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Abstract

Achieving sustainable human-wildlife coexistence in well-functioning ecosystems is a vi-
tally important and major challenge under global change. In response, rewilding is an emerg-
ing paradigm in ecosystem service provision through the re-establishment of natural ecological
processes in self-sustaining ecosystems.

Effective prediction of ecological changes in rewilding projects requires tools integrating
quantitative methods with social-economic dimensions and thinking. We consider the current
state of such quantitative treatments, highlighting opportunities for harnessing mathematics
and statistics. We present an emerging quantitative framework, encompassing four key areas
of the rewilding process: design and planning, ecological modelling, metrics for assessment,
and coupled social-ecological systems, informed by recent progress in mathematical, statis-
tical, and ecological modelling. The adaptive cycle concept is used to integrate these four
key areas. Dynamical systems modelling informed by empirical knowledge allows us to ad-
dress trans-disciplinary feedbacks, nonlinearities, and anticipate the potential for emerging
properties and critical transitions/regime shifts during rewilding, predicting the range and
likelihood of alternative scenarios.

Our framework provides a possible foundation and new opportunities for a more robust
quantitative and predictive methodology for rewilding. We argue that a project is more likely
to achieve its goals, and in a more cost-effective way, if mathematical scientists are included
from the beginning.

1 Introduction
Rewilding is an emerging, radical and sometimes controversial approach to renewing degraded
ecosystems (Box 1 and references therein). Research into rewilding has advanced around
conceptual frameworks (e.g., Holling & Gunderson, 2002; Du Toit & Pettorelli, 2019; Perino
et al., 2019; Wang et al., 2025; see also Box 2), with recent calls to incorporate expert
advice and scientific evidence (O’Connell & Prudhomme, 2024). Rewilding is now starting
to develop a qualitative and quantitative evidence base (e.g., Hart et al., 2023; Selwyn et al.,
2025). Mathematical and statistical concepts and applications must now be integrated as the
field matures, maximising opportunities to synthesise and generalise relevant insights.

In this perspective, we report on initial discussions between rewilding practitioners, ecolo-
gists, statisticians and mathematicians that arose from a series of seminars and workshops held
in 2024 (see Acknowledgements), highlighting how mathematical and statistical approaches
can contribute to the rewilding agenda, through four broad themes: planning and design,
ecological modelling, metrics for assessment, and coupled social-ecological systems. There is
considerable overlap across these themes, given the inherently trans-disciplinary nature and
methods associated with rewilding (Box 2).

We propose a planning cycle (Figure 1) suited to the development and monitoring of a
rewilding project, exploring how mathematical and statistical modelling can improve rewil-
ding success. Designing a rewilding project requires scenario generation and uncertainty
quantification, e.g., predicting ways to restore one or more ecosystem services. Although
mathematical modelling provides a rigorous set of analytical tools, well-used in ecology to
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Box 1: What is rewilding?

Here, we adopt Pettorelli et al. (2018) proposed definition of rewilding:

‘The reorganisation of biota and ecosystem processes to set an identified social-ecological system on
a preferred trajectory, leading to the self-sustaining provision of ecosystem services with minimal
ongoing management.’

While there is not necessarily a sharp line between rewilding and restoration, here are some of the typical
differences:

• Restoring generally means taking the landscape back to a particular historical baseline, managing habitats
for resident and increasingly rare species; rewilding acknowledges environmental and other anthropogenic
pressures are causing such significant changes that novel ecosystems must be allowed to emerge;

• Accordingly, (re)introduction or translocation of new species based on their traits (rather than historical
precedent) to re-establish ecosystem function are more accepted in rewilding. In restoration, transloca-
tions would be based on historical species compositions;

• Willingness to accept novel species assemblies leads to less predictability of the rewilded system, greater
risk, and new modelling challenges;

• There may be less room for people in a restored landscape, while paradoxically there may also be a need
for greater long-term management commitment. The rewilding definition explicitly works with social-
ecological systems, recognising people as part of nature, while at the same time preferring (human)
interventions that can be reduced over time as ecological processes are re-established.

See Pettorelli et al. (2018), Pettorelli et al. (2019), Jepson & Blythe (2021), and Svenning et al. (2024) for
in-depth discussion and Du Toit & Pettorelli (2019) and Mutillod et al. (2024) for the differences between
rewilding and more traditional ecological restoration; the case for new conservation paradigms is also made
forcefully in Gardner & Bullock (2021).
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understand how processes create structure (patterns) and function in ecosystems, it is becom-
ing more apparent that detailed simulation models are needed to capture the full complexity
of such systems. However, modelling in general forces us to make our assumptions explicit—
e.g., by identifying and quantifying the interactions between species that are likely to occur
after a rewilding intervention—and is key to quantifying possible outcomes and uncertainties
emerging from such interventions. These outcomes could include predicting which species are
likely to thrive, decline, be attracted to the rewilded area, or be driven out. Translating the-
oretical insights from mathematical models (see Table 1) to practical guidance also requires
the integration of empirical data via statistical modelling and inference.

A crucial step towards more successful management of rewilding projects is the explicit
acknowledgment of the dynamic feedbacks between the complex dynamics of both the natural
world and human behaviour, e.g. public opinion and decision-making in the context of multi-
ple stakeholders with competing priorities. For example, considering how rewilding projects
interact with adjacent agricultural land-use through changes in the presence, abundance, and
functions provided by natural pests and beneficial species, these projects will impact pub-
lic engagement and opinions and, thereby, may more effectively drive policy change (Kline
et al., 2017). Social-ecological modelling approaches provide a useful framework to uncover
subtle and often unexpected effects emerging from complex social-ecological systems (Liu
et al., 2007; Alberti et al., 2011), in particular the potential for tipping points, regime shifts,
long transients and other outcomes associated with non-linear dynamics that may impact
rewilding success (Biggs et al., 2018; Maes et al., 2024a).

An established methodology for monitoring and measuring the success of a rewilding
project emerges from a rewilding definition explicitly based on ecosystem service delivery by
providing a link to the large literature on natural capital and valuation of ecosystem ser-
vices (Costanza et al., 1997; Daily, 1997; Kareiva et al., 2011; Braat & De Groot, 2012). A
multi-dimensional view of success accounts for the various priorities held by different stake-
holders, related to the emerging concepts of ecosystem function and service multifunctionality
(Hector & Bagchi, 2007; Byrnes et al., 2014; Manning et al., 2018). However, rather than
prescribing a particular set of metrics to be used for rewilding quantification, we advocate a
tailored approach unique to each project. We aim to provide a framework helping rewilding
researchers identify the best metrics for their objectives, as well as pointing to challenges that
mathematicians and statisticians are well placed to address.

As rewilding matures with the accumulation and synthesis of relevant data and concepts
within and across disciplines, we believe it is timely to build on this growing evidence base
and invite researchers from empirical ecology and environmental sciences, to mathematics,
statistics, social sciences and the humanities, to collaborate and contribute to the rewilding
agenda.

2 Planning, design, and assessment
Rewilding initiatives are particularly challenging given the complex mix of stakeholders, their
contrasting priorities, and the substantial spatial, temporal and cross-biological scales of
rewilding questions and approaches. For example, the Rewilding Europe Initiative identified a
minimum period of 20 years to obtain meaningful results (Rewilding Europe, 2021). However,
the planning stage rarely involves mathematical modellers, with modelling often only done
after the experimental or data gathering stages (if ever), which is too late to have a positive
impact. Our aim here is to highlight where principles and aims of rewilding can be informed
by mathematical and statistical modelling to plan, design, and assess rewilding projects
(Figure 1).
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Box 2: Conceptual frameworks for rewilding

A variety of conceptual frameworks have been proposed to help us engage with the ecological processes under-
pinning rewilding projects. a, Adaptive cycle. The adaptive cycle metaphor conceptualises how ecosystems
continually cycle through phases of exploitation, conservation, release, and reorganisation. The conceptual
space is characterised by potential, connectedness and resilience.
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Box 2 continued
a, Adaptive cycle continued. Connectedness refers to the links between components and or processes
in the system, with high connectedness indicating a system strongly affected by external variability, since
connectedness allows easy propagation of external disturbance through the ecosystem. Potential represents
the broad range of options for future ecosystem behaviour in response to change, determined by the accumu-
lated biomass and nutrients available for organisms to interact with through exploitation or synergy. Finally,
resilience is the degree of disturbance a system can buffer without undergoing a regime shift or transition
to a new attractor. This property is low at the front of the loop (the fore-loop, orange shading) and high
at the back of the loop (back-loop, green shading). For example, a climax community can be regarded as
having approached the K-phase of conservation, functionally rich and therefore with high potential, but the
high connectedness and interdependencies of species in the ecosystem can make it potentially vulnerable to the
cascading effects of extreme external disturbance such as a fire or flood, giving the ecosystem low resilience.
The low resilience comes from the presence of keystone species, where only a few species are able to produce a
particular ecosystem service and the loss of such species cannot be compensated for by the remaining members
of the ecological community (e.g., beavers play the role of keystone species in riparian ecosystems (Biggs et al.,
2012; Sundstrom & Allen, 2019)). In a food web context, keystone species enable the transport of nutrients
between trophic levels, so that removing them would likely result in extinction cascades.
b, Rewilding assessed by ecosystem state: The extent to which an ecosystem is self-organising, complex
and robust to future disturbances can be characterised by three processes: trophic complexity (increases
with the number of components and connections between them), dispersal (increases with increased landscape
connectivity) and stochastic disturbance (increases as ecosystems are released from natural disturbance
suppression and from controlled anthropogenic disturbances) (Perino et al., 2019). Promoting these three
properties enhances ecosystem resilience and rewilding aims to shift the boundaries constraining these proper-
ties via a range of endeavours, from humans retreating from a location (passive rewilding) to reintroductions
(e.g., of large herbivores) and restoration of natural flood regimes to facilitate the return of trophic complexity
and habitat connectivity (active wilding).
c, CHANS: Coupled Human and Natural Systems (CHANS) modelling treats both the human and ecological
system as coupled and dynamically varying on timescales that prevent easy decoupling. This recognises that
human behaviour and decision making (e.g., through suppressing natural disturbance, or farmland abandon-
ment) has a strong influence on the trajectories of natural systems, but also vice versa with natural systems
highly integrated in social systems (e.g., opportunities for nature based economies or increased human-wildlife
conflicts). In a rewilding system both the human and natural system are highly complex.
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Ecological modelling can help understand the maximum potential of a landscape in terms
of ecosystem services, based on its typology, history, and location within the wider land-
scape. By embedding this with stakeholder perspectives (see Section 5), such models can
offer a powerful tool to evaluate trade-offs and set rewilding targets. Species distribution
modelling (Elith & Leathwick, 2009; Lawler et al., 2011), and other habitat suitability and
spatial planning analyses may be valuable to identify key areas enabling the most valuable
or cost-effective rewilding projects, whilst models of opinion dynamics and decision-making
(Hegselmann & Krause, 2002; Epstein, 2018; Helfmann et al., 2023; Vortkamp & Hilker,
2023; Petrovskii et al., 2025a), reveal the sensitivity of the corresponding social-ecological
system to different factors (Cariboni et al., 2007; Banos-Gonzalez et al., 2018) and can be
used to suggest an optimal solution (Law & Morton, 2013; Verhagen et al., 2018; Knight
et al., 2024). The ecological benefits of rewilding ideally trigger reinforcing beneficial feed-
back loops in both ecosystem services and public opinion. However, the same interconnected
complex systems can also give rise to detrimental feedback cycles. Mathematical modelling
of nonlinear dynamics can help understand possible scenarios and long-term outcomes.

Mathematical models of ecological dynamics (see Section 3) can be used as a ‘virtual
laboratory’ for exploring rewilding ideas in a way that is faster, cheaper, and without the
potential negative consequences of real-life experiments. Modelling can be used to predict
ecosystem responses to different interventions, revealing the subtle, often counter-intuitive,
effects that can emerge from complex, highly nonlinear species interactions, in particular
possible tipping points and regime shifts (Biggs et al., 2018; Vignal et al., 2023; Maes et
al., 2024b), and ecosystems dominated by human-caused ecological novelty (Svenning et al.,
2024). Modelling can help predict emerging properties, such as species coexistence, as well
as understanding changes in dynamic ecosystem processes towards—ideally—self-sustaining
natural systems. Reliable predictions also require further mathematical modelling to account
for, estimate and quantify uncertainties inherent in highly complex systems (Berger & Smith,
2019; Volodina & Challenor, 2021).

Due to these uncertainties, the observed trajectory may deviate from the most likely
path. Quantitative information about the current ecosystem state and the observed direction
of change is therefore needed at all stages (Figure 1), so that any unanticipated or undesirable
changes can be detected as early as possible and potential actions evaluated within the social-
ecological context of the system and its overall aims. This requires continuous monitoring,
data collection, and analysis. Monitoring methodology of a rewilding site can be optimised by
use of bespoke statistical design (Smith et al., 2011). When indirect observations (including
remote sensing, LiDAR and eDNA) are used, care should be taken to establish a clear link
between the proxy measurement and the desired information, through strong theoretical
or evidence-based underpinning (e.g., Schulte to Bühne et al., 2022). This is another area
where mathematical and statistical analysis is necessary in developing consistent and scalable
methodologies (Wong et al., 2024). Adaptive protocols should be used (Månsson et al., 2023),
informed by consideration of appropriate metrics at different stages of the project (see Section
4) and directly fed into the mathematical models to update the predicted dynamics. In
conclusion, rewilding projects are complex and uncertain; stakeholders need to take decisions
at all points over long timescales. Ecological modelling (Section 3) can provide key insights
and quantitative information for robust decision making at all stages of the project, from
planning to strategy, implementation, and evaluation (Figure 1).
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Figure 1: Schematic for a rewilding project cycle. New projects will start with an initial planning
phase, identifying appropriate sites and evaluating the potential of sites. Aims of the project should
be constructed in collaboration across all stakeholder groups to ensure comprehensive understanding of
potential impacts. Identification and comparison of different rewilding strategies is then undertaken,
with a planned pathway developed to align the proposed aims of the project with the most effective
way of realising the ambitions. Implementation of the plan is closely accompanied by monitoring and
evaluation of the ecosystem state. Evaluation at different phases of the project in response to analysis
of the monitoring and data collection is essential to ensure that aims and strategies can be revisited and
predicted outcomes evaluated against observations being made. Existing rewilding projects may enter
this project cycle at the evaluation stage, using the approach to update strategy. At each core element of
the project cycle (Planning, Strategy, Implementation and Evaluation) mathematics can play a key role,
providing stakeholders with insight to ensure robust decision-making at all points within a project.
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3 Ecological modelling
In this section, we discuss how ecological modelling may be applied to rewilding, with a focus
on ecosystem states, dynamics, and application to systems that are adaptively responding
to anthropogenic and other stressors. We summarise eight (primary or focal) processes or
levels of analysis of relevance to rewilding (Table 1). These studies represent examples of
mathematical modelling approaches that range from the ‘easily translatable to rewilding
problems’ to the more ‘inspirational in terms of their formulation’. The table is indicative of
the range of mathematical and numerical tools (kinds of equations and methods of analysis)
that have previously addressed issues relevant to rewilding.

3.1 Bridging rewilding concepts and ecological theory
Ecological and ecosystem modelling have a wealth of methods that can be adapted to the
multi-scale and multi-dimensional complexities of rewilding (Table 1). Important differences
arise that suggest a shift in thinking when applying these methods to rewilding. These can
be broadly categorised as: (i) a focus on self-sustaining delivery of prioritised ecosystem
service(s), contrasting with restoration and conservation approaches which tend to emphasise
a specific species or habitat target (Du Toit & Pettorelli, 2019), (ii) a shift in focus away
from the individual species-level to functional groups, (iii) a need to develop predictions that
incorporate the continual disturbance associated with natural turnover and anthropogenic
pressures, recognising that the ecological communities currently supported in a site may
change in the future (Martes et al., 2024), (iv) a wider social-ecological context (e.g., multiple
stakeholder priorities and opinions) that influences the prioritisation of particular ecosystem
services provided by rewilded systems through positive and/or negative dynamical feedbacks
(discussed in Section 5).

The adaptive cycle (Holling & Gunderson, 2002) has been proposed as a conceptual
framework relevant to rewilding (Du Toit & Pettorelli, 2019), capturing the continual dis-
turbance and recovery inherent in ecosystems that are episodically perturbed (fire, extreme
weather, herbivore eruptions, etc.). These multiple disturbances, and the various stages of
an ecosystem’s response to them—through phases of exploitation, conservation, release, and
reorganisation—result in a landscape characterised by continual change across space and
time, which can be conceptually classified using three properties: potential, connectedness
and resilience (Box 2(a)).

Rewilding aims to take advantage of ecosystems’ reorganising potential to facilitate the
flow through the adaptive cycle with minimal further intervention. A system’s response di-
versity (‘the diversity of responses to environmental change among species contributing to the
same ecosystem function’ (Elmqvist et al., 2003)) determines the range of potential trajecto-
ries of ecosystem reorganisation following disturbance, during the adaptive cycle’s α-phase.
High response diversity supports future ecosystem function under a range of environmental
fluctuations (Walker et al., 2023). Response diversity is a crucial property of resilient and
adaptive systems. From a trophic point of view, this is related to prey switching (Gasparini &
Castelt, 1997), omnivory (Bridier et al., 2021) and mixotrophy (Mitra et al., 2014). Response
diversity of a degraded system is contained within its residual abiotic and biotic diversity, to-
gether with spatial spillovers of diversity from the surrounding landscape (Bradfer-Lawrence
et al., 2025). Importantly, response diversity can be augmented through management (Ross
& Sasaki, 2024). In the face of uncertainty, ecological modelling can provide stakeholders with
projections about the range of potential ecosystem trajectories and their relative probabilities.
However, the response diversity concept still lacks a rigorous mathematical foundation (Ross
& Sasaki, 2024), highlighting the need for further theoretical development and its formal
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Table 1: Process models: general references and selected type-annotated studies relevant to rewilding
Primary Primary
process∗ Application Study+ Model⋆ Space† Time‡ analyses#

1. Movement Seed dispersal (wind) 1a PDE Hom Aut Proj
Seed dispersal (animal) 1b IBM Pix Aut Proj, Sens
Animal dispersal 1c Sim Hom, Pix N-aut Proj
Home range creation 1d PDE Hom Aut Stab
Pollination services 1e Sim Pix N-aut Stab, Opt

2. Population Rewilding plants 2a Mat, Stoc Hom Aut Proj, Sens
Growth Rewilding herbivores 2b Mat, Stoc Hom Aut Proj

Rewilding carnivores 2c Sim, Stoc Pat, Pix N-aut Proj
Habitat enrichment 2d ODE Hom Aut Stab
Reforestation 2e T-S Hom Aut Proj
Patchy environment 2f Stoc Pat N-aut Stab
Invasion 2g T-S Hom Disc Proj

3. Competition Grass-tree balance 3a Mat, Stoc Hom N-aut Proj, Sens
Browser-grazer balance 3b Sim Hom N-aut Proj
Multispecies coexistence 3c ODE Hom Aut Stab
Extinction cascades 3d ODE Hom Aut Stab

4. Consumer- Herbivore-veg balance 4a ODE Hom Aut Proj, Sens
resource Predator-prey balance 4b ODE Hom Aut Stab

Predator-prey spatial 4c IBM, MF Pix Aut Proj
Host-parasite dynamics 4d ODE Hom Aut Proj, Stab
Decomposition 4e ODE Hom Aut Proj
Multiconsumer 4f PDE Dist Aut Stab
Multispecies (density) 4g ODE Hom Aut Form
Multispecies (biomass) 4h ODE Hom Mem Form

5. Tritrophic Food chain stability 5a ODE Hom Aut Stab
Food chain exploitation 5b Stoc Hom Aut Opt, Stab
Biological control 5c ODE Hom N-aut Stab
Spatially explicit 5d IBM Pix Disc Stab

6. Foodweb Food chain comparison 6a ODE Hom Aut Form, Stab
Consumer networks 6b ODE Hom N-aut Stat
Scavenger impacts 6c ODE Hom N-aut Stat
Link indiv & pop states 6d IBM Pat, Pix N-aut, Mem Form
Extinctions 6e ODE Hom Aut Stab

7. Ecosystem Niche models 7a Stat Pix Aut Proj
Emergent structure 7b IBM Pix N-aut Proj, Stab
Trophic mass balance 7c Sim Pix Disc, N-aut Proj

8. Humans Landuse simulator 8a ABM, Sim Pat, Pix Disc, N-aut Proj, Opt
in-the-mix Coupled human-natural 8b ABM, Sim Pix Disc, N-aut Proj, Opt

⋆Type: ABM/IBM=agent/individual-based, ODE =Ordinary diff. eqn., PDE=partial diff. eqn., Mat=Matrix projection,
Sim=Simulation, Stat=Statistical (not dynamic), Stoc=Stochastic, T-S=time series
†Space: Dist=distributional, Hom=homogeneous, Pat=patches; Pix=pixelated
†Time: Aut=autonomous (time-independent params.), Disc=discrete, Mem=memory (time delays, integro-diff), N-aut=non-
autonomous (time-dependent drivers)
#Analysis: Form=formulation, Proj=projection (prediction), Sens=sensitivity, Stab=stability, Opt=optimisation
∗General references: (by process number) 1: Schupp et al., 2010; Morales & Morán López, 2022; 2: (Moorcroft et al., 2001;
Ovaskainen & Hanski, 2004; Le et al., 2012; Newman et al., 2014; Lewis et al., 2016); 3: Barabás et al., 2018 ; 4: Fortin et al., 2015;
White et al., 2018; Diz-Pita & Otero-Espinar, 2021; 6: Amarasekare, 2008; 7: Kearney & Porter, 2009;
+Studies: 1a: Katul et al., 2005 ; 1b: Will & Tackenberg, 2008; 1c: Vuilleumier & Metzger, 2006; 1d: Moorcroft et al., 1999 ; 1e:
Häussler et al., 2017; 1f: Kot et al., 1996; 2a: Crone et al., 2011; 2b: Gaillard et al., 1998; 2c. Gantchoff et al., 2022; 2d: Gurney &
Lawton, 1996; 2e: Fox et al., 2001; 2f: Evans et al., 2013 ; 3a: Baxter & Getz, 2005; 3b: Donaldson et al., 2022; 3c: Saavedra et al.,
2017; 3d: Lundberg et al., 2000; 4a: Månsson & Lundberg, 2006 ; 4b: Sáez & González-Olivares, 1999; 4c: Surendran et al., 2020;
4d: Tompkins et al., 2002 ; 4e: (Todd-Brown et al., 2012) ;4f: He et al., 2023; 4g: Lafferty et al., 2015; 4h: Getz, 2011; 5a: Hastings
& Powell, 1991; 5b: Liu & Bai, 2016 ; 5c: Gutierrez et al., 1994; 5d: Charnell, 2008; 6a: Pahl-Wostl, 1997 ; 6b: Boit et al., 2012; 6c:
Mellard et al., 2021; 6d: Getz, 2013 ; 6e: Fowler, 2013 ; 7a Escobar, 2020; 7b: Harfoot et al., 2014 ; 7c: Christensen & Walters, 2004 ;
8a: Le et al., 2008 ; 8b: Synes et al., 2019
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integration into mathematical models.
Ecosystems generally transition through the back-loop of the adaptive cycle very rapidly

while the fore-loop transitions are much slower (Box 2). Transitions from the α- to r-phase
typically occur over one or two seasons (e.g., food webs reassembling and biomass growing
following a major disturbance such as a flood or pest outbreak), and the r- to K-phase tran-
sition takes many years (e.g., the gradual accumulation of nutrients and trophic complexity).
We therefore focus our attention on how modelling could shed light on the fore-loop phase
transitions. We use the language of a terrestrial ecosystem, but the ideas apply more generally
(e.g., in the marine realm, Brooker et al., 2025).

3.2 Ecosystem recovery from initial distrubance/degredation
As a first step to identifying potential trajectories of a rewilding site, it is instructive to make
an account of achievable ecosystem states. Keith et al. (2022) proposed a typology of ecosys-
tems in terms of resources, ambient environment, disturbance regimes, biotic interactions
and human activity. In parallel, mapping the residual diversity (the remnant vegetation, seed
banks and animals that survived a disturbance event) along with the arrival of endemic or
exotic species during the α-phase offers new opportunities for predictive modelling. These
features, when aggregated appropriately, help determine the initial response diversity of an
ecosystem.

Organic matter decomposition models (e.g., Moorhead & Sinsabaugh, 2006) may also play
a role in understanding the initial transition from the α-phase to the r-phase, at least in a
terrestrial setting. In particular, mechanistic modelling of soil biological processes can predict
the resource dynamics following ecosystem collapse. The α-phase is characterised by ‘leaki-
ness’, of both resources and biomass (Holling & Gunderson, 2002). This may involve lateral
spread of above-ground dead matter, or the loss of mineralised nutrients into groundwater in
the absence of viable plant roots to retain them and support microbial consumers (Chapin
III et al., 2011; Runyan & D’Odorico, 2012). We propose combining deterministic plant-
microbe-nutrient models (which can produce realistic estimates of the leak stabilisation time
and hence the approximate duration of an initial α-phase) with the concept of response di-
versity. Community assembly theory can then be applied to determine which biota from the
diverse pool of potential colonists are more likely to occupy the area and survive the initial
reorganisation phase (Chase, 2003; HilleRisLambers et al., 2012). Some of the ‘historical ac-
cidents’ (Holling & Gunderson, 2002) caused by new species introductions may be preserved
in the model end-state, yielding a new ecosystem type.

3.3 Dynamics of ecosystem self-organisation
Once an initial community has been assembled, dynamic ecosystem models can be adapted
to forecast the self-organisation and temporal evolution of the ecosystem. Because rewilding
prioritises ecological processes over specific species compositions, a coarse-grained approach,
such as modelling functional types rather than individual species, is often more appropriate
and allows communities to be assessed in terms of their capacity to promote a self-sustaining
complex ecosystem. Coarse-graining by functional type has been successfully applied in large-
scale vegetation modelling (e.g., Joint UK Land and Environment Simulator (JULES), Harper
et al. (2016)), which classifies all plant species globally into as few as nine functional types.
For rewilding, extending the list of functional types to include other taxonomic ranks is
desirable. General ecosystem models such as the Madingley model (Harfoot et al., 2014)
attempt to do this, and have been used to assess potential recovery of trophic structure
in response to active rewilding strategies (Hoeks et al., 2023). These methods are currently
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typically aimed at continental or national scales and would need adaptation to work at smaller
spatial scales. At small spatial scales, agent-based modelling has also been trialled (Neil et
al., 2025), allowing for the representation of individual-level interactions and heterogeneity.
Regardless of approach, the identification of appropriate functional groupings is critical (Streit
& Bellwood, 2023). For example, maintaining a diverse range of responses to disturbance
across functional groups is essential for minimising the need for human intervention and
ensuring long term ecosystem self-regulation (Walker et al., 2023).

Interactions between functional groups can be modelled and classified as either inhibition
or promotion of biomass growth (e.g., competition and mutualism) or as transfers of biomass
(e.g., predation, Geary et al. (2020), and Figure 2). The biomass transformation web (BTW)
formulation (Getz, 2011) provides a useful framework with two advantages over traditional
compartmental modelling. First, it explicitly tracks and recycles dead biomass into sys-
tem resources, properly capturing scavenging and decomposition processes, which are crucial
when studying degraded ecosystems and are important parts of nutrient cycling/ecosystem
processes. Second, it includes a memory variable to keep track of stress and the cumula-
tive impact of past favourable or unfavourable conditions on the growth and sustainability
of ecosystem components. Thus, this framework facilitates predicting the evolution of the
biomass distribution among functional groups (the biomass signature), and hence of a coarse-
grained community type. Such predictions can be validated against empirical data, making
the approach well-suited to applied monitoring in rewilding contexts.

One of the many challenges of taking a coarse-graining approach to dynamical ecosystem
modelling lies in the parameterisation of the models and their integration with data (Larsen
et al., 2016), which is often available at the species level. For example, it is not trivial
to estimate the reproductive rate of a functional group when its constituent species have
markedly different reproductive rates. Additionally, the number and definition of functional
groups, and the allocation of species into these groups, will vary across rewilding sites. As
a result, the parameters determining the interactions between functional groups, which may
implicitly attempt to aggregate over the underlying species-level parameters, may also vary
significantly between systems. This variability complicates both model calibration and the
transferability of models across sites.

To estimate parameter values at the level of functional groups, modellers can draw on
ecological metabolic theory, which quantifies how metabolic rates scale with body size and
temperature (Brown et al., 2004; Loeuille & Loreau, 2005; Kearney et al., 2021). Even when
adopting such approaches, aggregating species into functional groups requires that uncer-
tainty due to variation in body sizes within a functional group be combined with uncertainty
in the metabolic rate estimates, and propagated through to predictions at the level of the
rewilding site. Accurate quantification of these uncertainties may require a combination of
large numbers of model runs to capture parameter uncertainty, and ensemble modelling ap-
proaches to reflect structural model uncertainty (Vollert et al., 2024)

3.4 Interacting adaptive cycles and landscape recovery
So far, we have limited our considerations to conceptualising the landscape within a single
adaptive cycle. Starting with a degraded landscape, an appropriate set of functional types
is assembled, which then interact to drive the site through this cycle. However, natural
disturbances mean that the cycle is continually repeated—and not always from the same
starting point.

During that process, a panarchy of adaptive cycles will emerge (Figure 3) , as heterogeneity
develops across the landscape. Each of these weakly connected adaptive cycles may operate
asynchronously and semi-independently, self-organising into a mosaic of ecosystem patches

12



Figure 2: Schematic of a model for terrestrial community dynamics at a functional group
resolution. Core panel: The core process modelled is biomass transfer between functional groups.
This occurs by consumption of biomass (e.g., predation) and decomposition of dead biomass (returning
to a resource pool). Note small carnivores can consume the biomass of (deceased) larger carnivores by
scavenging. Competition, or mutualism, between functional groups would degrade, or enhance, biomass
conversion. Note that competition will also emerge naturally from consumption; it is included explicitly
to capture trait-based effects such as shading. The importance of mutualism varies considerably between
communities. Critical mutualistic interactions would need to be identified and included; we illustrate
this with a mutualist interaction between small plants and herbivores, e.g. pollination. Species are
assigned to functional groups using suitable characteristics, in this case trophic position and individual
body size. Landscape embedding: A spatial approximation for a rewilded area could be constructed
by discretising the landscape into grid cells with varying abiotic properties. The community dynamics
model could then be solved in each grid cell accounting for between-cell dispersal by each functional
group. Evolving biomass signature: The community composition would be characterised in terms of
its total biomass and its distribution between functional groups. Here we assume that plant, herbivore,
and carnivore biomass in each size category could be monitored. The distribution of biomass between
these nine functional groups is represented by colour saturation in a grid corresponding to the core panel
(cf. to the density distributions in Figure 3).
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that contributes to ecological stability and resilience across the entire rewilded landscape.
Indeed, a resilient ecosystem is one in which its component parts occupy a diversity of states
at any one time, so that a disturbance collapsing one part of the system does not result in
systemic collapse.

The selective extinction of certain kinds of organisms can dramatically reduce ecosystem
stability. For example, top predators, generally depending on a much larger area, are more
sensitive to habitat fragmentation (Komonen et al., 2000). This also means that rewilding
can be disproportionately more successful in larger (or well-connected) areas than at smaller
spatial scales. Oostvaardersplassen in the Netherlands provides a paradigmatic example:
an approximately 60 km2 landscape of drained seabed initially developed into a relatively
homogeneous expanse of grassland and shrubs (Jepson & Blythe, 2021). Introducing large
herbivores acted as a disturbance regime, triggering the emergence of a more heterogenous
landscape of grassy meadows, clumps of trees, ponds, streams, etc., each with its own dy-
namic behaviour (Marris, 2009). The modelling approaches we prescribe can be applied in
a similar fashion at either the landscape scale (e.g., for the system driven by large herbivore
disturbance), the patch scale (e.g., for the meadows grazed by geese), or even finer scale
(e.g., ponds, individual decomposing trees, or deer carcasses). Modellers can draw from the
extensive existing literature on spatially structured modelling, to partition the landscape of
interest into smaller patches, each represented by a chosen model, such as the BTW biomass
model (Getz, 2011), with dispersal between these patches. The appropriate number, size
and connectance of patches will depend on a range of ecological and practical considera-
tions, including the spatial extent of the rewilding project, the intrinsic and desired degree
of landscape heterogeneity, the number of functional groups considered, and computational
resources.

4 Rewilding metrics
A well-designed rewilding project will have long-term goals that can be measured, defined
in terms of the delivery of an agreed bundle of ecosystem services. These goals should be
established in advance through collaboration with relevant stakeholder groups (Section 2).
Defining goals in terms of ecosystem services has several advantages: there is a general
agreement on the definition of the concept, and a vast literature on their quantification and
valuation (Daily, 1997; Costanza et al., 1997; Kareiva et al., 2011; Braat & De Groot, 2012;
cf. also Table 2).

However, it is important to respect the different biological, temporal and spatial scales
involved in a rewilding project. Detailed measurement of ecosystem services may be inappro-
priate in the early stages, specifically during the α- and r-phase of the adaptive cycle, Box
2(a), as the long-term behaviour of a complex ecosystem cannot be reliably inferred from its
initial development (Hastings et al., 2018; Abbott et al., 2024). The most appropriate mea-
sure of success in the 3–10 years following a species (re)introduction or translocation might
simply be an (annual) assessment of whether the species remains present and is establishing
a viable population. At later stages, as key ecological processes and functions underlying
ecosystem service delivery begin to take shape, the emphasis should shift towards identifying
indicators of healthy ecosystem development, and conversely to pick up potential early warn-
ing signs of undesirable regime shifts. Thus, it becomes appropriate to monitor ecosystem
properties such as connectivity, demography, genetics, phenology, dispersal, (Box 2(b)) and
ecosystem dynamics (stability, density dependence, alternative stable states). Many early
warning indicators are based on the statistical analysis of time series, emphasising the im-
portance of regular, long-term data collection—ideally spanning multiple generations of the
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Figure 3: Rewilding across spatial and temporal scales through the conceptual lens of panarchy. a
Illustration of variation in community state depending on choice of temporal and spatial resolution. The landscape
scale meta-community is composed of communities for distinct habitat types. These communities are further divided
into sub-communities which are influenced by the properties of a specific site and interact with neighbouring sub-
communities. Each sub-community can be at a different stage (red dot) of its own adaptive cycle and are combined
to obtain the state of a community. Similarly the state of the meta-community is a combination of the states
of the communities. b Illustrative community trajectories for different initial community compositions/response
diversities and levels of intervention. Densities of five notional functional groups are represented in the bar charts
(cf. biomass signatures). When all functional groups are present in an initial degraded community, it can recover
with minimal intervention (first row). If a functional group is missing in the initial community, it may be possible to
(re-)introduce suitable species and leave a new ecosystem to emerge (middle row). In very degraded communities,
it may be necessary to first (re-)introduce species in extant functional groups to restore community robustness,
before (re-)introducing absent functional groups (final row).
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focal organisms and functions (Scheffer et al., 2012; Dakos et al., 2024). After this, in the
late r- to K-phase of the adaptive cycle, the focus shifts towards quantifying the delivery
of ecosystem services, with metrics related to these services (Table 2) becoming the primary
indicators of project success.

In practice, temporal scales will overlap, and monitoring schemes will need to recognise
this. For example, if water purification is an objective, simple checks on water clarity and
appearance of indicator species can be performed early on, supplemented by quantitative esti-
mates in the later stages of the project. In the next subsections, we discuss recent approaches
to measurement in rewilding and the future opportunities and challenges of monitoring and
measuring success.

4.1 Linking metrics to conceptual frameworks
Perino et al. (2019) proposed quantifying rewilding success and the extent to which an ecosys-
tem becomes self-organising and robust to future disturbances by measuring three processes:
trophic complexity, dispersal and stochastic disturbance (Box 2(b)).

Trophic (or food web) complexity—a classic concept in ecology (Paine, 1966; Paine, 1969)—
has been (loosely) defined as species richness within or across trophic levels (Jabiol et al.,
2013) and/or functional groups (Anujan et al., 2021). In practice, however, trophic levels
can be difficult to delineate, and hence assess quantitatively in real multispecies systems,
as consumers do not always fall within discrete trophic levels (e.g., due to cannibalism, in-
traguild predation, omnivory, ontogenetic niche shifts, etc.). An upper limit of three to four
effective trophic levels has been suggested based on a suite of complexity metrics that account
for the power-law relationships inherent to trophic transfers (Ulanowicz et al., 2014). Mea-
sures of trophic richness may also be constructed from biodiversity measures incorporating
a suitable similarity matrix (Leinster & Cobbold, 2012). Ecological network analysis offers
a well-developed methodology to quantify macroscopic systems-indicators to compare (Baird
et al., 1991) or monitor (Ulanowicz, 1996) the macroscopic structure of ecological systems.
A network approach combining a resource-consumer-function tensor (a multi-dimensional ar-
ray) with phyto-centric and function-centric embedding through multilayer ecological and
bipartite networks has recently been developed (Hervías-Parejo et al., 2024). This framework
is general enough to apply to ecosystems encompassing multiple ecological functions, which
will likely prove to be useful in rewilding contexts.

Stochastic/Natural disturbances can initially be quantified by their frequency and magni-
tude. For example, Gilljam et al. (2019) show how numerous terrestrial animal populations
are affected by common environmental drivers (temperature, precipitation, etc.), with differ-
ing temporal autocorrelation structures. Further insight can be gained from estimating the
variance and trends of these environmental variables over time and space—and how these
translate into corresponding distributions (and their statistical moments) of demographic
rates through (potentially non-linear) species-environment functional responses. In other
situations, the frequency, or simply the presence or absence, of extreme or catastrophic envi-
ronmental events may be useful metrics for rewilding scenarios.

Dispersal can be defined as the movement of individuals across continuous space, or as
transfers among discrete habitat patches, with different metrics applicable depending on the
spatial scale and landscape structure. For example, rates of spread/net-squared displace-
ment are relevant for individuals moving across spatially continuous habitats, while multiple
structural and functional connectivity metrics already exist for conservation planning across
discrete habitat patches/protected areas (Keeley et al., 2021), with a recommendation to
focus on functional metrics where possible. Mathematical models in landscape ecology help
identify landscape elements (patches and corridors) that are critically important for main-

16



taining connectivity (Pereira et al., 2017).

4.2 An evidence base for rewilding
Hart et al. (2023) reviewed 22 studies of European rewilding projects and almost half (10/22)
assessed the abundance of focal species and/or species richness. Calculating biodiversity
metrics (e.g., beta-diversity) using these basic data was rare. Five of the twenty two studies
measured plant cover, often as a percentage, and using remote sensing technologies such
as satellite imagery or LiDAR. Only one study made use of eDNA, to quantify the diet of
focal herbivores. Two studies went beyond abundance-based quantitative methods, assessing
performance of focal species through indicators such as plant productivity and bird nesting
behaviour. Five studies used qualitative approaches to understand the values and narratives
of stakeholders and local communities, but only one study mixed narrative and abundance-
based approaches.

These findings perhaps reflect the challenges of collecting relevant quantitative information
early in the life cycle of rewilding projects—at the beginning of the fore-loop, the r-phase
of the adaptive cycle. They also point at opportunities for developing monitoring strategies
appropriate to the rewilding timeline.

4.3 Ecosystem resilience, service delivery and measurement
Resilience is a concept closely associated with rewilding, and frequently appearing in defini-
tions of the practice (Du Toit & Pettorelli, 2019; Carver et al., 2021). Yet, its measurement
and quantification are challenging (see, however Yi & Jackson (2021) and Dakos & Kéfi
(2022)). The review of Selwyn et al. (2025) assessed the resilience (engineering, ecological
and social-ecological) of a number of rewilding projects, using a general framework (Lloret et
al., 2024). Their results provide important empirical support for the hypothesis that rewilding
(sensu Perino et al. (2019)) tends to increase ecosystem resilience.

The establishment of sustainable ecosystem service delivery will take time: at least twenty
years for a terrestrial ecosystem and this temporal scale should be assessed on a case-by-case
basis (Rewilding Europe, 2021). Thus, we argue for long-term monitoring programmes that
evolve alongside the system, adapting as the system runs from the α- through the r- to the
K-phase of the adaptive cycle (Box 2(a)). Possible metrics for ecosystem services relevant in
rewilding are given in Table 2.

The key concept of biodiversity is not an ecosystem service (though it underlies services
such as provision of genetic resources, soil formation, and pollination services). The ‘multi-
layered relationship’ between biodiversity and ecosystem services is discussed in (Mace et al.,
2012). Nonetheless, assessments of species abundance and biodiversity should be included in
the monitoring of a rewilding project, possibly using a similarity matrix (Leinster & Cob-
bold, 2012) to count ‘trait biodiversity’, in line with the coarse-graining approach discussed
in Section 3. It is crucial to focus on functional diversity, instead of biodiversity per se, by
quantifying redundancy both within and between functional groups. The former is more re-
lated to reliability (Naeem & Li, 1997) and insurance (Loreau et al., 2003), while the latter
quantifies functional redundancy (Luczkovich et al., 2003) and functional diversity (Lin et al.,
2022). In an extreme case, a functional group can be composed of a single species that is
irreplaceable and solely responsible for an ecological function. These are keystone species
(defined as single-species functional groups (Bond, 1994)).

Much of the work on ecosystem service assessment (e.g., Kareiva et al. (2011)) focuses
on measuring an individual ecosystem service in isolation. While our definition does not
state this explicitly, a rewilding project will generally aim to deliver a number (or bundle)
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of ecosystem services simultaneously. It may therefore be preferable to adopt metrics that
capture ecosystem multifunctionality, in which case care must be taken to avoid over-counting
(Manning et al., 2018).

5 Rewilding projects as social-ecological systems
Our definition of rewilding from Pettorelli et al. (2018) (see Box 1) recognises rewilding as a
process applicable to social-ecological systems. Thus, we must incorporate human interactions
in our models. The importance of such interactions can be seen from the simple example
of a species facing extinction. This situation may affect human behaviour and result in a
conservation campaign that will avert the immediate extinction threat. Ignoring the social-
ecological aspects of this simple system would likely lead to unreliable predictions of extinction
times.

More generally, human decision-making and public support play a key role in the dy-
namics of a rewilded ecosystem and are, in turn, affected by environmental change. This
reciprocal relationship is a key issue broadly affecting conservation and natural resource
management, where environmental problems are embedded in highly complex and uncertain
social-ecological systems characterised by strong links and multiple interactions (reviewed
in Schlüter et al. (2012); Figure 4). Acknowledging this feedback effect when modelling is
crucial, resulting in more realistic scenario generation, with great potential to assist decision
making and planning (Farahbakhsh et al., 2022; Bialozyt et al., 2025; Khodaparast et al.,
2025). Furthermore, rewilding decisions must be taken within a wider landscape context,
requiring methods to optimise decisions in complex, shared, multifunctional landscapes (Cole
et al., 2023). While ecological engineering and management tools are improving over time,
limitations are still strong (e.g. as encountered during assisted migration in forestry (Williams
& Dumroese, 2013)).

5.1 Coupled human and natural systems (CHANS) framework
Coupled Human and Natural Systems (CHANS) modelling provides a framework for the
study of the two-way feedbacks in social-ecological systems (Box 2(c)). In essence, a CHANS
framework must incorporate the following three components:

i. Ecosystem dynamics: modelling the relevant ecological and/or environmental pro-
cesses at play;

ii. Social dynamics: modelling the relevant aspects of human behaviour, societal pro-
cesses (e.g. health, education, culture, etc.), social learning, social norms, economic and
political considerations;

iii. Coupling: modelling the information flow and driving influences between the ecosystem
and social dynamics components: these include environmental change in response to
human actions and, in turn, human response to environmental change, so that both the
environment and human behaviour are seen as dynamic (as opposed to pure ecosystem
models in which the background social environment is fixed).

A CHANS model is therefore essential to understanding “the impacts of social interven-
tions and their potential to avoid catastrophic environmental events” (Farahbakhsh et al.,
2022). This is particularly true over the longer timescales relevant to rewilding, where it is
unrealistic to treat human interactions with the ecosystem as fixed. A CHANS model may
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Table 2: Examples of ecosystem services related to Rewilding adapted from Costanza et al.
(2017). There is widespread agreement on the main headings and minor differences of detail in the
illustrative examples (Costanza et al., 1997; Daily, 1997; World Resources Institute et al., 2003; Sukhdev
et al., 2010). See also Selwyn et al. (2025), Table 2 for related information. In the last column we
have given indicative measures or methods for the assessment and quantification of the given ecosystem
services. Detailed methods for mapping and measuring many, but not all of these ecosystem services,
in both biophysical and monetary values have also been proposed (Kareiva et al., 2011). Although not
an ecosystem service, biodiversity is a crucial indicator of ecosystem health and is an important tool in
measuring and monitoring any rewilding project (Kareiva et al., 2011, Ch. 13; Leinster & Cobbold, 2012).

Ecosystem service Illustrative examples Possible metrics

Provisioning Food production Quantity normalised by area (g/m2)
(Fresh) water Water clarity/turbidity (Formazin Nephelomet-

ric Units (FNU) or Nephelometric Turbid-
ity Units (NTU)), indicator species (pres-
ence/absence)

Raw materials Quantity extracted (e.g., gravel) normalised by
area (g/m2)

Genetic resources Biodiversity; similarity sensitive diversity mea-
sures of different pheno-/genotypes, e.g., qDZ(p)
(Leinster & Cobbold, 2012)

Regulating and habitat Gas/pollution regulation Concentration of nitrogen oxides in air (volume),
NOx g/m3 (or ppm) or CO2 concentration in air
or water (ppm)

Water regulation Long-term monitoring of extreme events
(flood/drought); flow rates (m3/s)

Erosion control Soil loss rates (km−2/yr)
Pollination Insect biodiversity/key insect species

(individuals/m2)/plant biodiversity (qDZ(p))
Biological control Reduction in pest species (individuals/m2)

Supporting and habitat Nutrient cycling Rate of nitrogen fixation (nmol/L/hr)
Refugia Nurseries for fisheries (individuals/m2 or m3)
Soil formation Soil volume created (m3/s)
Water cycling Evaporation/transpiration (mm/s), residence

times (s or yr)
Primary production g/m2/yr

Cultural Recreation Biodiversity
Cultural Green spaces, providing areas for safe play, shade

(reduced temperatures, ◦C) and reduction in
noise pollution (e.g., in parks, graveyards, dB)

Spiritual or religious en-
richment

Quality of life indicators (e.g., ONS Measures of
national well-being dashboard: Quality of life in
the UK)

Cultural heritage Participation, satisfaction (%)
Recreation and tourism Number of participants/visitors/users (per 100k)

per year (individuals/yr)
Aesthetic experience % agreement with statement
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predict effects that would not be seen otherwise, such as shocks, hysteresis, memory effects
and other types of unexpected tipping points and regime shifts (Liu et al., 2007; Suzuki &
Iwasa, 2008; Figueiredo & Pereira, 2011; Sugiarto et al., 2015; Henderson et al., 2016; Synes
et al., 2019).

CHANS models are needed to understand how social-ecological coupling affects the dy-
namics in time-varying environmental conditions typical in rewilding. Further, they are
indispensable when it comes to addressing the effects of microscale human decision-making
(Schlüter et al., 2012). This includes the incorporation of indigenous knowledge into con-
servation and resource management decisions (Jessen et al., 2022). Despite this potential
for CHANS models to be applied to rewilding projects when considered in their full com-
plexity as social-ecological systems, considerable work is required to describe such systems
(Box 2(c)) within their landscape-scale ecosystem context and in terms of their multi-faceted
human-human and human-environment couplings (Figure 4).

While incorporating social-ecological coupling (component iii) in a CHANS model may
yield qualitatively different predictions from modelling the ecosystem (component i) alone,
it greatly increases model complexity. This leads to a trade-off between more realistic but
more computationally intensive and data-demanding models versus simpler, more tractable
ones (Getz et al., 2018). For CHANS modelling to be meaningfully applied to rewilding
decision making, this trade-off will typically require the incorporation of the needs of the most
relevant (human) stakeholders as well as the identification of the most significant elements of
the ecosystem.

One of the important but subtle ways in which the environment impacts human dynamics
is by producing changes in opinion. The dynamic nature of public opinion may be of critical
importance: for example, the public perception of a natural resource crisis and flood risk
has played a key role in Switzerland transitioning from net deforestation to net reforestation
in the twentieth century (Mather & Fairbairn, 2000). On the other hand, despite its many
successes in increased biodiversity, adverse public opinion in the face of grazer mortality
in Oostvaardersplassen led to management policies that were perceived as more humane but
took away from the ‘pure’ rewilding ethos of the project as conceived in the late 1980s (Jepson
& Blythe, 2021).

5.2 Rewilding in multifunctional landscapes
Balancing the benefits and risks of rewilding in a multifunctional landscape with a significant
agricultural component is an important but complex subject. Trade-offs in land allocation (for
example between intensive agriculture and wider ecosystem service provision (Mikolajczak
et al., 2022)) can be analyzed through the concept of multifunctional landscapes (Cole et
al., 2023) and decisions informed by insights from multi-objective mathematical optimisation
(Knight et al., 2024). There is potential to use such techniques to reach a consensus reflecting
both human-centric perspectives and, for example, biodiversity (Petrovskii et al., 2025b).

The provision of ecosystem services by a rewilding project will benefit the human com-
munities that are part of the multifunctional landscape. Such benefits should feed into a
virtuous circle in which the value of rewilding is recognised and further investments made.
However some rewilding actions, particularly the (re)introduction of large mammals, espe-
cially predators, may carry real costs and turn public opinion against such projects (Pettorelli
et al., 2019).

At a smaller scale, the increased biodiversity associated with a rewilding project will bring
a range of species, some of which are pests, others beneficial (Emden, 1964; Cleveland et al.,
2006; Yang et al., 2019). The balance of costs and benefits needs to be assessed in each case
through monitoring and modelling studies to inform public opinion and contribute to the
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design and ongoing monitoring of the project.

5.3 Rewilding and public opinion
When it comes to interactions with public opinion, rewilding projects face challenges that are
typical of other types of conservation projects and more generally of problems around climate
change mitigation (Bauer et al., 2009). Thus findings from those fields can be reinterpreted
and used in the rewilding context. But rewilding has its own specific features, providing new
opportunities for social-ecological modelling.

In the field of climate change, CHANS models have been developed that incorporate
personal experience and perception of risk and these are highly relevant to rewilding prob-
lems. Studies have been conducted to understand both how to change minds about climate
change and how to favour the transition from awareness to behavioural change (Većkalov
et al., 2024). As a result, the scientific community’s approach to communication of climate-
change issues has undergone a significant transformation as it has become clear that negative
messages around extinction, increasing temperatures etc., are ineffective, leaving people over-
whelmed and without any options for positive action (Jepson & Blythe, 2021). By contrast,
more personal messages, relating to impacts on everyday life, have been found to be more
effective (Soliman, 2024; Većkalov et al., 2024).

Beckage et al. (2018) provide an example of CHANS modelling to couple a climate model
for CO2 emissions with a social model for perception of risk and personal experience based
on planned behaviour theory. In this coupled model, increasing the levels of CO2 emissions
produce higher global temperatures, triggering more frequent extreme events. The frequency
of extreme events drives behavioural change, decreasing GHG emissions. Analogous studies
geared towards rewilding seem to be lacking at present. Public preferences about rewilding
interventions have generally been gauged by surveys (Mikolajczak et al., 2022; Hart et al.,
2023) and discrete-choice experiments (Dunn-Capper et al., 2024).

CHANS modelling of public opinion and perception of rewilding projects in relation to
the current biodiversity crises is ripe for development, an important point being that success-
ful rewilding projects often have positive messages for example around biodiversity gain and
nature recovery, where climate change messaging is generally very negative (Tree & Burrell,
2023). Of course a balanced view must be presented of the potential negative opinions and on-
the-ground consequences (encroachment of agricultural areas and human population centres)
of reintroduction of large herbivores or carnivores (Lecuyer et al., 2022). One possibility is
further to mathematise and reinterpret Ostrom’s works, devoted to understanding the effect
of graduated punishment in enforcing social norms (Ostrom, 2000; Kinzig et al., 2013) into
models that put more emphasis on reward (Lee & Iwasa, 2013). An objective of constructing
CHANS models of rewilded social-ecological systems would be to balance the positive and
negative perceptions and to understand how they are impacted by possible rewilding inter-
ventions. In particular, rewilding requires governments, investors and the public to adopt a
future-focused mindset. Studies on “future thinking” (Oyserman & Horowitz, 2023), where a
felt image of the future is employed to aid behaviour modification in the present (for example
in the context of financial planning, where they have informed the design of interactive tools
to help plan personal finances), could then be brought to bear in rewilding.

Changes in opinion and behaviour are also affected by legislation and social norms, pro-
cesses relevant to rewilding. CHANS modelling in this direction has included the integration
of ecological models with opinion formation models of various types (Bak-Coleman et al.,
2021), ranging from classical agent-based models for consensus formation and the impact of
the spread of fake news (Franceschi & Pareschi, 2022), to models that describe the relation-
ship between cooperation, enforcement of legislation (Sugiarto et al., 2015) and social welfare.
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Figure 4: A conceptual flowchart of interactions and influences (arrows) between different
social-ecological components of a rewilding project. Public opinion plays a central role both in
the stage of the project planning and design (as embraced by the lower circle) and in the perception
of its success, i.e. whether the expected improvements of the ecosystem services have been achieved
(embraced by the upper circle). Models of opinion dynamics (e.g. (Milli, 2021; Helfmann et al., 2023))
and mathematical methods of optimisation (Law & Morton, 2013; Knight et al., 2024) can be used to
find a consensus among different stakeholders, social groups and general public.
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For example, recent interdisciplinary modelling work has highlighted that incentives based
on peer punishment may increase cooperation but can be detrimental for welfare, while peer
reward may lead to an increase in social welfare (Han et al., 2024).

In many such models, specifying interaction rules among agents of the social dynamics
remains a difficulty, but this is true also of agent-based models for ecological systems. While
more effort should go into understanding realistic forms for such interaction kernels, for
example by further integration of such models with empirical studies (Bak-Coleman et al.,
2021), alternative frameworks are available. For instance, generalised modelling, a type of
dynamical systems model which does not require detailed specification of causal relationships
between system variables, has been successfully employed to obtain insightful qualitative
understanding in a CHANS model for Baltic sea cod abundance (Lade et al., 2015) and such
approaches could also be adapted for rewilding problems.

6 Discussion and conclusions
Rewilding offers an increasingly popular and impactful approach to the restoration of de-
graded ecosystems, with the potential to enhance biodiversity and ecosystem services on
which all life on Earth depends. Indeed, it has been argued that a rewilding approach may
often be the most viable for ecosystem service restoration. Perhaps for this reason, rewilding
projects can now be seen across an increasing range of spatial scales and ecosystem types.
(Du Toit & Pettorelli, 2019; Perino et al., 2019; Pettorelli et al., 2019; Hart et al., 2023; Tree
& Burrell, 2023)).

We have highlighted the exciting opportunities to improve the efficiency and scientific
foundations of rewilding programmes incorporating some of the many mathematical methods
and ecological models which have been developed and applied in related ecological research.
Thus, we endeavour to bridge the gap between rewilding practice and theoretical and math-
ematical ecology.

We argue that mathematical methods and models, alongside data analysis and statistical
inference, can crucially improve a rewilding project at all stages, from planning and design,
through implementation, monitoring and assessment (Figure 1). Mathematical models are
particularly important at the initial planning stage of a rewilding project and at early stages
of its implementation where considerable uncertainties about the the set of likely ecological
trajectories and social-ecological dynamics of a rewilding project across decadal timescales.
Models of ecological dynamics of various complexity can generate a range of rewilding sce-
narios, addressing such challenges as (i) optimisation of the location of the rewilded area, (ii)
prioritisation and refinement of project goals (stated in terms of ecosystem service delivery)
and (iii) provision of robust advice to decision makers about the timing, location and nature
of required rewilding interventions. Dynamical ecological models, combined with suitable
monitoring protocols, can also help with the prediction of possible tipping points (Scheffer
et al., 2012; Biggs et al., 2018) and long transients (Francis et al., 2021). Such information
is critically important in a large-scale rewilding project for the avoidance or minimisation
of undesirable consequences (including project failure (Duffy, 2010; Muhumuza & Balkwill,
2013; Catalano et al., 2019; Dasgupta, 2019)).

Public opinion, stakeholder preferences and the social-economic context of any ecological
system, can fundamentally affect the feasibility and success of a rewilding project (Hertel &
Luther, 2023)—an issue shared widely with any conservation project. The social dimension is
ubiquitous at all stages of a rewilding project, stakeholder consensus being essential not only
to get a project underway, but also for its long-term viability. Models of opinion dynamics
and optimisation methods can be instrumental in helping to achieve such consensus.
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Rewilding creates a new paradigm for the application of dynamical ecological models. In
spite of their long and successful history of deciphering ecosystem dynamics, such models are
sometimes criticised as being too schematic—never explicitly accounting for all species in the
ecosystem and so neglecting potentially important ecological interactions (Levins, 1966; Getz
et al., 2018). However, rewilding focuses on functional groups rather than individual species,
giving a principled way of simplifying the modelling. Indeed, it suggests a ‘coarse-graining’
approach with variables representing functional groups (or sometimes similar species of the
same taxonomic level) with the potential for significant model simplification. A functional
group approach should be balanced against the use of few-species models that place a focus
on the important role of key megafauna and ecosystem engineers that may have a dispropor-
tionate role in driving ecosystem change.

Creation of consensus, set-up, design, implementation and monitoring of a rewilding
project are some of the many facets requiring an interdisciplinary team: we argue that the
project is more likely to achieve its goals, and in a more cost-effective way, if mathematical
scientists are included from the beginning (DeAngelis et al., 2021). We end on an evangelical
note and hope that our perspective stimulates future collaborations among practitioners, so-
cial scientists, theoretical ecologists, mathematicians and statisticians with the aim of helping
rewilding realise its full potential for resilient social-ecological systems around the world.
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