and building their own model 353 

(e.g., researchers and conservationists working on other species, or with different 354 

sampling protocols). With these tutorials, our main goal is to bridge the gap between 355 

researchers and practitioners. 356 

 357 
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Table 1 – Performance metrics used to evaluate the random forest model performance, 358 

considering the true-positive (TP), true-negative (TN), false-positive (FP) and false-359 

negative (FN) predictions.  360 

Performance metric Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 361 

 362 

Calculating confidence scores to validate model predictions 363 

Using the training dataset, we calculated a confidence score for each behavioral 364 

classification (i.e., for every bout). This confidence score is the level of consensus 365 

amongst the different decision trees within the random forest (i.e., the proportion of trees 366 

that agree on the highest scoring prediction). For example, if the model classifies a given 367 

bout as ‘Feeding’ with a confidence score of 0.7, then 70% of the trees agreed on that 368 

classification. To determine the validity of this score as an indicator of the behavioral 369 

classification’s reliability, we compared the scores of correctly identified behaviors (true-370 

positives) and of incorrectly identified behaviors (false-positives) in the testing subset. 371 

We then used a generalized linear mixed model (GLMM) with an ordered beta 372 

distribution and a logit link to compare scores of the two groups. The confidence score 373 

(range 0 to 1) was the response variable, and the explanatory variables were the Boolean 374 

correctness of the model prediction (categorical; true-positive or false-positive), the 375 

predicted behavior (categorical), and their interaction. The model included device ID as 376 

a random intercept. The GLMM was built using glmmTMB R package (Brooks et al., 377 
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2017), and the fit of the model and residuals were evaluated using DHARMa R package 378 

(Hartig, 2022).  379 

To understand the effect of the harness configuration (backpack or leg-loop) on 380 

the confidence scores, we compared the confidence scores of true-positive and false-381 

positive classifications of behaviors recorded with the two different harnesses. We 382 

performed this comparison for the two behaviors with most observations: standing and 383 

feeding. We built two separate GLMMs for each behavior. Each GLMM included the 384 

confidence score as a response variable, and the Boolean correctness of the model 385 

prediction (true-positive or false-positive), the predicted behavior, and their interaction, 386 

as explanatory variables. We also included device ID as a random intercept. To further 387 

explore the influence of harness type on the behavioral classification, we trained a new 388 

random forest model using only the leg-loop data (n = 3428) and tested it on the 389 

backpack dataset (n = 714). This model was trained on a subset of bouts that included 390 

only the three behavioral categories present in both datasets (‘Standing’, ‘Ground’ and 391 

‘Feeding’). 392 

 393 
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Figure 2 - Methodological workflow outlining the process of identifying behaviors 395 

of wild animals based on accelerometer data. All the training data, code and tutorials 396 

necessary to follow this workflow are available on GitHub 397 

(www.github.com/Orrslab/ACC_behavior_classification) and at Acácio et al., 2025. 398 

 399 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 400 

To assess the reliability of our algorithms at classifying unobserved data, we validated 401 

predicted ‘Feeding’ behaviors of free-roaming vultures. We focused on this behavior due 402 

to its importance for identifying poisoning events, the main cause of vulture mortality in 403 

our study area (Anglister et al., 2023). This validation is important because even a highly 404 

accurate model introduces classification errors. For example, considering a transmitter 405 

collecting 72 bouts a day, with 10 of those classified as ‘Feeding’, and a model with 90% 406 

precision for ‘Feeding’. Over the course of one week, the device would collect 504 bouts, 407 

70 of which classified as ‘Feeding’. Considering the model’s precision, 7 of these 408 

‘Feeding’ classifications would be false-positives which, extrapolating for a population of 409 

50vultures, this would correspond to approximately 350 false-positive feeding predictions 410 

per week.   411 

We combined information about the location of supplementary feeding stations, 412 

satellite imagery, and GPS positions from griffon-borne transmitters to assess the 413 

likelihood that the unobserved vultures’ ACC-predicted ‘Feeding’ behavior represents a 414 

true feeding event. Between November-December 2020, we collected GPS and 415 

accelerometer data from 7 tagged free-roaming griffons in southern Israel (transmitter 416 

schedule described in the Supplementary Material). These individuals were selected 417 

because they provided consistent high-resolution data throughout this two-month period, 418 

making them suitable for the fine-scale analysis of feeding behavior. We matched a GPS 419 

position to an accelerometer bout if they were recorded within 5 min of each other. We 420 

http://www.github.com/Orrslab/ACC_behavior_classification
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designated four situations with decreasing probability of representing real feeding events 421 

based on the GPS location and GPS ground speed: ‘Station’ – if the ACC identified a 422 

feeding event within 250m from a supplementary feeding station, it likely represents a 423 

true feeding event (likely true-positive predictions); ‘Open area’ – if the ACC identified a 424 

feeding event at a GPS position that is at an open landscape (but not on a cliff), where 425 

naturally-occurring food is sometimes available (wildlife or livestock carcasses), it may 426 

represent a true feeding event ; ‘Cliff’ – if the ACC identified a feeding event on cliff faces, 427 

where food is largely absent but where vultures spend a large proportion of their time 428 

roosting, it is not likely to be a true feeding event; ‘Flight’ – if the GPS ground speed was 429 

>4m/sec the vulture was probably flying, and therefore it is likely a false feeding event. . 430 

The 250 m radius around the feeding station accounted for the vultures’ behavior of 431 

standing nearby and overlooking the station before feeding. Given the potential 5-minute 432 

offset between GPS fixes and accelerometer bouts, this buffer allows for the possibility 433 

that a griffon could move to the station and begin feeding within that time window. All 434 

points were mapped on satellite images of the study area and were visually examined 435 

after this classification to confirm the assignment to each situation (for example, to 436 

confirm vulture presence on a cliff, in an open area or near a feeding station). 437 

To determine if the confidence score of the classification can be used to identify 438 

false-positives in free-roaming griffons, we compared the algorithm’s confidence scores 439 

of ‘Feeding’ predictions at ‘Stations’ (i.e., high probability of true-positives) with ‘Feeding’ 440 

predictions at ‘Cliffs’ or during ‘Flight’ (i.e., high probability of false-positives). We omitted 441 

the ‘Open area’ situation since it could represent a mixture of feeding and non-feeding 442 

behaviors and were therefore less conclusive for this comparison. We used a GLMM, 443 

with a beta distribution and a logit link, in which the response variable was the algorithm's 444 

confidence score, and the explanatory variable was the classification accuracy according 445 

to the GPS location (likely true-positive or likely false-positive). We included device ID 446 

as a random intercept.  447 
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 448 

Case study: identification of vulture feeding hotspots to prevent poisoning 449 

To demonstrate the applicability of the ACC algorithm to a real-world conservation 450 

problem, we used it to identify griffons’ feeding hotspots outside supplementary feeding 451 

stations (i.e., places where safe carcasses are provided to vultures). Considering the 452 

high risk of carcasses outside feeding stations being contaminated with toxic substances 453 

for vultures (e.g., pesticides or NSAIDs, Anglister et al., 2023), their rapid detection and 454 

removal from the field is a priority for wildlife authorities in Israel (Acácio et al., 2023). 455 

Accordingly, mapping those areas where vultures are feeding on potentially 456 

contaminated carcasses may guide management actions.  457 

In November 2022, we collected one month of GPS and accelerometer data for 458 

51 free-roaming griffons in Southern Israel, aiming to identify the locations of feeding 459 

events that occurred outside supplementary feeding stations (events that present higher 460 

risk of poisoning). After applying the random forest algorithm to this dataset, we matched 461 

the accelerometer ‘Feeding’ bouts with a GPS location using three criteria. First, if they 462 

were collected within 5 min of each other, and if the GPS ground speed was below 463 

4m/sec (indicating the bird was not flying). Second, if no GPS position matched these 464 

criteria, we matched ACC bouts with GPS locations if they were collected within 11 min 465 

of each other (while maintaining the ground speed criteria), to account for a possible 466 

delay in the time to acquire a position by the GPS. If no GPS position matched these 467 

criteria, the ‘Feeding' bout was discarded from further analysis, because we could not 468 

infer where the feeding event took place. 469 

Using the results of the previous analyses, where we assessed if the confidence 470 

score could be used to minimize the number of false-positives, we excluded bouts with 471 

confidence scores below 0.5. This conservative threshold was chosen to avoid 472 

eliminating true-positives, as failing to detect feeding areas posed a greater risk for 473 
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griffon conservation than including false-positive observations. However, this threshold 474 

is system- and data-specific and is expected to be different for other species and 475 

systems. We also excluded ‘Feeding’ bouts that occurred within supplementary feeding 476 

stations, at known roost sites (the latter likely represent false-positives), and outside the 477 

study area (southern Israel and Jordan). With the remaining locations (n = 264), we 478 

created a 2D kernel (grid size = 1000, bandwidth = bandwidth.nrd function from MASS 479 

R package, Venables & Ripley, 2002), portraying the density of locations, using bkde2D 480 

function of KernSmooth R package (Wand, 2024). On this density map, we overlayed 481 

the information of known carcasses independently identified in the field, outside feeding 482 

stations, during this same time period (n = 5). The carcasses were located by local 483 

rangers, either through reports from farmers, chance encounters during field patrols, or 484 

via an alert system that flags unusual landings of tracked raptors based on GPS data. 485 

This system uses location data from several species to identify potential poisoning 486 

events, independent of accelerometer-based behavioral classifications used in this 487 

study.  488 

Finally, to assess if the behavioral classification impacted the designation of 489 

feeding hotspots compared to a mapping based on GPS metrics alone, we built an 490 

additional density map using all GPS locations from the same dataset, without filtering 491 

for “feeding-only” locations. We excluded locations that occurred within supplementary 492 

feeding stations, at known roost sites, or where the ground speed exceeded >4m/sec. 493 

 494 

Results 495 

Behavioral classification 496 

We collected 5783 behavioral observations for 14 captive and 17 free-roaming griffon 497 

vultures (a total of 31 individuals), during 57 days (18 days for captive individuals and 39 498 

for free-roaming individuals). The most common behavior was ‘Standing’ (3488 499 
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observations), and the least common behavior was ‘Ground’ (67 observations, 500 

Supplementary Table S2). When training the random forest model with 67% of the 501 

observed (i.e., ground-truthed) dataset, we achieve an overall accuracy of 0.96, precision 502 

of 0.89 and recall of 0.82. Specifically, the model predicted ‘Feeding’ behaviors with 503 

precision of 0.87 and recall of 0.92 (Figure 3, Supplementary Table S2). ‘Ground’, on the 504 

other hand, had the poorest predictions (precision = 0.57, recall = 0.15). The indirectly 505 

inferred behaviors ‘Soaring’ and ‘Flapping’ were well predicted by our model (‘Soaring’: 506 

precision = 0.99, recall = 0.99, ‘Flapping’: precision = 0.98, recall = 0.95). 507 

 508 

 509 

Figure 3 - Confusion matrix of the random forest model to classify vulture behavior 510 

based on accelerometer data. Rows represent the behavior predicted by the algorithm 511 

we developed, and columns represent the behaviors we observed directly. The colors in 512 

the diagonal show the precision for each behavior, with darker colors indicating higher 513 

precision. The size of the text outside the diagonal indicates the proportion of false-514 

positives in each behavioral category, with larger numbers indicating a larger proportion 515 
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of false-positives. For example, more ‘Feeding’ bouts were wrongly classified as 516 

‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as 517 

‘Soaring’, ‘Flapping’, or ‘Lying’. 518 

 519 

Performance of the confidence score in validating model predictions 520 

Overall, the confidence scores of correctly-identified behaviors (true-positives) were 521 

significantly higher than the scores of inaccurately-identified behaviors (false-positives; 522 

GLMM: model estimate ± se = 0.876 ± 0.195, p-value < 0.001, Figure 4, Supplementary 523 

Table S3). ‘Ground’ behaviors, which had the lowest number of observations (n=67), 524 

were the exception, with significantly higher confidence scores of false-positives 525 

compared to true-positives (Figure 4). ‘Ground’ true-positive behaviors also had the 526 

lowest confidence scores (mean confidence score ± sd = 0.41 ± 0.03). ‘Soaring’, ‘Lying’, 527 

‘Standing’ and ‘Flapping’ were the behaviors with highest true-positive confidence scores 528 

(mean confidence score ± sd; ‘Soaring’ = 0.99 ± 0.08, ‘Lying’ = 0.98 ± 0.06, ‘Standing’ = 529 

0.98 ± 0.08, ‘Flapping’ = 0.93 ± 0.12). ‘Feeding’ had on average a high confidence score 530 

but also a large variation (mean confidence score ± sd = 0.82 ± 0.15, Figure 4, 531 

Supplementary Table S2, Supplementary Table S3).  532 

There were no significant differences between the confidence scores of 533 

behaviors recorded with backpack or leg-loop harnesses for the two tested behaviors: 534 

Standing’ (GLMM: estimate ± se = 0.374 ± 0.283, p-value = 0.283) and ‘Feeding’ (GLMM: 535 

estimate ± se = -0.725 ± 0.798, p-value = 0.364, Supplementary Figure S1 and 536 

Supplementary Table S4). The model trained on leg-loop data and tested on backpack 537 

data had high overall accuracy (accuracy = 0.86) and performed well at classifying 538 

‘Standing’ behaviors (‘Standing’ precision = 0.99; recall = 0.91). All true ‘Feeding’ 539 

behaviors were correctly identified as such (‘Feeding’ recall = 1). However, most 540 

‘Ground’ behaviors were misclassified as ‘Feeding’, which reduced the precision of the 541 
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‘Feeding’ category (‘Feeding’ precision = 0.52). Similarly to the full model, ‘Ground’ 542 

behaviors had the poorest performance (Supplementary Table S5). 543 

 544 

 545 

Figure 4 – Model predicted confidence scores of true-positive (blue) and false-546 

positive (dark red) behavioral classifications. The darker points and error bars 547 

indicate the model predicted confidence scores and 95% confidence intervals for true-548 

positive and false-positive behavioral classifications. The lighter points show the raw 549 

data. 550 

 551 

Confidence score to validate ‘Feeding’ predictions of free-roaming vultures 552 

We used the GPS locations to validate 175 ‘Feeding’ bouts from 7 free-roaming vultures 553 

in Southern Israel. Overall, 126 ‘Feeding’ bouts (72%) occurred within a supplementary 554 

feeding station (‘Station’ – likely true-positives), 22 bouts (13%) were located on ‘Open 555 

areas’ (likely a mix of true- and false-positives), 20 bouts (11%) were on ‘Cliffs’ (likely 556 

false-positives), and 7 bouts (4%) were in ‘Flight’ (likely false-positives, Figure 5). The 557 
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relatively high proportion of feeding bouts identified on cliffs likely reflects the 558 

considerable amount of time griffons spend in these areas. Overall, of all ‘Feeding’ bouts 559 

identified by the algorithm, 72-85% (all ‘Station’ bouts + at least part of the ‘Open area’ 560 

bouts) were likely real feeding events. Furthermore, after removing ‘Cliff’ and ‘Flight’ 561 

bouts (easily identifiable using only the GPS location, satellite imagery, and ground 562 

speed), 85-100% of the ‘Feeding’ predictions (all ‘Station’ bouts + at least part of the 563 

‘Open area’ bouts) were indeed likely feeding events. 564 

 Importantly, the confidence scores of ‘Feeding’ bouts likely to be true-positives 565 

were higher (mean ± sd: ‘Station’ = 0.75 ± 0.16) than the scores of bouts likely to be 566 

false-positives (‘Cliff’ and ‘Flight’ = 0.56 ± 0.19). This comparison was statistically 567 

significant (GLMM: estimate ± se = -0.805 ± 0.167, p-value <0.001, Supplementary Table 568 

S5). When considering solely the ‘Feeding’ bouts with a confidence score over 0.5, 114 569 

bouts (88.4%) occurred within a supplementary feeding station and were likely true-570 

positives. This threshold maximizes the number of true-positive predictions, while 571 

minimizing the number of false-positives (Figure 5). 572 

 573 

 574 

Figure 5 - Validation of ‘Feeding’ behaviors using data from free-roaming griffons. 575 

A - Percentage of ‘Feeding’ predictions (n = 175) located within a supplementary feeding 576 

station (‘Station’ - blue), on open landscape (‘Open area’ - green), on cliffs (‘Cliffs’ - dark 577 

brown) or in flight (‘Flight’ - light brown). B - Distribution of the confidence scores of 578 
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‘Feeding’ bouts likely to be true-positives (located within a feeding station, in blue) and 579 

likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line 580 

indicates the confidence threshold of 0.5, a conservative threshold that reduces the 581 

number of false-positives, while including nearly all true-positive predictions.  582 

 583 

Mapping vulture’s feeding hotspots to facilitate poisoning identification 584 

In November 2022, we collected 4595 ‘Feeding’ bouts of 51 griffon vultures in our study 585 

area. After sequentially removing the bouts without a GPS location (n = 586), bouts inside 586 

feeding stations (n = 2534), outside Southern Israel and Jordan (n = 157), bouts located 587 

in known roosts (n = 979), and bouts with a confidence score below 0.5 (n = 60, Figure 588 

5), we retained 264 bouts of 31 vultures, that allowed us to map their feeding hotspots. 589 

We built a KDE with the remaining 264 ‘Feeding’ bouts and detected a hotspot of 590 

feeding events in the Judean desert. This hotspot is consistent with the INPA ranger’s 591 

reports for this same period, where 4 out of 5 reported carcasses outside feeding stations 592 

were within the KDE (Figure 6). This density map differed substantially from the one 593 

based solely on GPS-derived metrics (Supplementary Figure S2), containing 1,938 594 

potential feeding locations. Notably, the GPS-only KDE failed to identify a key feeding 595 

hotspot in Jordan. This confirms that the algorithm can be used to identify areas with 596 

high probability of vultures’ feeding on potentially contaminated carcasses and highlights 597 

the added value of the behavioral classification. 598 

 599 
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 600 

Figure 6 - Acceleration-based behavioral classification as a tool to identify griffon 601 

vultures’ feeding hotspots outside supplementary feeding stations. The red points 602 

show the vulture feeding locations in Southern Israel and Jordan over November 2022, 603 

identified using the random forest algorithm. The blue markers indicate the location of 604 

ground-truthed carcasses outside feeding stations; the darker blue indicates two 605 

carcasses in approximately the same location. The polygons indicate the density of 606 

vulture feeding locations, showing the areas where vultures are at greater risk of 607 

poisoning. The polygon colors indicate the density of vulture feeding locations, with blue 608 
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areas having lower density and red areas higher density. The inset shows the location 609 

of the study area in the world. 610 

 611 

Discussion 612 

Recent advancements in tracking technology and analytical tools are enhancing our 613 

understanding of animal ecology and behavior and improving its applications for 614 

biodiversity conservation (Tuia et al., 2022; Williams et al., 2020). In this study, we add 615 

to this body of literature by developing a machine learning algorithm to classify griffon 616 

vultures' behaviors, thoroughly validating the behavioral classifications, and using them 617 

to inform conservation efforts, namely carcass detection to prevent poisoning. Our model 618 

accurately predicted griffons' behaviors, allowing for the identification of potential feeding 619 

events outside feeding stations and the mapping of feeding hotspots where vultures and 620 

other scavengers can engage in risky behaviors such as the consumption of poisoned 621 

carcasses (Peters et al., 2023). These maps may become fundamental tools for 622 

monitoring-effort prioritization and for optimizing on-the-ground actions for the 623 

conservation of vultures and other scavengers (e.g., the detection of poisoning events, 624 

Rast et al., 2024). Another major contribution of this study is the use and validation of 625 

the algorithm's confidence in each behavioral classification, showing the utility of this 626 

approach for other behaviors and contexts. Assessing the degree of confidence in this 627 

manner is rarely done in ecological studies (Bidder et al., 2014), but we highlight how 628 

this approach may minimize misclassifications (e.g., false-positives) especially when 629 

resources for ground-truthing are limited. Our algorithm and training dataset are made 630 

accessible to other researchers and conservationists studying vultures and similar 631 

species. Moreover, they can be easily adapted to classify the behaviors of other species 632 

in diverse study systems. Importantly, to further promote this usability, we provide a 633 
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methodological workflow to guide potential users in the process of identifying behaviors 634 

of wild animals based on accelerometer data. 635 

 636 

Accelerometer-based behavioral classification as a tool for vulture conservation 637 

With our behavioral classification model, we were able to identify vulture feeding hotspots 638 

in Southern Israel. Indeed, the areas where our tracked vultures displayed ‘Feeding’ 639 

behaviors matched the locations of known ‘wild’ carcasses (i.e., outside feeding stations) 640 

during this same period. This case study used only a single month worth of high-641 

resolution data embedded within a long-term lower resolution tracking effort (Acácio et 642 

al., 2024; Spiegel et al., 2013), but it exemplifies how GPS and accelerometer data can 643 

be used to direct conservation efforts. The use of GPS tracking has been instrumental 644 

for vulture conservation in Israel (Spiegel et al., 2013), particularly for the detection of 645 

poisoning events (Acácio et al., 2023; Anglister et al., 2023). The local government 646 

environmental agency, INPA, developed a near-real time alert system that warns rangers 647 

whenever a vulture lands at a suspicious area and when vultures are either moving very 648 

little or are suspected to be dead (Nemtzov et al., 2021). Rangers then actively respond 649 

to these alerts by inspecting the area and removing the carcasses; therefore, reducing 650 

the number of false alarms is important – both to reduce costs and workload, as well 651 

avoiding erosion of rangers’ responsiveness.  652 

A similar near real-time alert system, using GPS data, has also been used for the 653 

monitoring of African elephants (Loxodonta Africana, Wall et al., 2014) and to track 654 

California condors (Gymnogyps californianus) in the vicinity of wind farms (Sheppard et 655 

al., 2015). It has also been suggested as an anti-poaching tool to prevent the extinction 656 

of large mammals (O’Donoghue & Rutz, 2016). We propose that all these systems could 657 

be improved by using accelerometer data to remotely identify animal behavior and risky 658 

events sooner and more reliably. Indeed, our results show that relying solely on GPS-659 
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derived filters to identify potential feeding hotspots failed to identify a key feeding hotspot 660 

in Jordan and produced over seven times more data points, many of which were likely 661 

false positives. Such an overload of low-quality alerts could lead to reduced 662 

responsiveness by the rangers, ultimately undermining conservation efforts on the 663 

ground.  664 

Combining maps of feeding hotspots (either fixed or season-specific ones) with 665 

similar near real-time alert systems may be crucial for vulture management and 666 

conservation. For example, the feeding areas that griffons use systematically throughout 667 

the year should be prioritized in terms of surveillance and sanitation efforts, to prevent 668 

vultures (and other scavengers) from accessing carcasses contaminated with toxic 669 

substances. Additional management actions could be implemented, such as establishing 670 

new supplementary feeding stations in these areas, or increasing carcass supply at 671 

existing stations, either all year-round or during particular seasons, to match potential 672 

seasonal changes in vulture’s activity areas. Additionally, the hotspots could be used to 673 

implement geofences where data collection and transmissions would be at higher 674 

frequency. This increased resolution may be critical in poisoning events, where the actual 675 

feeding may be quite fast (sometimes consuming a carcass within minutes) and vultures 676 

may perish quickly, depending on the type and amount of toxic substance ingested. 677 

Then, information regarding the griffon’s location and behavior is obtained and 678 

communicated faster: when a griffon lands in these areas and only if it feeds there (as 679 

indicated by the ACC classification), an alert should be sent to the rangers for immediate 680 

carcass inspection. While the system should also trigger alerts for any feeding events 681 

detected outside feeding stations (to allow for carcass inspection and potential removal 682 

to reduce the risk of poisoning), identifying risky hotspots can help optimize resource 683 

allocation and prioritize conservation actions in high-risk areas. 684 

Around the world, an increasing number of individuals of multiple vulture species 685 

are being tracked with GPS-Accelerometer devices, showing that they roam 686 
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exceptionally large areas on their daily movements (Kane et al., 2022; Spiegel et al., 687 

2015). Considering that about 70% of vulture species are endangered (Ives et al., 2022; 688 

Ogada et al., 2012; Plaza et al., 2019), surveillance systems that combine GPS tracking 689 

with accelerometry may be a useful tool to improve management actions in their large 690 

roaming areas to combat major threats such poisoning. For instance, such ACC-based 691 

systems will enhance existing applications of GPS-tagged vultures to inform on-ground 692 

actions against illegal wildlife persecution (Rast et al., 2024; Rodríguez-Pérez et al., in 693 

press) or to improve regulations for carrion disposal to feed vultures and other wild 694 

species (Mateo-Tomás et al., 2023). Future studies could apply our methodology to 695 

publicly available GPS-ACC datasets to identify high-risk areas for vultures and guide 696 

targeted conservation interventions at a larger geographic scale. 697 

Our thoroughly validated training dataset can also be used to classify the 698 

behavior of griffons in other populations, as well as other old and new-world vulture 699 

species, particularly in Africa and Asia, where vulture populations continue to decrease. 700 

For example, our algorithm and training dataset could be used to predict the behaviors 701 

of endangered Gyps species in Africa and Asia (e.g., Gyps africanus, Gyps coprotheres, 702 

Gyps bengalensis, amongst others), or even other vulture species (e.g., Torgos and 703 

Trigonoceps species), considering their morphological and behavioral similarities with 704 

the griffon vulture. The use of surrogate species to identify accelerometer-based 705 

behaviors has been examined in other systems, with a variety of results. For example, 706 

the behaviors of domestic dogs were good predictors of the behaviors of dingoes and 707 

cheetahs (Campbell et al., 2013), but the behavior of domestic caprids did not predict 708 

well the behavior of their wild counterparts (Dickinson et al., 2021). Therefore, we 709 

recommend caution when using our trained model to classify the behavior of other 710 

vulture species. In addition, our algorithm and modelling pipeline can be easily adapted 711 

for other, not related, animal species, as long as researchers provide their own training 712 

dataset for their study species. 713 
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 714 

Validating the accuracy of predictions of unobserved behaviors 715 

Tri-axial accelerometers and classification algorithms have increasingly been used to 716 

obtain fine-scale behavior of wild animals (Nathan et al., 2012; Resheff et al., 2014; 717 

Wang, 2019; Yu et al., 2021). However, after training and testing the model on a validated 718 

dataset, the model must classify unobserved and, sometimes, unknown behaviors. In 719 

this case, the model then matches the unknown behavior with the best fitting known 720 

acceleration signature, resulting in misclassifications (Glass et al., 2020). Most 721 

ecological studies fail to acknowledge this limitation and do not provide a metric of how 722 

likely a particular classification is to be true (Glass et al., 2020). Here we tackle this 723 

methodological gap and calculate a confidence score, which allows us to distinguish 724 

between true-positive and false-positive classifications. Our approach is computationally 725 

simple to implement and does not require running more complex classification models. 726 

In addition to the confidence scores, we used biologically relevant information to validate 727 

observations classified as ‘Feeding’. For this subset of data, 15% of the observations 728 

were likely misclassifications because they occurred on cliffs (where there is no food in 729 

our case) or in flight. Filtering out observations based on easily accessible metrics (here, 730 

the topography, knowledge of the behavior of the species, spatial position, and GPS 731 

ground speed) as well as any observations with a confidence score below a relevant 732 

threshold, increases the accuracy of behavioral classifications.  733 

Selecting filtering thresholds is always a balance between two types of errors. 734 

Here, we considered a conservative threshold of 0.5 to distinguish true-positive and 735 

false-positive ‘Feeding’ predictions of free-roaming griffons, at the risk of including some 736 

false-positive predictions in our dataset (Type I error). However, in this case, the risk of 737 

not including part of the true-positive predictions (Type II error) is higher than including 738 

some false-positives; not including all true-positives could mean that some feeding 739 

hotspots would not be identified, potentially compromising sanitary management and 740 
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overlooking potential feeding and poisoning events. We encourage other researchers to 741 

use a similar approach whenever possible, combining confidence scores with ground-742 

truthing information, to improve the accuracy of their conclusions.  743 

In addition, we note that different behaviors, or even the same behavior in 744 

different species or with different accelerometer devices, may have different confidence 745 

scores distributions. For example, with our dataset a threshold of 0.9 could have been 746 

suitable for distinguishing flapping and soaring flight behaviors, to study, for instance, 747 

flight biomechanics. Therefore, the threshold of confidence should consider the 748 

underlying distribution of confidence scores for the behaviors in mind and should be 749 

defined according to this and the study objectives, balancing the risks of data loss with 750 

the costs of including false-positives in the dataset.  751 

Finally, quantifying temporal correlations between behaviors could also help 752 

improve model performance or assist in post-processing filtering of the classifications 753 

(Supplementary Material 3, Supplementary Figure S3). For instance, it is possible to 754 

combine a correlation matrix of the behaviors with the confidence scores. In our dataset, 755 

‘Feeding’ is often followed by other ‘Feeding’ behaviors (Supplementary Figure S3C). 756 

Thus, if a high-confidence 'Feeding' behavior is followed by a low-confidence 'Feeding' 757 

prediction, the strong positive dependency between these two behaviors could support 758 

treating the second ‘Feeding’ as likely true-positive. Future studies could also implement 759 

more complex models that allow for the incorporation of the correlation matrix within the 760 

model.  761 

 762 

Challenges and considerations of accelerometer-based behavioral classification 763 

Different tag placement and different attachment methods can greatly influence 764 

accelerometer signatures, and consequently the behavioral classifications (Garde et al., 765 

2022). Nevertheless, our results show that our algorithm is reliable for more than one 766 
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attachment method, further increasing its usefulness. These non-significant differences 767 

may result from the similarity in logger placement between the two attachment types 768 

(about 3cm difference), as well as from the limited spinal flexibility of griffon vultures. Still, 769 

the large confidence intervals in this comparison (due to the small sample size for 770 

backpack harnesses), as well as difficulty of our algorithm in classifying ‘Ground’ 771 

behaviors recorded with a backpack harness shows that this topic deserves further 772 

investigation with larger sample sizes and with other species. 773 

After building the random forest, it is crucial to validate its accuracy, precision, 774 

and recall. In our study, the overall model was highly accurate, yet behaviors differed in 775 

their precisions. As expected, ‘Ground’ was consistently the behavior with the poorest 776 

predictions across all our validations. This behavioral category included several, quite 777 

distinct, ground behaviors (like walking, running, hopping, etc.), in an attempt to account 778 

for all possible behaviors a griffon may display and to minimize misclassifications at the 779 

cost of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand, was accurately 780 

classified by our model, however despite a relatively large number of bouts in the training 781 

dataset (n = 587), the confidence scores of this behavior had large variance. A possible 782 

reasoning is that griffon’s feeding behavior is highly complex and may include rapid shifts 783 

between fighting, posturing (spreading the wings), as well as eating per se (Bosè & 784 

Sarrazin, 2007) – all inseparable within a 5s timeframe. Including so many different 785 

postures in a single behavioral category results in high variation of confidence scores.  786 

In addition, the number of conspecifics within a feeding event may further 787 

influence the behaviors that individuals display while foraging (Bosè et al., 2012), 788 

increasing within-individual variability for both wild and captive vultures. To mitigate the 789 

effect of within-individual variability in our training dataset, we ensured that multiple 790 

captive individuals were feeding at the same carcass, to replicate the wild feeding 791 

conditions.  Finally, it is likely that individuals differ in their behavior while foraging (e.g., 792 

dominant vs subordinates, Bosè et al., 2012; Bosè & Sarrazin, 2007), emphasizing the 793 
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need to improve behavioral classification models and account for individual differences 794 

in behavior (Kirchner et al., 2023). In general, we suggest that future models can improve 795 

accuracy and precision by further splitting our six classes into subclasses that reflect 796 

more homogenous elementary behaviors (e.g., pecking, tearing meat apart, fighting). 797 

Merging ‘Ground’ and ‘Feeding’ categories could also potentially improve the model’s 798 

accuracy; however, since these two behaviors are not necessarily linked, this would 799 

come at the cost of decreased resolution in detecting true feeding events, compromising 800 

management and conservation applications. For specific applications focused solely on 801 

identifying feeding activity, an alternative approach could involve merging all feeding and 802 

all non-feeding behaviors in a binary classification. This could simplify the interpretation, 803 

and we suggest that this option is worth exploring in a future study 804 

Despite the potential of accelerometer-based behavioral classification, collecting 805 

such large volumes of data can be costly, both in terms of data transmission and storage, 806 

as well as in terms of device memory and battery (Hounslow et al., 2019). Short sampling 807 

intervals (2-3 secs) at high resolution may reduce the probability of having multiple 808 

behaviors within a single bout, but may drain batteries faster, which can result in 809 

incomplete sampling designs and lower the device’s lifespan. Integrating low-frequency 810 

accelerometry with additional sensors (e.g., time-depth recorders for marine species, 811 

Jeantet et al., 2020), may still effectively allow the study of animal behavior without 812 

significantly increasing costs or reducing device longevity (Hounslow et al., 2019). In 813 

addition, analyzing such large volumes of data can also be challenging, so we emphasize 814 

the need for collaboration in between fields of knowledge, with ecologists and data 815 

scientists working together for the conservation of biodiversity (Tuia et al., 2022). Lastly, 816 

as human activities are increasingly impacting the planet and driving species towards 817 

extinction, it is critical to harness technological advances for effective conservation and 818 

to safeguard the future of our planet's species and ecosystems. 819 

 820 
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Conclusions 821 

In this study, we showed the potential of accelerometer-based behavioral classification 822 

to improve the management and conservation of endangered scavengers. By reliably 823 

identifying feeding behaviors and mapping feeding hotspots, our approach can help the 824 

detection of poisoning events earlier and optimize management resources to high-risk 825 

areas. We further show that combining the algorithm’s confidence score with simple 826 

GPS-derived filters, can greatly improve the reliability of the identification of feeding 827 

hotspots. Finally, our workflow, training dataset, and model are provided in an open-828 

access platform, to facilitate the adoption of this framework in the global management 829 

and conservation of endangered scavengers. 830 
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Supporting Information 1183 

 1184 

Data S1 - Transmitter schedule of free-roaming griffon vultures 1185 

The GPS-ACC transmitters were programmed with different schedules, depending on 1186 

the analysis: 1187 

Conducting observations to build an ACC training dataset 1188 

To build the ACC training dataset, bouts of 5 sec at 20Hz were recorded for free-roaming 1189 

griffons every 10 min, if the transmitter’s battery was more than 50% charged, or every 1190 

60 min if the transmitter’s battery was below 50% charge. The GPS positions of free-1191 

roaming vultures were recorded every 10 min if the transmitter’s battery was above 75%, 1192 

every 20 min if the battery was between 50-75%, or every 60 min if the battery was below 1193 

50% charge.  1194 

 1195 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 1196 

To use the confidence score to validate the feeding predictions of free-roaming vultures, 1197 

the GPS positions were recorded every 10 min to 60 min (depending on the battery 1198 

charge). The transmitter was programmed to collect 5 sec bouts of accelerometer data 1199 

at 20Hz every 10 min if the battery was over 50% charge.  1200 

 1201 

Case study: identification of vulture feeding hotspots to prevent poisoning 1202 

To build a map of feeding hotspots, the transmitters were programmed to record GPS 1203 

positions every 10 min if the battery was over 50%, and every 60 min, if the battery was 1204 

below 50% charge. Accelerometer data were recorded every 5 min if the battery was 1205 

over 50% charge. 1206 

  1207 
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Data S2 – Details of the model building sequence 1208 

Using the ‘training subset’, we built a random forest model (number of trees = 1000, 1209 

number of statistical features per tree = 10, and minimum number of observations per 1210 

leaf = 10). We evaluated the performance of our model using the ‘testing’ subset. We 1211 

built a confusion matrix and calculated three performance metrics, for the full model and 1212 

for each behavior: (i) accuracy (sum of true-positives and true-negatives divided by all 1213 

predictions); (ii) precision (true-positives divided by the sum of true-positives and false-1214 

positives); and (iii) recall (true-positives divided by the sum of true-positives and false-1215 

negatives). The equations for each metric can be found in Table 1. Because only 67% 1216 

of the data was used to train the algorithm, these metrics are likely an underestimation 1217 

of the real performance of the final algorithm. 1218 

 1219 

  1220 
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 1221 

 1222 

Supplementary Figure S1 - Comparison of the confidence scores of true-positive 1223 

(TP) and false-positive (FP) ‘Standing’ and ‘Feeding’ classifications, recorded 1224 

with a backpack (red) and with a leg-loop (blue) harness. Each panel shows the 1225 

model predictions and the 95% confidence intervals for the effect of the harness on the 1226 

confidence scores of true positive and false positive behavioral classifications.  1227 

  1228 
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 1229 

 1230 

Supplementary Figure S2 – Using GPS-derived metrics to identify feeding 1231 

hotspots, without using acceleration-based behavioral classification. The red 1232 

points show vulture locations with GPS ground speed equal to or slower than 4m/s, 1233 

outside the roosting areas and outside feeding stations for vultures, during November 1234 

2022 (n = 1,938 locations). The polygons indicate the density of vulture locations, 1235 

showing potential areas where vultures could be foraging and would be at greater risk 1236 

of poisoning. The polygon colors indicate the density of vulture locations, with blue 1237 

areas having lower density and red areas higher density. Comparison with Figure 6 1238 

(based on accelerometer-classified ‘Feeding’ behavior) shows that incorporating 1239 

behavioral data produces spatially distinct and more accurate hotspot identification.  1240 
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Supplementary Table S1 – Full list of statistical features used to summarize each 1241 

acceleration bout. Note that X, Y and Z refer to the orthogonal acceleration axes 1242 

(sway – X; surge – Y; heave - Z), while x and y refer to the variables that should be 1243 

included in the R functions. 1244 

Feature R function 

Mean (X, Y, Z) mean(x) 

Maximum (X, Y, Z) max(x) 

Minimum (X, Y, Z) min(x) 

Range (X, Y, Z) max(x) – min(x) 

Standard deviation (X, Y, Z) sd(x) 

Skewness (X, Y, Z) moments::skewness(x) 

Kurtosis (X, Y, Z) moments::kurtosis(x) 

Euclidian norm (X, Y, Z) sqrt(sum(x^2)) 

25% quantile (X, Y, Z) quantile(x, probs = 0.25) 

50% quantile (X, Y, Z) quantile(x, probs = 0.50) 

75% quantile (X, Y, Z) quantile(x, probs = 0.75) 

Covariance (X-Y, X-Z, Y-Z) cov(x, y) 

Mean difference (X-Y, X-Z, Y-Z) mean(x – y) 

Standard deviation of the difference (X-Y, X-
Z, YZ) 

sd(x – y) 

Mean amplitude (X, Y, Z) mean_amplitude(x) – user defined 
function provided in the R code 

 1245 

  1246 



50 
 

Supplementary Table S2 – Results of the random forest model to classify vulture 1247 

behavior based on accelerometer data. The random forest model was trained on 1248 

67% of the total number of observations and its performance was tested on 33% of the 1249 

data. The true-positives and false-positives are the result of the performance test (for a 1250 

full confusion matrix see Figure 3 of the manuscript). For each prediction, the model 1251 

calculates a confidence score, i.e., the proportion of trees that agree on the highest 1252 

scoring prediction. Here we show the mean confidence score values for each predicted 1253 

behavior category.  1254 

 1255 

Behavior 

Total number 
of 

observations 
(number of 
vultures) 

True 
positives 

False 
positives 

Precision Recall 

Mean 
confidence 

score of 
true-

positives 
(sd) 

Feeding 587 (10) 189 17 0.87 0.92 0.82 (0.15) 

Lying 364 (5) 104 5 0.94 0.95 0.98 (0.06) 

Standing 3488 (11) 1142 20 0.98 0.98 0.98 (0.08) 

Ground 67 (8) 4 23 0.57 0.15 0.41 (0.03) 

Flapping 122 (18) 42 2 0.98 0.95 0.93 (0.12) 

Soaring 1155 (9) 375 4 0.99 0.99 0.99 (0.08) 

 1256 
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Supplementary Table S3 – Comparison of the confidence scores of true-positive 1258 

and false-positive behavioral classifications. Results of the GLMM beta binomial 1259 

model, with confidence score (0-1) as the response variable, and correctness (true-1260 

positive / false-positive), behavioral class (Feeding, Flapping, Ground, Lying, Soaring 1261 

and Standing) and their interaction as predictors. The model had device ID as random 1262 

effect. A p-value <0.05 indicates a statistical significant relationship. 1263 

Variable Estimate Std. Error Z value p-value 

Intercept 0.470 0.215 2.191 0.028 

Validation – 
True positive 

0.876 0.195 4.492 <0.001 

Behavior – 
Flapping 

-0.775 0.578 -1.343 0.179 

Behavior – 
Ground 

0.173 0.248 0.698 0.485 

Behavior – 
Lying 

-0.133 0.403 -0.330 0.741 

Behavior – 
Soaring 

0.902 0.456 1.979 0.048 

Behavior – 
Standing 

-0.020 0.254 -0.079 0.937 

Valid. True 
Positive x 
Beh. Flapping 

1.761 0.586 3.007 0.003 

Valid. True 
Positive x 
Beh. Ground 

-1.749 0.445 -3.926 <0.001 

Valid. True 
Positive x 
Beh. Lying 

1.807 0.416 4.342 <0.001 

Valid. True 
Positive x 
Beh. Soaring 

1.017 0.442 2.304 0.021 

Valid. True 
Positive x 
Beh. Standing 

1.341 0.260 5.162 <0.001 

 1264 

Random effects Variance Std. Dev. 

Device id 0.0995 0.3155 
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Supplementary Table S4 – Comparison of the confidence scores of true-positive 1267 

and false-positive ‘Standing’ and ‘Feeding’ classifications, recorded with a 1268 

backpack and with a leg-loop harness. Results of the GLMM model beta binomial 1269 

model, with confidence score (0-1) as the response variable, and the correctness (true-1270 

positive / false-positive), the type of harness (backpack / leg-loop) and their interaction 1271 

as predictors. The model had device ID as random effect. A p-value <0.05 indicates a 1272 

statistical significant relationship. 1273 

 1274 

 1275 

  1276 

Behavior Variable Estimate Std. 
Error 

Z 
value 

p-value Random 
effect 
variance 

Random 
effect  
std. dev. 

Standing 

Intercept 0.238 0.315 0.754 0.451 - - 

Correctness – 
True positive 

1.949 0.250 7.808 <0.001 - - 

Harness –  
Leg-loop 

0.444 0.451 0.985 0.325 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

0.374 0.349 1.074 0.283 - - 

Device id - - - - 0.185 0.43 

Feeding 

Intercept -0.240 0.764 -0.314 0.753 - - 

Correctness – 
True positive 

1.698 0.769 2.207 0.0273 - - 

Harness –  
Leg-loop 

0.851 0.796 1.069 0.285 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

-0.725 0.798 -0.908 0.364 - - 

Device id - - - - 0.022 0.149 
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Supplementary Table S5 - Confusion matrix of the random forest assessing the 1277 

influence of the harness type on the performance of the algorithm. This random 1278 

forest was trained solely on leg-loop data and tested on backpack data. 1279 

Predicted / Observed Feeding  

(n = 104) 

Ground 

(n = 47) 

Standing 

(n = 563 

Feeding 104 43 52 

Ground 0 0 0 

Standing 0 4 511 

    

Precision 0.52 NA 0.99 

Recall 1.00 0 0.91 

  1280 



54 
 

Supplementary Table S6 – Comparison of the confidence scores of feeding 1281 

bouts likely to be true-positives or false-positives. Results of the GLMM model 1282 

beta binomial model, with confidence score (0-1) as the response variable, and 1283 

correctness (likely to be true-positive – inside feeding stations; likely to be false-1284 

positives – on cliffs or in flight) as predictor. The model had device ID as random effect. 1285 

A p-value <0.05 indicates a statistical significant relationship. 1286 

Variable Estimate Std. Error Z value p-value 

Intercept 1.101 0.078 14.140 <0.001 

Correctness – 
Low 
probability of 
true positive 

-0.805 0.167 -4.827 <0.001 

 1287 

Random effects Variance Std. Dev. 

Device id <0.001 <0.001 

 1288 
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Data S3 – Temporal correlation between behaviors 1290 

To test if there is temporal correlation between behaviors, we used the dataset of 51 1291 

free-roaming vultures collected during November 2022, consisting of 197,641 behaviors 1292 

with confidence scores over 0.5.  1293 

We first calculated the overall occurrence rate of each behavior (OR, Supplementary 1294 

Figure S3A). Then, for each individual on each day, we quantified how often a behavior 1295 

was followed by another (Behavior Transition Rate, BTR, Supplementary Figure S3B). 1296 

For example, how often ‘Feeding’ was followed by ‘Standing’ (Feeding-to-Standing 1297 

BTR), by ‘Feeding’, by ‘Ground’, etc. We excluded transitions between behaviors that 1298 

were separated by more than 10 minutes.  1299 

Frequent behaviors may inflate BTR values simply due to their high occurrence (e.g., 1300 

‘Feeding’ followed by ‘Standing’ could be common because ‘Standing’ is generally 1301 

frequent in the dataset due to the time vultures spend standing). We corrected for this 1302 

by computing the dependency between behaviors as the log-odds of the ratio between 1303 

BTR and the overall OR. Positive dependency values indicate strong temporal 1304 

associations (e.g., Feeding is very often followed by Standing), negative dependency 1305 

values indicate avoidance or rare transitions (e.g., Soaring is rarely followed by 1306 

Feeding), and values near zero indicate weak or random associations (Supplementary 1307 

Figure S3C). 1308 

 1309 

𝑂𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠
 × 100 1310 

 1311 

𝑂𝑅𝐵 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐴 𝑖𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐵

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐴
 × 100 1312 

 1313 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ln (
𝑂𝑅𝐵

𝑂𝑅
)  1314 

 1315 

Despite the relatively low temporal resolution of our data (5 to 10min, depending on the 1316 

dataset, i.e., longer than many of the behavior duration), we still detected temporal 1317 

correlation between some behaviors. After adjusting for overall behavior frequency, we 1318 

found that ‘Feeding’ was frequently followed by ‘Feeding’ or ‘Standing’, but not by 1319 

‘Ground’. In contrast, ‘Ground’ was often followed by ‘Feeding’, ‘Standing’, ‘Ground’, 1320 

and ‘Flapping’ (the latter likely due to the running behaviors while taking-off). Yet, we 1321 

note that this behavior was rare in the dataset (0.05% occurrence rate, n = 95), so 1322 

these dependencies may reflect the limited sample size. 1323 

 1324 
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Supplementary Figure S3 – Temporal correlation between consecutive 1326 

behaviors. Figure A shows the total occurrence rate of all behaviors (OR); Figure B 1327 

shows percentage of times that a behavior is followed by another (BTR); Figure C 1328 

shows the dependency between behaviors, calculated as the log-odds of the ratio 1329 

between occurrence rate between behaviors (BTR) and the total occurrence rate of 1330 

each behavior (OR). In C, positive dependencies are depicted by shades of blue, 1331 

negative dependencies are depicted by shades of red, and white tiles depict undefined 1332 

values (log of 0). In B and C, darker tones represent stronger relationships, and the 1333 

black outlines in the diagonal highlight the self-dependency (e.g., Feeding-Feeding 1334 

dependency). 1335 
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