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Abstract

1.

Human activities are endangering animal species globally and implementing
effective conservation strategies requires understanding animal behavior and
ecology. Advancements in GPS tracking technology, accelerometry, and
machine learning algorithms are allowing the in-situ study of animal movement
and behavior remotely. However, the challenge of building supervised machine
learning algorithms and collecting the large datasets required to train them is
hampering the widespread use of these tools. Additionally, the reliability of these
models in classifying unobserved behaviors is rarely validated, resulting in
possible classification errors.

We built a supervised accelerometer-based behavioral classification model for
griffon vultures (Gyps fulvus). Similarly to most other avian scavenger
populations worldwide, griffons are critically endangered in Israel and
neighboring countries, mostly due to feeding on poisoned carcasses. Thus,
identifying this scavenger’s feeding behavior and foraging areas is crucial for their
conservation.

We trained a Random Forest model on acceleration data of 14 captive and 17
free-roaming griffons. We classified 5783 behavioral observations into 6 classes:
feeding, lying, standing, other ground behaviors, flapping and soaring flight. The
model performed well (0.96 accuracy, 0.89 precision and 0.82 recall) and,
importantly, feeding behaviors were accurately classified (0.87 precision, 0.92
recall). We calculated an observation-specific confidence score and
demonstrated its effectiveness in identifying true- and false-positive
classifications, in both captive and free-roaming individuals. Finally, we used our
model to reliably identify feeding hotspots, where vultures can be at higher risk

of poisoning.
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4. Synthesis and applications. We provide a tool to help identify vulture feeding

hotspots, supporting carcass management efforts to prevent poisoning.
Integrated with near real-time tracking, our model can support global efforts to
combat scavenger poisoning. The training dataset, model and codes are
provided in a user-friendly platform, along with a conceptual framework, to

encourage use by ecologists and conservation practitioners.

Resumen

Las actividades humanas suponen una amenaza para la fauna a escala global e
implementar estrategias de conservacion efectivas al respecto requiere entender
el comportamiento y la ecologia animal. Avances en tecnologias como el
seguimiento GPS, los acelerometros y los algoritmos de aprendizaje automatico
facilitan el estudio remoto in situ de los movimientos y comportamientos
animales. Sin embargo, elaborar algoritmos supervisados de aprendizaje
automatico y recopilar la gran cantidad de datos necesarios para entrenarlos son
retos que dificultan el uso generalizado de estas herramientas. Ademas, la
fiabilidad de estos modelos al clasificar comportamientos no observados no
suele validarse, lo que pueda dar lugar a errores de clasificacion.

Elaboramos un modelo supervisado de clasificacion de comportamientos de
buitre leonado (Gyps fulvus) con datos de acelerémetro. En consonancia con la
mayoria de las poblaciones de carrofieros en el mundo, los buitres estan
criticamente amenazados en lIsrael y paises vecinos, principalmente por
consumir carrofias envenenadas. Por tanto, identificar comportamientos y areas
de alimentacion de estos carrofieros es clave para su conservacion.
Entrenamos un modelo “Random Forest” con datos de 14 buitres en cautividad
y 17 en libertad, clasificando 5.783 comportamientos observados en 6 clases:
alimentacion, tumbado, posado, otros comportamientos en suelo, aleteo y

planeo. El modelo funciond bien (exactitud: 0,96, precision: 0,89 y sensibilidad:
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0,82), identificando con exactitud los comportamientos de alimentacion
(precision: 0,87 y sensibilidad: 0,92). Calculamos un indice de confianza
especifico de cada observacién, que discrimind con solvencia verdaderos y
falsos positivos tanto en buitres en cautividad como en libertad. Finalmente
usamos el modelo para identificar zonas de alimentacién, dénde el riesgo de
envenenamiento de los buitres pudiera incrementarse.

Sintesis y aplicaciones: Proporcionamos una herramienta util para identificar
zonas de alimentacion de buitres, apoyando asi tareas de gestidén para prevenir
su envenenamiento. Junto con el seguimiento casi en tiempo real, nuestro
modelo puede ayudar en la lucha contra el envenenamiento de fauna carrofera.
Los datos de entrenamiento, el modelo y los cddigos, junto con un marco
conceptual, estan disponibles en una plataforma de facil uso para fomentar su

utilizacién por ecélogos y profesionales de la conservacion.

Keywords (up to 8):

Accelerometer, Behavior classification, Random Forest, Griffon Vulture, Poisoning,

Conservation, Biotelemetry, Supervised machine learning.
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Introduction

Anthropogenic activities are endangering animals around the world (Venter et al., 2016).
To combat the current wave of species extinction, we need to understand animal
behavior and ecology to minimize threats and conflicts, and to implement effective
conservation strategies (Fehimann et al., 2023; van Eeden et al., 2018). Over the last
couple of decades, technological advances have provided tremendous insights into
animal ecology and behavior (Kays et al., 2015; Nathan et al., 2022), often with direct
implications for conservation (Tuia et al., 2022). The use of GPS-tracking technology, for
instance, has contributed to a deeper understanding of animal movements and space
use, which can inform the design and administration of protected areas (Hays et al.,
2019). GPS-tracking has also helped identifying the locations of animal mortality (Sergio
et al., 2019) and location-specific causes of mortality (Serratosa et al., 2024). Uncovering
the location and spatial extent of animal threats is critical for managing endangered
species (Kane et al.,, 2022; Olea & Mateo-Tomas, 2014) and for mitigating human-

induced mortality (Serratosa et al., 2024).

While GPS tracking provides valuable insights into where and when animals use
particular habitats, it does not provide direct information on the specific behaviors
animals perform within those habitats. For instance, a site where an individual stops
could be used for resting, foraging, or other behaviors - which cannot be distinguished
using GPS data alone. Complementing GPS-tracking data with additional sensors offers
insights into the behavior and energy use of elusive and cryptic animals (Shepard et al.,
2008; Smith & Pinter-Wollman, 2021; Spiegel et al., 2015; Tuia et al., 2022; Williams et
al., 2020). Tri-axial accelerometers (ACC) are widely used in behavioral research, among
other sensors (Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These devices
measure acceleration in three orthogonal axes (sway — x; surge — y; and heave - z) that
change according to the animal’s posture and locomotion. These measurements can be
recorded either continuously or in “bouts” (i.e., sampling units) of a few seconds at

6
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varying resolution (i.e., frequency, in Hz) and intervals (for example, recording for 5
seconds at 20Hz, every 10 minutes). Different acceleration signatures enable the
measurement of movement-related energy expenditure (Gleiss et al., 2011; Halsey et
al., 2009) and can be used to distinguish among different behaviors (Shepard et al.,
2008), for example, for estimating flight duration in small migratory passerines (Backman

etal., 2017).

Machine learning algorithms are used to classify raw acceleration bouts into
different behavioral classes (Nathan et al., 2012; Resheff et al., 2014; Valletta et al.,
2017; Wang, 2019; Yu et al., 2021). These algorithms can operate in an unsupervised
manner, identifying similarities in acceleration data to produce unlabeled clusters of
similar measurements that subsequently need to be manually classified into specific
behaviors (Chimienti et al.,, 2016; Wang, 2019). Alternatively, supervised learning
involves training an algorithm with a dataset in which each behavior is labeled, allowing
the algorithm to ‘learn’ the distinctive acceleration patterns of different behaviors (Nathan
et al., 2012; Wang, 2019; Yu et al., 2021). However, depending on the level of detail
required and on how distinctive the behaviors are, assembling a training dataset can be
laborious, as it typically requires direct observations of animals in the wild or in captivity,
synchronized with the ACC measurements (Campbell et al., 2013; Dickinson et al.,
2021). Despite these difficulties, supervised machine learning algorithms have been
successfully used to classify behaviors across diverse animal groups, including baboons
(Fehlmann et al., 2023), large pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et
al., 2020), condors, and other vultures (Rast et al., 2024; Spiegel et al., 2013; Williams
et al.,, 2015). Commonly used algorithms include artificial neural networks, extreme
gradient boosting, and random forests (Resheff et al., 2014; Yu et al., 2021). Random
forests have the advantage of being able to model complex interactions between the,
often correlated, predictor variables, therefore not requiring the pre-processing and

filtering of variables (Cutler et al., 2007), and simplifying behavioral classification.
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Once a machine learning model is trained, it can classify new, unseen
accelerometer data into the trained behavioral classes, invariably resulting in some
classification errors (Glass et al., 2020; Jeantet et al., 2020). Errors emerge from a few,
non-mutually exclusive, processes. First, acceleration bouts, particularly long ones, may
include transitions among behaviors resulting in a mixture of different acceleration
signatures (Resheff et al., 2024). Second, rare behaviors may be underrepresented or
missing from the limited training dataset (e.g., seasonal and rare behaviors such as
copulation). Third, the behavioral repertoire of some individuals may be broader than
what the algorithm is trained for. Because some behaviors might be difficult to observe
in captivity (e.g., flight behaviors, Williams et al., 2015), this last error is particularly
relevant for algorithms trained on captive individuals that are used to predict the
behaviors of wild animals (Dickinson et al., 2021). Still, the models must choose the best
fitting behavioral class among the available options, even if none provides a particularly
good fit. These errors demand a mechanism to verify the accuracy of each behavioral
classification, allowing the model to distinguish between true-positive and false-positive
classifications (Bidder et al., 2014; Glass et al., 2020). While some studies offer guidance
on how to best use and analyze large acceleration datasets (e.g., Leos-Barajas et al.,
2017; Resheff et al., 2014; Williams, Taylor, et al., 2020), the complexity of these tools
remains a barrier for non-experts, hindering their use in conservation science and

practice.

Here we develop an accelerometer-based behavioral classification tool and
validate its real-world application in ecology and conservation, using griffon vultures
(Gyps fulvus) as a case study. As obligate scavengers, vultures support key ecosystem
functions by consuming carcasses and recycling nutrients (Buechley & Sekercioglu,
2016). Yet, around the world, 70% of vulture species are in danger of extinction, with
poisoning driven by consuming carcasses containing toxic substances being one of the

leading causes for population declines (lves et al., 2022; Ogada et al., 2012; Plaza et al.,
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2019). Poisoning can be either intentional or unintentional. For instance, poachers may
lace carcasses with poison to prevent these raptors from alerting environmental
authorities of poached wildlife (Mateo-Tomas & Lopez-Bao, 2020; Ogada et al., 2016),
and farmers may do so for combating pests and mammalian carnivores. Anti-
inflammatory drugs used to treat cattle are also lethal to vultures, leading to poisoning at
these carcasses (Lépez-Bao & Mateo-Tomas, 2022; Ogada et al., 2012; Plaza et al.,
2019). Several hundred vultures may quickly gather to eat at a single carcass, increasing
their vulnerability to mass poisoning events (McNutt & Bradley, 2014). Other scavenger
species also feed on carcasses (Olea et al., 2019), exposing them to similar risks of
poisoning (Katzner et al., 2024; Lépez-Bao & Mateo-Tomas, 2022). Early detection of
carcasses might facilitate their proper management to, for example, prevent vultures and
other wild species from feeding on carrion with toxic substances by removing these from
the environment. Moreover, when poisoning events are promptly detected, vultures and
other animals can undergo medical intervention (Acacio et al., 2023; Anglister et al.,
2023). Considering the vulture’s large roaming areas (Spiegel et al., 2015), tracking
technology and behavioral classification are essential tools to identify vultures’ feeding
events. Vultures can therefore act as sentinels, facilitating carcass detection, and
maximizing prompt intervention efforts to reduce detrimental effects associated with
consumption of contaminated carrion. For instance, by reducing the number of fatalities
at a poisoning event to avoid long-term effects on species’ populations (Acacio et al.,

2023; Slabe et al., 2022).

In this study, our goals are to 1) develop an ACC-based behavioral classification
algorithm, which, together with the training dataset and a conceptual framework of the
methodological workflow, is made freely available to conservationists and ecologists; 2)
validate the algorithm’s classifications, by comparing the confidence scores of true-
positive and false-positive classifications, using both the training dataset and data from

free-roaming vultures; and 3) apply our novel algorithm to real-life scenarios with
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important conservation implications — i.e., rapid carcass detection to prevent vulture
poisoning. Ultimately, our goal is to combine technological advancements in GPS and
accelerometry to improve wildlife conservation efforts, and to develop a tool that is easily

transferable to other systems.

Materials and Methods

Study system

The study took place in Israel, where griffon vultures are critically endangered (Mayrose
et al., 2017). A historical population of thousands of griffons is currently declining; three
decades ago, there were only 400 griffons in this population, and fewer than 200
individuals remain today (Hatzofe, 2020). Pesticide poisoning from consuming laced
carcasses is the leading cause of griffon mortality, accounting for 45% of documented
deaths between 2010-2021 in this region (Anglister et al., 2023). Lead poisoning and
ingestion of animals treated with anti-inflammatory drugs each contribute to 6% of
mortality events, posing additional threats to this population (Anglister et al., 2023). To
prevent the local extinction of this species, the Israel Nature and Parks Authority (INPA)
runs an intricate management program, including the provisioning of contaminant-free
food at supplementary feeding stations (Spiegel et al., 2013, 2015), the release of
captive-bred and translocated griffons (Efrat et al., 2020), and individually tracking
vultures using GPS-Accelerometer transmitters, to identify poisoning events and other
threats. When wild carcasses are detected in a random location within areas of known
pastoral activity and poisoning history, or when vultures exhibit minimal movement,
suggesting they are unwell, rangers are sent to the field to remove the carcasses and/or
transport affected individuals to a wildlife hospital, underscoring the critical role of GPS-

tracking data for the conservation of this population (Acacio et al., 2023).
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Every year, approximately 100 free-roaming griffons are captured by the INPA
using a cage trap, to identify the individuals with metal and color rings and with patagial
tags. In these trapping events, a few individuals are fitted with a GPS-ACC transmitter
(Ornitela OT-50) using a Teflon harness in a leg-loop configuration. The transmitters are
equipped with solar panels that recharge the batteries, and transmit the collected data
via the GSM network, eliminating the need for recapturing individuals to retrieve
information. The current study did not require additional ethical approval, since it uses
tracking data collected from these GPS-ACC tags and no captures of free-roaming
vultures were conducted specifically for this study. The capture and tagging procedures
were approved by ethics committee of the Israel Nature and Parks Authority (permit

number 42166).

Conducting observations to build an ACC training dataset

Between January 2020 and February 2022, we deployed GPS-ACC transmitters on 31
griffon vultures, 14 captive vultures and 17 free-roaming individuals. The captive vultures
were housed in in 4 breeding programs, rehabilitation or wildlife facilities, in Israel and in
Spain: Ramat Hanadiv (Israel, n = 4), Hai-Bar Carmel (Israel, n = 4), Cabarceno Wildlife
Park (Spain, n = 3) and GREFA wildlife hospital (Spain, n = 3). In each cage, there were
6 to 12 vultures. Additional behavioral data was collected in Israel for 17 free-roaming
griffon vultures. One individual dropped his transmitter and was deployed with another
device (thus there were 31 individuals but 32 transmitters). In Israel, the transmitters
were deployed using a leg-loop harness and in Spain the loggers were deployed using

a backpack harness.

The transmitters were programmed to collect GPS and ACC at independent
schedules, and differently for captive and free-roaming griffons. The transmitters of

captive griffons were programmed to collect tri-axial accelerometer data at 20Hz almost

11
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continuously (10-min-long periods, with a 1 sec interval in between). These 10min bouts
were parsed into 5 sec bouts to match the free-roaming dataset. Bouts of 5 sec at 20Hz
were recorded for free-roaming griffons every 10 min, depending on the transmitter’s

battery charge (see Supplementary Material for details).

To classify each 5 sec ACC bout as a particular behavior, we conducted direct
observations and video recordings of the tagged griffons, both in captivity and in the wild.
In total, we performed observations for 79 days. Direct observations of captive and wild
griffons were conducted with a spotting scope (Swarovski ATX spotting scope 85mm),
ensuring a sufficient distance to not disturb the vulture’s natural behavior. The video
recordings were captured using a camera mounted on a wall support in Spain, and with
nest cameras at the captive breeding facilities, or live streaming nest cameras at wild
nests in Israel (BirdLife Israel, 2022). The direct observations of wild vultures were

performed at roosting sites, at approximately 250 of the individuals.

We recorded six ecologically important behavioral classes: ‘Standing’ - vulture is
resting upright (could be roosting, and may include minor preening and changes in body
posture); ‘Lying’ - vulture is lying parallel to the ground, either resting or incubating;
‘Feeding’ — vulture is either directly eating from a carcass, or engaged in intense social
interactions next to the carcass (e.g., fighting or posturing towards other vultures before
eating); ‘Ground’ - includes all other active ground behaviors which are not directly
related to feeding or resting (e.g., walking, running, hopping, etc.); ‘Flapping’ - active
flight with wingbeats; and ‘Soaring’ - passive flight (e.g., thermal soaring, gliding, etc.).
Because long flights do not occur in captivity, we used GPS-ACC data from 17 free-
roaming griffons in southern Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active)
flight behaviors. We identified segments of continuous flight using the GPS ground speed
(ground speed >4m/sec) and plotted the acceleration measurements taken during these
flights. The acceleration signatures of soaring and passive flights are so distinctive

(Figure 1B,C, Williams et al., 2015) that there was no need to ground-truth these

12



299  behaviors with visual sightings (which would be challenging, considering their large

300 roaming areas).
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303 Figure 1 - Examples of accelerometer-based classification of griffon vulture’s
304  behaviors. Acceleration measurements of bouts classified as: (A) ‘Ground, (B) ‘Soaring’
305 flight, (C), ‘Flapping’ flight, (F) ‘Feeding’, (G) ‘Lying’ and (H) ‘Standing’. The acceleration

306 data was collected at 20Hz during 5 seconds for three orthogonal axes (D): sway — X
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(red), surge — Y (green), and heave - Z (blue). (E) GPS-tracking of a griffon vulture over
one day. The colors of the GPS locations match the behaviors recorded on that location:
‘Ground’ — red; ‘Soaring’ — green; ‘Flapping’ — violet; ‘Feeding’ — yellow; ‘Lying’ — light
blue; ‘Standing’ — black. This illustrates the large daily movements of griffon vultures,
emphasizing the logistical challenges associated with surveillance in the desert study

area. Photo credit: Yacov Ben Bunan.

Pre-processing the ACC data and model training

Before deployment on the griffons, 50 transmitters were calibrated on a leveled surface,
in all six possible perpendicular orientations. This calibration allowed us to obtain a
transmitter-specific instrument error for translating raw acceleration data (in mV) into
acceleration units (m/sec?). For 14 transmitters (out of 32) without specific error values,
we used the average error across the measured transmitters (n = 50). The calibration

values used are publicly available on GitHub.

We identified the start and end of each accelerometer bout and excluded from
the ACC behavioral dataset all bouts shorter than 5 sec, as well as all bouts that matched
more than one behavioral class during the 5 sec period. Each acceleration bout was
summarized into 47 statistical features commonly used in other studies using machine
learning algorithms to perform behavioral classifications of ACC data (e.g., Nathan et al.,
2012; Yu et al., 2021). For a full list of features, see Supplementary Table S1. All

analyses were performed in R (R Core Team, 2023).

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip (Kuhn &
Vaughan, 2024), we built a random forest model to classify behaviors using the
annotated acceleration bouts. We started by splitting this dataset into ‘training’ (67%)
and ‘testing’ (33%) subsets, an ad hoc measure commonly found in other machine-

learning applications (e.g., (Jeantet et al., 2020). Using the ‘training subset’, we built a
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random forest model and we evaluated the performance of our model using the ‘testing’
subset. We built a confusion matrix and calculated three performance metrics, for the full
model and for each behavior: (i) accuracy; (ii) precision; and (iii) recall. The equations
and descriptions for each metric can be found in Table 1. For example, a model may
have 0.90 accuracy (i.e., 90% of all behaviors were predicted correctly), 0.85 precision
for a specific behavior (e.g., 85% of all ‘Feeding’ predictions were indeed ‘Feeding’
observations and 15% were a different behavior and wrongly identified as ‘Feeding’),
and 0.80 recall of a specific behavior (e.g., 80% of ‘Feeding’ observations were correctly

predicted as ‘Feeding’ and 20% were wrongly classified as another behavior).

After training and evaluating the performance of the algorithm with the split
annotated dataset, we built the final random forest model using the full dataset for
training, likely improving the performance of the algorithm. This full algorithm was then
used to classify unobserved accelerometer bouts to identify feeding in free roaming

vultures (see below).

More details of the model building sequence can be found in Supplementary
Material 2, and a full description of the model building process can be found in Figure 2.
All the training data and the code necessary to train and build the algorithm are publicly
available on Zenodo (Acécio et al., 2025) and GitHub. The repository includes a tutorial
suitable for two types of users: those who may wish to apply our (already-trained) model
to their own data (e.qg., researchers and conservationists working on similar vulture/raptor
species), and those wishing to use our pipeline for training and building their own model
(e.g., researchers and conservationists working on other species, or with different
sampling protocols). With these tutorials, our main goal is to bridge the gap between

researchers and practitioners.
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Table 1 — Performance metrics used to evaluate the random forest model performance,
considering the true-positive (TP), true-negative (TN), false-positive (FP) and false-

negative (FN) predictions.

Performance metric Equation
TP+TN
Accuracy
TP+TN+FP+FN

- TP
Precision —_—
TP + FP

TP
Recall _—
TP+ FN

Calculating confidence scores to validate model predictions

Using the training dataset, we calculated a confidence score for each behavioral
classification (i.e., for every bout). This confidence score is the level of consensus
amongst the different decision trees within the random forest (i.e., the proportion of trees
that agree on the highest scoring prediction). For example, if the model classifies a given
bout as ‘Feeding’ with a confidence score of 0.7, then 70% of the trees agreed on that
classification. To determine the validity of this score as an indicator of the behavioral
classification’s reliability, we compared the scores of correctly identified behaviors (true-
positives) and of incorrectly identified behaviors (false-positives) in the testing subset.
We then used a generalized linear mixed model (GLMM) with an ordered beta
distribution and a logit link to compare scores of the two groups. The confidence score
(range O to 1) was the response variable, and the explanatory variables were the Boolean
correctness of the model prediction (categorical; true-positive or false-positive), the
predicted behavior (categorical), and their interaction. The model included device ID as

a random intercept. The GLMM was built using gimmTMB R package (Brooks et al.,
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2017), and the fit of the model and residuals were evaluated using DHARMa R package

(Hartig, 2022).

To understand the effect of the harness configuration (backpack or leg-loop) on
the confidence scores, we compared the confidence scores of true-positive and false-
positive classifications of behaviors recorded with the two different harnesses. We
performed this comparison for the two behaviors with most observations: standing and
feeding. We built two separate GLMMs for each behavior. Each GLMM included the
confidence score as a response variable, and the Boolean correctness of the model
prediction (true-positive or false-positive), the predicted behavior, and their interaction,
as explanatory variables. We also included device ID as a random intercept. To further
explore the influence of harness type on the behavioral classification, we trained a new
random forest model using only the leg-loop data (n = 3428) and tested it on the
backpack dataset (n = 714). This model was trained on a subset of bouts that included
only the three behavioral categories present in both datasets (‘Standing’, ‘Ground’ and

‘Feeding’).
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Figure 2 - Methodological workflow outlining the process of identifying behaviors
of wild animals based on accelerometer data. All the training data, code and tutorials
necessary to follow this workflow are available on GitHub

(www.github.com/Orrslab/ACC behavior classification) and at Acacio et al., 2025.

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures

To assess the reliability of our algorithms at classifying unobserved data, we validated
predicted ‘Feeding’ behaviors of free-roaming vultures. We focused on this behavior due
to its importance for identifying poisoning events, the main cause of vulture mortality in
our study area (Anglister et al., 2023). This validation is important because even a highly
accurate model introduces classification errors. For example, considering a transmitter
collecting 72 bouts a day, with 10 of those classified as ‘Feeding’, and a model with 90%
precision for ‘Feeding’. Over the course of one week, the device would collect 504 bouts,
70 of which classified as ‘Feeding’. Considering the model’s precision, 7 of these
‘Feeding’ classifications would be false-positives which, extrapolating for a population of
50vultures, this would correspond to approximately 350 false-positive feeding predictions

per week.

We combined information about the location of supplementary feeding stations,
satellite imagery, and GPS positions from griffon-borne transmitters to assess the
likelihood that the unobserved vultures’ ACC-predicted ‘Feeding’ behavior represents a
true feeding event. Between November-December 2020, we collected GPS and
accelerometer data from 7 tagged free-roaming griffons in southern Israel (transmitter
schedule described in the Supplementary Material). These individuals were selected
because they provided consistent high-resolution data throughout this two-month period,
making them suitable for the fine-scale analysis of feeding behavior. We matched a GPS

position to an accelerometer bout if they were recorded within 5 min of each other. We
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designated four situations with decreasing probability of representing real feeding events
based on the GPS location and GPS ground speed: ‘Station’ — if the ACC identified a
feeding event within 250m from a supplementary feeding station, it likely represents a
true feeding event (likely true-positive predictions); ‘Open area’ — if the ACC identified a
feeding event at a GPS position that is at an open landscape (but not on a cliff), where
naturally-occurring food is sometimes available (wildlife or livestock carcasses), it may
represent a true feeding event ; ‘Cliff — if the ACC identified a feeding event on cliff faces,
where food is largely absent but where vultures spend a large proportion of their time
roosting, it is not likely to be a true feeding event; ‘Flight’ — if the GPS ground speed was
>4m/sec the vulture was probably flying, and therefore it is likely a false feeding event. .
The 250 m radius around the feeding station accounted for the vultures’ behavior of
standing nearby and overlooking the station before feeding. Given the potential 5-minute
offset between GPS fixes and accelerometer bouts, this buffer allows for the possibility
that a griffon could move to the station and begin feeding within that time window. All
points were mapped on satellite images of the study area and were visually examined
after this classification to confirm the assignment to each situation (for example, to

confirm vulture presence on a cliff, in an open area or near a feeding station).

To determine if the confidence score of the classification can be used to identify
false-positives in free-roaming griffons, we compared the algorithm’s confidence scores
of ‘Feeding’ predictions at ‘Stations’ (i.e., high probability of true-positives) with ‘Feeding’
predictions at ‘Cliffs’ or during ‘Flight’ (i.e., high probability of false-positives). We omitted
the ‘Open area’ situation since it could represent a mixture of feeding and non-feeding
behaviors and were therefore less conclusive for this comparison. We used a GLMM,
with a beta distribution and a logit link, in which the response variable was the algorithm's
confidence score, and the explanatory variable was the classification accuracy according
to the GPS location (likely true-positive or likely false-positive). We included device 1D

as a random intercept.
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Case study: identification of vulture feeding hotspots to prevent poisoning

To demonstrate the applicability of the ACC algorithm to a real-world conservation
problem, we used it to identify griffons’ feeding hotspots outside supplementary feeding
stations (i.e., places where safe carcasses are provided to vultures). Considering the
high risk of carcasses outside feeding stations being contaminated with toxic substances
for vultures (e.g., pesticides or NSAIDs, Anglister et al., 2023), their rapid detection and
removal from the field is a priority for wildlife authorities in Israel (Acacio et al., 2023).
Accordingly, mapping those areas where vultures are feeding on potentially

contaminated carcasses may guide management actions.

In November 2022, we collected one month of GPS and accelerometer data for
51 free-roaming griffons in Southern Israel, aiming to identify the locations of feeding
events that occurred outside supplementary feeding stations (events that present higher
risk of poisoning). After applying the random forest algorithm to this dataset, we matched
the accelerometer ‘Feeding’ bouts with a GPS location using three criteria. First, if they
were collected within 5 min of each other, and if the GPS ground speed was below
4m/sec (indicating the bird was not flying). Second, if no GPS position matched these
criteria, we matched ACC bouts with GPS locations if they were collected within 11 min
of each other (while maintaining the ground speed criteria), to account for a possible
delay in the time to acquire a position by the GPS. If no GPS position matched these
criteria, the ‘Feeding' bout was discarded from further analysis, because we could not

infer where the feeding event took place.

Using the results of the previous analyses, where we assessed if the confidence
score could be used to minimize the number of false-positives, we excluded bouts with
confidence scores below 0.5. This conservative threshold was chosen to avoid

eliminating true-positives, as failing to detect feeding areas posed a greater risk for
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griffon conservation than including false-positive observations. However, this threshold
is system- and data-specific and is expected to be different for other species and
systems. We also excluded ‘Feeding’ bouts that occurred within supplementary feeding
stations, at known roost sites (the latter likely represent false-positives), and outside the
study area (southern Israel and Jordan). With the remaining locations (n = 264), we
created a 2D kernel (grid size = 1000, bandwidth = bandwidth.nrd function from MASS
R package, Venables & Ripley, 2002), portraying the density of locations, using bkde2D
function of KernSmooth R package (Wand, 2024). On this density map, we overlayed
the information of known carcasses independently identified in the field, outside feeding
stations, during this same time period (n = 5). The carcasses were located by local
rangers, either through reports from farmers, chance encounters during field patrols, or
via an alert system that flags unusual landings of tracked raptors based on GPS data.
This system uses location data from several species to identify potential poisoning
events, independent of accelerometer-based behavioral classifications used in this

study.

Finally, to assess if the behavioral classification impacted the designation of
feeding hotspots compared to a mapping based on GPS metrics alone, we built an
additional density map using all GPS locations from the same dataset, without filtering
for “feeding-only” locations. We excluded locations that occurred within supplementary

feeding stations, at known roost sites, or where the ground speed exceeded >4m/sec.

Results

Behavioral classification

We collected 5783 behavioral observations for 14 captive and 17 free-roaming griffon
vultures (a total of 31 individuals), during 57 days (18 days for captive individuals and 39
for free-roaming individuals). The most common behavior was ‘Standing’ (3488
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observations), and the least common behavior was ‘Ground’ (67 observations,
Supplementary Table S2). When training the random forest model with 67% of the
observed (i.e., ground-truthed) dataset, we achieve an overall accuracy of 0.96, precision
of 0.89 and recall of 0.82. Specifically, the model predicted ‘Feeding’ behaviors with
precision of 0.87 and recall of 0.92 (Figure 3, Supplementary Table S2). ‘Ground’, on the
other hand, had the poorest predictions (precision = 0.57, recall = 0.15). The indirectly
inferred behaviors ‘Soaring’ and ‘Flapping’ were well predicted by our model (‘Soaring’:

precision = 0.99, recall = 0.99, ‘Flapping’: precision = 0.98, recall = 0.95).

Observed behavior

Feeding Lying Standing Ground Flapping Soaring
Feeding A 189 13 13 2 0
Lying 1 5 1 0 1

E
L -
> Precision
£ Standing - 1142 8 0 3 1.00
@
=
g 0.75
-
L Ground - 2 0 1 0 0
°
g 0.50
o

Flapping 0 0 0 1 42 0

Soaring A 0 2 1 0 0 375

Figure 3 - Confusion matrix of the random forest model to classify vulture behavior
based on accelerometer data. Rows represent the behavior predicted by the algorithm
we developed, and columns represent the behaviors we observed directly. The colors in
the diagonal show the precision for each behavior, with darker colors indicating higher
precision. The size of the text outside the diagonal indicates the proportion of false-

positives in each behavioral category, with larger numbers indicating a larger proportion
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of false-positives. For example, more ‘Feeding’ bouts were wrongly classified as
‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as

‘Soaring’, ‘Flapping’, or ‘Lying’.

Performance of the confidence score in validating model predictions

Overall, the confidence scores of correctly-identified behaviors (true-positives) were
significantly higher than the scores of inaccurately-identified behaviors (false-positives;
GLMM: model estimate = se = 0.876 + 0.195, p-value < 0.001, Figure 4, Supplementary
Table S3). ‘Ground’ behaviors, which had the lowest number of observations (n=67),
were the exception, with significantly higher confidence scores of false-positives
compared to true-positives (Figure 4). ‘Ground’ true-positive behaviors also had the
lowest confidence scores (mean confidence score + sd = 0.41 + 0.03). ‘Soaring’, ‘Lying’,
‘Standing’ and ‘Flapping’ were the behaviors with highest true-positive confidence scores
(mean confidence score + sd; ‘Soaring’ = 0.99 £ 0.08, ‘Lying’ = 0.98 + 0.06, ‘Standing’ =
0.98 + 0.08, ‘Flapping’ = 0.93 + 0.12). ‘Feeding’ had on average a high confidence score
but also a large variation (mean confidence score + sd = 0.82 + 0.15, Figure 4,

Supplementary Table S2, Supplementary Table S3).

There were no significant differences between the confidence scores of
behaviors recorded with backpack or leg-loop harnesses for the two tested behaviors:
Standing’ (GLMM: estimate £ se = 0.374 £ 0.283, p-value = 0.283) and ‘Feeding’ (GLMM:
estimate + se = -0.725 £+ 0.798, p-value = 0.364, Supplementary Figure S1 and

Supplementary Table S4). The model trained on leg-loop data and tested on backpack

data had high overall accuracy (accuracy = 0.86) and performed well at classifying

‘Standing’ behaviors (‘Standing’ precision = 0.99; recall = 0.91). All true ‘Feeding’
behaviors were correctly identified as such (‘Feeding’ recall = 1). However, most

‘Ground’ behaviors were misclassified as ‘Feeding’, which reduced the precision of the
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‘Feeding’ category (‘Feeding’ precision = 0.52). Similarly to the full model, ‘Ground’

behaviors had the poorest performance (Supplementary Table S5).
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Figure 4 — Model predicted confidence scores of true-positive (blue) and false-
positive (dark red) behavioral classifications. The darker points and error bars
indicate the model predicted confidence scores and 95% confidence intervals for true-
positive and false-positive behavioral classifications. The lighter points show the raw

data.

Confidence score to validate ‘Feeding’ predictions of free-roaming vultures

We used the GPS locations to validate 175 ‘Feeding’ bouts from 7 free-roaming vultures
in Southern Israel. Overall, 126 ‘Feeding’ bouts (72%) occurred within a supplementary
feeding station (‘Station’ — likely true-positives), 22 bouts (13%) were located on ‘Open
areas’ (likely a mix of true- and false-positives), 20 bouts (11%) were on ‘Cliffs’ (likely

false-positives), and 7 bouts (4%) were in ‘Flight’ (likely false-positives, Figure 5). The
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relatively high proportion of feeding bouts identified on cliffs likely reflects the
considerable amount of time griffons spend in these areas. Overall, of all ‘Feeding’ bouts
identified by the algorithm, 72-85% (all ‘Station’ bouts + at least part of the ‘Open area’
bouts) were likely real feeding events. Furthermore, after removing ‘Cliff and ‘Flight’
bouts (easily identifiable using only the GPS location, satellite imagery, and ground
speed), 85-100% of the ‘Feeding’ predictions (all ‘Station’ bouts + at least part of the

‘Open area’ bouts) were indeed likely feeding events.

Importantly, the confidence scores of ‘Feeding’ bouts likely to be true-positives
were higher (mean % sd: ‘Station’ = 0.75 + 0.16) than the scores of bouts likely to be
false-positives (‘Cliff and ‘Flight’ = 0.56 + 0.19). This comparison was statistically
significant (GLMM: estimate + se =-0.805 + 0.167, p-value <0.001, Supplementary Table
S5). When considering solely the ‘Feeding’ bouts with a confidence score over 0.5, 114
bouts (88.4%) occurred within a supplementary feeding station and were likely true-
positives. This threshold maximizes the number of true-positive predictions, while

minimizing the number of false-positives (Figure 5).

2.04

Locaticn of "Feeding”
predictions

. Qpen area
B ciifes
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Validation
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Figure 5 - Validation of ‘Feeding’ behaviors using data from free-roaming griffons.
A - Percentage of ‘Feeding’ predictions (n = 175) located within a supplementary feeding
station (‘Station’ - blue), on open landscape (‘Open area’ - green), on cliffs (‘Cliffs’ - dark

brown) or in flight (‘Flight’ - light brown). B - Distribution of the confidence scores of
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‘Feeding’ bouts likely to be true-positives (located within a feeding station, in blue) and
likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line
indicates the confidence threshold of 0.5, a conservative threshold that reduces the

number of false-positives, while including nearly all true-positive predictions.

Mapping vulture’s feeding hotspots to facilitate poisoning identification

In November 2022, we collected 4595 ‘Feeding’ bouts of 51 griffon vultures in our study
area. After sequentially removing the bouts without a GPS location (n = 586), bouts inside
feeding stations (n = 2534), outside Southern Israel and Jordan (n = 157), bouts located
in known roosts (n = 979), and bouts with a confidence score below 0.5 (n = 60, Figure

5), we retained 264 bouts of 31 vultures, that allowed us to map their feeding hotspots.

We built a KDE with the remaining 264 ‘Feeding’ bouts and detected a hotspot of
feeding events in the Judean desert. This hotspot is consistent with the INPA ranger’s
reports for this same period, where 4 out of 5 reported carcasses outside feeding stations
were within the KDE (Figure 6). This density map differed substantially from the one
based solely on GPS-derived metrics (Supplementary Figure S2), containing 1,938
potential feeding locations. Notably, the GPS-only KDE failed to identify a key feeding
hotspot in Jordan. This confirms that the algorithm can be used to identify areas with
high probability of vultures’ feeding on potentially contaminated carcasses and highlights

the added value of the behavioral classification.
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Figure 6 - Acceleration-based behavioral classification as a tool to identify griffon

vultures’ feeding hotspots outside supplementary feeding stations. The red points

show the vulture feeding locations in Southern Israel and Jordan over November 2022,

identified using the random forest algorithm. The blue markers indicate the location of

ground-truthed carcasses outside feeding stations; the darker blue indicates two

carcasses in approximately the same location. T
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vulture feeding locations, showing the areas where vultures are at greater risk of
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Discussion

Recent advancements in tracking technology and analytical tools are enhancing our
understanding of animal ecology and behavior and improving its applications for
biodiversity conservation (Tuia et al., 2022; Williams et al., 2020). In this study, we add
to this body of literature by developing a machine learning algorithm to classify griffon
vultures' behaviors, thoroughly validating the behavioral classifications, and using them
to inform conservation efforts, namely carcass detection to prevent poisoning. Our model
accurately predicted griffons' behaviors, allowing for the identification of potential feeding
events outside feeding stations and the mapping of feeding hotspots where vultures and
other scavengers can engage in risky behaviors such as the consumption of poisoned
carcasses (Peters et al.,, 2023). These maps may become fundamental tools for
monitoring-effort prioritization and for optimizing on-the-ground actions for the
conservation of vultures and other scavengers (e.g., the detection of poisoning events,
Rast et al., 2024). Another major contribution of this study is the use and validation of
the algorithm's confidence in each behavioral classification, showing the utility of this
approach for other behaviors and contexts. Assessing the degree of confidence in this
manner is rarely done in ecological studies (Bidder et al., 2014), but we highlight how
this approach may minimize misclassifications (e.g., false-positives) especially when
resources for ground-truthing are limited. Our algorithm and training dataset are made
accessible to other researchers and conservationists studying vultures and similar
species. Moreover, they can be easily adapted to classify the behaviors of other species

in diverse study systems. Importantly, to further promote this usability, we provide a
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methodological workflow to guide potential users in the process of identifying behaviors

of wild animals based on accelerometer data.

Accelerometer-based behavioral classification as a tool for vulture conservation

With our behavioral classification model, we were able to identify vulture feeding hotspots
in Southern lIsrael. Indeed, the areas where our tracked vultures displayed ‘Feeding’
behaviors matched the locations of known ‘wild’ carcasses (i.e., outside feeding stations)
during this same period. This case study used only a single month worth of high-
resolution data embedded within a long-term lower resolution tracking effort (Acacio et
al., 2024; Spiegel et al., 2013), but it exemplifies how GPS and accelerometer data can
be used to direct conservation efforts. The use of GPS tracking has been instrumental
for vulture conservation in Israel (Spiegel et al., 2013), particularly for the detection of
poisoning events (Acacio et al., 2023; Anglister et al., 2023). The local government
environmental agency, INPA, developed a near-real time alert system that warns rangers
whenever a vulture lands at a suspicious area and when vultures are either moving very
little or are suspected to be dead (Nemtzov et al., 2021). Rangers then actively respond
to these alerts by inspecting the area and removing the carcasses; therefore, reducing
the number of false alarms is important — both to reduce costs and workload, as well

avoiding erosion of rangers’ responsiveness.

A similar near real-time alert system, using GPS data, has also been used for the
monitoring of African elephants (Loxodonta Africana, Wall et al., 2014) and to track
California condors (Gymnogyps californianus) in the vicinity of wind farms (Sheppard et
al., 2015). It has also been suggested as an anti-poaching tool to prevent the extinction
of large mammals (O’'Donoghue & Rutz, 2016). We propose that all these systems could
be improved by using accelerometer data to remotely identify animal behavior and risky

events sooner and more reliably. Indeed, our results show that relying solely on GPS-
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derived filters to identify potential feeding hotspots failed to identify a key feeding hotspot
in Jordan and produced over seven times more data points, many of which were likely
false positives. Such an overload of low-quality alerts could lead to reduced
responsiveness by the rangers, ultimately undermining conservation efforts on the

ground.

Combining maps of feeding hotspots (either fixed or season-specific ones) with
similar near real-time alert systems may be crucial for vulture management and
conservation. For example, the feeding areas that griffons use systematically throughout
the year should be prioritized in terms of surveillance and sanitation efforts, to prevent
vultures (and other scavengers) from accessing carcasses contaminated with toxic
substances. Additional management actions could be implemented, such as establishing
new supplementary feeding stations in these areas, or increasing carcass supply at
existing stations, either all year-round or during particular seasons, to match potential
seasonal changes in vulture’s activity areas. Additionally, the hotspots could be used to
implement geofences where data collection and transmissions would be at higher
frequency. This increased resolution may be critical in poisoning events, where the actual
feeding may be quite fast (sometimes consuming a carcass within minutes) and vultures
may perish quickly, depending on the type and amount of toxic substance ingested.
Then, information regarding the griffon’s location and behavior is obtained and
communicated faster: when a griffon lands in these areas and only if it feeds there (as
indicated by the ACC classification), an alert should be sent to the rangers for immediate
carcass inspection. While the system should also trigger alerts for any feeding events
detected outside feeding stations (to allow for carcass inspection and potential removal
to reduce the risk of poisoning), identifying risky hotspots can help optimize resource

allocation and prioritize conservation actions in high-risk areas.

Around the world, an increasing number of individuals of multiple vulture species

are being tracked with GPS-Accelerometer devices, showing that they roam
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exceptionally large areas on their daily movements (Kane et al., 2022; Spiegel et al.,
2015). Considering that about 70% of vulture species are endangered (lves et al., 2022;
Ogada et al., 2012; Plaza et al., 2019), surveillance systems that combine GPS tracking
with accelerometry may be a useful tool to improve management actions in their large
roaming areas to combat major threats such poisoning. For instance, such ACC-based
systems will enhance existing applications of GPS-tagged vultures to inform on-ground
actions against illegal wildlife persecution (Rast et al., 2024; Rodriguez-Pérez et al., in
press) or to improve regulations for carrion disposal to feed vultures and other wild
species (Mateo-Tomas et al., 2023). Future studies could apply our methodology to
publicly available GPS-ACC datasets to identify high-risk areas for vultures and guide

targeted conservation interventions at a larger geographic scale.

Our thoroughly validated training dataset can also be used to classify the
behavior of griffons in other populations, as well as other old and new-world vulture
species, particularly in Africa and Asia, where vulture populations continue to decrease.
For example, our algorithm and training dataset could be used to predict the behaviors
of endangered Gyps species in Africa and Asia (e.g., Gyps africanus, Gyps coprotheres,
Gyps bengalensis, amongst others), or even other vulture species (e.g., Torgos and
Trigonoceps species), considering their morphological and behavioral similarities with
the griffon vulture. The use of surrogate species to identify accelerometer-based
behaviors has been examined in other systems, with a variety of results. For example,
the behaviors of domestic dogs were good predictors of the behaviors of dingoes and
cheetahs (Campbell et al., 2013), but the behavior of domestic caprids did not predict
well the behavior of their wild counterparts (Dickinson et al., 2021). Therefore, we
recommend caution when using our trained model to classify the behavior of other
vulture species. In addition, our algorithm and modelling pipeline can be easily adapted
for other, not related, animal species, as long as researchers provide their own training

dataset for their study species.
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Validating the accuracy of predictions of unobserved behaviors

Tri-axial accelerometers and classification algorithms have increasingly been used to
obtain fine-scale behavior of wild animals (Nathan et al., 2012; Resheff et al., 2014;
Wang, 2019; Yu et al., 2021). However, after training and testing the model on a validated
dataset, the model must classify unobserved and, sometimes, unknown behaviors. In
this case, the model then matches the unknown behavior with the best fitting known
acceleration signature, resulting in misclassifications (Glass et al.,, 2020). Most
ecological studies fail to acknowledge this limitation and do not provide a metric of how
likely a particular classification is to be true (Glass et al., 2020). Here we tackle this
methodological gap and calculate a confidence score, which allows us to distinguish
between true-positive and false-positive classifications. Our approach is computationally
simple to implement and does not require running more complex classification models.
In addition to the confidence scores, we used biologically relevant information to validate
observations classified as ‘Feeding’. For this subset of data, 15% of the observations
were likely misclassifications because they occurred on cliffs (where there is no food in
our case) or in flight. Filtering out observations based on easily accessible metrics (here,
the topography, knowledge of the behavior of the species, spatial position, and GPS
ground speed) as well as any observations with a confidence score below a relevant

threshold, increases the accuracy of behavioral classifications.

Selecting filtering thresholds is always a balance between two types of errors.
Here, we considered a conservative threshold of 0.5 to distinguish true-positive and
false-positive ‘Feeding’ predictions of free-roaming griffons, at the risk of including some
false-positive predictions in our dataset (Type | error). However, in this case, the risk of
not including part of the true-positive predictions (Type Il error) is higher than including
some false-positives; not including all true-positives could mean that some feeding
hotspots would not be identified, potentially compromising sanitary management and
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overlooking potential feeding and poisoning events. We encourage other researchers to
use a similar approach whenever possible, combining confidence scores with ground-

truthing information, to improve the accuracy of their conclusions.

In addition, we note that different behaviors, or even the same behavior in
different species or with different accelerometer devices, may have different confidence
scores distributions. For example, with our dataset a threshold of 0.9 could have been
suitable for distinguishing flapping and soaring flight behaviors, to study, for instance,
flight biomechanics. Therefore, the threshold of confidence should consider the
underlying distribution of confidence scores for the behaviors in mind and should be
defined according to this and the study objectives, balancing the risks of data loss with

the costs of including false-positives in the dataset.

Finally, quantifying temporal correlations between behaviors could also help
improve model performance or assist in post-processing filtering of the classifications
(Supplementary Material 3, Supplementary Figure S3). For instance, it is possible to
combine a correlation matrix of the behaviors with the confidence scores. In our dataset,
‘Feeding’ is often followed by other ‘Feeding’ behaviors (Supplementary Figure S3C).
Thus, if a high-confidence 'Feeding' behavior is followed by a low-confidence 'Feeding'
prediction, the strong positive dependency between these two behaviors could support
treating the second ‘Feeding’ as likely true-positive. Future studies could also implement
more complex models that allow for the incorporation of the correlation matrix within the

model.

Challenges and considerations of accelerometer-based behavioral classification

Different tag placement and different attachment methods can greatly influence
accelerometer signatures, and consequently the behavioral classifications (Garde et al.,

2022). Nevertheless, our results show that our algorithm is reliable for more than one
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attachment method, further increasing its usefulness. These non-significant differences
may result from the similarity in logger placement between the two attachment types
(about 3cm difference), as well as from the limited spinal flexibility of griffon vultures. Still,
the large confidence intervals in this comparison (due to the small sample size for
backpack harnesses), as well as difficulty of our algorithm in classifying ‘Ground’
behaviors recorded with a backpack harness shows that this topic deserves further

investigation with larger sample sizes and with other species.

After building the random forest, it is crucial to validate its accuracy, precision,
and recall. In our study, the overall model was highly accurate, yet behaviors differed in
their precisions. As expected, ‘Ground’ was consistently the behavior with the poorest
predictions across all our validations. This behavioral category included several, quite
distinct, ground behaviors (like walking, running, hopping, etc.), in an attempt to account
for all possible behaviors a griffon may display and to minimize misclassifications at the
cost of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand, was accurately
classified by our model, however despite a relatively large number of bouts in the training
dataset (n = 587), the confidence scores of this behavior had large variance. A possible
reasoning is that griffon’s feeding behavior is highly complex and may include rapid shifts
between fighting, posturing (spreading the wings), as well as eating per se (Bosé &
Sarrazin, 2007) — all inseparable within a 5s timeframe. Including so many different

postures in a single behavioral category results in high variation of confidence scores.

In addition, the number of conspecifics within a feeding event may further
influence the behaviors that individuals display while foraging (Bosé et al., 2012),
increasing within-individual variability for both wild and captive vultures. To mitigate the
effect of within-individual variability in our training dataset, we ensured that multiple
captive individuals were feeding at the same carcass, to replicate the wild feeding
conditions. Finally, it is likely that individuals differ in their behavior while foraging (e.g.,

dominant vs subordinates, Bose et al., 2012; Bosé & Sarrazin, 2007), emphasizing the
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need to improve behavioral classification models and account for individual differences
in behavior (Kirchner et al., 2023). In general, we suggest that future models can improve
accuracy and precision by further splitting our six classes into subclasses that reflect
more homogenous elementary behaviors (e.g., pecking, tearing meat apart, fighting).
Merging ‘Ground’ and ‘Feeding’ categories could also potentially improve the model’s
accuracy; however, since these two behaviors are not necessarily linked, this would
come at the cost of decreased resolution in detecting true feeding events, compromising
management and conservation applications. For specific applications focused solely on
identifying feeding activity, an alternative approach could involve merging all feeding and
all non-feeding behaviors in a binary classification. This could simplify the interpretation,

and we suggest that this option is worth exploring in a future study

Despite the potential of accelerometer-based behavioral classification, collecting
such large volumes of data can be costly, both in terms of data transmission and storage,
as well as in terms of device memory and battery (Hounslow et al., 2019). Short sampling
intervals (2-3 secs) at high resolution may reduce the probability of having multiple
behaviors within a single bout, but may drain batteries faster, which can result in
incomplete sampling designs and lower the device’s lifespan. Integrating low-frequency
accelerometry with additional sensors (e.g., time-depth recorders for marine species,
Jeantet et al., 2020), may still effectively allow the study of animal behavior without
significantly increasing costs or reducing device longevity (Hounslow et al., 2019). In
addition, analyzing such large volumes of data can also be challenging, so we emphasize
the need for collaboration in between fields of knowledge, with ecologists and data
scientists working together for the conservation of biodiversity (Tuia et al., 2022). Lastly,
as human activities are increasingly impacting the planet and driving species towards
extinction, it is critical to harness technological advances for effective conservation and

to safeguard the future of our planet's species and ecosystems.

36



821

822

823

824

825

826

827

828

829

830

831

832

833
834
835
836
837
838
839
840

841

842

843
844

845

846

847
848

Conclusions

In this study, we showed the potential of accelerometer-based behavioral classification
to improve the management and conservation of endangered scavengers. By reliably
identifying feeding behaviors and mapping feeding hotspots, our approach can help the
detection of poisoning events earlier and optimize management resources to high-risk
areas. We further show that combining the algorithm’s confidence score with simple
GPS-derived filters, can greatly improve the reliability of the identification of feeding
hotspots. Finally, our workflow, training dataset, and model are provided in an open-
access platform, to facilitate the adoption of this framework in the global management

and conservation of endangered scavengers.
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Supporting Information

Data S1 - Transmitter schedule of free-roaming griffon vultures

The GPS-ACC transmitters were programmed with different schedules, depending on

the analysis:

Conducting observations to build an ACC training dataset

To build the ACC training dataset, bouts of 5 sec at 20Hz were recorded for free-roaming
griffons every 10 min, if the transmitter’s battery was more than 50% charged, or every
60 min if the transmitter’s battery was below 50% charge. The GPS positions of free-
roaming vultures were recorded every 10 min if the transmitter’s battery was above 75%,
every 20 min if the battery was between 50-75%, or every 60 min if the battery was below
50% charge.

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures

To use the confidence score to validate the feeding predictions of free-roaming vultures,
the GPS positions were recorded every 10 min to 60 min (depending on the battery
charge). The transmitter was programmed to collect 5 sec bouts of accelerometer data

at 20Hz every 10 min if the battery was over 50% charge.

Case study: identification of vulture feeding hotspots to prevent poisoning

To build a map of feeding hotspots, the transmitters were programmed to record GPS
positions every 10 min if the battery was over 50%, and every 60 min, if the battery was
below 50% charge. Accelerometer data were recorded every 5 min if the battery was

over 50% charge.
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Data S2 - Details of the model building sequence

Using the ‘training subset’, we built a random forest model (number of trees = 1000,
number of statistical features per tree = 10, and minimum number of observations per
leaf = 10). We evaluated the performance of our model using the ‘testing’ subset. We
built a confusion matrix and calculated three performance metrics, for the full model and
for each behavior: (i) accuracy (sum of true-positives and true-negatives divided by all
predictions); (ii) precision (true-positives divided by the sum of true-positives and false-
positives); and (iii) recall (true-positives divided by the sum of true-positives and false-
negatives). The equations for each metric can be found in Table 1. Because only 67%
of the data was used to train the algorithm, these metrics are likely an underestimation

of the real performance of the final algorithm.
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Supplementary Figure S1 - Comparison of the confidence scores of true-positive
(TP) and false-positive (FP) ‘Standing’ and ‘Feeding’ classifications, recorded
with a backpack (red) and with a leg-loop (blue) harness. Each panel shows the
model predictions and the 95% confidence intervals for the effect of the harness on the
confidence scores of true positive and false positive behavioral classifications.
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1231  Supplementary Figure S2 — Using GPS-derived metrics to identify feeding

1232  hotspots, without using acceleration-based behavioral classification. The red
1233  points show vulture locations with GPS ground speed equal to or slower than 4m/s,
1234  outside the roosting areas and outside feeding stations for vultures, during November
1235 2022 (n = 1,938 locations). The polygons indicate the density of vulture locations,
1236  showing potential areas where vultures could be foraging and would be at greater risk
1237  of poisoning. The polygon colors indicate the density of vulture locations, with blue
1238  areas having lower density and red areas higher density. Comparison with Figure 6
1239 (based on accelerometer-classified ‘Feeding’ behavior) shows that incorporating
1240  behavioral data produces spatially distinct and more accurate hotspot identification.
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Supplementary Table S1 - Full list of statistical features used to summarize each
acceleration bout. Note that X, Y and Z refer to the orthogonal acceleration axes
(sway — X; surge — Y; heave - Z), while x and y refer to the variables that should be

included in the R functions.

Feature R function
Mean (X, Y, 2) mean(x)
Maximum (X, Y, Z) max(x)
Minimum (X, Y, Z) min(x)

Range (X, Y, Z)

Standard deviation (X, Y, Z)
Skewness (X, Y, Z)

Kurtosis (X, Y, Z2)

Euclidian norm (X, Y, Z)

25% quantile (X, Y, Z)

50% quantile (X, Y, 2Z)

75% quantile (X, Y, 2)
Covariance (X-Y, X-Z, Y-2)
Mean difference (X-Y, X-Z, Y-Z)

Standard deviation of the difference (X-Y, X-

Z,YZ)
Mean amplitude (X, Y, Z)

49

max(x) — min(x)

sd(x)
moments::skewness(x)
moments::kurtosis(x)
sqrt(sum(x*2))
quantile(x, probs = 0.25)
quantile(x, probs = 0.50)
quantile(x, probs = 0.75)
cov(x, y)

mean(x — y)

sd(x - y)

mean_amplitude(x) — user defined
function provided in the R code
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Supplementary Table S2 — Results of the random forest model to classify vulture
behavior based on accelerometer data. The random forest model was trained on
67% of the total number of observations and its performance was tested on 33% of the
data. The true-positives and false-positives are the result of the performance test (for a
full confusion matrix see Figure 3 of the manuscript). For each prediction, the model
calculates a confidence score, i.e., the proportion of trees that agree on the highest
scoring prediction. Here we show the mean confidence score values for each predicted
behavior category.

Total number M.ean
of confidence
Behavior | observations T|_'u_e Fql_se Precision | Recall score of
(number of positives | positives true-
vultures) positives
(sd)
Feeding 587 (10) 189 17 0.87 0.92 0.82 (0.15)
Lying 364 (5) 104 5 0.94 0.95 0.98 (0.06)
Standing 3488 (11) 1142 20 0.98 0.98 0.98 (0.08)
Ground 67 (8) 4 23 0.57 0.15 0.41 (0.03)
apping : . . )
Fl i 122 (18) 42 2 0.98 0.95 0.93 (0.12)
Soaring 1155 (9) 375 4 0.99 0.99 0.99 (0.08)
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Supplementary Table S3 — Comparison of the confidence scores of true-positive
and false-positive behavioral classifications. Results of the GLMM beta binomial
model, with confidence score (0-1) as the response variable, and correctness (true-
positive / false-positive), behavioral class (Feeding, Flapping, Ground, Lying, Soaring
and Standing) and their interaction as predictors. The model had device ID as random
effect. A p-value <0.05 indicates a statistical significant relationship.

Variable Estimate Std. Error Z value p-value
Intercept 0.470 0.215 2.191 0.028
Validation — 0.876 0.195 4.492 <0.001
True positive

Behavior — -0.775 0.578 -1.343 0.179
Flapping

Behavior — 0.173 0.248 0.698 0.485
Ground

Behavior — -0.133 0.403 -0.330 0.741
Lying

Behavior — 0.902 0.456 1.979 0.048
Soaring

Behavior — -0.020 0.254 -0.079 0.937
Standing

Valid. True 1.761 0.586 3.007 0.003
Positive x

Beh. Flapping

Valid. True -1.749 0.445 -3.926 <0.001
Positive x

Beh. Ground

Valid. True 1.807 0.416 4.342 <0.001
Positive x

Beh. Lying

Valid. True 1.017 0.442 2.304 0.021
Positive x

Beh. Soaring

Valid. True 1.341 0.260 5.162 <0.001
Positive x

Beh. Standing

Random effects Variance Std. Dev.
Device id 0.0995 0.3155
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1267  Supplementary Table S4 — Comparison of the confidence scores of true-positive

1268 and false-positive ‘Standing’ and ‘Feeding’ classifications, recorded with a

1269 backpack and with a leg-loop harness. Results of the GLMM model beta binomial
1270  model, with confidence score (0-1) as the response variable, and the correctness (true-
1271 positive / false-positive), the type of harness (backpack / leg-loop) and their interaction
1272  as predictors. The model had device ID as random effect. A p-value <0.05 indicates a
1273  statistical significant relationship.

Behavior | Variable Estimate  Std. Z p-value | Random Random
Error value effect effect
variance std. dev.
Intercept 0.238 0.315 0.754 | 0.451 - -
Correctness — 1.949 0.250 7.808 | <0.001 - -
True positive
Harness — 0.444 0.451 0.985 | 0.325 - -
. Leg-loop
Standing o octness | 0.374 0349 1.074 0283 3 ;
(True positive)
X Harness
(Leg-loop)
Device id - - - - 0.185 0.43
Intercept -0.240 0.764 -0.314 | 0.753 - -
Correctness — 1.698 0.769 2.207 | 0.0273 - -
True positive
Harness — 0.851 0.796 1.069 | 0.285 - -
. Leg-loop
Feeding ' irectness | 0725  0.798  -0.908 0.364 - -
(True positive)
x Harness
(Leg-loop)
Device id - - - - 0.022 0.149
1274
1275
1276
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1277  Supplementary Table S5 - Confusion matrix of the random forest assessing the
1278 influence of the harness type on the performance of the algorithm. This random
1279  forest was trained solely on leg-loop data and tested on backpack data.

Predicted / Observed | Feeding Ground | Standing
(n =104) (n=47) |(n=563
Feeding 104 43 52
Ground 0 0 0
Standing 0 4 511
Precision 0.52 NA 0.99
Recall 1.00 0 0.91
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Supplementary Table S6 — Comparison of the confidence scores of feeding
bouts likely to be true-positives or false-positives. Results of the GLMM model
beta binomial model, with confidence score (0-1) as the response variable, and
correctness (likely to be true-positive — inside feeding stations; likely to be false-
positives — on cliffs or in flight) as predictor. The model had device ID as random effect.
A p-value <0.05 indicates a statistical significant relationship.

Variable Estimate Std. Error Z value p-value
Intercept 1.101 0.078 14.140 <0.001
Correctness — | -0.805 0.167 -4.827 <0.001
Low

probability of

true positive

Random effects Variance Std. Dev.

Device id <0.001 <0.001
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Data S3 — Temporal correlation between behaviors

To test if there is temporal correlation between behaviors, we used the dataset of 51
free-roaming vultures collected during November 2022, consisting of 197,641 behaviors
with confidence scores over 0.5.

We first calculated the overall occurrence rate of each behavior (OR, Supplementary
Figure S3A). Then, for each individual on each day, we quantified how often a behavior
was followed by another (Behavior Transition Rate, BTR, Supplementary Figure S3B).
For example, how often ‘Feeding’ was followed by ‘Standing’ (Feeding-to-Standing
BTR), by ‘Feeding’, by ‘Ground’, etc. We excluded transitions between behaviors that
were separated by more than 10 minutes.

Frequent behaviors may inflate BTR values simply due to their high occurrence (e.qg.,
‘Feeding’ followed by ‘Standing’ could be common because ‘Standing’ is generally
frequent in the dataset due to the time vultures spend standing). We corrected for this
by computing the dependency between behaviors as the log-odds of the ratio between
BTR and the overall OR. Positive dependency values indicate strong temporal
associations (e.g., Feeding is very often followed by Standing), negative dependency
values indicate avoidance or rare transitions (e.g., Soaring is rarely followed by
Feeding), and values near zero indicate weak or random associations (Supplementary
Figure S3C).

number of times a behavior occurred
= x 100

total number of behaviors

number of times behavior A is followed by behavior B
ORB = - x 100
total number of behavior A

ORB
dependency = In (O—R)

Despite the relatively low temporal resolution of our data (5 to 10min, depending on the
dataset, i.e., longer than many of the behavior duration), we still detected temporal
correlation between some behaviors. After adjusting for overall behavior frequency, we
found that ‘Feeding’ was frequently followed by ‘Feeding’ or ‘Standing’, but not by
‘Ground’. In contrast, ‘Ground’ was often followed by ‘Feeding’, ‘Standing’, ‘Ground’,
and ‘Flapping’ (the latter likely due to the running behaviors while taking-off). Yet, we
note that this behavior was rare in the dataset (0.05% occurrence rate, n = 95), so
these dependencies may reflect the limited sample size.
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Supplementary Figure S3 — Temporal correlation between consecutive
behaviors. Figure A shows the total occurrence rate of all behaviors (OR); Figure B
shows percentage of times that a behavior is followed by another (BTR); Figure C
shows the dependency between behaviors, calculated as the log-odds of the ratio
between occurrence rate between behaviors (BTR) and the total occurrence rate of
each behavior (OR). In C, positive dependencies are depicted by shades of blue,
negative dependencies are depicted by shades of red, and white tiles depict undefined
values (log of 0). In B and C, darker tones represent stronger relationships, and the
black outlines in the diagonal highlight the self-dependency (e.g., Feeding-Feeding
dependency).
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