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Abstract 27 

Human activities are endangering animal species globally and implementing effective 28 

conservation strategies requires understanding animal behavior and ecology. 29 

Technological advancements in GPS tracking technology, accelerometry, and machine 30 

learning algorithms are now making it possible to study animal movement and behavior 31 

remotely. However, due to the challenge of building supervised machine learning 32 

algorithms and collecting the large datasets required to train them, the use of these 33 

algorithms is still not common practice. Additionally, after building the algorithms, their 34 

reliability in classifying unobserved behaviors is rarely validated, resulting in possible 35 

classification errors. Here, we built a supervised accelerometer-based behavioral 36 

classification model for griffon vultures (Gyps fulvus). This scavenger is critically 37 

endangered in Israel and neighboring countries, mostly due to mass poisonings at 38 

carcass feeding events. In fact, poisoning is one of the main threats to scavenger 39 

populations worldwide. Thus, identifying this scavenger’s feeding behavior and foraging 40 

areas is crucial for their conservation. We trained a random forest model on acceleration 41 

data of 14 captive and 17 free-roaming griffons. We collected 5783 behavioral 42 

observations grouped into 6 distinct classes: feeding, lying, standing, other ground 43 

behaviors, flapping and soaring flight. The classification model performed well (0.96 44 

accuracy, 0.89 precision and 0.82 recall) and, importantly, feeding behaviors were 45 

accurately classified (0.87 precision, 0.92 recall). Importantly, we calculated an 46 

observation-specific confidence score and demonstrated its effectiveness (for all but one 47 

of the behavioral classes) in identifying true- and false-positive classifications, in both 48 

captive and free-roaming individuals. Further, our classification model enables us to 49 

identify vulture feeding hotspots, potentially aiding the implementation of conservation 50 

actions related to carcass management. Finally, our training dataset and model are 51 

provided in a user-friendly platform and accompanied by a conceptual framework, to 52 
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encourage use by ecologists and conservation practitioners overcoming the data-53 

analysis challenges involved in this powerful approach. 54 

Keywords (up to 8): 55 

Accelerometer, Behavior classification, Random Forest, Griffon Vulture, Poisoning, 56 

Conservation, Biotelemetry, Supervised machine learning. 57 

 58 

Introduction 59 

Anthropogenic activities are endangering animals around the world (Venter et al., 2016). 60 

To combat the current wave of species extinction, we need to understand animal 61 

behavior and ecology to minimize threats and conflicts, and to implement effective 62 

conservation strategies (Fehlmann et al., 2023; van Eeden et al., 2018). Over the last 63 

couple of decades, technological advances have provided tremendous insights into 64 

animal ecology and behavior (Kays et al., 2015; Nathan et al., 2022), often with direct 65 

implications for conservation (Tuia et al., 2022). The use of GPS-tracking technology, for 66 

instance, has contributed to a deeper understanding of animal movements and space 67 

use, which can inform the design and administration of protected areas (Hays et al., 68 

2019). GPS-tracking has also helped identifying the locations of animal mortality (Sergio 69 

et al., 2019) and location-specific causes of mortality (Serratosa et al., 2024). Uncovering 70 

the location and spatial extent of animal threats is critical for managing endangered 71 

species (Kane et al., 2022; Olea & Mateo-Tomás, 2014) and for mitigating human-72 

induced mortality (Serratosa et al., 2024). 73 

While GPS tracking provides valuable insights into where and when animals use 74 

particular habitats, it does not provide direct information on the specific behaviors 75 

animals perform within those habitats. For instance, a site where an individual stops 76 

could be used for resting, foraging, or other behaviors - which cannot be distinguished 77 
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using GPS data alone. Complementing GPS-tracking data with additional sensors offers 78 

insights into the behavior and energy use of elusive and cryptic animals (Shepard et al., 79 

2008; Smith & Pinter-Wollman, 2021; Spiegel et al., 2015; Tuia et al., 2022; Williams et 80 

al., 2020). Tri-axial accelerometers (ACC) are widely used in behavioral research, among 81 

other sensors (Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These devices 82 

measure acceleration in three orthogonal axes (sway – x; surge – y; and heave - z) that 83 

change according to the animal’s posture and locomotion. These measurements can be 84 

recorded either continuously or in “bouts” (i.e., sampling units) of a few seconds at 85 

varying resolution (i.e., frequency, in Hz) and intervals (for example, recording for 5 86 

seconds at 20Hz, every 10 minutes). Different acceleration signatures enable the 87 

measurement of movement-related energy expenditure (Gleiss et al., 2011; Halsey et 88 

al., 2009) and can be used to distinguish among different behaviors (Shepard et al., 89 

2008), for example, for estimating flight duration in small migratory passerines (Bäckman 90 

et al., 2017). 91 

Machine learning algorithms are used to classify raw acceleration bouts into 92 

different behavioral classes (Nathan et al., 2012; Resheff et al., 2014; Valletta et al., 93 

2017; Wang, 2019; Yu et al., 2021). These algorithms can operate in an unsupervised 94 

manner, identifying similarities in acceleration data to produce unlabeled clusters of 95 

similar measurements that subsequently need to be manually classified into specific 96 

behaviors (Chimienti et al., 2016; Wang, 2019). Alternatively, supervised learning 97 

involves training an algorithm with a dataset in which each behavior is labeled, allowing 98 

the algorithm to ‘learn’ the distinctive acceleration patterns of different behaviors (Nathan 99 

et al., 2012; Wang, 2019; Yu et al., 2021). However, depending on the level of detail 100 

required and on how distinctive the behaviors are, assembling a training dataset can be 101 

laborious, as it typically requires direct observations of animals in the wild or in captivity, 102 

synchronized with the ACC measurements (Campbell et al., 2013; Dickinson et al., 103 

2021). Despite these difficulties, supervised machine learning algorithms have been 104 
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successfully used to classify behaviors across diverse animal groups, including baboons 105 

(Fehlmann et al., 2023), large pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et 106 

al., 2020),  condors, and other vultures (Rast et al., 2024; Spiegel et al., 2013; Williams 107 

et al., 2015). Commonly used algorithms include artificial neural networks, extreme 108 

gradient boosting, and random forests (Resheff et al., 2014; Yu et al., 2021). Random 109 

forests have the advantage of being able to model complex interactions between the, 110 

often correlated, predictor variables, therefore not requiring the pre-processing and 111 

filtering of variables (Cutler et al., 2007), and simplifying behavioral classification. 112 

Once a machine learning model is trained, it can classify new, unseen 113 

accelerometer data into the trained behavioral classes, invariably resulting in some 114 

classification errors (Glass et al., 2020; Jeantet et al., 2020). Errors emerge from a few, 115 

non-mutually exclusive, processes. First, acceleration bouts, particularly long ones, may 116 

include transitions among behaviors resulting in a mixture of different acceleration 117 

signatures (Resheff et al., 2024). Second, rare behaviors may be underrepresented or 118 

missing from the limited training dataset (e.g., seasonal and rare behaviors such as 119 

copulation). Third, the behavioral repertoire of some individuals may be broader than 120 

what the algorithm is trained for. Because some behaviors might be difficult to observe 121 

in captivity (e.g., flight behaviors, Williams et al., 2015), this last error is particularly 122 

relevant for algorithms trained on captive individuals that are used to predict the 123 

behaviors of wild animals (Dickinson et al., 2021). Still, the models must choose the best 124 

fitting behavioral class among the available options, even if none provides a particularly 125 

good fit. These errors demand a mechanism to verify the accuracy of each behavioral 126 

classification, allowing the model to distinguish between true-positive and false-positive 127 

classifications (Bidder et al., 2014; Glass et al., 2020). While some studies offer guidance 128 

on how to best use and analyze large acceleration datasets (e.g., Leos-Barajas et al., 129 

2017; Resheff et al., 2014; Williams, Taylor, et al., 2020), the complexity of these tools 130 
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remains a barrier for non-experts, hindering their use in conservation science and 131 

practice.  132 

Here we develop an accelerometer-based behavioral classification tool and 133 

validate its real-world application in ecology and conservation, using griffon vultures 134 

(Gyps fulvus) as a case study. As obligate scavengers, vultures support key ecosystem 135 

functions by consuming carcasses and recycling nutrients (Buechley & Şekercioğlu, 136 

2016). Yet, around the world, 70% of vulture species are in danger of extinction, with 137 

poisoning driven by consuming carcasses containing toxic substances being one of the 138 

leading causes for population declines (Ives et al., 2022; Ogada et al., 2012; Plaza et al., 139 

2019). Poisoning can be either intentional or unintentional. For instance, poachers may 140 

lace carcasses with poison to prevent these raptors from alerting environmental 141 

authorities of poached wildlife (Mateo-Tomás & López-Bao, 2020; Ogada et al., 2016), 142 

and farmers may do so for combating pests and mammalian carnivores. Anti-143 

inflammatory drugs used to treat cattle are also lethal to vultures, leading to poisoning at 144 

these carcasses (López-Bao & Mateo-Tomás, 2022; Ogada et al., 2012; Plaza et al., 145 

2019). Several hundred vultures may quickly gather to eat at a single carcass, increasing 146 

their vulnerability to mass poisoning events (McNutt & Bradley, 2014). Other scavenger 147 

species also feed on carcasses (Olea et al., 2019), exposing them to similar risks of 148 

poisoning (Katzner et al., 2024; López-Bao & Mateo-Tomás, 2022). Early detection of 149 

carcasses might facilitate their proper management to, for example, prevent vultures and 150 

other wild species from feeding on carrion with toxic substances by removing these from 151 

the environment. Moreover, when poisoning events are promptly detected, vultures and 152 

other animals can undergo medical intervention (Acácio et al., 2023; Anglister et al., 153 

2023). Considering the vulture’s large roaming areas (Spiegel et al., 2015), tracking 154 

technology and behavioral classification are essential tools to identify vultures’ feeding 155 

events. Vultures can therefore act as sentinels, facilitating carcass detection, and 156 

maximizing prompt intervention efforts to reduce detrimental effects associated with 157 
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consumption of contaminated carrion. For instance, by reducing the number of fatalities 158 

at a poisoning event to avoid long-term effects on species’ populations (Acácio et al., 159 

2023; Slabe et al., 2022).  160 

In this study, our goals are to 1) develop an ACC-based behavioral classification 161 

algorithm, which, together with the training dataset and a conceptual framework of the 162 

methodological workflow, is made freely available to conservationists and ecologists; 2) 163 

validate the algorithm’s classifications, by comparing the confidence scores of true-164 

positive and false-positive classifications, using both the training dataset and data from 165 

free-roaming vultures; and 3) apply our novel algorithm to real-life scenarios with 166 

important conservation implications – i.e., rapid carcass detection to prevent vulture 167 

poisoning. Ultimately, our goal is to combine technological advancements in GPS and 168 

accelerometry to improve wildlife conservation efforts, and to develop a tool that is easily 169 

transferable to other systems. 170 

 171 

Methods 172 

Study system 173 

The study took place in Israel, where griffon vultures are critically endangered (Mayrose 174 

et al., 2017). A historical population of thousands of griffons is currently declining; three 175 

decades ago, there were only 400 griffons in this population, and fewer than 200 176 

individuals remain today (Hatzofe, 2020). Pesticide poisoning from consuming laced 177 

carcasses is the leading cause of griffon mortality, accounting for 45% of documented 178 

deaths between 2010-2021 in this region (Anglister et al., 2023). Lead poisoning and 179 

ingestion of animals treated with anti-inflammatory drugs each contribute to 6% of 180 

mortality events, posing additional threats to this population (Anglister et al., 2023). To 181 

prevent the local extinction of this species, the Israel Nature and Parks Authority (INPA) 182 

runs an intricate management program, including the provisioning of contaminant-free 183 
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food at supplementary feeding stations (Spiegel et al., 2013, 2015), the release of 184 

captive-bred and translocated griffons (Efrat et al., 2020), and individually tracking 185 

vultures using GPS-Accelerometer transmitters, to identify poisoning events and other 186 

threats. When wild carcasses are detected in a random location within areas of known 187 

pastoral activity and poisoning history, or when vultures exhibit minimal movement, 188 

suggesting they are unwell, rangers are sent to the field to remove the carcasses and/or 189 

transport affected individuals to a wildlife hospital, underscoring the critical role of GPS-190 

tracking data for the conservation of this population (Acácio et al., 2023). 191 

 Every year, approximately 100 free-roaming griffons are captured by the INPA 192 

using a cage trap, to identify the individuals with metal and color rings and with patagial 193 

tags. In these trapping events, a few individuals are fitted with a GPS-ACC transmitter 194 

(Ornitela OT-50) using a Teflon harness in a leg-loop configuration. The transmitters are 195 

equipped with solar panels that recharge the batteries, and transmit the collected data 196 

via the GSM network, eliminating the need for recapturing individuals to retrieve 197 

information. The current study uses tracking data collected from these GPS-ACC tags, 198 

and no captures of free-roaming vultures were conducted specifically for this project. The 199 

study was approved by the Israel Nature and Parks Authority (permit number 42166). 200 

 201 

Conducting observations to build an ACC training dataset 202 

Between January 2020 and February 2022, we deployed GPS-ACC transmitters on 31 203 

griffon vultures, 14 captive vultures and 17 free-roaming individuals. The captive vultures 204 

were housed in in 4 breeding programs, rehabilitation or wildlife facilities, in Israel and in 205 

Spain: Ramat Hanadiv (Israel, n = 4), Hai-Bar Carmel (Israel, n = 4), Cabárceno Wildlife 206 

Park (Spain, n = 3) and GREFA wildlife hospital (Spain, n = 3). In each cage, there were 207 

6 to 12 vultures. Additional behavioral data was collected in Israel for 17 free-roaming 208 

griffon vultures. One individual dropped his transmitter and was deployed with another 209 
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device (thus there were 31 individuals but 32 transmitters).  In Israel, the transmitters 210 

were deployed using a leg-loop harness and in Spain the loggers were deployed using 211 

a backpack harness. 212 

The transmitters were programmed to collect GPS and ACC at independent 213 

schedules, and differently for captive and free-roaming griffons. The transmitters of 214 

captive griffons were programmed to collect tri-axial accelerometer data at 20Hz almost 215 

continuously (10-min-long periods, with a 1 sec interval in between). These 10min bouts 216 

were parsed into 5 sec bouts to match the free-roaming dataset. Bouts of 5 sec at 20Hz 217 

were recorded for free-roaming griffons every 10 min, depending on the transmitter’s 218 

battery charge (see Supplementary Material for details).  219 

To classify each 5 sec ACC bout as a particular behavior, we conducted direct 220 

observations and video recordings of the tagged griffons, both in captivity and in the wild. 221 

In total, we performed observations for 79 days. Direct observations of captive and wild 222 

griffons were conducted with a spotting scope (Swarovski ATX spotting scope 85mm), 223 

ensuring a sufficient distance to not disturb the vulture’s natural behavior. The video 224 

recordings were captured using a camera mounted on a wall support in Spain, and with 225 

nest cameras at the captive breeding facilities, or live streaming nest cameras at wild 226 

nests in Israel (BirdLife Israel, 2022). The direct observations of wild vultures were 227 

performed at roosting sites, at approximately 250 of the individuals.  228 

We recorded six ecologically important behavioral classes: ‘Standing’ - vulture is 229 

resting upright (could be roosting, and may include minor preening and changes in body 230 

posture); ‘Lying’ - vulture is lying parallel to the ground, either resting or incubating; 231 

‘Feeding’ – vulture is either directly eating from a carcass, or engaged in intense social 232 

interactions next to the carcass (e.g., fighting or posturing towards other vultures before 233 

eating); ‘Ground’ - includes all other active ground behaviors which are not directly 234 

related to feeding or resting (e.g., walking, running, hopping, etc.); ‘Flapping’ - active 235 

flight with wingbeats; and ‘Soaring’ - passive flight (e.g., thermal soaring, gliding, etc.). 236 
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Because long flights do not occur in captivity, we used GPS-ACC data from 17 free-237 

roaming griffons in southern Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active) 238 

flight behaviors. We identified segments of continuous flight using the GPS ground speed 239 

(ground speed >4m/sec) and plotted the acceleration measurements taken during these 240 

flights. The acceleration signatures of soaring and passive flights are so distinctive 241 

(Figure 1B,C, Williams et al., 2015) that there was no need to ground-truth these 242 

behaviors with visual sightings (which would be challenging, considering their large 243 

roaming areas).  244 

 245 

 246 

Figure 1 - Examples of accelerometer-based classification of griffon vulture’s 247 

behaviors. Acceleration measurements of three bouts classified directly into: (A) 248 

‘Feeding’, (B) ‘Flapping’ flight, (C) and ‘Soaring’ flight. Examples for the remaining 249 

behavioral classes (‘Lying’, ‘Standing’ and ‘Ground’) can be found in Supplementary 250 
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Figure S1. The acceleration data was collected at 20Hz during 5 seconds for three 251 

orthogonal axes (D): sway – X (red), surge – Y (green), and heave - Z (blue). (D) GPS-252 

tracking of a griffon vulture over two days. The grey line indicates the first day of tracking 253 

and the red line is the second day of tracking. GPS locations of the second day are 254 

shown as red circles. This illustrates the large daily movements of griffon vultures, 255 

emphasizing the logistical challenges associated with surveillance in the desert study 256 

area. Photo credit: Yacov Ben Bunan. 257 

 258 

Pre-processing the ACC data and model training 259 

Before deployment on the griffons, 50 transmitters were calibrated on a leveled surface, 260 

in all six possible perpendicular orientations. This calibration allowed us to obtain a 261 

transmitter-specific instrument error for translating raw acceleration data (in mV) into 262 

acceleration units (m/sec2). For 14 transmitters (out of 32) without specific error values, 263 

we used the average error across the measured transmitters (n = 50). The calibration 264 

values used are publicly available on GitHub. 265 

We identified the start and end of each accelerometer bout and w excluded from 266 

the ACC behavioral dataset all bouts shorter than 5 sec, as well as all bouts that matched 267 

more than one behavioral class during the 5 sec period. Each acceleration bout was 268 

summarized into 47 statistical features commonly used in other studies using machine 269 

learning algorithms to perform behavioral classifications of ACC data (e.g., Nathan et al., 270 

2012; Yu et al., 2021). For a full list of features, see Supplementary Table S1. All 271 

analyses were performed in R (R Core Team, 2023). 272 

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip (Kuhn & 273 

Vaughan, 2024), we built a random forest model to classify behaviors using the 274 

annotated acceleration bouts. We started by splitting this dataset into ‘training’ (67%) 275 

and ‘testing’ (33%) subsets, an ad hoc measure commonly found in other machine-276 
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learning applications (e.g., (Jeantet et al., 2020). Using the ‘training subset’, we built a 277 

random forest model and we evaluated the performance of our model using the ‘testing’ 278 

subset. We built a confusion matrix and calculated three performance metrics, for the full 279 

model and for each behavior: (i) accuracy; (ii) precision; and (iii) recall. The equations 280 

and descriptions for each metric can be found in Table 1. For example, a model may 281 

have 0.90 accuracy (i.e., 90% of all behaviors were predicted correctly), 0.85 precision 282 

for a specific behavior (e.g., 85% of all ‘Feeding’ predictions were indeed ‘Feeding’ 283 

observations and 15% were a different behavior and wrongly identified as ‘Feeding’), 284 

and 0.80 recall of a specific behavior (e.g., 80% of ‘Feeding’ observations were correctly 285 

predicted as ‘Feeding’ and 20% were wrongly classified as another behavior).  286 

After training and evaluating the performance of the algorithm with the split 287 

annotated dataset, we built the final random forest model using the full dataset for 288 

training, likely improving the performance of the algorithm. This full algorithm was then 289 

used to classify unobserved accelerometer bouts to identify feeding in free roaming 290 

vultures (see below).  291 

More details of the model building sequence can be found in Supplementary 292 

Material 2, and a full description of the model building process can be found in Figure 2. 293 

All the training data and the code necessary to train and build the algorithm are publicly 294 

available on GitHub. The repository includes a tutorial suitable for two types of users: 295 

those who may wish to apply our (already-trained) model to their own data (e.g., 296 

researchers and conservationists working on similar vulture/raptor species), and those 297 

wishing to use our pipeline for training and building their own model (e.g., researchers 298 

and conservationists working on other species, or with different sampling protocols). With 299 

these tutorials, our main goal is to bridge the gap between researchers and practitioners. 300 

 301 
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Table 1 – Performance metrics used to evaluate the random forest model performance, 302 

considering the true-positive (TP), true-negative (TN), false-positive (FP) and false-303 

negative (FN) predictions.  304 

Performance metric Equation 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 305 

 306 

Calculating confidence scores to validate model predictions 307 

Using the training dataset, we calculated a confidence score for each behavioral 308 

classification (i.e., for every bout). This confidence score is the level of consensus 309 

amongst the different decision trees within the random forest (i.e., the proportion of trees 310 

that agree on the highest scoring prediction). For example, if the model classifies a given 311 

bout as ‘Feeding’ with a confidence score of 0.7, then 70% of the trees agreed on that 312 

classification. To determine the validity of this score as an indicator of the behavioral 313 

classification’s reliability, we compared the scores of correctly identified behaviors (true-314 

positives) and of incorrectly identified behaviors (false-positives) in the testing subset. 315 

We then used a generalized linear mixed model (GLMM) with an ordered beta 316 

distribution and a logit link to compare scores of the two groups. The confidence score 317 

(range 0 to 1) was the response variable, and the explanatory variables were the Boolean 318 

correctness of the model prediction (categorical; true-positive or false-positive), the 319 

predicted behavior (categorical), and their interaction. The model included device ID as 320 

a random intercept. The GLMM was built using glmmTMB R package (Brooks et al., 321 
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2017), and the fit of the model and residuals were evaluated using DHARMa R package 322 

(Hartig, 2022).  323 

To understand the effect of the harness configuration (backpack or leg-loop) on 324 

the confidence scores, we compared the confidence scores of true-positive and false-325 

positive classifications of behaviors recorded with the two different harnesses. We 326 

performed this comparison for the two behaviors with most observations: standing and 327 

feeding. We built two separate GLMMs for each behavior. Each GLMM included the 328 

confidence score as a response variable, and the Boolean correctness of the model 329 

prediction (true-positive or false-positive), the predicted behavior, and their interaction, 330 

as explanatory variables. We also included device ID as a random intercept. To further 331 

explore the influence of harness type on the behavioral classification, we trained a new 332 

random forest model using only the leg-loop data (n = 3428) and tested it on the 333 

backpack dataset (n = 714). This model was trained on a subset of bouts that included 334 

only the three behavioral categories present in both datasets (‘Standing’, ‘Ground’ and 335 

‘Feeding’). 336 

 337 
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 338 
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Figure 2 - Methodological workflow outlining the process of identifying behaviors 339 

of wild animals based on accelerometer data. All the training data, code and tutorials 340 

necessary to follow this workflow are available on GitHub.  341 

 342 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 343 

To assess the reliability of our algorithms at classifying unobserved data, we validated 344 

predicted ‘Feeding’ behaviors of free-roaming vultures. We focused on this behavior due 345 

to its importance for identifying poisoning events, the main cause of vulture mortality in 346 

our study area (Anglister et al., 2023). This validation is important because even a highly 347 

accurate model introduces classification errors. For example, considering a transmitter 348 

collecting 72 bouts a day, with 10 of those classified as ‘Feeding’, and a model with 90% 349 

precision for ‘Feeding’. Over the course of one week, the device would collect 504 bouts, 350 

70 of which classified as ‘Feeding’. Considering the model’s precision, 7 of these 351 

‘Feeding’ classifications would be false-positives which, extrapolating for a population of 352 

50vultures, this would correspond to approximately 350 false-positive feeding predictions 353 

per week.   354 

We combined information about the location of supplementary feeding stations, 355 

satellite imagery, and GPS positions from griffon-borne transmitters to assess the 356 

likelihood that the unobserved vultures’ ACC-predicted ‘Feeding’ behavior represents a 357 

true feeding event. Between November-December 2020, we collected GPS and 358 

accelerometer data from 7 tagged free-roaming griffons in southern Israel (transmitter 359 

schedule described in the Supplementary Material). These individuals were selected 360 

because they provided consistent high-resolution data throughout this two-month period, 361 

making them suitable for the fine-scale analysis of feeding behavior. We matched a GPS 362 

position to an accelerometer bout if they were recorded within 5 min of each other. We 363 

designated four situations with decreasing probability of representing real feeding events 364 
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based on the GPS location and GPS ground speed: ‘Station’ – if the ACC identified a 365 

feeding event within 250m from a supplementary feeding station, it likely represents a 366 

true feeding event (likely true-positive predictions); ‘Open area’ – if the ACC identified a 367 

feeding event at a GPS position that is at an open landscape (but not on a cliff), where 368 

naturally-occurring food is sometimes available (wildlife or livestock carcasses), it may 369 

represent a true feeding event ; ‘Cliff’ – if the ACC identified a feeding event on cliff faces, 370 

where food is largely absent but where vultures spend a large proportion of their time 371 

roosting, it is not likely to be a true feeding event; ‘Flight’ – if the GPS ground speed was 372 

>4m/sec the vulture was probably flying, and therefore it is likely a false feeding event. . 373 

The 250 m radius around the feeding station accounted for the vultures’ behavior of 374 

standing nearby and overlooking the station before feeding. Given the potential 5-minute 375 

offset between GPS fixes and accelerometer bouts, this buffer allows for the possibility 376 

that a griffon could move to the station and begin feeding within that time window. All 377 

points were mapped on satellite images of the study area and were visually examined 378 

after this classification to confirm the assignment to each situation (for example, to 379 

confirm vulture presence on a cliff, in an open area or near a feeding station). 380 

To determine if the confidence score of the classification can be used to identify 381 

false-positives in free-roaming griffons, we compared the algorithm’s confidence scores 382 

of ‘Feeding’ predictions at ‘Stations’ (i.e., high probability of true-positives) with ‘Feeding’ 383 

predictions at ‘Cliffs’ or during ‘Flight’ (i.e., high probability of false-positives). We omitted 384 

the ‘Open area’ situation since it could represent a mixture of feeding and non-feeding 385 

behaviors and were therefore less conclusive for this comparison. We used a GLMM, 386 

with a beta distribution and a logit link, in which the response variable was the algorithm's 387 

confidence score, and the explanatory variable was the classification accuracy according 388 

to the GPS location (likely true-positive or likely false-positive). We included device ID 389 

as a random intercept.  390 

 391 
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Case study: identification of vulture feeding hotspots to prevent poisoning 392 

To demonstrate the applicability of the ACC algorithm to a real-world conservation 393 

problem, we used it to identify griffons’ feeding hotspots outside supplementary feeding 394 

stations (i.e., places where safe carcasses are provided to vultures). Considering the 395 

high risk of carcasses outside feeding stations being contaminated with toxic substances 396 

for vultures (e.g., pesticides or NSAIDs, Anglister et al., 2023), their rapid detection and 397 

removal from the field is a priority for wildlife authorities in Israel (Acácio et al., 2023). 398 

Accordingly, mapping those areas where vultures are feeding on potentially 399 

contaminated carcasses may guide management actions.  400 

In November 2022, we collected one month of GPS and accelerometer data for 401 

51 free-roaming griffons in Southern Israel, aiming to identify the locations of feeding 402 

events that occurred outside supplementary feeding stations (events that present higher 403 

risk of poisoning). After applying the random forest algorithm to this dataset, we matched 404 

the accelerometer ‘Feeding’ bouts with a GPS location using three criteria. First, if they 405 

were collected within 5 min of each other, and if the GPS ground speed was below 406 

4m/sec (indicating the bird was not flying). Second, if no GPS position matched these 407 

criteria, we matched ACC bouts with GPS locations if they were collected within 11 min 408 

of each other (while maintaining the ground speed criteria), to account for a possible 409 

delay in the time to acquire a position by the GPS. If no GPS position matched these 410 

criteria, the ‘Feeding' bout was discarded from further analysis, because we could not 411 

infer where the feeding event took place. 412 

Using the results of the previous analyses, where we assessed if the confidence 413 

score could be used to minimize the number of false-positives, we excluded bouts with 414 

confidence scores below 0.5. This conservative threshold was chosen to avoid 415 

eliminating true-positives, as failing to detect feeding areas posed a greater risk for 416 

griffon conservation than including false-positive observations. However, this threshold 417 

is system- and data-specific and is expected to be different for other species and 418 
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systems. We also excluded ‘Feeding’ bouts that occurred within supplementary feeding 419 

stations, at known roost sites (the latter likely represent false-positives), and outside the 420 

study area (southern Israel and Jordan). With the remaining locations (n = 264), we 421 

created a 2D kernel (grid size = 1000, bandwidth = bandwidth.nrd function from MASS 422 

R package, Venables & Ripley, 2002), portraying the density of locations, using bkde2D 423 

function of KernSmooth R package (Wand, 2024). On this density map, we overlayed 424 

the information of known carcasses independently identified in the field, outside feeding 425 

stations, during this same time period (n = 5). The carcasses were located by local 426 

rangers, either through reports from farmers, chance encounters during field patrols, or 427 

via an alert system that flags unusual landings of tracked raptors based on GPS data. 428 

This system uses location data from several species to identify potential poisoning 429 

events, independent of accelerometer-based behavioral classifications used in this 430 

study.  431 

Finally, to assess if the behavioral classification impacted the designation of 432 

feeding hotspots compared to a mapping based on GPS metrics alone, we built an 433 

additional density map using all GPS locations from the same dataset, without filtering 434 

for “feeding-only” locations. We excluded locations that occurred within supplementary 435 

feeding stations, at known roost sites, or where the ground speed exceeded >4m/sec. 436 

 437 

Results 438 

Behavioral classification 439 

We collected 5783 behavioral observations for 14 captive and 17 free-roaming griffon 440 

vultures (a total of 31 individuals), during 57 days (18 days for captive individuals and 39 441 

for free-roaming individuals). The most common behavior was ‘Standing’ (3488 442 

observations), and the least common behavior was ‘Ground’ (67 observations, 443 

Supplementary Table S2). When training the random forest model with 67% of the 444 



20 
 

observed (i.e., ground-truthed) dataset, we achieve an overall accuracy of 0.96, precision 445 

of 0.89 and recall of 0.82. Specifically, the model predicted ‘Feeding’ behaviors with 446 

precision of 0.87 and recall of 0.92 (Figure 3, Supplementary Table S2). ‘Ground’, on the 447 

other hand, had the poorest predictions (precision = 0.57, recall = 0.15). The indirectly 448 

inferred behaviors ‘Soaring’ and ‘Flapping’ were well predicted by our model (‘Soaring’: 449 

precision = 0.99, recall = 0.99, ‘Flapping’: precision = 0.98, recall = 0.95). 450 

 451 

 452 

Figure 3 - Confusion matrix of the random forest model to classify vulture behavior 453 

based on accelerometer data. Rows represent the behavior predicted by the algorithm 454 

we developed, and columns represent the behaviors we observed directly. The colors in 455 

the diagonal show the precision for each behavior, with darker colors indicating higher 456 

precision. The size of the text outside the diagonal indicates the proportion of false-457 

positives in each behavioral category, with larger numbers indicating a larger proportion 458 

of false-positives. For example, more ‘Feeding’ bouts were wrongly classified as 459 
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‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as 460 

‘Soaring’, ‘Flapping’, or ‘Lying’. 461 

 462 

Performance of the confidence score in validating model predictions 463 

Overall, the confidence scores of correctly-identified behaviors (true-positives) were 464 

significantly higher than the scores of inaccurately-identified behaviors (false-positives; 465 

GLMM: model estimate ± se = 0.876 ± 0.195, p-value < 0.001, Figure 4, Supplementary 466 

Table S3). ‘Ground’ behaviors, which had the lowest number of observations (n=67), 467 

were the exception, with significantly higher confidence scores of false-positives 468 

compared to true-positives (Figure 4). ‘Ground’ true-positive behaviors also had the 469 

lowest confidence scores (mean confidence score ± sd = 0.41 ± 0.03). ‘Soaring’, ‘Lying’, 470 

‘Standing’ and ‘Flapping’ were the behaviors with highest true-positive confidence scores 471 

(mean confidence score ± sd; ‘Soaring’ = 0.99 ± 0.08, ‘Lying’ = 0.98 ± 0.06, ‘Standing’ = 472 

0.98 ± 0.08, ‘Flapping’ = 0.93 ± 0.12). ‘Feeding’ had on average a high confidence score 473 

but also a large variation (mean confidence score ± sd = 0.82 ± 0.15, Figure 4, 474 

Supplementary Table S2, Supplementary Table S3).  475 

There were no significant differences between the confidence scores of 476 

behaviors recorded with backpack or leg-loop harnesses for the two tested behaviors: 477 

Standing’ (GLMM: estimate ± se = 0.374 ± 0.283, p-value = 0.283) and ‘Feeding’ (GLMM: 478 

estimate ± se = -0.725 ± 0.798, p-value = 0.364, Supplementary Figure S2 and 479 

Supplementary Table S4). The model trained on leg-loop data and tested on backpack 480 

data had high overall accuracy (accuracy = 0.86) and performed well at classifying 481 

‘Standing’ behaviors (‘Standing’ precision = 0.99; recall = 0.91). All true ‘Feeding’ 482 

behaviors were correctly identified as such (‘Feeding’ recall = 1). However, most 483 

‘Ground’ behaviors were misclassified as ‘Feeding’, which reduced the precision of the 484 
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‘Feeding’ category (‘Feeding’ precision = 0.52). Similarly to the full model, ‘Ground’ 485 

behaviors had the poorest performance (Supplementary Table S5). 486 

 487 

 488 

Figure 4 – Model predicted confidence scores of true-positive (blue) and false-489 

positive (dark red) behavioral classifications. The darker points and error bars 490 

indicate the model predicted confidence scores and 95% confidence intervals for true-491 

positive and false-positive behavioral classifications. The lighter points show the raw 492 

data. 493 

 494 

Confidence score to validate ‘Feeding’ predictions of free-roaming vultures 495 

We used the GPS locations to validate 175 ‘Feeding’ bouts from 7 free-roaming vultures 496 

in Southern Israel. Overall, 126 ‘Feeding’ bouts (72%) occurred within a supplementary 497 

feeding station (‘Station’ – likely true-positives), 22 bouts (13%) were located on ‘Open 498 

areas’ (likely a mix of true- and false-positives), 20 bouts (11%) were on ‘Cliffs’ (likely 499 

false-positives), and 7 bouts (4%) were in ‘Flight’ (likely false-positives, Figure 5). The 500 



23 
 

relatively high proportion of feeding bouts identified on cliffs likely reflects the 501 

considerable amount of time griffons spend in these areas. Overall, of all ‘Feeding’ bouts 502 

identified by the algorithm, 72-85% (all ‘Station’ bouts + at least part of the ‘Open area’ 503 

bouts) were likely real feeding events. Furthermore, after removing ‘Cliff’ and ‘Flight’ 504 

bouts (easily identifiable using only the GPS location, satellite imagery, and ground 505 

speed), 85-100% of the ‘Feeding’ predictions (all ‘Station’ bouts + at least part of the 506 

‘Open area’ bouts) were indeed likely feeding events. 507 

 Importantly, the confidence scores of ‘Feeding’ bouts likely to be true-positives 508 

were higher (mean ± sd: ‘Station’ = 0.75 ± 0.16) than the scores of bouts likely to be 509 

false-positives (‘Cliff’ and ‘Flight’ = 0.56 ± 0.19). This comparison was statistically 510 

significant (GLMM: estimate ± se = -0.805 ± 0.167, p-value <0.001, Supplementary Table 511 

S5). When considering solely the ‘Feeding’ bouts with a confidence score over 0.5, 114 512 

bouts (88.4%) occurred within a supplementary feeding station and were likely true-513 

positives. This threshold maximizes the number of true-positive predictions, while 514 

minimizing the number of false-positives (Figure 5). 515 

 516 

 517 

Figure 5 - Validation of ‘Feeding’ behaviors using data from free-roaming griffons. 518 

A - Percentage of ‘Feeding’ predictions (n = 175) located within a supplementary feeding 519 

station (‘Station’ - blue), on open landscape (‘Open area’ - green), on cliffs (‘Cliffs’ - dark 520 

brown) or in flight (‘Flight’ - light brown). B - Distribution of the confidence scores of 521 
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‘Feeding’ bouts likely to be true-positives (located within a feeding station, in blue) and 522 

likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line 523 

indicates the confidence threshold of 0.5, a conservative threshold that reduces the 524 

number of false-positives, while including nearly all true-positive predictions.  525 

 526 

Mapping vulture’s feeding hotspots to facilitate poisoning identification 527 

In November 2022, we collected 4595 ‘Feeding’ bouts of 51 griffon vultures in our study 528 

area. After sequentially removing the bouts without a GPS location (n = 586), bouts inside 529 

feeding stations (n = 2534), outside Southern Israel and Jordan (n = 157), bouts located 530 

in known roosts (n = 979), and bouts with a confidence score below 0.5 (n = 60, Figure 531 

5), we retained 264 bouts of 31 vultures, that allowed us to map their feeding hotspots. 532 

We built a KDE with the remaining 264 ‘Feeding’ bouts and detected a hotspot of 533 

feeding events in the Judean desert. This hotspot is consistent with the INPA ranger’s 534 

reports for this same period, where 4 out of 5 reported carcasses outside feeding stations 535 

were within the KDE (Figure 6). This density map differed substantially from the one 536 

based solely on GPS-derived metrics (Supplementary Figure S3), containing 1,938 537 

potential feeding locations. Notably, the GPS-only KDE failed to identify a key feeding 538 

hotspot in Jordan. This confirms that the algorithm can be used to identify areas with 539 

high probability of vultures’ feeding on potentially contaminated carcasses and highlights 540 

the added value of the behavioral classification. 541 

 542 
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 543 

Figure 6 - Acceleration-based behavioral classification as a tool to identify griffon 544 

vultures’ feeding hotspots outside supplementary feeding stations. The red points 545 

show the vulture feeding locations in Southern Israel and Jordan over November 2022, 546 

identified using the random forest algorithm. The blue markers indicate the location of 547 

ground-truthed carcasses outside feeding stations; the darker blue indicates two 548 

carcasses in approximately the same location. The polygons indicate the density of 549 

vulture feeding locations, showing the areas where vultures are at greater risk of 550 

poisoning. The polygon colors indicate the density of vulture feeding locations, with blue 551 
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areas having lower density and red areas higher density. The inset shows the location 552 

of the study area in the world. 553 

 554 

Discussion 555 

Recent advancements in tracking technology and analytical tools are enhancing our 556 

understanding of animal ecology and behavior and improving its applications for 557 

biodiversity conservation (Tuia et al., 2022; Williams et al., 2020). In this study, we add 558 

to this body of literature by developing a machine learning algorithm to classify griffon 559 

vultures' behaviors, thoroughly validating the behavioral classifications, and using them 560 

to inform conservation efforts, namely carcass detection to prevent poisoning. Our model 561 

accurately predicted griffons' behaviors, allowing for the identification of potential feeding 562 

events outside feeding stations and the mapping of feeding hotspots where vultures and 563 

other scavengers can engage in risky behaviors such as the consumption of poisoned 564 

carcasses (Peters et al., 2023). These maps may become fundamental tools for 565 

monitoring-effort prioritization and for optimizing on-the-ground actions for the 566 

conservation of vultures and other scavengers (e.g., the detection of poisoning events, 567 

Rast et al., 2024). Another major contribution of this study is the use and validation of 568 

the algorithm's confidence in each behavioral classification, showing the utility of this 569 

approach for other behaviors and contexts. Assessing the degree of confidence in this 570 

manner is rarely done in ecological studies (Bidder et al., 2014), but we highlight how 571 

this approach may minimize misclassifications (e.g., false-positives) especially when 572 

resources for ground-truthing are limited. Our algorithm and training dataset are made 573 

accessible to other researchers and conservationists studying vultures and similar 574 

species. Moreover, they can be easily adapted to classify the behaviors of other species 575 

in diverse study systems. Importantly, to further promote this usability, we provide a 576 
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methodological workflow to guide potential users in the process of identifying behaviors 577 

of wild animals based on accelerometer data. 578 

 579 

Accelerometer-based behavioral classification as a tool for vulture conservation 580 

With our behavioral classification model, we were able to identify vulture feeding hotspots 581 

in Southern Israel. Indeed, the areas where our tracked vultures displayed ‘Feeding’ 582 

behaviors matched the locations of known ‘wild’ carcasses (i.e., outside feeding stations) 583 

during this same period. This case study used only a single month worth of high-584 

resolution data embedded within a long-term lower resolution tracking effort (Acácio et 585 

al., 2024; Spiegel et al., 2013), but it exemplifies how GPS and accelerometer data can 586 

be used to direct conservation efforts. The use of GPS tracking has been instrumental 587 

for vulture conservation in Israel (Spiegel et al., 2013), particularly for the detection of 588 

poisoning events (Acácio et al., 2023; Anglister et al., 2023). The local government 589 

environmental agency, INPA, developed a near-real time alert system that warns rangers 590 

whenever a vulture lands at a suspicious area and when vultures are either moving very 591 

little or are suspected to be dead (Nemtzov et al., 2021). Rangers then actively respond 592 

to these alerts by inspecting the area and removing the carcasses; therefore, reducing 593 

the number of false alarms is important – both to reduce costs and workload, as well 594 

avoiding erosion of rangers’ responsiveness.  595 

A similar near real-time alert system, using GPS data, has also been used for the 596 

monitoring of African elephants (Loxodonta Africana, Wall et al., 2014) and to track 597 

California condors (Gymnogyps californianus) in the vicinity of wind farms (Sheppard et 598 

al., 2015). It has also been suggested as an anti-poaching tool to prevent the extinction 599 

of large mammals (O’Donoghue & Rutz, 2016). We propose that all these systems could 600 

be improved by using accelerometer data to remotely identify animal behavior and risky 601 

events sooner and more reliably. Indeed, our results show that relying solely on GPS-602 
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derived filters to identify potential feeding hotspots failed to identify a key feeding hotspot 603 

in Jordan and produced over seven times more data points, many of which were likely 604 

false positives. Such an overload of low-quality alerts could lead to reduced 605 

responsiveness by the rangers, ultimately undermining conservation efforts on the 606 

ground.  607 

Combining maps of feeding hotspots (either fixed or season-specific ones) with 608 

similar near real-time alert systems may be crucial for vulture management and 609 

conservation. For example, the feeding areas that griffons use systematically throughout 610 

the year should be prioritized in terms of surveillance and sanitation efforts, to prevent 611 

vultures (and other scavengers) from accessing carcasses contaminated with toxic 612 

substances. Additional management actions could be implemented, such as establishing 613 

new supplementary feeding stations in these areas, or increasing carcass supply at 614 

existing stations, either all year-round or during particular seasons, to match potential 615 

seasonal changes in vulture’s activity areas. Additionally, the hotspots could be used to 616 

implement geofences where data collection and transmissions would be at higher 617 

frequency. This increased resolution may be critical in poisoning events, where the actual 618 

feeding may be quite fast (sometimes consuming a carcass within minutes) and vultures 619 

may perish quickly, depending on the type and amount of toxic substance ingested. 620 

Then, information regarding the griffon’s location and behavior is obtained and 621 

communicated faster: when a griffon lands in these areas and only if it feeds there (as 622 

indicated by the ACC classification), an alert should be sent to the rangers for immediate 623 

carcass inspection. While the system should also trigger alerts for any feeding events 624 

detected outside feeding stations (to allow for carcass inspection and potential removal 625 

to reduce the risk of poisoning), identifying risky hotspots can help optimize resource 626 

allocation and prioritize conservation actions in high-risk areas. 627 

Around the world, an increasing number of individuals of multiple vulture species 628 

are being tracked with GPS-Accelerometer devices, showing that they roam 629 
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exceptionally large areas on their daily movements (Kane et al., 2022; Spiegel et al., 630 

2015). Considering that about 70% of vulture species are endangered (Ives et al., 2022; 631 

Ogada et al., 2012; Plaza et al., 2019), surveillance systems that combine GPS tracking 632 

with accelerometry may be a useful tool to improve management actions in their large 633 

roaming areas to combat major threats such poisoning. For instance, such ACC-based 634 

systems will enhance existing applications of GPS-tagged vultures to inform on-ground 635 

actions against illegal wildlife persecution (Rast et al., 2024; Rodríguez-Pérez et al., in 636 

press) or to improve regulations for carrion disposal to feed vultures and other wild 637 

species (Mateo-Tomás et al., 2023). Future studies could apply our methodology to 638 

publicly available GPS-ACC datasets to identify high-risk areas for vultures and guide 639 

targeted conservation interventions at a larger geographic scale. 640 

Our thoroughly validated training dataset can also be used to classify the 641 

behavior of griffons in other populations, as well as other old and new-world vulture 642 

species, particularly in Africa and Asia, where vulture populations continue to decrease. 643 

For example, our algorithm and training dataset could be used to predict the behaviors 644 

of endangered Gyps species in Africa and Asia (e.g., Gyps africanus, Gyps coprotheres, 645 

Gyps bengalensis, amongst others), or even other vulture species (e.g., Torgos, 646 

Trigonoceps species), considering their morphological and behavioral similarities with 647 

the griffon vulture. The use of surrogate species to identify accelerometer-based 648 

behaviors has been examined in other systems, with a variety of results. For example, 649 

the behaviors of domestic dogs were good predictors of the behaviors of dingoes and 650 

cheetahs (Campbell et al., 2013), but the behavior of domestic caprids did not predict 651 

well the behavior of their wild counterparts (Dickinson et al., 2021). Therefore, we 652 

recommend caution when using our trained model to classify the behavior of other 653 

vulture species. In addition, our algorithm and modelling pipeline can be easily adapted 654 

for other, not related, animal species, as long as researchers provide their own training 655 

dataset for their study species. 656 
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 657 

Validating the accuracy of predictions of unobserved behaviors 658 

Tri-axial accelerometers and classification algorithms have increasingly been used to 659 

obtain fine-scale behavior of wild animals (Nathan et al., 2012; Resheff et al., 2014; 660 

Wang, 2019; Yu et al., 2021). However, after training and testing the model on a validated 661 

dataset, the model must classify unobserved and, sometimes, unknown behaviors. In 662 

this case, the model then matches the unknown behavior with the best fitting known 663 

acceleration signature, resulting in misclassifications (Glass et al., 2020). Most 664 

ecological studies fail to acknowledge this limitation and do not provide a metric of how 665 

likely a particular classification is to be true (Glass et al., 2020). Here we tackle this 666 

methodological gap and calculate a confidence score, which allows us to distinguish 667 

between true-positive and false-positive classifications. Our approach is computationally 668 

simple to implement and does not require running more complex classification models. 669 

In addition to the confidence scores, we used biologically relevant information to validate 670 

observations classified as ‘Feeding’. For this subset of data, 15% of the observations 671 

were likely misclassifications because they occurred on cliffs (where there is no food in 672 

our case) or in flight. Filtering out observations based on easily accessible metrics (here, 673 

the topography, knowledge of the behavior of the species, spatial position, and GPS 674 

ground speed) as well as any observations with a confidence score below a relevant 675 

threshold, increases the accuracy of behavioral classifications.  676 

Selecting filtering thresholds is always a balance between two types of errors. 677 

Here, we considered a conservative threshold of 0.5 to distinguish true-positive and 678 

false-positive ‘Feeding’ predictions of free-roaming griffons, at the risk of including some 679 

false-positive predictions in our dataset (Type I error). However, in this case, the risk of 680 

not including part of the true-positive predictions (Type II error) is higher than including 681 

some false-positives; not including all true-positives could mean that some feeding 682 

hotspots would not be identified, potentially compromising sanitary management and 683 
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overlooking potential feeding and poisoning events. We encourage other researchers to 684 

use a similar approach whenever possible, combining confidence scores with ground-685 

truthing information, to improve the accuracy of their conclusions.  686 

In addition, we note that different behaviors, or even the same behavior in 687 

different species or with different accelerometer devices, may have different confidence 688 

scores distributions. For example, with our dataset a threshold of 0.9 could have been 689 

suitable for distinguishing flapping and soaring flight behaviors, to study, for instance, 690 

flight biomechanics. Therefore, the threshold of confidence should consider the 691 

underlying distribution of confidence scores for the behaviors in mind and should be 692 

defined according to this and the study objectives, balancing the risks of data loss with 693 

the costs of including false-positives in the dataset.  694 

 695 

Challenges and considerations of accelerometer-based behavioral classification 696 

Different tag placement and different attachment methods can greatly influence 697 

accelerometer signatures, and consequently the behavioral classifications (Garde et al., 698 

2022). Nevertheless, our results show that our algorithm is reliable for more than one 699 

attachment method, further increasing its usefulness. These non-significant differences 700 

may result from the similarity in logger placement between the two attachment types 701 

(about 3cm difference), as well as from the limited spinal flexibility of griffon vultures. Still, 702 

the large confidence intervals in this comparison (due to the small sample size for 703 

backpack harnesses), as well as difficulty of our algorithm in classifying ‘Ground’ 704 

behaviors recorded with a backpack harness shows that this topic deserves further 705 

investigation with larger sample sizes and with other species. 706 

After building the random forest, it is crucial to validate its accuracy, precision, 707 

and recall. In our study, the overall model was highly accurate, yet behaviors differed in 708 

their precisions. As expected, ‘Ground’ was consistently the behavior with the poorest 709 
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predictions across all our validations. This behavioral category included several, quite 710 

distinct, ground behaviors (like walking, running, hopping, etc.), in an attempt to account 711 

for all possible behaviors a griffon may display and to minimize misclassifications at the 712 

cost of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand, was accurately 713 

classified by our model, however despite a relatively large number of bouts in the training 714 

dataset (n = 587), the confidence scores of this behavior had large variance. A possible 715 

reasoning is that griffon’s feeding behavior is highly complex and may include rapid shifts 716 

between fighting, posturing (spreading the wings), as well as eating per se (Bosè & 717 

Sarrazin, 2007) – all inseparable within a 5s timeframe. Including so many different 718 

postures in a single behavioral category results in high variation of confidence scores.  719 

In addition, the number of conspecifics within a feeding event may further 720 

influence the behaviors that individuals display while foraging (Bosè et al., 2012), 721 

increasing within-individual variability for both wild and captive vultures. To mitigate the 722 

effect of within-individual variability in our training dataset, we ensured that multiple 723 

captive individuals were feeding at the same carcass, to replicate the wild feeding 724 

conditions.  Finally, it is likely that individuals differ in their behavior while foraging (e.g., 725 

dominant vs subordinates, Bosè et al., 2012; Bosè & Sarrazin, 2007), emphasizing the 726 

need to improve behavioral classification models and account for individual differences 727 

in behavior (Kirchner et al., 2023). In general, we suggest that future models can improve 728 

accuracy and precision by further splitting our six classes into subclasses that reflect 729 

more homogenous elementary behaviors (e.g., pecking, tearing meat apart, fighting). 730 

Merging ‘Ground’ and ‘Feeding’ categories could also potentially improve the model’s 731 

accuracy; however, since these two behaviors are not necessarily linked, this would 732 

come at the cost of decreased resolution in detecting true feeding events, compromising 733 

management and conservation applications. For specific applications focused solely on 734 

identifying feeding activity, an alternative approach could involve merging all feeding and 735 
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all non-feeding behaviors in a binary classification. This could simplify the interpretation, 736 

and we suggest that this option is worth exploring in a future study 737 

Despite the potential of accelerometer-based behavioral classification, collecting 738 

such large volumes of data can be costly, both in terms of data transmission and storage, 739 

as well as in terms of device memory and battery (Hounslow et al., 2019). Short sampling 740 

intervals (2-3 secs) at high resolution may reduce the probability of having multiple 741 

behaviors within a single bout, but may drain batteries faster, which can result in 742 

incomplete sampling designs and lower the device’s lifespan. Integrating low-frequency 743 

accelerometry with additional sensors (e.g., time-depth recorders for marine species, 744 

Jeantet et al., 2020), may still effectively allow the study of animal behavior without 745 

significantly increasing costs or reducing device longevity (Hounslow et al., 2019). In 746 

addition, analyzing such large volumes of data can also be challenging, so we emphasize 747 

the need for collaboration in between fields of knowledge, with ecologists and data 748 

scientists working together for the conservation of biodiversity (Tuia et al., 2022). Lastly, 749 

as human activities are increasingly impacting the planet and driving species towards 750 

extinction, it is critical to harness technological advances for effective conservation and 751 

to safeguard the future of our planet's species and ecosystems. 752 

 753 

Conclusions 754 

In this study, we showed the potential of accelerometer-based behavioral classification 755 

to improve the management and conservation of endangered scavengers. By reliably 756 

identifying feeding behaviors and mapping feeding hotspots, our approach can help the 757 

detection of poisoning events earlier and optimize management resources to high-risk 758 

areas. We further show that combining the algorithm’s confidence score with simple 759 

GPS-derived filters, can greatly improve the reliability of the identification of feeding 760 

hotspots. Finally, our workflow, training dataset, and model are provided in an open-761 
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access platform, to facilitate the adoption of this framework in the global management 762 

and conservation of endangered scavengers. 763 
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Supplementary Material 1 - Transmitter schedule of free-roaming griffon vultures 1106 

The GPS-ACC transmitters were programmed with different schedules, depending on 1107 

the analysis: 1108 

Conducting observations to build an ACC training dataset 1109 

To build the ACC training dataset, bouts of 5 sec at 20Hz were recorded for free-roaming 1110 

griffons every 10 min, if the transmitter’s battery was more than 50% charged, or every 1111 

60 min if the transmitter’s battery was below 50% charge. The GPS positions of free-1112 

roaming vultures were recorded every 10 min if the transmitter’s battery was above 75%, 1113 

every 20 min if the battery was between 50-75%, or every 60 min if the battery was below 1114 

50% charge.  1115 

 1116 

Using the confidence score to validate ‘Feeding’ predictions of free-roaming vultures 1117 

To use the confidence score to validate the feeding predictions of free-roaming vultures, 1118 

the GPS positions were recorded every 10 min to 60 min (depending on the battery 1119 

charge). The transmitter was programmed to collect 5 sec bouts of accelerometer data 1120 

at 20Hz every 10 min if the battery was over 50% charge.  1121 

 1122 

Case study: identification of vulture feeding hotspots to prevent poisoning 1123 

To build a map of feeding hotspots, the transmitters were programmed to record GPS 1124 

positions every 10 min if the battery was over 50%, and every 60 min, if the battery was 1125 

below 50% charge. Accelerometer data were recorded every 5 min if the battery was 1126 

over 50% charge. 1127 
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Supplementary Material 2 – Details of the model building sequence 1129 

Using the ‘training subset’, we built a random forest model (number of trees = 1000, 1130 

number of statistical features per tree = 10, and minimum number of observations per 1131 

leaf = 10). We evaluated the performance of our model using the ‘testing’ subset. We 1132 

built a confusion matrix and calculated three performance metrics, for the full model and 1133 

for each behavior: (i) accuracy (sum of true-positives and true-negatives divided by all 1134 

predictions); (ii) precision (true-positives divided by the sum of true-positives and false-1135 

positives); and (iii) recall (true-positives divided by the sum of true-positives and false-1136 

negatives). The equations for each metric can be found in Table 1. Because only 67% 1137 

of the data was used to train the algorithm, these metrics are likely an underestimation 1138 

of the real performance of the final algorithm. 1139 
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 1141 

Supplementary Figure S1 – Acceleration signature of six behavioral categories: 1142 

feeding (A), standing (B), lying (C), ground (D), soaring flight (E) and flapping 1143 

flight (F). The acceleration data was collected at 20Hz during 5 seconds for three 1144 

orthogonal axes (D): sway – X (red), surge – Y (green), and heave - Z (blue). 1145 
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 1147 

Supplementary Figure S2 - Comparison of the confidence scores of true positive 1148 

(TP) and false positive (FP) ‘Standing’ and ‘Feeding’ classifications, recorded 1149 

with a backpack (red) and with a leg-loop (blue) harness. Each panel shows the 1150 

model predictions and the 95% confidence intervals for the effect of the harness on the 1151 

confidence scores of true positive and false positive behavioral classifications.  1152 
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 1154 

 1155 

Supplementary Figure S3 – Using GPS-derived metrics to identify feeding 1156 

hotspots, without using acceleration-based behavioral classification. The red 1157 

points show vulture locations with GPS ground speed equal to or slower than 4m/s, 1158 

outside the roosting areas and outside feeding stations for vultures, during November 1159 

2022 (n = 1,938 locations). The polygons indicate the density of vulture locations, 1160 

showing potential areas where vultures could be foraging and would be at greater risk 1161 

of poisoning. The polygon colors indicate the density of vulture locations, with blue 1162 

areas having lower density and red areas higher density. Comparison with Figure 6 1163 

(based on accelerometer-classified ‘Feeding’ behavior) shows that incorporating 1164 

behavioral data produces spatially distinct and more accurate hotspot identification.  1165 
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Supplementary Table S1 – Full list of statistical features used to summarize each 1166 

acceleration bout. Note that X, Y and Z refer to the orthogonal acceleration axes 1167 

(sway – X; surge – Y; heave - Z), while x and y refer to the variables that should be 1168 

included in the R functions. 1169 

Feature R function 

Mean (X, Y, Z) mean(x) 

Maximum (X, Y, Z) max(x) 

Minimum (X, Y, Z) min(x) 

Range (X, Y, Z) max(x) – min(x) 

Standard deviation (X, Y, Z) sd(x) 

Skewness (X, Y, Z) moments::skewness(x) 

Kurtosis (X, Y, Z) moments::kurtosis(x) 

Euclidian norm (X, Y, Z) sqrt(sum(x^2)) 

25% quantile (X, Y, Z) quantile(x, probs = 0.25) 

50% quantile (X, Y, Z) quantile(x, probs = 0.50) 

75% quantile (X, Y, Z) quantile(x, probs = 0.75) 

Covariance (X-Y, X-Z, Y-Z) cov(x, y) 

Mean difference (X-Y, X-Z, Y-Z) mean(x – y) 

Standard deviation of the difference (X-Y, X-
Z, YZ) 

sd(x – y) 

Mean amplitude (X, Y, Z) mean_amplitude(x) – user defined 
function provided in the R code 
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Supplementary Table S2 – Results of the random forest model to classify vulture 1172 

behavior based on accelerometer data. The random forest model was trained on 1173 

67% of the total number of observations and its performance was tested on 33% of the 1174 

data. The True Positives and False Positives are the result of the performance test (for 1175 

a full confusion matrix see Figure 3 of the manuscript). For each prediction, the model 1176 

calculates a confidence score, i.e., the proportion of trees that agree on the highest 1177 

scoring prediction. Here we show the mean confidence score values for each predicted 1178 

behavior category.  1179 

 1180 

Behavior 

Total number 
of 

observations 
(number of 
vultures) 

True 
positives 

False 
positives 

Precision Recall 

Mean 
confidence 

score of 
true-

positives 
(sd) 

Feeding 587 (10) 189 17 0.87 0.92 0.82 (0.15) 

Lying 364 (5) 104 5 0.94 0.95 0.98 (0.06) 

Standing 3488 (11) 1142 20 0.98 0.98 0.98 (0.08) 

Ground 67 (8) 4 23 0.57 0.15 0.41 (0.03) 

Flapping 122 (18) 42 2 0.98 0.95 0.93 (0.12) 

Soaring 1155 (9) 375 4 0.99 0.99 0.99 (0.08) 
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Supplementary Table S3 – Comparison of the confidence scores of true positive 1183 

and false positive behavioral classifications. Results of the GLMM beta binomial 1184 

model, with confidence score (0-1) as the response variable, and correctness (true 1185 

positive / false positive), behavioral class (Feeding, Flapping, Ground, Lying, Soaring 1186 

and Standing) and their interaction as predictors. The model had device ID as random 1187 

effect. A p-value <0.05 indicates a statistical significant relationship. 1188 

Variable Estimate Std. Error Z value p-value 

Intercept 0.470 0.215 2.191 0.028 

Validation – 
True positive 

0.876 0.195 4.492 <0.001 

Behavior – 
Flapping 

-0.775 0.578 -1.343 0.179 

Behavior – 
Ground 

0.173 0.248 0.698 0.485 

Behavior – 
Lying 

-0.133 0.403 -0.330 0.741 

Behavior – 
Soaring 

0.902 0.456 1.979 0.048 

Behavior – 
Standing 

-0.020 0.254 -0.079 0.937 

Valid. True 
Positive x 
Beh. Flapping 

1.761 0.586 3.007 0.003 

Valid. True 
Positive x 
Beh. Ground 

-1.749 0.445 -3.926 <0.001 

Valid. True 
Positive x 
Beh. Lying 

1.807 0.416 4.342 <0.001 

Valid. True 
Positive x 
Beh. Soaring 

1.017 0.442 2.304 0.021 

Valid. True 
Positive x 
Beh. Standing 

1.341 0.260 5.162 <0.001 

 1189 

Random effects Variance Std. Dev. 

Device id 0.0995 0.3155 
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Supplementary Table S4 – Comparison of the confidence scores of true positive 1192 

and false positive ‘Standing’ and ‘Feeding’ classifications, recorded with a 1193 

backpack and with a leg-loop harness. Results of the GLMM model beta binomial 1194 

model, with confidence score (0-1) as the response variable, and the correctness (true 1195 

positive / false positive), the type of harness (backpack / leg-loop) and their interaction 1196 

as predictors. The model had device ID as random effect. A p-value <0.05 indicates a 1197 

statistical significant relationship. 1198 

 1199 

 1200 

  1201 

Behavior Variable Estimate Std. 
Error 

Z 
value 

p-value Random 
effect 
variance 

Random 
effect  
std. dev. 

Standing 

Intercept 0.238 0.315 0.754 0.451 - - 

Correctness – 
True positive 

1.949 0.250 7.808 <0.001 - - 

Harness –  
Leg-loop 

0.444 0.451 0.985 0.325 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

0.374 0.349 1.074 0.283 - - 

Device id - - - - 0.185 0.43 

Feeding 

Intercept -0.240 0.764 -0.314 0.753 - - 

Correctness – 
True positive 

1.698 0.769 2.207 0.0273 - - 

Harness –  
Leg-loop 

0.851 0.796 1.069 0.285 - - 

Correctness 
(True positive) 
x Harness 
(Leg-loop) 

-0.725 0.798 -0.908 0.364 - - 

Device id - - - - 0.022 0.149 



56 
 

Supplementary Table S5 - Confusion matrix of the random forest assessing the 1202 

influence of the harness type on the performance of the algorithm. This random 1203 

forest was trained solely on leg-loop data and tested on backpack data. 1204 

Predicted / Observed Feeding  

(n = 104) 

Ground 

(n = 47) 

Standing 

(n = 563 

Feeding 104 43 52 

Ground 0 0 0 

Standing 0 4 511 

    

Precision 0.52 NA 0.99 

Recall 1.00 0 0.91 
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Supplementary Table S6 – Comparison of the confidence scores of feeding 1206 

bouts likely to be true positives or false positives. Results of the GLMM model beta 1207 

binomial model, with confidence score (0-1) as the response variable, and correctness 1208 

(likely to be true positive – inside feeding stations; likely to be false positives – on cliffs 1209 

or in flight) as predictor. The model had device ID as random effect. A p-value <0.05 1210 

indicates a statistical significant relationship. 1211 

Variable Estimate Std. Error Z value p-value 

Intercept 1.101 0.078 14.140 <0.001 

Correctness – 
Low 
probability of 
true positive 

-0.805 0.167 -4.827 <0.001 

 1212 

Random effects Variance Std. Dev. 

Device id <0.001 <0.001 
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