1	
2	
3	
4	Topological equivalence of stomata distribution
5	patterns across vascular plants
6	
7	
8	
9	Paulette I Naulin ^a & Sergio A Estay ^{b,c *}
10	^a Universidad de Chile, Laboratorio Biología de Plantas, Departamento de Silvicultura y
11	Conservación de la Naturaleza, Av. Santa Rosa 11315, La Pintana, Santiago, Chile.
12	^b Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias. Universidad Austral
13	de Chile, Casilla 567, Valdivia, Chile.
14	° Center for Applied Ecology and Sustainability, Facultad de Ciencias Biológicas. Pontificia
15	Universidad Católica de Chile. Santiago 6513677, Chile
16	
17	* Corresponding author: sergio.estay@uach.cl
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
28	

- 29 Summary

Stomata are ancient anatomical structures on leaves that regulate the exchange of water vapor, oxygen, and carbon dioxide between plants and the atmosphere. Acting as valve-like gateways between internal tissues and the external environment, stomata may function as locally interacting networks. Theoretical and experimental evidence suggests that local interactions among neighboring stomata influence their function and spatial arrangement. From this perspective, analyzing stomatal distributions as networks may yield novel insights into observed spatial patterns and their generative mechanisms. We hypothesize that variability in stomatal arrangements arises from shared underlying rules, with observed diversity reflecting an epiphenomenon. To test this, we employed a multi-species, multi-site common garden approach to assess potential convergences in stomatal distribution. A network-based framework enabled us to reduce individual-level variability and analyze stomatal patterns as interacting systems. Our results show that, across species and environments, stomatal spatial configurations consistently align with a null model linking minimum spanning tree (MST) length to stomatal density. Although a variety of patterns were present, over-dispersed arrangements predominated. These findings suggest that physical constraints during stomatal development impose strong limits on the range of viable spatial configurations that can evolve. **Keywords:** stomata patterning, minimum spanning tree, scaling, leaf architecture, spatial networks

- 63 Introduction
- 64

Stomata are ancient anatomical structures on leaves that regulate the exchange of 65 gases-water vapor, oxygen, and carbon dioxide-between plants and the atmosphere 66 (Edwards et al., 1998; Croxdale, 2001; Hetherington & Woodward, 2003; Bergmann, 2004; 67 Matkowski & Daszkowska-Golec, 2023). Traits such as stomatal size, density, shape, and 68 spatial distribution vary widely among individuals, species, and environments. For example, 69 stomatal size (often measured as pore length) has been found to correlate weakly with 70 71 latitude, although the specific environmental drivers behind this pattern remain unclear 72 (McKown et al., 2014). Results from common garden experiments suggest that pore size may 73 co-vary with climatic conditions (Carlson et al., 2016). These findings support the idea that 74 stomatal traits exhibit a degree of plasticity, with potentially important implications for plant 75 physiological performance (Drake et al., 2013).

76

77 Stomatal density is the simplest and most commonly used descriptor of their spatial 78 distribution on the leaf surface. For instance, McKown et al. (2014) reported that stomatal 79 density in Populus species is negatively correlated with both temperature and precipitation across a latitudinal gradient. In contrast, Fontana et al. (2017) observed a slightly positive 80 relationship between stomatal density and rainfall in Salix miyabeana, highlighting the 81 complexity of environmental influences. Beyond temperature and precipitation, other factors 82 also appear to modulate stomatal density. Antunes de Almeida Filho et al. (2017) found that 83 the distance between neighboring stomata, likely influenced by overall density, increased 84 with light exposure, suggesting that light availability can also shape stomatal spatial patterns. 85

86

Stomatal spatial arrangement has traditionally been described as uniform, with distinct 87 "stomata-free" regions surrounding each stoma (Sachs, 1991). However, Naulin et al. (2017) 88 demonstrated that this perception may be an artifact of the point-pattern analysis methods 89 90 commonly employed in such studies. By applying a more realistic disc-pattern analysis, they showed that stomatal distributions can span the full theoretical spectrum-from uniform to 91 random to clustered patterns. To fully understand stomatal organization and its underlying 92 mechanisms, spatial patterning must be explicitly analyzed. Various biological (e.g., genetic) 93 94 and physico-chemical mechanisms, such as activation-inhibition processes, appear to 95 regulate stomatal spacing to avoid configurations that impair stomatal function (Serna & 96 Fenoll, 1997; Illian et al., 2008; Dow et al., 2013; Fanourakis et al., 2015; Fiorin et al., 2015).

- Thus, stomatal distribution can be considered an anatomical trait subject to strong ecological
 and evolutionary pressures (e.g., Fiorin et al., 2015; Xiong & Flexas, 2020).
- 99

Variability in stomatal spatial arrangements may—or may not—have an evolutionary basis. 100 Evidence from common garden experiments indicates that intraspecific variation in stomatal 101 density can be adaptive. For example, Carlson et al. (2016) identified a positive selection 102 gradient favoring individuals with stomatal traits suited to drier and hotter environments. At 103 the interspecific level, Yang et al. (2023) analyzed 90 species and found that, depending on 104 the spatial scale, both aggregated and uniform (i.e., over-dispersed) stomatal distributions 105 exhibit weak phylogenetic signals, suggesting a partial influence of evolutionary history. 106 107 While these studies offer valuable insights, the relative contributions of evolutionary and environmental factors in shaping stomatal density and distribution remain unclear. Zhang et 108 109 al. (2012), for instance, reported species-specific responses: in some species, stomatal traits were predominantly shaped by environmental conditions, whereas in others, genetic control 110 111 was more pronounced.

112

113 The spatial and temporal context in which a leaf develops plays a crucial role in shaping 114 stomatal density and distribution. Even today, variation in these traits is used to infer past environmental conditions, particularly in palaeobotanical records (e.g., Uhl & Kerp, 2005). 115 Conceptually, stomata function as windows that connect internal leaf tissues with the 116 external environment. Each stoma can be thought of as a valve-like structure that regulates 117 gas exchange within a specific region of the leaf surface (Clark et al., 2022). Both theoretical 118 and experimental studies have shown that stomatal function is influenced by neighboring 119 stomata (Haefner et al., 1997; Mott et al., 1997). These local interactions suggest that 120 stomatal arrangements operate as locally interacting networks. If this is the case, analyzing 121 stomatal distributions and their structural properties through a network-based framework 122 could offer novel insights into the spatial patterns observed and the underlying generative 123 124 mechanisms. We therefore hypothesize that the apparent variability in stomatal distributions arises from shared generative rules, and that the diversity of observed patterns may simply be 125 an epiphenomenon. 126

127

In this study, we apply a multi-species, multi-site common garden approach to identify
 potential commonalities in observed stomatal distribution patterns. By using a network-based

framework, we minimize the confounding effects of individual variability and treat stomatalarrangements as interacting biological systems.

132

133 Methods

134

135 Biological data

136

Sixty-six plant species, spanning four classes, 27 orders, and 41 families, were 137 sampled from two arboreta: the Antumapu Arboretum (hereafter Antumapu; 33.57°S, 138 70.63°W) and the Frutillar Arboretum (hereafter Frutillar; 41.12°S, 73.03°W), both managed 139 by the Faculty of Forestry and Nature Conservation, University of Chile (Table S1). These 140 sites are approximately 980 km apart. Antumapu is located in a warm-summer Mediterranean 141 142 climate (Köppen classification: Csb), with average summer and winter temperatures of 19°C and 9.5°C, respectively, and an annual precipitation of 371 mm (Santibañez, 2017). In 143 144 contrast, Frutillar is situated in southern Chile within a temperate oceanic climate (Köppen classification: Cfb), characterized by average summer and winter temperatures of 14.3°C and 145 7°C, respectively, and an annual precipitation of 1516 mm (Santibañez, 2017). 146

147

For each species, three fully developed leaves were collected. Leaves were cleared following 148 the protocol described by Castellaro et al. (2007) and mounted on glass slides for 149 microscopic examination and imaging. After processing, a total of 180 samples were 150 available for analysis. Anatomical measurements were performed using images of 151 approximately 1 mm² from the central third of the abaxial leaf surface. To estimate spatial 152 properties, the centroid of each stomatal complex was determined using Cartesian 153 coordinates in ImageJ software (Rasband, 1997; Schneider et al., 2012). Additionally, the 154 maximum and minimum diameters of 30 stomata were measured per sample, and the total 155 number of stomata was recorded (Table S1). 156

157

158 Network reconstruction

159

As noted earlier, local interactions between stomata suggest that their spatial arrangements function as locally interacting networks. Our goal, therefore, is to define a method for constructing a graph that best represents these interactions among stomata. Based on the idea that each stoma connects a specific region of the leaf surface to the atmosphere, we estimated this area using Voronoi polygons (Aurenhammer et al., 2013). In a Voronoi diagram, each
polygon is centered on a stoma, and all points within that polygon are closer to the central
stoma than to any other in the sampled area.

167

To represent potential local interactions, we connected neighboring polygons by linking the centroids of adjacent stomata. This process generates a Delaunay triangulation—the dual graph of the Voronoi diagram—which connects each stoma to its nearest neighbors, forming a dense network in which each node (stoma) typically has a degree of approximately six (Aurenhammer et al., 2013).

173

Within the Delaunay triangulation lies a key subgraph known as the Minimum Spanning 174 Tree (MST). The MST is a loop-free graph that connects all nodes while minimizing the total 175 176 edge length (Prim, 1957). In the context of complex spatial patterns, the MST is often used to characterize dominant connectivity structures. The MST has a long history of applications in 177 178 biology and ecology, and its topological properties are well-documented (Dussert et al., 1986, 1987; Cantwell & Forman, 1993; Jones et al., 1996; Wallet & Dussert, 1997; Bunn et al., 179 180 2000; Urban et al., 2001; Dry et al., 2012). More recently, Liu et al. (2021) applied MSTbased methods to the analysis of stomatal arrangements, making it an ideal starting point for 181 identifying common structural features of stomatal distribution across plant species-182 particularly in light of the trade-off between epidermal space use for photosynthesis and 183 water conservation (Lawson & McElwain, 2016). 184

185

MSTs exhibit a range of topological properties that can be used to classify spatial
arrangements of objects. Metrics such as total MST length, mean edge length, and the
standard deviation of edge lengths are commonly used to characterize spatial configurations
(Hoffman & Jain, 1983; Dussert et al., 1989). Under the assumption of complete spatial
randomness (i.e., a Poisson process) in two dimensions, the expected MST length approaches
the following limit:

192

193 $L_{mts} = \beta (N^*A)^{1/2}$ (1)

194

where N is the number of points (stomata), A is the area of observation, and β is a constant that depends on the spatial structure of the distribution. Empirical estimates place β between 0.63 and 0.64 under random conditions (Beardwood et al., 1959; Bertsimas & Van Ryzin,

198	1990; Avram & Bertsimas, 1992; Jaillet, 1993; Cortina-Borja & Robinson, 2000). Values of
199	β lower than this range indicate clustering, while higher values suggest over-dispersion.
200	
201	In this study, we calculated the MST for each sample as a representation of the stomatal
202	network. For each MST, we measured the total length and evaluated deviations from the null
203	model (Equation 1) to infer differences in spatial arrangement.
204	
205	To contextualize each sample, we compared its MST length to three simulated benchmark
206	patterns: clustered, random (Poisson), and over-dispersed. Simulated patterns used the same
207	number of stomata and observation area as the empirical sample. Clustered patterns were
208	generated using four spatial clusters, while over-dispersed patterns applied a minimum
209	inhibition distance equal to the mean stomatal diameter of the sample. Each scenario was
210	simulated 1,000 times.
211	
212	All analyses were conducted in R (2024), using the packages stpp (Gabriel et al., 2024),
213	netgen (Bossek, 2025), and emstreeR (Quadros, 2025).
214	
215	Results
216	
217	Stomatal density across samples ranged from 3 to 777 stomata per mm ² . The lowest
218	density was observed in a sample of the fern Asplenium trilobum, while the highest was
219	recorded in Cryptocarya alba (Lauraceae). In general, higher stomatal densities were found in
220	samples from the Mediterranean site (Antumapu), whereas stomatal diameter showed no
221	consistent pattern between the two sites (Fig. 1; Table S2).
222	
223	The same samples that exhibited the lowest and highest stomatal densities also showed the
224	minimum and maximum MST lengths, with values ranging from 858 μ m to 20,894 μ m. As
225	expected, there was a strong positive correlation between the number of stomata per sample
226	and the total MST length (Pearson's $r = 0.945$; 95% CI: [0.927, 0.959]). Additionally,
227	stomatal number was significantly negatively correlated with average stomatal diameter (r =
228	-0.568; 95% CI: [-0.659, -0.459]).
229	
230	Despite the three orders of magnitude variation in stomatal density, MST length across all
231	samples was accurately predicted as a function of stomatal density, with a high coefficient of

232	determination ($R^2 = 0.94$; Fig. 1). However, the estimated value of the scaling parameter β
233	was significantly higher than expected under complete spatial randomness. Specifically, we
234	obtained a mean β of 0.7492 (95% CI: [0.7393, 0.7591]), which exceeds the typical range
235	reported for Poisson-distributed patterns (0.63-0.64), suggesting a consistent tendency
236	toward over-dispersion in stomatal spatial arrangements.
237	
238	When comparing observed MST lengths against simulated distributions, 2.8% of the samples
239	(5 out of 180) were classified as clustered, 27.2% (49 samples) as random, and 32.8% (59
240	samples) as over-dispersed. A total of 49.4% of the samples (89 samples) did not fall
241	exclusively within any single category. This is due to overlapping confidence intervals,
242	which allowed some samples to be classified into multiple categories.
243	
244	Among the unclassified samples, 10% (18 samples) fell between the confidence intervals of
245	the random and over-dispersed simulations, while 39.4% (71 samples) exceeded the upper
246	limit of the over-dispersed range. In total, 72% of the samples (130 out of 180) either fell
247	within or above the over-dispersed range, and 82% (148 samples) fell above the random
248	distribution range.
249	
250	No clear taxonomic pattern was observed in relation to the type of spatial arrangement. Full
251	classification results for each sample are provided in Figures 2 and 3 and Table S2.
252	
253	Discussion
254	
255	Trade-offs and relationships among stomatal size, density, and spatial arrangement have
256	garnered increasing attention over the past decade (e.g., Beerling & Franks, 2010; Brodribb
257	et al., 2014). The diverse patterns reported in the literature appear to result from a still poorly
258	understood interplay of genetic and environmental factors (Zhang et al., 2012). In this study,
259	we collected data from a broad range of species growing in two ecologically contrasting
260	environments. The stomatal density values observed in our samples were consistent with
261	previous findings (Franks & Beerling, 2009; Haworth et al., 2023). Notably, the highest
262	stomatal density and MST length were recorded in samples from the Mediterranean site
263	(Antumapu) (Fig. 1), supporting the hypothesis that increased stomatal density under higher
264	temperatures may represent an adaptive strategy to enhance gas exchange and evaporative
265	cooling (Hill et al., 2015).

266

The strong positive correlation between stomatal density and MST length aligns with theoretical expectations from our model (Eq. 1): a greater number of nodes necessarily results in a longer minimum spanning tree (Beardwood et al., 1959; Cortina-Borja & Robinson, 2000). Furthermore, our findings are consistent with prior studies reporting a significant negative correlation between stomatal density and stomatal size across species (Franks & Beerling, 2009; Haworth et al., 2023).

273

However, when we focused on the subset of species present at both sites, we observed a more 274 nuanced pattern (Table S2). With only one exception (A. chilensis), all species exhibited 275 276 higher stomatal densities in the Mediterranean climate (Antumapu) compared to the temperate oceanic climate (Frutillar). In contrast, stomatal size did not follow a consistent 277 278 trend across environments. These results suggest that, at the intraspecific level, stomatal density may be more responsive to environmental conditions than stomatal size—indicating a 279 280 greater degree of plasticity. Nevertheless, this interpretation is based on a limited sample of seven species, and further studies with larger species pools are needed to confirm this pattern. 281 282

Although our dataset includes numerous species from diverse biogeographical origins and 283 two ecologically distinct environments, the spatial configuration of stomata across all 284 samples was well-described by the theoretical model (Eq. 1; Fig. 1). The strong fit of this 285 model suggests that, across a wide range of lineages and taxonomic groups, stomatal 286 arrangements adhere to a shared generative rule—one in which MST length scales with the 287 square root of stomatal density and a constant parameter (β) representing spatial inhibition or 288 repulsion among stomata. This result implies a form of topological equivalence across 289 species and environments: the observed spatial patterns can be interpreted as scale 290 transformations—shrinking or stretching—of a common underlying configuration. 291

292

At the spatial resolution of our analysis (~1 mm²), no major deviations from this model were observed between species or sites. The estimated β value (>0.74) points to consistent repulsion or inhibition among stomata, aligning with both the "one-cell spacing" rule (Lawson & McElwain, 2016) and the finite-size constraint imposed by the physical dimensions of stomata themselves (Naulin et al., 2017). Our simulation results further support this interpretation. Although we examined a limited set of point process scenarios (single configurations for both clustered and over-dispersed patterns), the majority of samples (72%) exhibited levels of over-dispersion equal to or greater than those generated by
the over-dispersed simulations (Figs. 2–3).

302

As previously discussed, two main components likely contribute to this over-dispersion. First, 303 stomata are not point-like objects—their finite size prevents overlap and inherently induces 304 spatial repulsion (Naulin et al., 2017). Since our simulations are based on idealized point 305 processes, part of the observed over-dispersion likely reflects this geometric constraint. 306 Second, and more importantly, 39% of samples displayed levels of over-dispersion that 307 exceeded our simulation range even after accounting for stomatal size. This suggests the 308 309 presence of active biological mechanisms, likely of genetic origin, that enforce spatial 310 inhibition during stomatal development—further supporting the view that stomatal patterns are shaped by endogenous regulatory processes in addition to biophysical constraints. 311

312

If our model accurately reflects the mechanisms governing stomatal spatial organization, it 313 314 carries several important implications—both quantitative and qualitative—for understanding how stomata can be distributed on the epidermis. At low densities, there are potentially 315 thousands of viable spatial configurations that achieve a functional balance in the trade-off 316 between maximizing photosynthetic area and minimizing water loss. However, evolutionary 317 increases in stomatal density not only force reductions in stomatal size (Franks & Beerling, 318 2009; Haworth et al., 2023), but also dramatically constrain the number of feasible spatial 319 arrangements. Beyond a certain threshold, only over-dispersed configurations remain viable. 320

321

This constraint arises from fundamental geometric principles: the number of possible arrangements of finite-sized objects in a fixed area is far more limited than for point-like objects (Simberloff, 1979; Wu et al., 1987). As stomata cannot be infinitely small, increasing their number while preserving function requires increasingly regular spacing. In the theoretical limit, this constraint leads to a near-regular grid-like distribution.

327

It is important to note that these findings apply specifically to the spatial scale analyzed in this study (~1 mm²). At broader spatial scales, additional structural constraints—such as those imposed by leaf venation networks—may further shape or override local stomatal arrangements (Matos et al., 2024). Future studies incorporating multiscale analyses and biomechanical modeling may provide deeper insights into how such hierarchical constraints interact across spatial levels.

334	
335	Stomatal size and density are key determinants of CO2 conductance in leaves (Franks &
336	Beerling, 2009) and are therefore subject to strong selective pressures to balance mesophyll
337	demand for carbon assimilation with efficient water vapor diffusion (Lawson & McElwain,
338	2016; Haworth et al., 2023). In a scenario of rising atmospheric CO ₂ concentrations, species
339	that already exhibit high stomatal densities may face increasingly limited options for
340	allocating additional epidermal space to stomatal complexes due to geometric constraints.
341	Our results suggest that further increases in stomatal density are only feasible through
342	heightened over-dispersion, progressively driving stomatal arrangements toward grid-like
343	spatial patterns across the leaf surface.
344	
345	Acknowledgments
346	
347	The authors acknowledge the financial support from ANID PIA/BASAL AFB240003
348	
349	
350	Author contributions
351	PIN and SAE conceived and planned the work. PIN performed sample preparation and
352	digitalization. PIN and SAE analyzed the data. SAE wrote the manuscript and both authors
353	commented on the draft.
354	
355	Competing interests: Authors have no competing interests.
356 357	Data availability: all data is available as supporting information
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	

368	References
369	
370	Antunes de Almeida Filho H, Machicao J, Bruno OM. 2017. Geometric plasticity at leaves
371	from Ctenanthe oppenheimiana probed by measure of distances between stomata.
372	Journal of Physics: Conference Series 936: 012094.
373	
374	Aurenhammer F, Klein R, Lee DT. 2013. Voronoi diagrams and Delaunay triangulations.
375	Singapore: World Scientific Publishing Company.
376	
377	Avram F, Bertsimas D. 1992. The minimum spanning tree constant in geometrical
378	probability and under the independent model: a unified approach. Annals of Applied
379	Probability 2: 113–130.
380	
381	Beardwood J, Halton JH, Hammersley JM. 1959. The shortest path through many points.
382	Mathematical Proceedings of the Cambridge Philosophical Society 55: 299-327.
383	
384	Beerling DJ, Franks PJ. 2010. The hidden cost of transpiration. Nature 464: 495–496.
385	
386	Bergmann DC. 2004. Integrating signals in stomatal development. Current Opinion in Plant
387	Biology 7: 26–32.
388	
389	Bertsimas DJ, Van Ryzin G. 1990. An asymptotic determination of the minimum spanning
390	tree and minimum matching constants in geometrical probability. Operations Research
391	Letters 9: 223–231.
392	
393	Bossek J. 2024. netgen: Generating random (clustered) networks in R. R package version
394	1.3.2.
395	
396	Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV. 2014. Conifer species adapt to low-
397	rainfall climates by following one of two divergent pathways. Proceedings of the
398	National Academy of Sciences, USA 111: 14489-14493.
399	
400	Bunn AG, Urban DL, Keitt TH. 2000. Landscape connectivity: a conservation application of
401	graph theory. Journal of Environmental Management 59: 265–278.

402	
403	Cantwell MD, Forman RTT. 1993. Landscape graphs: ecological modeling with graph theory
404	to detect configurations common to diverse landscapes. Landscape Ecology 8: 239-255.
405	
406	Carlson JE, Adams CA, Holsinger KE. 2016. Intraspecific variation in stomatal traits, leaf
407	traits and physiology reflects adaptation along aridity gradients in a South African shrub.
408	Annals of Botany 117: 195–207.
409	
410	Castellaro G, Squella F, Ullrich T, León F, Raggi A. 2007. Algunas técnicas
411	microhistológicas utilizadas en la determinación de la composición botánica de dietas de
412	herbívoros. Agricultura Técnica 67: 86–93.
413	
414	Clark JW, Harris BJ, Hetherington AJ, Hurtado-Castaño N, Brench RA, Casson S et al. 2022.
415	The origin and evolution of stomata. Current Biology 32: R539-R553.
416	
417	Cortina-Borja M, Robinson T. 2000. Estimating the asymptotic constants of the total length
418	of Euclidean minimal spanning trees with power-weighted edges. Statistics and
419	Probability Letters 47: 125–128.
420	
421	Croxdale J. 2001. Stomata. In: Encyclopedia of Life Sciences (ELS). Chichester, UK: John
422	Wiley & Sons.
423	
424	Dow GJ, Berry JA, Bergmann DC. 2014. The physiological importance of developmental
425	mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New
426	Phytologist 201: 1205–1217.
427	
428	Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate
429	of response, and stomatal conductance. Journal of Experimental Botany 64: 495-505.
430	
431	Dry M, Preiss K, Wagemans J. 2012. Clustering, randomness and regularity: spatial
432	distributions and human performance on the traveling salesperson problem and
433	minimum spanning tree problem. The Journal of Problem Solving 4: 1–17.
434	

435	Dussert C, Rasigni G, Rasigni M, Palmari J, Llebaria A. 1986. Minimal spanning tree: a new
436	approach for studying order and disorder. Physical Review B 34: 3528–3531.
437	
438	Dussert C, Rasigni G, Rasigni M, Palmari J, Llebaria A, Marty F. 1987. Minimal spanning
439	tree analysis of biological structures. Journal of Theoretical Biology 125: 317-323.
440	
441	Dussert C, Rasigni G, Rasigni M, Palmari J, Llebaria A. 1989. Minimal spanning tree
442	analysis of regular, random and cluster structures. Zeitschrift für Physik D 12: 41–44.
443	
444	Edwards D, Kerp H, Hass H. 1998. Stomata in early land plants: an anatomical and
445	ecophysiological approach. Journal of Experimental Botany 49: 255–278.
446	
447	Fanourakis D, Heuvelink E, Carvalho SM. 2015. Spatial heterogeneity in stomatal features
448	during leaf elongation: an analysis using Rosa hybrida. Functional Plant Biology 42:
449	737–745.
450	
451	Fiorin L, Brodribb TJ, Anfodillo T. 2016. Transport efficiency through uniformity:
452	organization of veins and stomata in angiosperm leaves. New Phytologist 209: 216-227.
453	
454	Fontana M, Labrecque M, Collin A, Bélanger N. 2017. Stomatal distribution patterns change
455	according to leaf development and leaf water status in Salix miyabeana. Plant Growth
456	Regulation 81: 63–70.
457	
458	Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO ₂ effects on stomatal
459	size and density over geologic time. Proceedings of the National Academy of Sciences,
460	USA 106: 10343–10347.
461	
462	Gabriel E, Rowlingson BS, Diggle PJ. 2013. stpp: an R package for plotting, simulating and
463	analyzing spatio-temporal point patterns. Journal of Statistical Software 53: 1-29.
464	
465	Haefner JW, Buckley TN, Mott KA. 1997. A spatially explicit model of patchy stomatal
466	responses to humidity. Plant, Cell & Environment 20: 1087–1097.
467	

468	Haworth M, Marino G, Materassi A, Raschi A, Scutt CP, Centritto M. 2023. The functional
469	significance of the stomatal size to density relationship: interaction with atmospheric
470	CO ₂ and role in plant physiological behaviour. Science of the Total Environment 863:
471	160908.
472	
473	Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving
474	environmental change. Nature 424: 901–908.
475	
476	Hill KE, Guerin GR, Hill RS & Watling JR. 2015. Temperature influences stomatal density
477	and maximum potential water loss through stomata of Dodonaea viscosa subsp.
478	angustissima along a latitude gradient in southern Australia. Australian Journal of
479	Botany 62: 657-665.
480	
481	Hoffman R, Jain AK. 1983. A test of randomness based on the minimal spanning tree.
482	Pattern Recognition Letters 1: 175–180.
483	
484	Illian J, Penttinen A, Stoyan H, Stoyan D. 2008. Statistical analysis and modelling of spatial
485	point patterns. West Sussex, UK: John Wiley & Sons.
486	
487	Jaillet P. 1993. Rate of convergence for the Euclidean minimum spanning tree limit law.
488	Operations Research Letters 14: 73–78.
489	
490	Jones CL, Lonergan GT, Mainwaring DE. 1996. Minimal spanning tree analysis of fungal
491	spore spatial patterns. Bioimages 4: 91–98.
492	
493	Lawson T, McElwain JC. 2016. Evolutionary trade-offs in stomatal spacing. New
494	Phytologist 210: 1149–1151.
495	
496	Matkowski H, Daszkowska-Golec A. 2023. Update on stomata development and action
497	under abiotic stress. Frontiers in Plant Science 14: 1270180.
498	
499	Matos IS, Vu B, Mann J, Xie E, Madhavan S, Sharma S et al. 2025. Leaf venation network
500	evolution across clades and scales. Nature Plants 11: 1-15.
501	

502	McKown AD, Guy RD, Quamme L, Klápště J, La Mantia J, Constabel CP et al. 2014.
503	Association genetics, geography and ecophysiology link stomatal patterning in Populus
504	trichocarpa with carbon gain and disease resistance trade-offs. Molecular Ecology 23:
505	5771–5790.
506	
507	Mott KA, Denne F, Powell J. 1997. Interactions among stomata in response to perturbations
508	in humidity. Plant, Cell & Environment 20: 1098–1107.
509	
510	Naulin PI, Valenzuela G, Estay SA. 2017. Size matters: point pattern analysis biases the
511	estimation of spatial properties of stomata distribution. New Phytologist 213: 1956-
512	1960.
513	
514	Prim RC. 1957. Shortest connection network and some generalizations. Bell System
515	Technical Journal 36: 1389–1401.
516	
517	Quadros A. 2025. emstreeR: Tools for fast computing and plotting Euclidean minimum
518	spanning trees. R package version 3.0.0.
519	
520	R Core Team. 2025. R: A language and environment for statistical computing. Vienna,
521	Austria: R Foundation for Statistical Computing. Available at: https://www.R-
522	project.org/
523	
524	Rasband WS. 1997. ImageJ software. Bethesda, MD, USA: National Institutes of Health.
525	
526	Sachs T. 1991. Pattern formation in plant tissues. Cambridge, UK: Cambridge University
527	Press.
528	
529	Santibáñez F. 2017. Atlas agroclimático de Chile: Estado actual y tendencias del clima.
530	Santiago, Chile: Universidad de Chile, Facultad de Ciencias Agronómicas, FIA.
531	
532	Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
533	analysis. Nature Methods 9: 671–675.
534	

535	Serna L, Fenoll C. 1997. Tracing the ontogeny of stomatal clusters in Arabidopsis with
536	molecular markers. The Plant Journal 12: 747–755.
537	
538	Simberloff D. 1979. Nearest neighbor assessments of spatial configurations of circles rather
539	than points. Ecology 60: 679–685.
540	
541	Uhl D, Kerp H. 2005. Variability of stomatal density and index in the Upper Permian conifer
542	Quadrocladus Mädler—a taphonomical case study. Palaeogeography, Palaeoclimatology,
543	Palaeoecology 218: 205–215.
544	
545	Urban DL, Keitt TH. 2001. Landscape connectedness: a graph theoretic perspective. Ecology
546	82: 1205–1218.
547	
548	Wallet F, Dussert C. 1997. Multifactorial comparative study of spatial point pattern analysis
549	methods. Journal of Theoretical Biology 187: 437–447.
550	
551	Wu HI, Rykiel EJ, Sharpe PJ, Zou G, 1987. A statistical physics approach to nearest
552	neighbor distribution for individuals of finite size Ecological Modelling 36: 73–87
553	
554	Xiong D Elexas I 2020 From one side to two sides: the effects of stomatal distribution on
555	nhotosynthesis. New Phytologist 228: 1754–1766
556	
557	Vang KT Chen GP Xian IR 2023 Stomatal distribution pattern for 90 species in Loss
558	Plateau_based on replicated spatial analysis. Ecological Indicators 148: 110120
550	Trateau-based on represed spatial analysis. Leological indicators 148. 110120.
559	Zhang L. Niu H. Wang S. Zhu Y. Luo C. Li V. Zhao Y. 2012. Gono or anvironment?
500	Spacing spacific control of stomatel density and length. Ecology and Evolution 2: 1065
561	Species-specific control of stomatal density and length. Ecology and Evolution 2: 1065–
562	1070.
563	
565	
566	
567	
568	
569	

570 Figure captions

- Figure 1. Relationship between observed and predicted MST lengths across all samples.
 MST length was rescaled to millimeters. Each point represents a sample, with blue
 indicating Antumapu and red indicating Frutillar. The diagonal line denotes the 1:1
 relationship, representing a perfect fit between observed and predicted values based on
 the theoretical model.
- Figure 2. Comparison of observed MST length values (red points) with simulated
 distributions under clustered (blue), random (green), and over-dispersed (black) spatial
 scenarios for each sample from the Frutillar site. The x-axis shows sample identifiers,
 with the number of stomata in each sample indicated by small numbers above the axis.
 Bars represent the median and 95% confidence interval of the MST length from 1,000
 simulations per spatial pattern scenario.
- Figure 3. Comparison of observed MST length values (red points) with simulated
 distributions under clustered (blue), random (green), and over-dispersed (black) spatial
 scenarios for each sample from the Antumapu site. The x-axis shows sample identifiers,
 with the number of stomata in each sample indicated by small numbers above the axis.
 Bars represent the median and 95% confidence interval of the MST length from 1,000
 simulations per spatial pattern scenario.

Figure 2.

. _ -

Figure 3.

