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Abstract  

Soil bacterial communities are central to ecosystem functioning, yet the relative importance of 

dispersal limitation, environmental selection, and biotic interactions in shaping their spatial 

turnover remains unresolved. Distance–decay relationships (DDRs)—the decline in community 

similarity with geographic distance—are commonly observed for microbial communities, but 

their underlying drivers across ecologically relevant spatial scales remain unclear. We analyzed 

soil bacterial communities in temperate grasslands across two regions in Germany to quantify the 

contribution of geographic distance, soil physicochemical properties, plant community 

composition, and plant traits to bacterial β-diversity. Generalized linear modeling, variation 

partitioning, and commonality analysis revealed a clear DDR, with bacterial similarity declining 

by ~5% for each doubling of geographic distance. However, soil physicochemical heterogeneity 

accounted for over 50% of the explained variation in the bacterial DDR and nearly 30% of the 

total variation in community composition. Plant community composition independently 

explained additional variation, while plant functional traits had only marginal effects. Notably, 

fine-scale environmental heterogeneity within sites contributed to high turnover over short 

distances, indicating strong abiotic filtering even at the plot scale. Then, to further assess 

microbial distribution patterns, we examined the relationship between taxon abundance and 

spatial range. We found that rare taxa were both locally and broadly distributed, suggesting that 



 

 

rarity does not necessarily constrain dispersal. Dominant taxa, particularly from Proteobacteria 

and Firmicutes, were consistently broadly distributed, in accordance with generalist lifestyles. In 

contrast, we found a small, but taxonomically diverse group of highly abundant taxa which were 

distributed only over intermediate ranges, suggesting that dispersal limitation does not constrain 

dominance. Our results demonstrate that soil bacterial DDRs emerge primarily from 

environmental filtering and plant–soil interactions, with a secondary role for spatial separation. 

These findings highlight the importance of integrating spatially explicit sampling with soil and 

vegetation data in microbial biogeography, and shed light on the complex patterns of dispersal 

limitation in microbial communities. 

  



 

 

Introduction 

Soil bacterial communities are essential to terrestrial ecosystem functioning, nutrient cycling, 

organic matter decomposition, and plant growth (Loreau et al., 2001), but knowledge of their 

spatial distribution is limited by their highly diversity, wide distributions, and considerable 

spatiotemporal turnover (Fierer & Jackson, 2006; Lemoine et al., 2023). Understanding the 

processes that structure bacterial communities (i.e., assembly) is crucial for predicting ecosystem 

responses to environmental change. Community assembly is shaped by four key mechanisms: 

selection, drift, speciation, and dispersal (Vellend, 2010). Among these, selection and dispersal 

are central to shaping bacterial diversity at local and regional scales (Nemergut et al., 2013), and 

while they have received considerable attention in microbial ecology, most work to date focuses 

on large scales (i.e., km), which likely exceed the dispersal capacity of most soil microbes and 

the local factors that drive their selection (Hanson et al., 2012; but see Richter-Heitmann et al., 

2020). 

The distance decay relationship (DDR) describes the observation that the similarity of 

community composition decreases with geographic distance, and has been well-documented for 

plants and animals (Graco‐Roza et al., 2022; Nekola & McGill, 2014; Nekola & White, 1999), as 

well as microbes (Clark et al., 2021). Distance-decay relationships arise from the interaction 

between dispersal limitation, environmental gradients, and biotic interactions (Nekola & White, 

1999). Dispersal limitation contributes to DDRs when a lack of connectivity between habitat 

patches prevents organisms from dispersing across patches, while environmental heterogeneity 

and biotic interactions, both forms of selection, contribute to DDRs because communities in 

close proximity are likely to encounter more similar environmental conditions and interact with 

similar organisms, respectively. 

Existing research into DDRs in soil bacteria has found mixed evidence for this pattern (Fierer & 

Jackson, 2006; Rousk et al., 2010), and generally weaker DDRs, with differences in the strength 

of the relationship attributed to experimental designs (Barbour et al., 2022a), but the extent to 

which properties of soil microbial communities contribute to the observed DDRs is unclear. 

First, the extent to which microbes are limited by dispersal remains unresolved. On the one hand, 

passive dispersal mechanisms, high population densities, and the ability to enter dormancy 

suggest a high dispersal potential (Clark et al., 2021). On the other hand, accumulating evidence 

indicates that microbial dispersal can indeed be limited (Barbour et al., 2022b; Hanson et al., 

2012), but the spatial extent of this dispersal limitation is unclear (Barbour et al., 2022a). Second, 

microbial community assembly in soils is influenced by plant–microbe associations, which play 

a significant role in structuring soil bacterial communities by exerting selective pressures on the 

local microbiota (Eisenhauer et al., 2010; Trivedi et al., 2020). However, since plant distributions 

themselves follow DDRs (Nekola & White, 1999), these interactions introduce further 

complexity into microbial assembly patterns. At the same time, a wide range of work has 

demonstrated the role of small-scale environmental differences, such as pH (Fierer & Jackson, 
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2006; Rousk et al., 2010; Zhou et al., 2024) and moisture (Delgado-Baquerizo et al., 2018), in 

shaping soil bacterial communities. Steep environmental gradients can occur over very short 

distances (Dumbrell et al., 2009; Vos et al., 2013), even over millimeters.  

A more complete understanding of soil microbial community assembly requires disentangling 

the role of dispersal from the biotic and abiotic environment across spatial gradients that 

encompass expected bacterial dispersal ranges. Grasslands are ideal ecosystems to study soil 

bacterial DDRs due to their spatial continuity, microbial diversity, and variable environmental 

conditions. While stronger DDRs are expected in systems with low connectivity or limited 

dispersal (i.e., soil; Hanson et al., 2012), grassland soil microbial communities exhibit weaker 

DDRs than those in aquatic environments, suggesting that additional factors like complex 

dispersal patterns or uneven environmental gradients may influence microbial community 

turnover in these systems (Clark et al., 2021).  We investigated the drivers of soil bacterial 

community assembly in grassland soils across two regions of Germany. We hypothesized that: 

(1) soil bacterial communities in grassland ecosystems exhibit distance-decay relationships from 

the local (m) to the regional (km) scales; (2) dispersal limitation plays a significant role in soil 

microbial community assembly; but (3) plant and environmental DDRs contribute to bacterial 

DDRs, accounting for a considerable portion of the observed variation in microbial community 

composition. 

Methods 

Study Area and Sampling Design  

We sampled managed grasslands in 18 plots across the Hainich-Dün and Schorfheide-Chorin 

regions of Germany as part of the Biodiversity Exploratories (Fischer et al., 2010). These regions 

are separated by approximately 300 km. Schorfheide-Chorin is mainly shaped by sandy and 

loamy soils which originate from young glacial sediments, whereas Hainich-Dün is characterized 

by loamy and clayey soils from calcareous bedrocks (Fischer et al., 2010). All grassland plots lie 

on a land use intensity gradient and are managed by local farmers (Blüthgen et al., 2012). 

Soil and vegetation data were collected in June 2023 in nine permanently installed research plots 

per region. In each plot, three 1 m²  subplots were sampled along a south-to-north transect of 50 

m. The first subplot had a distance of 13.5 m to the second subplot, while the second subplot had 

a distance of 18 m to the third subplot. Within each subplot, plant species inventories and cover 

estimations were conducted, and soil samples were taken. Furthermore, the cover of bare ground, 

litter, vegetation and moss were estimated and always added up to hundred percent. The total 

vegetation cover was further differentiated into the cover of grasses, herbs and legumes. Plant 

species occurring with a cover above one percent were sampled in each of the three subplots. 

The total dry biomass of a plant individual was estimated based on the dry mass of a portion of 

the sampled individual. The leaf area and dry mass of leaves from the collected individual were 
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measured to calculate the trait specific leaf area (SLA). Plant species inventory data is available 

in BExIS (http://doi.org/10.17616/R32P9Q; accession number 31976; Meyer, 2025). 

Soil measurements 

The top 10 cm of topsoil was collected from the center of each subplot with a 2.5 cm auger and 

mixed. A 5 g aliquot was stored at -20°C for community analyses. The rest of the samples were 

sieved (1-2 mm) and subsequently dried (at least 40°C for 24h) to assess soil carbon and nitrogen 

content using a CN analyser (Eurovector EA3100). Soil moisture was measured as (fresh weight 

[g] - dry weight [g]) / dry weight [g]. To measure soil pH, 10±0.2 g moist soil and 20 ml 

deionized water were shaken for a few seconds and an equilibrium period of 30 minutes was 

allowed before measuring pH with a pH meter. 

DNA Extraction and Sequencing 

DNA was extracted from 0.25 g of soil for each sample using the NucleoSpin Soil kit (Macherey 

Nagel), according to manufacturer instructions, and DNA quality and concentration were 

assessed with gel electrophoresis and Qubit, respectively. The 16S rRNA gene was amplified 

using primers targeting the V4 region (515F-806R), using the standard Earth Microbiome Project 

protocols (Thompson et al., 2017) and primers 16S_Illu_515F (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA-3’) 

and 16S_Illu_806R (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTAAT-

3’). Amplicons were sequenced with an Illumina MiSeq sequencer (Illumina Inc., San Diego, 

CA, United States) with the MiSeq Reagent Kit v3 (600 bp).  

Bioinformatics  

All bioinformatics and statistics analyses were conducted in R (version 4.3.2) (R. Core Team, 

2025). R code for all analyses is available in GitHub (https://github.com/NeisseN/BEO_DDR). 

The dada2 pipeline was used to infer amplicon sequence variants (ASVs) from the raw 

sequencing data according to standard protocols (Callahan et al., 2016). Reads were trimmed to 

exclude the first 10 nucleotides and truncated at  230 and 220 bp for the forward and reverse 

reads respectively, with a maximum of 3 expected errors per read. Taxonomic assignment was 

performed with the SILVA 16S rRNA reference database v138.1 (Quast et al., 2012). Raw 

sequences are publicly available in NCBI’s Sequence Read Archives under accession number 

PRJNA1284051, and processed data and corresponding metadata are available in BExIS 

(accession numbers 32155 and 332156, respectively; Neisse, 2025). Prior to statistical analyses, 

all samples were standardized to 23,942 observations per sample and thereby excluding one 

sample using the rarefy_even_depth function of the phyloseq package 

(https://doi.org/10.1371/journal.pone.0061217).  
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Statistical analyses 

To test the strength of the soil microbial DDR and account for the contributions plant and 

environmental DDRs to this pattern, we performed a commonality analysis based on a 

generalized linear model (GLM) with a Gamma error distribution and a log link function, using 

the glmm.hp function of the glmm.hp package (Lai et al., 2022). We considered four groups of 

explanatory variables, all measured at the sample level. First, geographic distance was 

represented by the pairwise Haversine distance on the natural based log scale between sample 

coordinates, calculated using the distm function from the geosphere package (version 1.5-20) 

(Hijmans et al., 2024). Second, abiotic environmental variation was captured as the Euclidean 

distance based on scaled soil carbon and nitrogen concentrations, moisture content, and pH, 

consistently identified as key drivers of microbial community composition across diverse 

ecosystems (Bell, 2010; Delgado-Baquerizo et al., 2018; Fierer & Jackson, 2006). Third, 

variation in plant community composition was assessed through Bray-Curtis dissimilarities with 

the vegdist function. Finally, plant traits were represented by the Euclidean distance of scaled 

total plant biomass, specific leaf area (SLA), and the percentage cover of four ground cover 

types: bare ground, litter, moss, and senescent litter.  

To build the generalized linear model, we first addressed potential collinearity among the 

explanatory distance matrices by calculating pairwise Pearson correlations. We then performed 

bidirectional stepwise selection using the full model, including all interaction terms, as the upper 

scope. We identified only a significant interaction between physico-chemical Euclidean distance 

and plant compositional Bray-Curtis dissimilarity for model performance. Although plant trait 

similarity did not improve model fit, we retained it in the final model to ensure consistency with 

the variables used in the variation partitioning analysis. Model assumptions were checked with 

the DHARMa R package (Hartig et al., 2024). We used the commonality analysis with a 

lognormal approximation on our GLM to disentangle the unique and shared effects of each 

ecological factor on bacterial community composition. Individual and overlapping contributions 

were quantified as marginal R² values, calculated from commonality coefficients based on 

explained deviance. To assess statistical significance, we performed permutation tests with 

10,000 iterations, where the response variable was randomly permuted while maintaining the 

structure of explanatory variables. The total model fit was assessed using a pseudo-R² calculated 

as the deviance explained by the final model relative to the null model. Mean values are reported 

as mean ± SD throughout.  

To disentangle the interactions between drivers of soil microbial 𝛽-diversity we performed 

variation partitioning using the varpart function from the vegan R package on the Bray-Curtis 

dissimilarities of bacterial communities. We included four potential drivers of bacterial DDRs: 1) 

geographic location (spatial coordinates of the samples), 2) abiotic parameters, 3) the relative 

abundances of plants, and 4) plant traits. To select only relevant variables for each compartment, 

we applied the ordiR2step function on a distance based RDA ( dbRDA) to perform stepwise 
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model selection with 999 permutations using the vegan  package (version 2.6-10) (Oksanen et 

al., 2001). The significance of each fraction of the variation partitioning analysis was assessed 

with the test_vp4 function from the comecol package in R (https://github.com/jgmv/comecol). 

This function performs permutation-based significance testing for each explanatory component 

using the anova.cca function from the vegan package. 

Spatial range 

To investigate how the spatial ranges of bacterial community members drive the observed DDRs, 

we investigated the relationship between the spatial distribution and relative abundance of ASVs 

by calculating the convex hull area and mean relative abundance for each ASV across all 

samples. The convex hull area (i.e., the smallest convex shape that encloses a set of 

observations), representing the geographic extent of each ASV, was calculated using the 

CHullArea function from the GeoRange R packages (Boyle, 2017), based on the longitude and 

latitude coordinates (WGS84; UTM Zone 33N, Berlin) of the samples in which the ASV was 

present. ASVs with less than 3 locations were assigned a convex hull area of 0, and all values 

were converted to the natural log scale (+1 m²). ASVs were classified according to their 

relationship of occurrence (within plot, within site, and between site), and by phylum. 

Results 

Distance Decay in Bacterial Communities 

We decomposed the DDR of soil bacterial communities to assess the contribution of geographic 

distance, the DDR in soil physicochemical properties, the DDR of plant communities, and the 

resulting gradient in plant community traits. The fitted GLM captured 53% of the variation in 

microbial community dissimilarities (Fadden's pseudo-R² = 0.53). As expected, geographic 

distance had a significant, negative effect on bacterial community similarity (β = -0.074, SE = 

0.005, t(1269) = -14.03, p < 0.001; Fig. 1). Doubling the distance between sites was associated 

with a 5% decrease in bacterial community similarity, holding other variables constant 

(Supplemental Equation S1-S4).  

The highest observed bacterial community similarity was 59.8%, occurring between two samples 

collected within the same plot, though not among the closest recorded distances. Nevertheless, 

despite originating from the same plot, some sample pairs exhibited very low similarity, with the 

lowest recorded value being 11.7%. The average similarity among sample pairs from the same 

plot was 40.4 ± 13.4%. At the minimum geographic distance of 12.96 m, a bacterial community 

similarity of 35.2 ± 3% was estimated (holding all other variables at their mean values). At 

average short range (20.13 m),  mid range (5.7 km), and long range (309.4 km) distances, 

community similarities of 34.2 ± 2.8%, 22.6 ± 0.7%, and 16.9 ± 0.5% were observed.  Notably, 

within-site comparisons included the 22 lowest similarity pairs (minimum similarity of 3%), and 
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exhibited high variation in physicochemical properties (Supplemental Fig. S1), which had a 

significant negative effect on bacterial community similarity (β = -0.279, SE = 0.011, t(1269) = -

26.013, p < 0.001). 

 

 

Fig. 1  Distance–decay relationship of soil bacterial communities across grasslands. Distance between samples 

(log-transformed Haversine distance in meters), modeled using a Gamma generalized linear model (GLM) with a 

log link and the difference in physicochemical properties, plant communities, plant community traits set to their 

mean (p < 0.001). Points represent raw pairwise similarity data; the line and shaded ribbon show the GLM-

predicted relationship with 95% confidence intervals. Stacked bar charts along the X and Y axes show the 

distribution of pairwise distances, colored to match the comparison scale. 

  



 

 

To evaluate the relative importance of DDRs of soil physicochemical parameters, plants, and 

their traits, we performed a commonality analysis on the GLM (total marginal adjusted R²= 

57.7%; Table 1). Geographic distance, and changes in physicochemical soil properties and plant 

communities, as well as their interaction were all highly significant (p < 0.001), while plant traits 

showed no significant contribution. Changes in physicochemical parameters accounted for the 

largest share of the explained variance, contributing 52.1% to the total R². This included the 

highest unique contribution (15.4%), along with a shared contribution of 13.5%, primarily with 

geographic distance and in three-way combinations involving either plant similarity or the 

interaction between physicochemical properties and geographic distance. Geographic distance 

was the second most influential predictor, explaining 38.7% of the total R², with a unique 

contribution of 9.6%. Changes in plant communities accounted for 6.4% of the total R², largely 

through shared variance with other predictors.  

Table 1 Contribution shares of selective processes to bacterial community similarity in grasslands, based on 

commonality analysis using a lognormal approximation. The table presents the unique, average shared, and total 

(individual) contributions of each predictor to the model’s adjusted R² (total R² = 0.577), along with their 

percentage contributions. The interaction term (E) reflects the conditional effect of physicochemical properties 

and geographic distance. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1, ns = not significant 

(based on 1000 permutations). 

                       a. Unique  b. Average 

share 

 Individual 

(a+b) 

 Individual (%) 

A. Change in soil  

properties 

0.154 *** 0.135 *** 0.289 *** 52.1 

B. Geographic 

distance 

0.096 *** 0.119 *** 0.215 *** 38.7 

C. Changes in plant 

similarity 

0.007 * 0.028 *** 0.035 *** 6.4 

D. Changes in plant 

traits 

-0.001 ns 0.001 *** 0.000 ns 0.1 

E. Interaction of  

A. and B. 

0.012 *** 0.004 *** 0.016 *** 2.8 

Drivers of Bacterial Beta Diversity  

To assess the direct role of a) location, b) physicochemical parameters, c) plants, and d) their 

traits to in modulating the soil bacterial community (i.e., rather than the effect of their DDRs), 

we first selected relevant drivers in for compartments b-d through stepwise selection. The 

variables selected for b-d were b) soil carbon concentration, pH, and the carbon-to-nitrogen 

(C:N) ratio; c) Poa trivialis, Achillea millefolium, Lolium perenne, Anthoxanthum odoratum, 

Bromus hordeaceus, Medicago sativa, Geranium rotundifolium, Daucus carota, Crataegus 



 

 

spec., Cynosurus cristatus, Phleum pratense, and Centaurea jacea; and d) bare ground cover, 

total plant biomass, and ground cover of senescent litter.  

Subsequently, we conducted a variance partitioning analysis, which explained 42% of the total 

variation in bacterial β-diversity (Fig. 2). All predictor groups contributed significantly to the 

explained variation (Supplemental Table S1). Plant community composition accounted for the 

largest proportion of the variance (~36%), followed by soil physicochemical properties (~30%), 

and location (~19%). Plant traits were the weakest drivers, explaining only about 10% of the 

variation. Among the unique fractions, plant community composition (7.4%) and location (1.8%) 

showed statistically significant effects. The unique contributions of soil physicochemical 

properties and plant traits were not significant (0.9%, and 0.8%, respectively). Notably, plant 

community composition, excluding the influence of soil physicochemical factors, still accounted 

for approximately 11% of the variance. Plant community composition and soil properties 

together accounted for about 41% of the total variance. 

 

Fig. 2 Venn diagram summarizing the results of a variance partitioning analysing the effect of 1. Location, 2. Soil 

properties, 3. Plant community composition, 4. Plant traits on the Bray–Curtis similarity of bacterial communities. 

The values displayed represent the adjusted R² of both unique and overlapping contributions of each predictor 

group. Blank areas indicate no explained or shared variance.  Significance codes: *** p < 0.001, ns = not 

significant, blank = not testable. 

 

  



 

 

Spatial Range 

We investigated the spatial distribution of bacterial community members by calculating the 

convex hull area as a proxy for range and determining the average relative abundance of each 

ASV across all samples (Fig. 3). Based on their spatial extent, we simultaneously classified 

ASVs into three categories: local, with a convex hull area of less than approximately 10 m²; 

intermediate, ranging between roughly 150 m² and 170,000,000 m²; and broad, exceeding around 

5,000,000,000 m². 

We observed a strong positive relationship between ASV relative abundance and range size 

(Spearman’s ρ = 0.73, p < 2.2 × 10⁻¹⁶). Most ASVs (99%) exhibited average relative abundances 

below 0.1% (mean: 0.008%). The dominant bacteria ( > 0.1% average relative 

abundance) primarily belonged to Proteobacteria (n = 57) and 

Actinobacteriota (n = 30).  Acidobacteriota, Bacteroidota, 

Verrucomicrobiota, Firmicutes, Myxococcota, and Crenarchaeota 

included ≤ 10 dominant ASVs. Of these, 21 ASVs belonging to Actinobacteriota (8 

ASVs), Proteobacteria (6 ASVs), Crenarchaeota (3 ASVs), Verrucomicrobiota (2 ASVs), 

Acidobacteriota and Myxococcota (1 ASV each) were restricted to intermediate spatial ranges 

(Table S1). All dominant Firmicutes belonged to Bacillales, including one unclassified 

Planococcaceae, and were detected at broad ranges. Notably, no dominant Firmicutes or 

Bacteroidota were detected at intermediate scales.  

Highly dominant  ASVs (>0.25% average relative abundance) were distributed among 

Proteobacteria (15 ASVs), Firmicutes (4 ASVs), Actinobacteriota (3 ASVs), and Crenarchaeota 

(3 ASVs). Only three ASVs belonging to Proteobacteria (unclassified Sutterellaceae), 

Actinobacteriota (unclassified MB-A2-108), and Crenarchaeota (unclassified 

Nitrososphaeraceae), occurred at intermediate scales. The rest occurred at the broadest spatial 

scale, including ASVs from Proteobacteria (14 ASVs), Firmicutes (3 ASVs), two ASVs each 

from Acidobacteriota and Actinobacteriota, and one each from Bacteroidota, Crenarchaeota, 

Myxococcota. The two most abundant taxa were a Bradyrhizobium and an unclassified 

Bacillales, each with a ~1% average relative abundance and spanning the broad spatial scale. No 

dominant ASVs occurred at local ranges (Fig. 3). 

  

 



 

 

 

Fig. 3 Relationship between average relative abundance (%) and spatial range (convex hull area in 

ln(m²)) of soil bacterial ASVs in grasslands, faceted by phylum. Each point represents a single ASV. 

For faceting, the eight most abundant bacterial phyla, and the rest of the taxa are shown separately. 

Colors indicate the convex hull area relative to the sampling design: red is within plot; green is within 

sites, and blue is across sites.  

 



 

 

Discussion 

Understanding the factors governing the distribution of soil bacteria is essential to advance 

microbial biogeography and inform strategies for sustainable management of belowground 

diversity. While previous research has established that bacterial communities often exhibit 

distance–decay relationships (Martiny et al., 2011), the extent to which these patterns reflect 

spatial constraints, environmental filtering, biotic interactions or their combinations remains 

insufficiently resolved—particularly across multiple ecological scales (Barbour et al., 2022a). By 

integrating variation partitioning with commonality analysis, we disentangled the direct effects 

of geographic location and abiotic and biotic drivers on the bacterial community from the 

influence of changes in these abiotic and biotic compartments, which are though autocorrelation 

also spatially structured, on the bacterial DDR. Our findings shed light on the soil bacterial DDR, 

which emerges from the interaction between dispersal limitation and abiotic and biotic selective 

factors, and their own DDRs. 

We found a significant, negative effect of geographic distance on bacterial community similarity, 

with a ~5% decrease in similarity with each doubling of distance while controlling for soil and 

plant-related variables. This aligns with existing research into microbial DDRs (Clark et al., 

2021; Martiny et al., 2011), and underscores the role of spatial separation in microbial 

community assembly, likely through dispersal and historical contingencies. Indeed, geographic 

distance was the second most important driver of bacterial communities according to our 

commonality analysis. We found a small but significant individual effect of geographic location 

in our variation partitioning analysis, suggesting that while spatial processes do affect 

community composition, much of their influence is confounded with biotic and abiotic gradients 

driving gradual changes in bacterial communities. This aligns with findings from a synthesis by  

Hanson et al., (2012), which showed that environmental variables explained more variation in 

microbial composition (26.9%) than geographic distance (10.3%), with studies being more likely 

to detect significant effects from environmental factors than from spatial ones. Importantly, the 

lack of a role of geographic location may have partially resulted from our sampling design, 

which had a minimum distance between samples of 12.96 m, and while it boasted high spatial 

resolution relative to the existing literature (Griffiths et al., 2011), may have still been too large 

to capture dispersal ranges (Barbour et al., 2022a).  

Soil physicochemical properties were the most important direct drivers of soil bacterial 

communities, explaining nearly 30% of the total variance in bacterial community composition in 

our variation partitioning analysis. Changes in soil properties accounted for over half of the 

variation in the bacterial DDR and contributed the largest unique share, underscoring their 

independent influence on microbial communities and highlighting the role of environmental 

filtering, consistent with niche-based theories of microbial biogeography (Chase & Myers, 2011; 

Fierer & Jackson, 2006). However, when considered independently of the contribution of soil 

properties, such as pH and inorganic carbon, had limited direct and marginally non-significant 
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effects on bacterial community structure (1%; p = 0.08). Nevertheless, their influence increased 

significantly when interactions with plant-driven biotic processes were considered, and their 

exclusive joint-share accounted for 13% of the total variation. This suggests that abiotic factors 

act in concert with biotic interactions to structure bacterial communities (Drenovsky et al., 2009) 

and points to synergistic interactions between abiotic and biotic filters. For instance, soil pH has 

long been recognized as a key determinant of bacterial diversity, but its effects may be amplified 

or mitigated by plant species composition (Fierer & Jackson, 2006; Rousk et al., 2010). Taken 

together, these findings support the notion that environmental conditions are important, but 

represent just one component of the broader set of selective factors influencing bacterial 

community assembly, including active biotic interactions (Vellend, 2010).  

Bacterial communities varied considerably, even within the same plot over distances of several 

meters in response to changes in physicochemical parameters, highlighting the role of fine-scale 

environmental heterogeneity in driving soil microbial communities. The low similarity found 

between nearby samples, even within the relatively homogeneous grassland environment, further 

underscores the importance of revisiting standard sampling designs for soil microbiota, which 

often rely on composite sampling strategies, or pooling, to characterize microbial diversity at the 

plot scale, contributing further noise to the scales at which selection and microbial dispersal 

occur in soil ecosystems (Clark et al., 2021).  

We found a strong contribution of plant community composition, but not plant traits, to the 

composition or change in microbial communities. The strong, unique contribution of plant 

composition to the variance in the soil bacterial communities likely reflects both direct 

interactions between plants and soil  (e.g., through root exudates, litter quality, and rhizosphere 

dynamics; Philippot et al., 2013; Trivedi et al., 2020) while the shared contribution of plant 

composition and abiotic parameters likely highlights the role of plants in modulating the 

microbial environment (e.g., soil pH, nutrient availability, and organic matter content). The lack 

of influence of plant traits further suggests that trait-based filtering of soil bacteria may be weak 

or indirect, potentially mediated through plant effects on soil chemistry that were already 

captured by other measured variables.  

Our dual analytical strategy allowed us to quantify the contribution of abiotic and biotic DDRs to 

soil bacterial DDRs. We found that the interaction between geographic location and 

physicochemical processes explained a small, but significant portion of the variance in bacterial 

DDRs, suggesting that spatial changes in soil properties may modulate the effects of distance in a 

multiplicative manner, adding further nuance to the role of the abiotic environment in structuring 

soil bacterial communities, both locally, and over spatial gradients (Legendre et al., 2005). 

Similarly, the influence of the plant DDR was primarily observed through shared effects with 

changes in geographic distance and soil physicochemical properties and not through unique 

contributions. This suggests that shifts in plant composition across sites do not consistently 

translate into corresponding microbial changes at the spatial scale examined, likely because their 
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effects are context-dependent and mediated through co-varying environmental conditions. 

Previous studies have shown that spatial heterogeneity in soil properties and stochastic dispersal 

processes can outweigh deterministic selection by plant communities in structuring microbial 

communities (K. Regan et al., 2017; K. M. Regan et al., 2014; Richter-Heitmann et al., 2020). In 

our study, abiotic filtering and dispersal limitation likely dominate microbial community 

assembly, consistent with findings from previous large-scale grassland surveys (Delgado-

Baquerizo et al., 2018). 

To further explore potential dispersal limitation and its relationship to dominance in soil 

microbial communities, we examined the relationship between bacterial ASV abundance and 

geographic range. We observed distinct biogeographic patterns shaped by taxonomic identity, 

with most taxa exhibiting low abundances, supporting the notion of a rare biosphere; however, 

we found similar long-tailed distributions of microbes with broad and local ranges, suggesting 

the existence of a large portion of rare generalists–low-abundance taxa that can disperse broadly 

or persist in diverse habitats. While the existence of rare microbes is well established (Lynch & 

Neufeld, 2015; Sogin et al., 2006), largely through dormancy (Lennon & Jones, 2011), less is 

known about the distribution of these taxa, and it is generally assumed that in general, rare taxa 

are locally distributed (Lindh et al., 2017; K. M. Meyer et al., 2018; Shade & Stopnisek, 2019; 

Thompson et al., 2017). Furthermore, Clark et al. (2021) emphasized that similarity analyses 

failing to capture rare taxa can overestimate compositional similarity across communities and 

thus weaken distance–decay relationships, under the assumption that rare taxa are also spatially 

restricted. Our observation that many rare ASVs are widespread intermediate and broad ranges 

(an area exceeding 5,000 km²) challenges this assumption and highlights that rare taxa likely 

exhibit a range of dispersal ranges. The presence of both narrowly and broadly distributed rare 

taxa across all phyla suggests diverse dispersal strategies, potentially shaped by microbial life-

history traits that facilitate survival and transport—such as dormancy in vegetative cells, cysts, or 

spores (Hanson et al., 2012; Locey et al., 2020). However such strategies, and their influence on 

community assembly, remain poorly characterized (Barbour et al., 2022a) and require further 

study. 

In contrast, the accumulation of dominant ASVs (especially Proteobacteria) at the largest spatial 

scale reinforces the presence of successful generalists in the community, consistent with 

established ecological classifications (Fierer et al., 2007). These dominant phyla, including 

Proteobacteria, Actinobacteriota, and Bacteroidota, exhibited wide geographic distributions and 

often increased in abundance at broader spatial scales, suggesting high dispersal capacity and 

competitive success across heterogeneous soil environments (Shade & Gilbert, 2015). The 

consistent dominance of Proteobacteria across scales likely reflects their metabolic versatility, 

rapid growth, and ability to exploit diverse root-derived carbon sources (Fierer et al., 2007; 

Philippot et al., 2013; Spain et al., 2009). 
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Interestingly, we found a small and diverse group of taxa that were dominant at intermediate 

scales, likely indicating that dominant taxa can also be dispersal limited. These taxa were found 

across all phyla except for Firmicutes and Bacteroidota, further suggesting that these patterns 

emerge largely from dispersal limitation. The high abundance found among these taxa may 

reflect strong niche specialization or habitat patchiness, allowing certain taxa to thrive locally or 

regionally despite limited distribution. In contrast, the lack of abundant taxa at intermediate 

scales among Firmicutes and Bacteroidota likely reflects a greater overall dispersal capacity, e.g. 

due to their ability to form stress-resistant spores or cyst-like structures (Mandic-Mulec et al., 

2015) that facilitate long-range dispersal and persistence under fluctuating conditions.  

Conclusion 

This study paints a more nuanced picture of ecological strategies among soil bacteria, their 

distribution within phyla, and the effect of the biotic and abiotic environment on the 

biogeographical distribution of these bacteria. We demonstrate that bacterial communities follow 

a distance decay relationship, but the strongest drivers of community assembly are soil 

physicochemical parameters and interactions with plants (i.e., selective factors). We find that 

dispersal plays an important role in modulating the community, and find large portions of the 

bacterial community that are dispersal limited; however relative to the contribution of selective 

factors, the role of dispersal limitation in structuring soil bacterial communities is small. Taken 

together, our findings suggest a modification to the hypothesis that “everything is everywhere, 

but the environment selects” (Baas Becking & Nicolai, 1934): “everything is not everywhere. 

Still, the environment selects”. 
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Supplementary materials 

Formula to calculate the effect of doubling x in a generalized linear model with a log link.  

𝛥 = 𝛽 ∗ 𝑙𝑛(2𝑥) − 𝛽 ∗ 𝑙𝑛(𝑥) = 𝛽 ∗ [𝑙𝑛(𝑥) + 𝑙𝑛(2) − 𝑙𝑛(𝑥)] = 𝛽 ∗ 𝑙𝑛(2) 

𝛽 ∗ 𝑙𝑛(2)  =  −0.736 ∗  0.6931 =  −0.051  

(𝑆1) 

(𝑆2) 

To back transform the log transformed geographic predictor, we use the exponential.  

𝑒𝑥𝑝(−0.051)  =  0.95 

1 −  0.95 =  0.05 

(𝑆3) 

(𝑆4) 

 

 

 

 

Fig. S1 Effect plots from a four-way Gamma generalized linear model (GLM) with a log link that predicted soil 

bacterial community similarity (Bray-Curtis index). Each panel displays the modeled relationship between Bray-

Curtis similarity and one predictor: (A) physicochemical dissimilarity, (B) plant community dissimilarity, and (C) 

plant trait dissimilarity, with geographic distance and the remaining predictors held at their mean values. 

Physicochemical differences and plant community similarity significantly influenced bacterial similarity (p < 

0.001), while plant trait dissimilarity showed no significant effect. Points represent observed pairwise similarity 

values; solid lines show model predictions, and shaded ribbons represent 95% confidence intervals. 

  



 

 

 

Table S1 Taxonomic identification, spatial distribution, and relative abundance of dominant (> 0.1% average 

relative abundance) amplicon sequence variants (ASVs) that occur within the same sampling site, yet not within 

the same plot. Each ASV is listed with its corresponding phylum, family (representing the last known taxonomic 

identification), genus, log-transformed convex hull area (CH; m²) as a proxy for spatial extent, and average 

relative abundance (%) across samples. Family depicts last known identification at that level. Unspecified genera 

indicate unresolved taxonomic classification at that level. 

ID Phylum Family Genus Convex hull area Abundance  

ASV23 Actinobacteriota MB-A2-108 unspecified 17.193 0.282 

ASV28 Proteobacteria Sutterellaceae unspecified 15.441 0.268 

ASV31 Crenarchaeota Nitrososphaeraceae unspecified 15.52 0.252 

ASV40 Actinobacteriota MB-A2-108 unspecified 17.193 0.208 

ASV44 Verrucomicrobiota Xiphinematobacteraceae 

Candidatus 

Xiphinematobacter 15.52 0.202 

ASV46 Proteobacteria Geminicoccaceae unspecified 15.52 0.19 

ASV48 Proteobacteria Sutterellaceae unspecified 15.237 0.189 

ASV55 Crenarchaeota Nitrososphaeraceae unspecified 15.52 0.176 

ASV59 Actinobacteriota Nocardioidaceae Kribbella 15.298 0.199 

ASV71 Actinobacteriota Actinomarinales unspecified 15.476 0.154 

ASV73 Acidobacteriota Vicinamibacterales unspecified 15.376 0.153 

ASV80 Proteobacteria Geminicoccaceae unspecified 15.52 0.134 

ASV87 Proteobacteria SC-I-84 unspecified 17.204 0.139 

ASV90 Actinobacteriota Nocardioidaceae Kribbella 17.198 0.148 

ASV94 Proteobacteria TRA3-20 unspecified 17.188 0.116 

ASV100 Actinobacteriota Gaiellales unspecified 17.204 0.134 

ASV103 Actinobacteriota Gaiellaceae Gaiella 15.52 0.122 

ASV104 Verrucomicrobiota Xiphinematobacteraceae 

Candidatus 

Xiphinematobacter 15.44 0.118 

 


