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Abstract 34 

1. Human activities are endangering animal species globally and implementing 35 

effective conservation strategies requires understanding animal behavior and 36 

ecology. Advancements in GPS tracking technology, accelerometry, and 37 

machine learning algorithms are allowing the in-situ study of animal movement 38 

and behavior remotely. However, the challenge of building supervised machine 39 

learning algorithms and collecting the large datasets required to train them is 40 

hampering the widespread use of these tools. Additionally, the reliability of these 41 

models in classifying unobserved behaviors is rarely validated, resulting in 42 

possible classification errors.  43 

2. We built a supervised accelerometer-based behavioral classification model for 44 

griffon vultures (Gyps fulvus). Similarly to most other avian scavenger 45 

populations worldwide, griffons are critically endangered in Israel and 46 

neighboring countries, mostly due to feeding on poisoned carcasses. Thus, 47 

identifying this scavenger’s feeding behavior and foraging areas is crucial for their 48 

conservation.  49 

3. We trained a Random Forest model on acceleration data of 14 captive and 17 50 

free-roaming griffons. We classified 5783 behavioral observations into 6 classes: 51 

feeding, lying, standing, other ground behaviors, flapping and soaring flight. The 52 

model performed well (0.96 accuracy, 0.89 precision and 0.82 recall) and, 53 

importantly, feeding behaviors were accurately classified (0.87 precision, 0.92 54 

recall). We calculated an observation-specific confidence score and 55 

demonstrated its effectiveness in identifying true- and false-positive 56 

classifications, in both captive and free-roaming individuals. Finally, we used our 57 

model to reliably identify feeding hotspots, where vultures can be at higher risk 58 

of poisoning.  59 
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4. Synthesis and applications. We provide a tool to help identify vulture feeding 60 

hotspots, supporting carcass management efforts to prevent poisoning. 61 

Integrated with near real-time tracking, our model can support global efforts to 62 

combat scavenger poisoning. The training dataset, model and codes are 63 

provided in a user-friendly platform, along with a conceptual framework, to 64 

encourage use by ecologists and conservation practitioners. 65 

Resumen 66 

1. Las actividades humanas suponen una amenaza para la fauna a escala global e 67 

implementar estrategias de conservación efectivas al respecto requiere entender 68 

el comportamiento y la ecología animal. Avances en tecnologías como el 69 

seguimiento GPS, los acelerómetros y los algoritmos de aprendizaje automático 70 

facilitan el estudio remoto in situ de los movimientos y comportamientos 71 

animales. Sin embargo, elaborar algoritmos supervisados de aprendizaje 72 

automático y recopilar la gran cantidad de datos necesarios para entrenarlos son 73 

retos que dificultan el uso generalizado de estas herramientas. Además, la 74 

fiabilidad de estos modelos al clasificar comportamientos no observados no 75 

suele validarse, lo que pueda dar lugar a errores de clasificación. 76 

2. Elaboramos un modelo supervisado de clasificación de comportamientos de 77 

buitre leonado (Gyps fulvus) con datos de acelerómetro. En consonancia con la 78 

mayoría de las poblaciones de carroñeros en el mundo, los buitres están 79 

críticamente amenazados en Israel y países vecinos, principalmente por 80 

consumir carroñas envenenadas. Por tanto, identificar comportamientos y áreas 81 

de alimentación de estos carroñeros es clave para su conservación. 82 

3. Entrenamos un modelo “Random Forest” con datos de 14 buitres en cautividad 83 

y 17 en libertad, clasificando 5.783 comportamientos observados en 6 clases: 84 

alimentación, tumbado, posado, otros comportamientos en suelo, aleteo y 85 

planeo. El modelo funcionó bien (exactitud: 0,96, precisión: 0,89 y sensibilidad: 86 
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0,82), identificando con exactitud los comportamientos de alimentación 87 

(precisión: 0,87 y sensibilidad: 0,92). Calculamos un índice de confianza 88 

específico de cada observación, que discriminó con solvencia verdaderos y 89 

falsos positivos tanto en buitres en cautividad como en libertad. Finalmente 90 

usamos el modelo para identificar zonas de alimentación, dónde el riesgo de 91 

envenenamiento de los buitres pudiera incrementarse. 92 

4. Síntesis y aplicaciones: Proporcionamos una herramienta útil para identificar 93 

zonas de alimentación de buitres, apoyando así tareas de gestión para prevenir 94 

su envenenamiento. Junto con el seguimiento casi en tiempo real, nuestro 95 

modelo puede ayudar en la lucha contra el envenenamiento de fauna carroñera. 96 

Los datos de entrenamiento, el modelo y los códigos, junto con un marco 97 

conceptual, están disponibles en una plataforma de fácil uso para fomentar su 98 

utilización por ecólogos y profesionales de la conservación.  99 

 100 

Keywords (up to 8): 101 

Accelerometer, Behavior classification, Random Forest, Griffon Vulture, Poisoning, 102 

Conservation, Biotelemetry, Supervised machine learning. 103 

  104 
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Introduction 105 

Anthropogenic activities are endangering animals around the world (Venter et al., 2016). 106 

To combat the current wave of species extinction, we need to understand animal 107 

behavior and ecology to minimize threats and conflicts, and to implement effective 108 

conservation strategies (Fehlmann et al., 2023; van Eeden et al., 2018). Over the last 109 

couple of decades, technological advances have provided tremendous insights into 110 

animal ecology and behavior (Kays et al., 2015; Nathan et al., 2022), often with direct 111 

implications for conservation (Tuia et al., 2022). The use of GPS-tracking technology, for 112 

instance, has contributed to a deeper understanding of animal movements and space 113 

use, which can inform the design and administration of protected areas (Hays et al., 114 

2019). GPS-tracking has also helped identifying the locations of animal mortality (Sergio 115 

et al., 2019) and location-specific causes of mortality (Serratosa et al., 2024). Uncovering 116 

the location and spatial extent of animal threats is critical for managing endangered 117 

species (Kane et al., 2022; Olea & Mateo-Tomás, 2014) and for mitigating human-118 

induced mortality (Serratosa et al., 2024). 119 

While GPS tracking provides valuable insights into where and when animals use 120 

particular habitats, it does not provide direct information on the specific behaviors 121 

animals perform within those habitats. For instance, a site where an individual stops 122 

could be used for resting, foraging, or other behaviors - which cannot be distinguished 123 

using GPS data alone. Complementing GPS-tracking data with additional sensors offers 124 

insights into the behavior and energy use of elusive and cryptic animals (Shepard et al., 125 

2008; Smith & Pinter-Wollman, 2021; Spiegel et al., 2015; Tuia et al., 2022; Williams et 126 

al., 2020). Tri-axial accelerometers (ACC) are widely used in behavioral research, among 127 

other sensors (Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These devices 128 

measure acceleration in three orthogonal axes (sway – x; surge – y; and heave - z) that 129 

change according to the animal’s posture and locomotion. These measurements can be 130 

recorded either continuously or in “bouts” (i.e., sampling units) of a few seconds at 131 
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varying resolution (i.e., frequency, in Hz) and intervals (for example, recording for 5 132 

seconds at 20Hz, every 10 minutes). Different acceleration signatures enable the 133 

measurement of movement-related energy expenditure (Gleiss et al., 2011; Halsey et 134 

al., 2009) and can be used to distinguish among different behaviors (Shepard et al., 135 

2008), for example, for estimating flight duration in small migratory passerines (Bäckman 136 

et al., 2017). 137 

Machine learning algorithms are used to classify raw acceleration bouts into 138 

different behavioral classes (Nathan et al., 2012; Resheff et al., 2014; Valletta et al., 139 

2017; Wang, 2019; Yu et al., 2021). These algorithms can operate in an unsupervised 140 

manner, identifying similarities in acceleration data to produce unlabeled clusters of 141 

similar measurements that subsequently need to be manually classified into specific 142 

behaviors (Chimienti et al., 2016; Wang, 2019). Alternatively, supervised learning 143 

involves training an algorithm with a dataset in which each behavior is labeled, allowing 144 

the algorithm to ‘learn’ the distinctive acceleration patterns of different behaviors (Nathan 145 

et al., 2012; Wang, 2019; Yu et al., 2021). However, depending on the level of detail 146 

required and on how distinctive the behaviors are, assembling a training dataset can be 147 

laborious, as it typically requires direct observations of animals in the wild or in captivity, 148 

synchronized with the ACC measurements (Campbell et al., 2013; Dickinson et al., 149 

2021). Despite these difficulties, supervised machine learning algorithms have been 150 

successfully used to classify behaviors across diverse animal groups, including baboons 151 

(Fehlmann et al., 2023), large pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et 152 

al., 2020),  condors, and other vultures (Rast et al., 2024; Spiegel et al., 2013; Williams 153 

et al., 2015). Commonly used algorithms include artificial neural networks, extreme 154 

gradient boosting, and random forests (Resheff et al., 2014; Yu et al., 2021). Random 155 

forests have the advantage of being able to model complex interactions between the, 156 

often correlated, predictor variables, therefore not requiring the pre-processing and 157 

filtering of variables (Cutler et al., 2007), and simplifying behavioral classification. 158 
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Once a machine learning model is trained, it can classify new, unseen 159 

accelerometer data into the trained behavioral classes, invariably resulting in some 160 

classification errors (Glass et al., 2020; Jeantet et al., 2020). Errors emerge from a few, 161 

non-mutually exclusive, processes. First, acceleration bouts, particularly long ones, may 162 

include transitions among behaviors resulting in a mixture of different acceleration 163 

signatures (Resheff et al., 2024). Second, rare behaviors may be underrepresented or 164 

missing from the limited training dataset (e.g., seasonal and rare behaviors such as 165 

copulation). Third, the behavioral repertoire of some individuals may be broader than 166 

what the algorithm is trained for. Because some behaviors might be difficult to observe 167 

in captivity (e.g., flight behaviors, Williams et al., 2015), this last error is particularly 168 

relevant for algorithms trained on captive individuals that are used to predict the 169 

behaviors of wild animals (Dickinson et al., 2021). Still, the models must choose the best 170 

fitting behavioral class among the available options, even if none provides a particularly 171 

good fit. These errors demand a mechanism to verify the accuracy of each behavioral 172 

classification, allowing the model to distinguish between true-positive and false-positive 173 

classifications (Bidder et al., 2014; Glass et al., 2020). While some studies offer guidance 174 

on how to best use and analyze large acceleration datasets (e.g., Leos-Barajas et al., 175 

2017; Resheff et al., 2014; Williams, Taylor, et al., 2020), the complexity of these tools 176 

remains a barrier for non-experts, hindering their use in conservation science and 177 

practice.  178 

Here we develop an accelerometer-based behavioral classification tool and 179 

validate its real-world application in ecology and conservation, using griffon vultures 180 

(Gyps fulvus) as a case study. As obligate scavengers, vultures support key ecosystem 181 

functions by consuming carcasses and recycling nutrients (Buechley & Şekercioğlu, 182 

2016). Yet, around the world, 70% of vulture species are in danger of extinction, with 183 

poisoning driven by consuming carcasses containing toxic substances being one of the 184 

leading causes for population declines (Ives et al., 2022; Ogada et al., 2012; Plaza et al., 185 
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2019). Poisoning can be either intentional or unintentional. For instance, poachers may 186 

lace carcasses with poison to prevent these raptors from alerting environmental 187 

authorities of poached wildlife (Mateo-Tomás & López-Bao, 2020; Ogada et al., 2016), 188 

and farmers may do so for combating pests and mammalian carnivores. Anti-189 

inflammatory drugs used to treat cattle are also lethal to vultures, leading to poisoning at 190 

these carcasses (López-Bao & Mateo-Tomás, 2022; Ogada et al., 2012; Plaza et al., 191 

2019). Several hundred vultures may quickly gather to eat at a single carcass, increasing 192 

their vulnerability to mass poisoning events (McNutt & Bradley, 2014). Other scavenger 193 

species also feed on carcasses (Olea et al., 2019), exposing them to similar risks of 194 

poisoning (Katzner et al., 2024; López-Bao & Mateo-Tomás, 2022). Early detection of 195 

carcasses might facilitate their proper management to, for example, prevent vultures and 196 

other wild species from feeding on carrion with toxic substances by removing these from 197 

the environment. Moreover, when poisoning events are promptly detected, vultures and 198 

other animals can undergo medical intervention (Acácio et al., 2023; Anglister et al., 199 

2023). Considering the vulture’s large roaming areas (Spiegel et al., 2015), tracking 200 

technology and behavioral classification are essential tools to identify vultures’ feeding 201 

events. Vultures can therefore act as sentinels, facilitating carcass detection, and 202 

maximizing prompt intervention efforts to reduce detrimental effects associated with 203 

consumption of contaminated carrion. For instance, by reducing the number of fatalities 204 

at a poisoning event to avoid long-term effects on species’ populations (Acácio et al., 205 

2023; Slabe et al., 2022).  206 

In this study, our goals are to 1) develop an ACC-based behavioral classification 207 

algorithm, which, together with the training dataset and a conceptual framework of the 208 

methodological workflow, is made freely available to conservationists and ecologists; 2) 209 

validate the algorithm’s classifications, by comparing the confidence scores of true-210 

positive and false-positive classifications, using both the training dataset and data from 211 

free-roaming vultures; and 3) apply our novel algorithm to real-life scenarios with 212 
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important conservation implications – i.e., rapid carcass detection to prevent vulture 213 

poisoning. Ultimately, our goal is to combine technological advancements in GPS and 214 

accelerometry to improve wildlife conservation efforts, and to develop a tool that is easily 215 

transferable to other systems. 216 

 217 

Materials and Methods 218 

Study system 219 

The study took place in Israel, where griffon vultures are critically endangered (Mayrose 220 

et al., 2017). A historical population of thousands of griffons is currently declining; three 221 

decades ago, there were only 400 griffons in this population, and fewer than 200 222 

individuals remain today (Hatzofe, 2020). Pesticide poisoning from consuming laced 223 

carcasses is the leading cause of griffon mortality, accounting for 45% of documented 224 

deaths between 2010-2021 in this region (Anglister et al., 2023). Lead poisoning and 225 

ingestion of animals treated with anti-inflammatory drugs each contribute to 6% of 226 

mortality events, posing additional threats to this population (Anglister et al., 2023). To 227 

prevent the local extinction of this species, the Israel Nature and Parks Authority (INPA) 228 

runs an intricate management program, including the provisioning of contaminant-free 229 

food at supplementary feeding stations (Spiegel et al., 2013, 2015), the release of 230 

captive-bred and translocated griffons (Efrat et al., 2020), and individually tracking 231 

vultures using GPS-Accelerometer transmitters, to identify poisoning events and other 232 

threats. When wild carcasses are detected in a random location within areas of known 233 

pastoral activity and poisoning history, or when vultures exhibit minimal movement, 234 

suggesting they are unwell, rangers are sent to the field to remove the carcasses and/or 235 

transport affected individuals to a wildlife hospital, underscoring the critical role of GPS-236 

tracking data for the conservation of this population (Acácio et al., 2023). 237 
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 Every year, approximately 100 free-roaming griffons are captured by the INPA 238 

using a cage trap, to identify the individuals with metal and color rings and with patagial 239 

tags. In these trapping events, a few individuals are fitted with a GPS-ACC transmitter 240 

(Ornitela OT-50) using a Teflon harness in a leg-loop configuration. The transmitters are 241 

equipped with solar panels that recharge the batteries, and transmit the collected data 242 

via the GSM network, eliminating the need for recapturing individuals to retrieve 243 

information. The current study did not require additional ethical approval, since it uses 244 

tracking data collected from these GPS-ACC tags and no captures of free-roaming 245 

vultures were conducted specifically for this study. The capture and tagging procedures 246 

were approved by ethics committee of the Israel Nature and Parks Authority (permit 247 

number 42166). 248 

 249 

Conducting observations to build an ACC training dataset 250 

Between January 2020 and February 2022, we deployed GPS-ACC transmitters on 31 251 

griffon vultures, 14 captive vultures and 17 free-roaming individuals. The captive vultures 252 

were housed in in 4 breeding programs, rehabilitation or wildlife facilities, in Israel and in 253 

Spain: Ramat Hanadiv (Israel, n = 4), Hai-Bar Carmel (Israel, n = 4), Cabárceno Wildlife 254 

Park (Spain, n = 3) and GREFA wildlife hospital (Spain, n = 3). In each cage, there were 255 

6 to 12 vultures. Additional behavioral data was collected in Israel for 17 free-roaming 256 

griffon vultures. One individual dropped his transmitter and was deployed with another 257 

device (thus there were 31 individuals but 32 transmitters).  In Israel, the transmitters 258 

were deployed using a leg-loop harness and in Spain the loggers were deployed using 259 

a backpack harness. 260 

The transmitters were programmed to collect GPS and ACC at independent 261 

schedules, and differently for captive and free-roaming griffons. The transmitters of 262 

captive griffons were programmed to collect tri-axial accelerometer data at 20Hz almost 263 
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continuously (10-min-long periods, with a 1 sec interval in between). These 10min bouts 264 

were parsed into 5 sec bouts to match the free-roaming dataset. Bouts of 5 sec at 20Hz 265 

were recorded for free-roaming griffons every 10 min, depending on the transmitter’s 266 

battery charge (see Supplementary Material for details).  267 

To classify each 5 sec ACC bout as a particular behavior, we conducted direct 268 

observations and video recordings of the tagged griffons, both in captivity and in the wild. 269 

In total, we performed observations for 79 days. Direct observations of captive and wild 270 

griffons were conducted with a spotting scope (Swarovski ATX spotting scope 85mm), 271 

ensuring a sufficient distance to not disturb the vulture’s natural behavior. The video 272 

recordings were captured using a camera mounted on a wall support in Spain, and with 273 

nest cameras at the captive breeding facilities, or live streaming nest cameras at wild 274 

nests in Israel (BirdLife Israel, 2022). The direct observations of wild vultures were 275 

performed at roosting sites, at approximately 250 of the individuals.  276 

We recorded six ecologically important behavioral classes: ‘Standing’ - vulture is 277 

resting upright (could be roosting, and may include minor preening and changes in body 278 

posture); ‘Lying’ - vulture is lying parallel to the ground, either resting or incubating; 279 

‘Feeding’ – vulture is either directly eating from a carcass, or engaged in intense social 280 

interactions next to the carcass (e.g., fighting or posturing towards other vultures before 281 

eating); ‘Ground’ - includes all other active ground behaviors which are not directly 282 

related to feeding or resting (e.g., walking, running, hopping, etc.); ‘Flapping’ - active 283 

flight with wingbeats; and ‘Soaring’ - passive flight (e.g., thermal soaring, gliding, etc.). 284 

Because long flights do not occur in captivity, we used GPS-ACC data from 17 free-285 

roaming griffons in southern Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active) 286 

flight behaviors. We identified segments of continuous flight using the GPS ground speed 287 

(ground speed >4m/sec) and plotted the acceleration measurements taken during these 288 

flights. The acceleration signatures of soaring and passive flights are so distinctive 289 

(Figure 1B,C, Williams et al., 2015) that there was no need to ground-truth these 290 
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behaviors with visual sightings (which would be challenging, considering their large 291 

roaming areas).  292 

 293 

 294 

Figure 1 - Examples of accelerometer-based classification of griffon vulture’s 295 

behaviors. Acceleration measurements of bouts classified as: (A) ‘Ground, (B) ‘Soaring’ 296 

flight, (C), ‘Flapping’ flight, (F) ‘Feeding’, (G) ‘Lying’ and (H) ‘Standing’. The acceleration 297 

data was collected at 20Hz during 5 seconds for three orthogonal axes (D): sway – X 298 
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(red), surge – Y (green), and heave - Z (blue). (E) GPS-tracking of a griffon vulture over 299 

one day. The colors of the GPS locations match the behaviors recorded on that location: 300 

‘Ground’ – red; ‘Soaring’ – green; ‘Flapping’ – violet; ‘Feeding’ – yellow; ‘Lying’ – light 301 

blue; ‘Standing’ – black. This illustrates the large daily movements of griffon vultures, 302 

emphasizing the logistical challenges associated with surveillance in the desert study 303 

area. Photo credit: Yacov Ben Bunan. 304 

 305 

Pre-processing the ACC data and model training 306 

Before deployment on the griffons, 50 transmitters were calibrated on a leveled surface, 307 

in all six possible perpendicular orientations. This calibration allowed us to obtain a 308 

transmitter-specific instrument error for translating raw acceleration data (in mV) into 309 

acceleration units (m/sec2). For 14 transmitters (out of 32) without specific error values, 310 

we used the average error across the measured transmitters (n = 50). The calibration 311 

values used are publicly available on GitHub. 312 

We identified the start and end of each accelerometer bout and excluded from 313 

the ACC behavioral dataset all bouts shorter than 5 sec, as well as all bouts that matched 314 

more than one behavioral class during the 5 sec period. Each acceleration bout was 315 

summarized into 47 statistical features commonly used in other studies using machine 316 

learning algorithms to perform behavioral classifications of ACC data (e.g., Nathan et al., 317 

2012; Yu et al., 2021). For a full list of features, see Supplementary Table S1. All 318 

analyses were performed in R (R Core Team, 2023). 319 

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip (Kuhn & 320 

Vaughan, 2024), we built a random forest model to classify behaviors using the 321 

annotated acceleration bouts. We started by splitting this dataset into ‘training’ (67%) 322 

and ‘testing’ (33%) subsets, an ad hoc measure commonly found in other machine-323 

learning applications (e.g., (Jeantet et al., 2020). Using the ‘training subset’, we built a 324 
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random forest model and we evaluated the performance of our model using the ‘testing’ 325 

subset. We built a confusion matrix and calculated three performance metrics, for the full 326 

model and for each behavior: (i) accuracy; (ii) precision; and (iii) recall. The equations 327 

and descriptions for each metric can be found in Table 1. For example, a model may 328 

have 0.90 accuracy (i.e., 90% of all behaviors were predicted correctly), 0.85 precision 329 

for a specific behavior (e.g., 85% of all ‘Feeding’ predictions were indeed ‘Feeding’ 330 

observations and 15% were a different behavior and wrongly identified as ‘Feeding’), 331 

and 0.80 recall of a specific behavior (e.g., 80% of ‘Feeding’ observations were correctly 332 

predicted as ‘Feeding’ and 20% were wrongly classified as another behavior).  333 

After training and evaluating the performance of the algorithm with the split 334 

annotated dataset, we built the final random forest model using the full dataset for 335 

training, likely improving the performance of the algorithm. This full algorithm was then 336 

used to classify unobserved accelerometer bouts to identify feeding in free roaming 337 

vultures (see below).  338 

More details of the model building sequence can be found in Supplementary 339 

Material 2, and a full description of the model building process can be found in Figure 2. 340 

All the training data and the code necessary to train and build the algorithm are publicly 341 

available on Zenodo (Acácio et al., 2025) and GitHub. The repository includes a tutorial 342 

suitable for two types of users: those who may wish to apply our (already-trained) model 343 

to their own data (e.g., researchers and conservationists working on similar vulture/raptor 344 

species), and those wishing to use our pipeline for training and building their own model 345 

(e.g., researchers and conservationists working on other species, or with different 346 

sampling protocols). With these tutorials, our main goal is to bridge the gap between 347 

researchers and practitioners. 348 

 349 



15 
 

Table 1 – Performance metrics used to evaluate the random forest model performance, 350 

considering the true-positive (TP), true-negative (TN), false-positive (FP) and false-351 

negative (FN) predictions.  352 

Performance metric Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 353 

 354 

Calculating confidence scores to validate model predictions 355 

Using the training dataset, we calculated a confidence score for each behavioral 356 

classification (i.e., for every bout). This confidence score is the level of consensus 357 

amongst the different decision trees within the random forest (i.e., the proportion of trees 358 

that agree on the highest scoring prediction). For example, if the model classifies a given 359 

bout as ‘Feeding’ with a confidence score of 0.7, then 70% of the trees agreed on that 360 

classification. To determine the validity of this score as an indicator of the behavioral 361 

classification’s reliability, we compared the scores of correctly identified behaviors (true-362 

positives) and of incorrectly identified behaviors (false-positives) in the testing subset. 363 

We then used a generalized linear mixed model (GLMM) with an ordered beta 364 

distribution and a logit link to compare scores of the two groups. The confidence score 365 

(range 0 to 1) was the response variable, and the explanatory variables were the Boolean 366 

correctness of the model prediction (categorical; true-positive or false-positive), the 367 

predicted behavior (categorical), and their interaction. The model included device ID as 368 

a random intercept. The GLMM was built using glmmTMB R package (Brooks et al., 369 
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2017), and the fit of the model and residuals were evaluated using DHARMa R package 370 

(Hartig, 2022).  371 

To understand the effect of the harness configuration (backpack or leg-loop) on 372 

the confidence scores, we compared the confidence scores of true-positive and false-373 

positive classifications of behaviors recorded with the two different harnesses. We 374 

performed this comparison for the two behaviors with most observations: standing and 375 

feeding. We built two separate GLMMs for each behavior. Each GLMM included the 376 

confidence score as a response variable, and the Boolean correctness of the model 377 

prediction (true-positive or false-positive), the predicted behavior, and their interaction, 378 

as explanatory variables. We also included device ID as a random intercept. To further 379 

explore the influence of harness type on the behavioral classification, we trained a new 380 

random forest model using only the leg-loop data (n = 3428) and tested it on the 381 

backpack dataset (n = 714). This model was trained on a subset of bouts that included 382 

only the three behavioral categories present in both datasets (‘Standing’, ‘Ground’ and 383 

‘Feeding’). 384 

 385 
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Figure 2 - Methodological workflow outlining the process of identifying behaviors 387 

of wild animals based on accelerometer data. All the training data, code and tutorials 388 

necessary to follow this workflow are available on GitHub 389 

(www.github.com/Orrslab/ACC_behavior_classification) and at Acácio et al., 2025. 390 

 391 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 392 

To assess the reliability of our algorithms at classifying unobserved data, we validated 393 

predicted ‘Feeding’ behaviors of free-roaming vultures. We focused on this behavior due 394 

to its importance for identifying poisoning events, the main cause of vulture mortality in 395 

our study area (Anglister et al., 2023). This validation is important because even a highly 396 

accurate model introduces classification errors. For example, considering a transmitter 397 

collecting 72 bouts a day, with 10 of those classified as ‘Feeding’, and a model with 90% 398 

precision for ‘Feeding’. Over the course of one week, the device would collect 504 bouts, 399 

70 of which classified as ‘Feeding’. Considering the model’s precision, 7 of these 400 

‘Feeding’ classifications would be false-positives which, extrapolating for a population of 401 

50vultures, this would correspond to approximately 350 false-positive feeding predictions 402 

per week.   403 

We combined information about the location of supplementary feeding stations, 404 

satellite imagery, and GPS positions from griffon-borne transmitters to assess the 405 

likelihood that the unobserved vultures’ ACC-predicted ‘Feeding’ behavior represents a 406 

true feeding event. Between November-December 2020, we collected GPS and 407 

accelerometer data from 7 tagged free-roaming griffons in southern Israel (transmitter 408 

schedule described in the Supplementary Material). These individuals were selected 409 

because they provided consistent high-resolution data throughout this two-month period, 410 

making them suitable for the fine-scale analysis of feeding behavior. We matched a GPS 411 

position to an accelerometer bout if they were recorded within 5 min of each other. We 412 

http://www.github.com/Orrslab/ACC_behavior_classification
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designated four situations with decreasing probability of representing real feeding events 413 

based on the GPS location and GPS ground speed: ‘Station’ – if the ACC identified a 414 

feeding event within 250m from a supplementary feeding station, it likely represents a 415 

true feeding event (likely true-positive predictions); ‘Open area’ – if the ACC identified a 416 

feeding event at a GPS position that is at an open landscape (but not on a cliff), where 417 

naturally-occurring food is sometimes available (wildlife or livestock carcasses), it may 418 

represent a true feeding event ; ‘Cliff’ – if the ACC identified a feeding event on cliff faces, 419 

where food is largely absent but where vultures spend a large proportion of their time 420 

roosting, it is not likely to be a true feeding event; ‘Flight’ – if the GPS ground speed was 421 

>4m/sec the vulture was probably flying, and therefore it is likely a false feeding event. . 422 

The 250 m radius around the feeding station accounted for the vultures’ behavior of 423 

standing nearby and overlooking the station before feeding. Given the potential 5-minute 424 

offset between GPS fixes and accelerometer bouts, this buffer allows for the possibility 425 

that a griffon could move to the station and begin feeding within that time window. All 426 

points were mapped on satellite images of the study area and were visually examined 427 

after this classification to confirm the assignment to each situation (for example, to 428 

confirm vulture presence on a cliff, in an open area or near a feeding station). 429 

To determine if the confidence score of the classification can be used to identify 430 

false-positives in free-roaming griffons, we compared the algorithm’s confidence scores 431 

of ‘Feeding’ predictions at ‘Stations’ (i.e., high probability of true-positives) with ‘Feeding’ 432 

predictions at ‘Cliffs’ or during ‘Flight’ (i.e., high probability of false-positives). We omitted 433 

the ‘Open area’ situation since it could represent a mixture of feeding and non-feeding 434 

behaviors and were therefore less conclusive for this comparison. We used a GLMM, 435 

with a beta distribution and a logit link, in which the response variable was the algorithm's 436 

confidence score, and the explanatory variable was the classification accuracy according 437 

to the GPS location (likely true-positive or likely false-positive). We included device ID 438 

as a random intercept.  439 
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 440 

Case study: identification of vulture feeding hotspots to prevent poisoning 441 

To demonstrate the applicability of the ACC algorithm to a real-world conservation 442 

problem, we used it to identify griffons’ feeding hotspots outside supplementary feeding 443 

stations (i.e., places where safe carcasses are provided to vultures). Considering the 444 

high risk of carcasses outside feeding stations being contaminated with toxic substances 445 

for vultures (e.g., pesticides or NSAIDs, Anglister et al., 2023), their rapid detection and 446 

removal from the field is a priority for wildlife authorities in Israel (Acácio et al., 2023). 447 

Accordingly, mapping those areas where vultures are feeding on potentially 448 

contaminated carcasses may guide management actions.  449 

In November 2022, we collected one month of GPS and accelerometer data for 450 

51 free-roaming griffons in Southern Israel, aiming to identify the locations of feeding 451 

events that occurred outside supplementary feeding stations (events that present higher 452 

risk of poisoning). After applying the random forest algorithm to this dataset, we matched 453 

the accelerometer ‘Feeding’ bouts with a GPS location using three criteria. First, if they 454 

were collected within 5 min of each other, and if the GPS ground speed was below 455 

4m/sec (indicating the bird was not flying). Second, if no GPS position matched these 456 

criteria, we matched ACC bouts with GPS locations if they were collected within 11 min 457 

of each other (while maintaining the ground speed criteria), to account for a possible 458 

delay in the time to acquire a position by the GPS. If no GPS position matched these 459 

criteria, the ‘Feeding' bout was discarded from further analysis, because we could not 460 

infer where the feeding event took place. 461 

Using the results of the previous analyses, where we assessed if the confidence 462 

score could be used to minimize the number of false-positives, we excluded bouts with 463 

confidence scores below 0.5. This conservative threshold was chosen to avoid 464 

eliminating true-positives, as failing to detect feeding areas posed a greater risk for 465 
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griffon conservation than including false-positive observations. However, this threshold 466 

is system- and data-specific and is expected to be different for other species and 467 

systems. We also excluded ‘Feeding’ bouts that occurred within supplementary feeding 468 

stations, at known roost sites (the latter likely represent false-positives), and outside the 469 

study area (southern Israel and Jordan). With the remaining locations (n = 264), we 470 

created a 2D kernel (grid size = 1000, bandwidth = bandwidth.nrd function from MASS 471 

R package, Venables & Ripley, 2002), portraying the density of locations, using bkde2D 472 

function of KernSmooth R package (Wand, 2024). On this density map, we overlayed 473 

the information of known carcasses independently identified in the field, outside feeding 474 

stations, during this same time period (n = 5). The carcasses were located by local 475 

rangers, either through reports from farmers, chance encounters during field patrols, or 476 

via an alert system that flags unusual landings of tracked raptors based on GPS data. 477 

This system uses location data from several species to identify potential poisoning 478 

events, independent of accelerometer-based behavioral classifications used in this 479 

study.  480 

Finally, to assess if the behavioral classification impacted the designation of 481 

feeding hotspots compared to a mapping based on GPS metrics alone, we built an 482 

additional density map using all GPS locations from the same dataset, without filtering 483 

for “feeding-only” locations. We excluded locations that occurred within supplementary 484 

feeding stations, at known roost sites, or where the ground speed exceeded >4m/sec. 485 

 486 

Results 487 

Behavioral classification 488 

We collected 5783 behavioral observations for 14 captive and 17 free-roaming griffon 489 

vultures (a total of 31 individuals), during 57 days (18 days for captive individuals and 39 490 

for free-roaming individuals). The most common behavior was ‘Standing’ (3488 491 
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observations), and the least common behavior was ‘Ground’ (67 observations, 492 

Supplementary Table S2). When training the random forest model with 67% of the 493 

observed (i.e., ground-truthed) dataset, we achieve an overall accuracy of 0.96, precision 494 

of 0.89 and recall of 0.82. Specifically, the model predicted ‘Feeding’ behaviors with 495 

precision of 0.87 and recall of 0.92 (Figure 3, Supplementary Table S2). ‘Ground’, on the 496 

other hand, had the poorest predictions (precision = 0.57, recall = 0.15). The indirectly 497 

inferred behaviors ‘Soaring’ and ‘Flapping’ were well predicted by our model (‘Soaring’: 498 

precision = 0.99, recall = 0.99, ‘Flapping’: precision = 0.98, recall = 0.95). 499 

 500 

 501 

Figure 3 - Confusion matrix of the random forest model to classify vulture behavior 502 

based on accelerometer data. Rows represent the behavior predicted by the algorithm 503 

we developed, and columns represent the behaviors we observed directly. The colors in 504 

the diagonal show the precision for each behavior, with darker colors indicating higher 505 

precision. The size of the text outside the diagonal indicates the proportion of false-506 

positives in each behavioral category, with larger numbers indicating a larger proportion 507 



23 
 

of false-positives. For example, more ‘Feeding’ bouts were wrongly classified as 508 

‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as 509 

‘Soaring’, ‘Flapping’, or ‘Lying’. 510 

 511 

Performance of the confidence score in validating model predictions 512 

Overall, the confidence scores of correctly-identified behaviors (true-positives) were 513 

significantly higher than the scores of inaccurately-identified behaviors (false-positives; 514 

GLMM: model estimate ± se = 0.876 ± 0.195, p-value < 0.001, Figure 4, Supplementary 515 

Table S3). ‘Ground’ behaviors, which had the lowest number of observations (n=67), 516 

were the exception, with significantly higher confidence scores of false-positives 517 

compared to true-positives (Figure 4). ‘Ground’ true-positive behaviors also had the 518 

lowest confidence scores (mean confidence score ± sd = 0.41 ± 0.03). ‘Soaring’, ‘Lying’, 519 

‘Standing’ and ‘Flapping’ were the behaviors with highest true-positive confidence scores 520 

(mean confidence score ± sd; ‘Soaring’ = 0.99 ± 0.08, ‘Lying’ = 0.98 ± 0.06, ‘Standing’ = 521 

0.98 ± 0.08, ‘Flapping’ = 0.93 ± 0.12). ‘Feeding’ had on average a high confidence score 522 

but also a large variation (mean confidence score ± sd = 0.82 ± 0.15, Figure 4, 523 

Supplementary Table S2, Supplementary Table S3).  524 

There were no significant differences between the confidence scores of 525 

behaviors recorded with backpack or leg-loop harnesses for the two tested behaviors: 526 

Standing’ (GLMM: estimate ± se = 0.374 ± 0.283, p-value = 0.283) and ‘Feeding’ (GLMM: 527 

estimate ± se = -0.725 ± 0.798, p-value = 0.364, Supplementary Figure S1 and 528 

Supplementary Table S4). The model trained on leg-loop data and tested on backpack 529 

data had high overall accuracy (accuracy = 0.86) and performed well at classifying 530 

‘Standing’ behaviors (‘Standing’ precision = 0.99; recall = 0.91). All true ‘Feeding’ 531 

behaviors were correctly identified as such (‘Feeding’ recall = 1). However, most 532 

‘Ground’ behaviors were misclassified as ‘Feeding’, which reduced the precision of the 533 
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‘Feeding’ category (‘Feeding’ precision = 0.52). Similarly to the full model, ‘Ground’ 534 

behaviors had the poorest performance (Supplementary Table S5). 535 

 536 

 537 

Figure 4 – Model predicted confidence scores of true-positive (blue) and false-538 

positive (dark red) behavioral classifications. The darker points and error bars 539 

indicate the model predicted confidence scores and 95% confidence intervals for true-540 

positive and false-positive behavioral classifications. The lighter points show the raw 541 

data. 542 

 543 

Confidence score to validate ‘Feeding’ predictions of free-roaming vultures 544 

We used the GPS locations to validate 175 ‘Feeding’ bouts from 7 free-roaming vultures 545 

in Southern Israel. Overall, 126 ‘Feeding’ bouts (72%) occurred within a supplementary 546 

feeding station (‘Station’ – likely true-positives), 22 bouts (13%) were located on ‘Open 547 

areas’ (likely a mix of true- and false-positives), 20 bouts (11%) were on ‘Cliffs’ (likely 548 

false-positives), and 7 bouts (4%) were in ‘Flight’ (likely false-positives, Figure 5). The 549 
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relatively high proportion of feeding bouts identified on cliffs likely reflects the 550 

considerable amount of time griffons spend in these areas. Overall, of all ‘Feeding’ bouts 551 

identified by the algorithm, 72-85% (all ‘Station’ bouts + at least part of the ‘Open area’ 552 

bouts) were likely real feeding events. Furthermore, after removing ‘Cliff’ and ‘Flight’ 553 

bouts (easily identifiable using only the GPS location, satellite imagery, and ground 554 

speed), 85-100% of the ‘Feeding’ predictions (all ‘Station’ bouts + at least part of the 555 

‘Open area’ bouts) were indeed likely feeding events. 556 

 Importantly, the confidence scores of ‘Feeding’ bouts likely to be true-positives 557 

were higher (mean ± sd: ‘Station’ = 0.75 ± 0.16) than the scores of bouts likely to be 558 

false-positives (‘Cliff’ and ‘Flight’ = 0.56 ± 0.19). This comparison was statistically 559 

significant (GLMM: estimate ± se = -0.805 ± 0.167, p-value <0.001, Supplementary Table 560 

S5). When considering solely the ‘Feeding’ bouts with a confidence score over 0.5, 114 561 

bouts (88.4%) occurred within a supplementary feeding station and were likely true-562 

positives. This threshold maximizes the number of true-positive predictions, while 563 

minimizing the number of false-positives (Figure 5). 564 

 565 

 566 

Figure 5 - Validation of ‘Feeding’ behaviors using data from free-roaming griffons. 567 

A - Percentage of ‘Feeding’ predictions (n = 175) located within a supplementary feeding 568 

station (‘Station’ - blue), on open landscape (‘Open area’ - green), on cliffs (‘Cliffs’ - dark 569 

brown) or in flight (‘Flight’ - light brown). B - Distribution of the confidence scores of 570 
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‘Feeding’ bouts likely to be true-positives (located within a feeding station, in blue) and 571 

likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line 572 

indicates the confidence threshold of 0.5, a conservative threshold that reduces the 573 

number of false-positives, while including nearly all true-positive predictions.  574 

 575 

Mapping vulture’s feeding hotspots to facilitate poisoning identification 576 

In November 2022, we collected 4595 ‘Feeding’ bouts of 51 griffon vultures in our study 577 

area. After sequentially removing the bouts without a GPS location (n = 586), bouts inside 578 

feeding stations (n = 2534), outside Southern Israel and Jordan (n = 157), bouts located 579 

in known roosts (n = 979), and bouts with a confidence score below 0.5 (n = 60, Figure 580 

5), we retained 264 bouts of 31 vultures, that allowed us to map their feeding hotspots. 581 

We built a KDE with the remaining 264 ‘Feeding’ bouts and detected a hotspot of 582 

feeding events in the Judean desert. This hotspot is consistent with the INPA ranger’s 583 

reports for this same period, where 4 out of 5 reported carcasses outside feeding stations 584 

were within the KDE (Figure 6). This density map differed substantially from the one 585 

based solely on GPS-derived metrics (Supplementary Figure S2), containing 1,938 586 

potential feeding locations. Notably, the GPS-only KDE failed to identify a key feeding 587 

hotspot in Jordan. This confirms that the algorithm can be used to identify areas with 588 

high probability of vultures’ feeding on potentially contaminated carcasses and highlights 589 

the added value of the behavioral classification. 590 

 591 
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 592 

Figure 6 - Acceleration-based behavioral classification as a tool to identify griffon 593 

vultures’ feeding hotspots outside supplementary feeding stations. The red points 594 

show the vulture feeding locations in Southern Israel and Jordan over November 2022, 595 

identified using the random forest algorithm. The blue markers indicate the location of 596 

ground-truthed carcasses outside feeding stations; the darker blue indicates two 597 

carcasses in approximately the same location. The polygons indicate the density of 598 

vulture feeding locations, showing the areas where vultures are at greater risk of 599 

poisoning. The polygon colors indicate the density of vulture feeding locations, with blue 600 
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areas having lower density and red areas higher density. The inset shows the location 601 

of the study area in the world. 602 

 603 

Discussion 604 

Recent advancements in tracking technology and analytical tools are enhancing our 605 

understanding of animal ecology and behavior and improving its applications for 606 

biodiversity conservation (Tuia et al., 2022; Williams et al., 2020). In this study, we add 607 

to this body of literature by developing a machine learning algorithm to classify griffon 608 

vultures' behaviors, thoroughly validating the behavioral classifications, and using them 609 

to inform conservation efforts, namely carcass detection to prevent poisoning. Our model 610 

accurately predicted griffons' behaviors, allowing for the identification of potential feeding 611 

events outside feeding stations and the mapping of feeding hotspots where vultures and 612 

other scavengers can engage in risky behaviors such as the consumption of poisoned 613 

carcasses (Peters et al., 2023). These maps may become fundamental tools for 614 

monitoring-effort prioritization and for optimizing on-the-ground actions for the 615 

conservation of vultures and other scavengers (e.g., the detection of poisoning events, 616 

Rast et al., 2024). Another major contribution of this study is the use and validation of 617 

the algorithm's confidence in each behavioral classification, showing the utility of this 618 

approach for other behaviors and contexts. Assessing the degree of confidence in this 619 

manner is rarely done in ecological studies (Bidder et al., 2014), but we highlight how 620 

this approach may minimize misclassifications (e.g., false-positives) especially when 621 

resources for ground-truthing are limited. Our algorithm and training dataset are made 622 

accessible to other researchers and conservationists studying vultures and similar 623 

species. Moreover, they can be easily adapted to classify the behaviors of other species 624 

in diverse study systems. Importantly, to further promote this usability, we provide a 625 
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methodological workflow to guide potential users in the process of identifying behaviors 626 

of wild animals based on accelerometer data. 627 

 628 

Accelerometer-based behavioral classification as a tool for vulture conservation 629 

With our behavioral classification model, we were able to identify vulture feeding hotspots 630 

in Southern Israel. Indeed, the areas where our tracked vultures displayed ‘Feeding’ 631 

behaviors matched the locations of known ‘wild’ carcasses (i.e., outside feeding stations) 632 

during this same period. This case study used only a single month worth of high-633 

resolution data embedded within a long-term lower resolution tracking effort (Acácio et 634 

al., 2024; Spiegel et al., 2013), but it exemplifies how GPS and accelerometer data can 635 

be used to direct conservation efforts. The use of GPS tracking has been instrumental 636 

for vulture conservation in Israel (Spiegel et al., 2013), particularly for the detection of 637 

poisoning events (Acácio et al., 2023; Anglister et al., 2023). The local government 638 

environmental agency, INPA, developed a near-real time alert system that warns rangers 639 

whenever a vulture lands at a suspicious area and when vultures are either moving very 640 

little or are suspected to be dead (Nemtzov et al., 2021). Rangers then actively respond 641 

to these alerts by inspecting the area and removing the carcasses; therefore, reducing 642 

the number of false alarms is important – both to reduce costs and workload, as well 643 

avoiding erosion of rangers’ responsiveness.  644 

A similar near real-time alert system, using GPS data, has also been used for the 645 

monitoring of African elephants (Loxodonta Africana, Wall et al., 2014) and to track 646 

California condors (Gymnogyps californianus) in the vicinity of wind farms (Sheppard et 647 

al., 2015). It has also been suggested as an anti-poaching tool to prevent the extinction 648 

of large mammals (O’Donoghue & Rutz, 2016). We propose that all these systems could 649 

be improved by using accelerometer data to remotely identify animal behavior and risky 650 

events sooner and more reliably. Indeed, our results show that relying solely on GPS-651 
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derived filters to identify potential feeding hotspots failed to identify a key feeding hotspot 652 

in Jordan and produced over seven times more data points, many of which were likely 653 

false positives. Such an overload of low-quality alerts could lead to reduced 654 

responsiveness by the rangers, ultimately undermining conservation efforts on the 655 

ground.  656 

Combining maps of feeding hotspots (either fixed or season-specific ones) with 657 

similar near real-time alert systems may be crucial for vulture management and 658 

conservation. For example, the feeding areas that griffons use systematically throughout 659 

the year should be prioritized in terms of surveillance and sanitation efforts, to prevent 660 

vultures (and other scavengers) from accessing carcasses contaminated with toxic 661 

substances. Additional management actions could be implemented, such as establishing 662 

new supplementary feeding stations in these areas, or increasing carcass supply at 663 

existing stations, either all year-round or during particular seasons, to match potential 664 

seasonal changes in vulture’s activity areas. Additionally, the hotspots could be used to 665 

implement geofences where data collection and transmissions would be at higher 666 

frequency. This increased resolution may be critical in poisoning events, where the actual 667 

feeding may be quite fast (sometimes consuming a carcass within minutes) and vultures 668 

may perish quickly, depending on the type and amount of toxic substance ingested. 669 

Then, information regarding the griffon’s location and behavior is obtained and 670 

communicated faster: when a griffon lands in these areas and only if it feeds there (as 671 

indicated by the ACC classification), an alert should be sent to the rangers for immediate 672 

carcass inspection. While the system should also trigger alerts for any feeding events 673 

detected outside feeding stations (to allow for carcass inspection and potential removal 674 

to reduce the risk of poisoning), identifying risky hotspots can help optimize resource 675 

allocation and prioritize conservation actions in high-risk areas. 676 

Around the world, an increasing number of individuals of multiple vulture species 677 

are being tracked with GPS-Accelerometer devices, showing that they roam 678 
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exceptionally large areas on their daily movements (Kane et al., 2022; Spiegel et al., 679 

2015). Considering that about 70% of vulture species are endangered (Ives et al., 2022; 680 

Ogada et al., 2012; Plaza et al., 2019), surveillance systems that combine GPS tracking 681 

with accelerometry may be a useful tool to improve management actions in their large 682 

roaming areas to combat major threats such poisoning. For instance, such ACC-based 683 

systems will enhance existing applications of GPS-tagged vultures to inform on-ground 684 

actions against illegal wildlife persecution (Rast et al., 2024; Rodríguez-Pérez et al., in 685 

press) or to improve regulations for carrion disposal to feed vultures and other wild 686 

species (Mateo-Tomás et al., 2023). Future studies could apply our methodology to 687 

publicly available GPS-ACC datasets to identify high-risk areas for vultures and guide 688 

targeted conservation interventions at a larger geographic scale. 689 

Our thoroughly validated training dataset can also be used to classify the 690 

behavior of griffons in other populations, as well as other old and new-world vulture 691 

species, particularly in Africa and Asia, where vulture populations continue to decrease. 692 

For example, our algorithm and training dataset could be used to predict the behaviors 693 

of endangered Gyps species in Africa and Asia (e.g., Gyps africanus, Gyps coprotheres, 694 

Gyps bengalensis, amongst others), or even other vulture species (e.g., Torgos and 695 

Trigonoceps species), considering their morphological and behavioral similarities with 696 

the griffon vulture. The use of surrogate species to identify accelerometer-based 697 

behaviors has been examined in other systems, with a variety of results. For example, 698 

the behaviors of domestic dogs were good predictors of the behaviors of dingoes and 699 

cheetahs (Campbell et al., 2013), but the behavior of domestic caprids did not predict 700 

well the behavior of their wild counterparts (Dickinson et al., 2021). Therefore, we 701 

recommend caution when using our trained model to classify the behavior of other 702 

vulture species. In addition, our algorithm and modelling pipeline can be easily adapted 703 

for other, not related, animal species, as long as researchers provide their own training 704 

dataset for their study species. 705 
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 706 

Validating the accuracy of predictions of unobserved behaviors 707 

Tri-axial accelerometers and classification algorithms have increasingly been used to 708 

obtain fine-scale behavior of wild animals (Nathan et al., 2012; Resheff et al., 2014; 709 

Wang, 2019; Yu et al., 2021). However, after training and testing the model on a validated 710 

dataset, the model must classify unobserved and, sometimes, unknown behaviors. In 711 

this case, the model then matches the unknown behavior with the best fitting known 712 

acceleration signature, resulting in misclassifications (Glass et al., 2020). Most 713 

ecological studies fail to acknowledge this limitation and do not provide a metric of how 714 

likely a particular classification is to be true (Glass et al., 2020). Here we tackle this 715 

methodological gap and calculate a confidence score, which allows us to distinguish 716 

between true-positive and false-positive classifications. Our approach is computationally 717 

simple to implement and does not require running more complex classification models. 718 

In addition to the confidence scores, we used biologically relevant information to validate 719 

observations classified as ‘Feeding’. For this subset of data, 15% of the observations 720 

were likely misclassifications because they occurred on cliffs (where there is no food in 721 

our case) or in flight. Filtering out observations based on easily accessible metrics (here, 722 

the topography, knowledge of the behavior of the species, spatial position, and GPS 723 

ground speed) as well as any observations with a confidence score below a relevant 724 

threshold, increases the accuracy of behavioral classifications.  725 

Selecting filtering thresholds is always a balance between two types of errors. 726 

Here, we considered a conservative threshold of 0.5 to distinguish true-positive and 727 

false-positive ‘Feeding’ predictions of free-roaming griffons, at the risk of including some 728 

false-positive predictions in our dataset (Type I error). However, in this case, the risk of 729 

not including part of the true-positive predictions (Type II error) is higher than including 730 

some false-positives; not including all true-positives could mean that some feeding 731 

hotspots would not be identified, potentially compromising sanitary management and 732 
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overlooking potential feeding and poisoning events. We encourage other researchers to 733 

use a similar approach whenever possible, combining confidence scores with ground-734 

truthing information, to improve the accuracy of their conclusions.  735 

In addition, we note that different behaviors, or even the same behavior in 736 

different species or with different accelerometer devices, may have different confidence 737 

scores distributions. For example, with our dataset a threshold of 0.9 could have been 738 

suitable for distinguishing flapping and soaring flight behaviors, to study, for instance, 739 

flight biomechanics. Therefore, the threshold of confidence should consider the 740 

underlying distribution of confidence scores for the behaviors in mind and should be 741 

defined according to this and the study objectives, balancing the risks of data loss with 742 

the costs of including false-positives in the dataset.  743 

Finally, quantifying temporal correlations between behaviors could also help 744 

improve model performance or assist in post-processing filtering of the classifications 745 

(Supplementary Material 3, Supplementary Figure S3). For instance, it is possible to 746 

combine a correlation matrix of the behaviors with the confidence scores. In our dataset, 747 

‘Feeding’ is often followed by other ‘Feeding’ behaviors (Supplementary Figure S3C). 748 

Thus, if a high-confidence 'Feeding' behavior is followed by a low-confidence 'Feeding' 749 

prediction, the strong positive dependency between these two behaviors could support 750 

treating the second ‘Feeding’ as likely true-positive. Future studies could also implement 751 

more complex models that allow for the incorporation of the correlation matrix within the 752 

model.  753 

 754 

Challenges and considerations of accelerometer-based behavioral classification 755 

Different tag placement and different attachment methods can greatly influence 756 

accelerometer signatures, and consequently the behavioral classifications (Garde et al., 757 

2022). Nevertheless, our results show that our algorithm is reliable for more than one 758 
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attachment method, further increasing its usefulness. These non-significant differences 759 

may result from the similarity in logger placement between the two attachment types 760 

(about 3cm difference), as well as from the limited spinal flexibility of griffon vultures. Still, 761 

the large confidence intervals in this comparison (due to the small sample size for 762 

backpack harnesses), as well as difficulty of our algorithm in classifying ‘Ground’ 763 

behaviors recorded with a backpack harness shows that this topic deserves further 764 

investigation with larger sample sizes and with other species. 765 

After building the random forest, it is crucial to validate its accuracy, precision, 766 

and recall. In our study, the overall model was highly accurate, yet behaviors differed in 767 

their precisions. As expected, ‘Ground’ was consistently the behavior with the poorest 768 

predictions across all our validations. This behavioral category included several, quite 769 

distinct, ground behaviors (like walking, running, hopping, etc.), in an attempt to account 770 

for all possible behaviors a griffon may display and to minimize misclassifications at the 771 

cost of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand, was accurately 772 

classified by our model, however despite a relatively large number of bouts in the training 773 

dataset (n = 587), the confidence scores of this behavior had large variance. A possible 774 

reasoning is that griffon’s feeding behavior is highly complex and may include rapid shifts 775 

between fighting, posturing (spreading the wings), as well as eating per se (Bosè & 776 

Sarrazin, 2007) – all inseparable within a 5s timeframe. Including so many different 777 

postures in a single behavioral category results in high variation of confidence scores.  778 

In addition, the number of conspecifics within a feeding event may further 779 

influence the behaviors that individuals display while foraging (Bosè et al., 2012), 780 

increasing within-individual variability for both wild and captive vultures. To mitigate the 781 

effect of within-individual variability in our training dataset, we ensured that multiple 782 

captive individuals were feeding at the same carcass, to replicate the wild feeding 783 

conditions.  Finally, it is likely that individuals differ in their behavior while foraging (e.g., 784 

dominant vs subordinates, Bosè et al., 2012; Bosè & Sarrazin, 2007), emphasizing the 785 



35 
 

need to improve behavioral classification models and account for individual differences 786 

in behavior (Kirchner et al., 2023). In general, we suggest that future models can improve 787 

accuracy and precision by further splitting our six classes into subclasses that reflect 788 

more homogenous elementary behaviors (e.g., pecking, tearing meat apart, fighting). 789 

Merging ‘Ground’ and ‘Feeding’ categories could also potentially improve the model’s 790 

accuracy; however, since these two behaviors are not necessarily linked, this would 791 

come at the cost of decreased resolution in detecting true feeding events, compromising 792 

management and conservation applications. For specific applications focused solely on 793 

identifying feeding activity, an alternative approach could involve merging all feeding and 794 

all non-feeding behaviors in a binary classification. This could simplify the interpretation, 795 

and we suggest that this option is worth exploring in a future study 796 

Despite the potential of accelerometer-based behavioral classification, collecting 797 

such large volumes of data can be costly, both in terms of data transmission and storage, 798 

as well as in terms of device memory and battery (Hounslow et al., 2019). Short sampling 799 

intervals (2-3 secs) at high resolution may reduce the probability of having multiple 800 

behaviors within a single bout, but may drain batteries faster, which can result in 801 

incomplete sampling designs and lower the device’s lifespan. Integrating low-frequency 802 

accelerometry with additional sensors (e.g., time-depth recorders for marine species, 803 

Jeantet et al., 2020), may still effectively allow the study of animal behavior without 804 

significantly increasing costs or reducing device longevity (Hounslow et al., 2019). In 805 

addition, analyzing such large volumes of data can also be challenging, so we emphasize 806 

the need for collaboration in between fields of knowledge, with ecologists and data 807 

scientists working together for the conservation of biodiversity (Tuia et al., 2022). Lastly, 808 

as human activities are increasingly impacting the planet and driving species towards 809 

extinction, it is critical to harness technological advances for effective conservation and 810 

to safeguard the future of our planet's species and ecosystems. 811 

 812 
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Conclusions 813 

In this study, we showed the potential of accelerometer-based behavioral classification 814 

to improve the management and conservation of endangered scavengers. By reliably 815 

identifying feeding behaviors and mapping feeding hotspots, our approach can help the 816 

detection of poisoning events earlier and optimize management resources to high-risk 817 

areas. We further show that combining the algorithm’s confidence score with simple 818 

GPS-derived filters, can greatly improve the reliability of the identification of feeding 819 

hotspots. Finally, our workflow, training dataset, and model are provided in an open-820 

access platform, to facilitate the adoption of this framework in the global management 821 

and conservation of endangered scavengers. 822 
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Supporting Information 1175 

 1176 

Data S1 - Transmitter schedule of free-roaming griffon vultures 1177 

The GPS-ACC transmitters were programmed with different schedules, depending on 1178 

the analysis: 1179 

Conducting observations to build an ACC training dataset 1180 

To build the ACC training dataset, bouts of 5 sec at 20Hz were recorded for free-roaming 1181 

griffons every 10 min, if the transmitter’s battery was more than 50% charged, or every 1182 

60 min if the transmitter’s battery was below 50% charge. The GPS positions of free-1183 

roaming vultures were recorded every 10 min if the transmitter’s battery was above 75%, 1184 

every 20 min if the battery was between 50-75%, or every 60 min if the battery was below 1185 

50% charge.  1186 

 1187 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 1188 

To use the confidence score to validate the feeding predictions of free-roaming vultures, 1189 

the GPS positions were recorded every 10 min to 60 min (depending on the battery 1190 

charge). The transmitter was programmed to collect 5 sec bouts of accelerometer data 1191 

at 20Hz every 10 min if the battery was over 50% charge.  1192 

 1193 

Case study: identification of vulture feeding hotspots to prevent poisoning 1194 

To build a map of feeding hotspots, the transmitters were programmed to record GPS 1195 

positions every 10 min if the battery was over 50%, and every 60 min, if the battery was 1196 

below 50% charge. Accelerometer data were recorded every 5 min if the battery was 1197 

over 50% charge. 1198 

  1199 
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Data S2 – Details of the model building sequence 1200 

Using the ‘training subset’, we built a random forest model (number of trees = 1000, 1201 

number of statistical features per tree = 10, and minimum number of observations per 1202 

leaf = 10). We evaluated the performance of our model using the ‘testing’ subset. We 1203 

built a confusion matrix and calculated three performance metrics, for the full model and 1204 

for each behavior: (i) accuracy (sum of true-positives and true-negatives divided by all 1205 

predictions); (ii) precision (true-positives divided by the sum of true-positives and false-1206 

positives); and (iii) recall (true-positives divided by the sum of true-positives and false-1207 

negatives). The equations for each metric can be found in Table 1. Because only 67% 1208 

of the data was used to train the algorithm, these metrics are likely an underestimation 1209 

of the real performance of the final algorithm. 1210 

 1211 
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 1213 

 1214 

Supplementary Figure S1 - Comparison of the confidence scores of true-positive 1215 

(TP) and false-positive (FP) ‘Standing’ and ‘Feeding’ classifications, recorded 1216 

with a backpack (red) and with a leg-loop (blue) harness. Each panel shows the 1217 

model predictions and the 95% confidence intervals for the effect of the harness on the 1218 

confidence scores of true positive and false positive behavioral classifications.  1219 

  1220 
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 1221 

 1222 

Supplementary Figure S2 – Using GPS-derived metrics to identify feeding 1223 

hotspots, without using acceleration-based behavioral classification. The red 1224 

points show vulture locations with GPS ground speed equal to or slower than 4m/s, 1225 

outside the roosting areas and outside feeding stations for vultures, during November 1226 

2022 (n = 1,938 locations). The polygons indicate the density of vulture locations, 1227 

showing potential areas where vultures could be foraging and would be at greater risk 1228 

of poisoning. The polygon colors indicate the density of vulture locations, with blue 1229 

areas having lower density and red areas higher density. Comparison with Figure 6 1230 

(based on accelerometer-classified ‘Feeding’ behavior) shows that incorporating 1231 

behavioral data produces spatially distinct and more accurate hotspot identification.  1232 
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Supplementary Table S1 – Full list of statistical features used to summarize each 1233 

acceleration bout. Note that X, Y and Z refer to the orthogonal acceleration axes 1234 

(sway – X; surge – Y; heave - Z), while x and y refer to the variables that should be 1235 

included in the R functions. 1236 

Feature R function 

Mean (X, Y, Z) mean(x) 

Maximum (X, Y, Z) max(x) 

Minimum (X, Y, Z) min(x) 

Range (X, Y, Z) max(x) – min(x) 

Standard deviation (X, Y, Z) sd(x) 

Skewness (X, Y, Z) moments::skewness(x) 

Kurtosis (X, Y, Z) moments::kurtosis(x) 

Euclidian norm (X, Y, Z) sqrt(sum(x^2)) 

25% quantile (X, Y, Z) quantile(x, probs = 0.25) 

50% quantile (X, Y, Z) quantile(x, probs = 0.50) 

75% quantile (X, Y, Z) quantile(x, probs = 0.75) 

Covariance (X-Y, X-Z, Y-Z) cov(x, y) 

Mean difference (X-Y, X-Z, Y-Z) mean(x – y) 

Standard deviation of the difference (X-Y, X-
Z, YZ) 

sd(x – y) 

Mean amplitude (X, Y, Z) mean_amplitude(x) – user defined 
function provided in the R code 

 1237 
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Supplementary Table S2 – Results of the random forest model to classify vulture 1239 

behavior based on accelerometer data. The random forest model was trained on 1240 

67% of the total number of observations and its performance was tested on 33% of the 1241 

data. The true-positives and false-positives are the result of the performance test (for a 1242 

full confusion matrix see Figure 3 of the manuscript). For each prediction, the model 1243 

calculates a confidence score, i.e., the proportion of trees that agree on the highest 1244 

scoring prediction. Here we show the mean confidence score values for each predicted 1245 

behavior category.  1246 

 1247 

Behavior 

Total number 
of 

observations 
(number of 
vultures) 

True 
positives 

False 
positives 

Precision Recall 

Mean 
confidence 

score of 
true-

positives 
(sd) 

Feeding 587 (10) 189 17 0.87 0.92 0.82 (0.15) 

Lying 364 (5) 104 5 0.94 0.95 0.98 (0.06) 

Standing 3488 (11) 1142 20 0.98 0.98 0.98 (0.08) 

Ground 67 (8) 4 23 0.57 0.15 0.41 (0.03) 

Flapping 122 (18) 42 2 0.98 0.95 0.93 (0.12) 

Soaring 1155 (9) 375 4 0.99 0.99 0.99 (0.08) 

 1248 
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Supplementary Table S3 – Comparison of the confidence scores of true-positive 1250 

and false-positive behavioral classifications. Results of the GLMM beta binomial 1251 

model, with confidence score (0-1) as the response variable, and correctness (true-1252 

positive / false-positive), behavioral class (Feeding, Flapping, Ground, Lying, Soaring 1253 

and Standing) and their interaction as predictors. The model had device ID as random 1254 

effect. A p-value <0.05 indicates a statistical significant relationship. 1255 

Variable Estimate Std. Error Z value p-value 

Intercept 0.470 0.215 2.191 0.028 

Validation – 
True positive 

0.876 0.195 4.492 <0.001 

Behavior – 
Flapping 

-0.775 0.578 -1.343 0.179 

Behavior – 
Ground 

0.173 0.248 0.698 0.485 

Behavior – 
Lying 

-0.133 0.403 -0.330 0.741 

Behavior – 
Soaring 

0.902 0.456 1.979 0.048 

Behavior – 
Standing 

-0.020 0.254 -0.079 0.937 

Valid. True 
Positive x 
Beh. Flapping 

1.761 0.586 3.007 0.003 

Valid. True 
Positive x 
Beh. Ground 

-1.749 0.445 -3.926 <0.001 

Valid. True 
Positive x 
Beh. Lying 

1.807 0.416 4.342 <0.001 

Valid. True 
Positive x 
Beh. Soaring 

1.017 0.442 2.304 0.021 

Valid. True 
Positive x 
Beh. Standing 

1.341 0.260 5.162 <0.001 

 1256 

Random effects Variance Std. Dev. 

Device id 0.0995 0.3155 

 1257 
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Supplementary Table S4 – Comparison of the confidence scores of true-positive 1259 

and false-positive ‘Standing’ and ‘Feeding’ classifications, recorded with a 1260 

backpack and with a leg-loop harness. Results of the GLMM model beta binomial 1261 

model, with confidence score (0-1) as the response variable, and the correctness (true-1262 

positive / false-positive), the type of harness (backpack / leg-loop) and their interaction 1263 

as predictors. The model had device ID as random effect. A p-value <0.05 indicates a 1264 

statistical significant relationship. 1265 

 1266 

 1267 

  1268 

Behavior Variable Estimate Std. 
Error 

Z 
value 

p-value Random 
effect 
variance 

Random 
effect  
std. dev. 

Standing 

Intercept 0.238 0.315 0.754 0.451 - - 

Correctness – 
True positive 

1.949 0.250 7.808 <0.001 - - 

Harness –  
Leg-loop 

0.444 0.451 0.985 0.325 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

0.374 0.349 1.074 0.283 - - 

Device id - - - - 0.185 0.43 

Feeding 

Intercept -0.240 0.764 -0.314 0.753 - - 

Correctness – 
True positive 

1.698 0.769 2.207 0.0273 - - 

Harness –  
Leg-loop 

0.851 0.796 1.069 0.285 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

-0.725 0.798 -0.908 0.364 - - 

Device id - - - - 0.022 0.149 
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Supplementary Table S5 - Confusion matrix of the random forest assessing the 1269 

influence of the harness type on the performance of the algorithm. This random 1270 

forest was trained solely on leg-loop data and tested on backpack data. 1271 

Predicted / Observed Feeding  

(n = 104) 

Ground 

(n = 47) 

Standing 

(n = 563 

Feeding 104 43 52 

Ground 0 0 0 

Standing 0 4 511 

    

Precision 0.52 NA 0.99 

Recall 1.00 0 0.91 

  1272 



53 
 

Supplementary Table S6 – Comparison of the confidence scores of feeding 1273 

bouts likely to be true-positives or false-positives. Results of the GLMM model 1274 

beta binomial model, with confidence score (0-1) as the response variable, and 1275 

correctness (likely to be true-positive – inside feeding stations; likely to be false-1276 

positives – on cliffs or in flight) as predictor. The model had device ID as random effect. 1277 

A p-value <0.05 indicates a statistical significant relationship. 1278 

Variable Estimate Std. Error Z value p-value 

Intercept 1.101 0.078 14.140 <0.001 

Correctness – 
Low 
probability of 
true positive 

-0.805 0.167 -4.827 <0.001 

 1279 

Random effects Variance Std. Dev. 

Device id <0.001 <0.001 

 1280 
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Data S3 – Temporal correlation between behaviors 1282 

To test if there is temporal correlation between behaviors, we used the dataset of 51 1283 

free-roaming vultures collected during November 2022, consisting of 197,641 behaviors 1284 

with confidence scores over 0.5.  1285 

We first calculated the overall occurrence rate of each behavior (OR, Supplementary 1286 

Figure S3A). Then, for each individual on each day, we quantified how often a behavior 1287 

was followed by another (Behavior Transition Rate, BTR, Supplementary Figure S3B). 1288 

For example, how often ‘Feeding’ was followed by ‘Standing’ (Feeding-to-Standing 1289 

BTR), by ‘Feeding’, by ‘Ground’, etc. We excluded transitions between behaviors that 1290 

were separated by more than 10 minutes.  1291 

Frequent behaviors may inflate BTR values simply due to their high occurrence (e.g., 1292 

‘Feeding’ followed by ‘Standing’ could be common because ‘Standing’ is generally 1293 

frequent in the dataset due to the time vultures spend standing). We corrected for this 1294 

by computing the dependency between behaviors as the log-odds of the ratio between 1295 

BTR and the overall OR. Positive dependency values indicate strong temporal 1296 

associations (e.g., Feeding is very often followed by Standing), negative dependency 1297 

values indicate avoidance or rare transitions (e.g., Soaring is rarely followed by 1298 

Feeding), and values near zero indicate weak or random associations (Supplementary 1299 

Figure S3C). 1300 

 1301 

𝑂𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠
 × 100 1302 

 1303 

𝑂𝑅𝐵 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐴 𝑖𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐵

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝐴
 × 100 1304 

 1305 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ln (
𝑂𝑅𝐵

𝑂𝑅
)  1306 

 1307 

Despite the relatively low temporal resolution of our data (5 to 10min, depending on the 1308 

dataset, i.e., longer than many of the behavior duration), we still detected temporal 1309 

correlation between some behaviors. After adjusting for overall behavior frequency, we 1310 

found that ‘Feeding’ was frequently followed by ‘Feeding’ or ‘Standing’, but not by 1311 

‘Ground’. In contrast, ‘Ground’ was often followed by ‘Feeding’, ‘Standing’, ‘Ground’, 1312 

and ‘Flapping’ (the latter likely due to the running behaviors while taking-off). Yet, we 1313 

note that this behavior was rare in the dataset (0.05% occurrence rate, n = 95), so 1314 

these dependencies may reflect the limited sample size. 1315 

 1316 
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Supplementary Figure S3 – Temporal correlation between consecutive 1318 

behaviors. Figure A shows the total occurrence rate of all behaviors (OR); Figure B 1319 

shows percentage of times that a behavior is followed by another (BTR); Figure C 1320 

shows the dependency between behaviors, calculated as the log-odds of the ratio 1321 

between occurrence rate between behaviors (BTR) and the total occurrence rate of 1322 

each behavior (OR). In C, positive dependencies are depicted by shades of blue, 1323 

negative dependencies are depicted by shades of red, and white tiles depict undefined 1324 

values (log of 0). In B and C, darker tones represent stronger relationships, and the 1325 

black outlines in the diagonal highlight the self-dependency (e.g., Feeding-Feeding 1326 

dependency). 1327 
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