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Abstract

Meta-analysis is a powerful tool for synthesizing behavioral research and identifying
general patterns. However, are the conclusions we draw from these analyses truly
representative across animal groups? Alternatively, are our conclusions shaped by
taxonomic biases in the underlying research? For example, in animal behavior, vertebrates
are overrepresented in the research we conduct. This taxonomic imbalance raises concerns
about the validity of generalizations drawn in the field. To examine this issue, we examined
the meta-analyses published in Animal Behaviour, Behavioral Ecology, and Behavioral
Ecology and Sociobiology from 2000 - 2024. We then conducted a “meta-meta-analysis” to
calculate the degree to which overall effects in prior meta-analytical results may have been
mis-estimated due to taxonomic bias. We found that taxonomic biases in the primary
research strongly influence effect size estimates in meta-analyses and can lead to improper
inferences and generalizations. On average, meta-analytical averages are significantly
misestimated and taxonomic bias also results in apparent changes in statistical significance.
Because meta-analyses aggregate data, they propagate the biases present in an area of
research, leading to potentially incorrect generalizations. Addressing this taxonomic bias is
critical to generalizations that describe the true richness of animal behavior.

Keywords
generalizability, meta-analysis, taxonomic bias
Introduction

A major goal of animal behavior research is to understand why animals behave the way
they do from both proximate and ultimate perspectives (Tinbergen, 1963). Drawing general
conclusions to answer such questions across species can be challenging and meta-analyses
have emerged as the primary tool for doing so (Spake et al., 2022). However, the inferences
drawn from any analysis, including meta-analyses, are reliant on whether the data being
used are an appropriate sample (Gurevitch & Hedges, 1999; Michael D Jennions, Lortie,
Rosenberg, & Rothstein, 2013; Konno et al., 2020). Put another way, if the data going into
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behavioral meta-analyses are not representative of animal behavior broadly, then the
resulting inferences may be incorrect.

Biases in the data used in meta-analyses is a topic that has been extensively explored
previously (e.g. Dickersin, 2005; Rothstein, Sutton, & Borenstein, 2005). However, most of
this discussion has focused on issues like the well-known “file drawer problem” and time-
lag bias. The file drawer problem concerns publication bias wherein “statistically
significant” findings are more likely to be published (reviewed by Dickersin, 2005). This
bias leads to the absolute magnitude of effect sizes being overestimated. Time-lag bias
refers to the general observation that effect sizes tend to decrease over time (Trikalinos &
loannidis, 2005), as has been found in ecology (M. D. Jennions & Moller, 2002), but which
may not be particularly strong (Costello & Fox, 2022). Time-lag bias leads to the absolute
magnitude of effect sizes being overestimated early in a field’s development. While not
trivial, both types of biases can be at least partially addressed statistically within meta-
analyses (Nakagawa et al.,, 2022; Nakagawa & Santos, 2012).

More generally, and potentially more importantly, we do not have a good idea of how
taxonomically biased the data going into meta-analyses might be (Gurevitch & Hedges,
1999). However, for animal behavior research, we do know that individual research
projects are conducted in a highly taxonomically biased manner. Rosenthal, Gertler,
Hamilton, Prasad, and Andrade (2017) examined papers published in Animal Behaviour
between 1953 and 2015 and found that vertebrates were strongly over-represented (Figure
1a). At the coarsest level, vertebrates represent only 5% of animal species but were the
focus of study in 71% of surveyed studies. Even within vertebrates there was considerable
bias in what animals were studied (Rosenthal et al., 2017): endotherms were far more
frequently studied than expected based on their taxonomic representation (Figure 1b) and
well over 50% of all vertebrate studies were on birds or mammals (Figure 1b). Within
invertebrates, most behavioral research was conducted in a single order (Hymenoptera,
Rosenthal et al. 2017). Interestingly, this bias in favor of vertebrates is reduced in sexual
selection and sexual conflict research. Zuk, Garcia-Gonzalez, Herberstein, and Simmons
(2014), found that roughly 30 percent of sexual selection and 50 percent of sexual conflict
research is conducted with insects. However, even in these areas of study, vertebrates
remain over-represented and over 20 percent of the work done on insects was from a single
genus (i.e. Drosophila, Zuk et al., 2014). Subsequent work examining meta-analyses of
sexual selection research found similar bias, with most meta-analyses focused on bird
species and with insects still poorly represented (Pollo, Lagisz, Yang, Culina, & Nakagawa,
2024).

This potential for biased inferences also has impacts beyond our basic
understanding of behavior. From an applied perspective, as discussed by Rosenthal et al.
(2017), taxonomic bias in the study of behavior can affect conservation and management
efforts, understanding population dynamics, and understanding zoonotic disease risk.
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Figure 1. Taxonomic bias in the animals used in the study of animal behavior as identified by
Rosenthal et al. (2017) both in general (a) and just within vertebrates (b).

Consequently, evaluating the presence of taxonomic bias in animal behavior meta-analyses
and considering how such bias may affect the inferences we draw is of considerable
importance. Specifically, it is necessary to know whether the conclusions we draw from
meta-analyses are representative and generalizable.

We sought to address this concern by asking two questions: First, is the taxonomic
bias identified by Rosenthal et al. (2017) also present in the data used in meta-analyses?
Second, does taxonomic bias lead to misestimation and incorrect inferences in meta-
analytical results? We answered this second question by reanalyzing data and then
conducting a meta-meta-analysis to allow estimation of effects under taxonomically
representative sampling.

Methods

To answer these two questions, we identified the meta-analyses published in three leading
behavioral journals. We then determined the taxonomic representation of the constituent
studies used in these meta-analyses and how estimates from these meta-analyses would
change if the data were sampled in a taxonomically representative manner.

Identifying meta-analyses

To identify meta-analyses in animal behavior, we searched the journals Animal Behaviour,
Behavioral Ecology and Sociobiology, and Behavioral Ecology for meta-analyses published
in 2000 - 2024 using Web of Science (Core Collection, Science Citation Index Expanded).
While behavioral meta-analyses are published elsewhere, we assumed that meta-analyses
published in these journals would be generally representative of the field, if not broader in
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defined a meta-analysis as any analysis of effect sizes, even if standardized effect sizes were
not analyzed. Based on these search criteria, we identified a total of 75 articles for

secondary (full-text) screening (sensu Foo, O'Dea, Koricheva, Nakagawa, & Lagisz, 2021).

Figure 2. PRISMA diagram of included studies and included effect
size estimates in the final analysis.

During the secondary screening we double-checked whether the 75 articles met our
inclusion criteria. Next, the additional inclusion criteria at this stage were that the meta-
analyses were not taxonomically restricted, defined here as including both vertebrates and
invertebrates, with at least one invertebrate estimate, and that available data were
sufficient to estimate effect size means for vertebrates and invertebrates. During secondary
screening we also identified two articles that were meta-analyses but of research practices:
reviews of publication biases and statistical power (M. D. Jennions & Moller, 2003; Mgller,
Thornhill, & Gangestad, 2005). These were excluded as they were not addressing questions
of animal behavior per se. When data were not available from online sources, we requested
the data directly from the authors. This ultimately led to a sample size of 15 articles and 43
estimates (Figure 2, Table 1). Title and abstract screening and secondary screening was
done by NAD and MAS.
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The 15 included articles covered a wide-range of behavioral topics. These topics
included ornamentation patterns (Kraaijeveld, Kraaijeveld-Smit, & Komdeur, 2007),
selection on “personality” and behavioral syndromes (Smith & Blumstein, 2008), to winner-
loser effects (Yan, Smith, Filice, & Dukas, 2024). All included articles are listed in Table 1.

Identifying taxonomic representation

For each published meta-analysis, we examined the data used to determine whether
specific effect sizes were from invertebrates or vertebrates. From this, we determined the
relative representation of invertebrates to vertebrates in the meta-analysis. We then
compared this representation of estimates to that expected based on known animal
diversity. Because of the expected lack of non-vertebrate estimates (Figure 1a) and the
large number of non-vertebrate phyla, we compared the representation of species in
published meta-analysis to the expected representation just at the level of vertebrates and
invertebrates. We compared this representation based on taxonomic diversity without
accounting for differences in abundance.

Estimating taxonomic misestimation of meta-analytical results

To determine the degree to which taxonomic representation could lead to misestimation of
meta-analytical results, we compared meta-analytic grand means to estimates of what
those means would be if estimates were drawn proportionally from the diversity of
Animalia. We did so by calculating the marginalized means for each included meta-analysis
under the assumption of taxonomically representative sampling (sensu Nakagawa et al.,
2023).

For example, consider a meta-analysis based on 100 estimates with 75 estimates
coming from vertebrates and 25 from invertebrates. This degree of taxonomic mis-
representation is consistent with the findings of Rosenthal et al. (2017). Assuming
estimates for vertebrates and invertebrates are equally precise despite different numbers of
estimates, the grand mean effect size in this meta-analysis would be primarily driven by the
mean for vertebrates: if the mean effect size for vertebrates were 0.5 and the mean for
invertebrates was -0.5, the overall “grand mean” would be 0.25. However, this overall mean
is taxonomically biased as vertebrates only represent around 5% of all animals
(vertebrates: 4.74%; Catalogue of Life, 2025). If the estimates in this hypothetical example
were drawn proportionally from the animal kingdom, the grand mean would instead have
been estimated as -0.45. This grand mean is calculated by weighting by taxonomic
representation rather than data representation.

Here, we first calculated the overall meta-analytical mean for a particular meta-
analysis. Many of the constituent studies conducted multiple meta-analyses and we
attempted to replicate as many of those as possible. In all cases we attempted to replicate
the original analyses either using code originally provided by the authors or de novo code
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based on the described methods and for the effect sizes used or described by the authors.
When possible, this included the inclusion of phylogenetic error structure. This provided an
overall meta-analytical mean for the observed data (“data-proportional”). For each of these
analyses we next added a moderator contrasting vertebrates and invertebrates. This
provided separate meta-analytical estimates for vertebrates and invertebrates that
incorporated the estimation uncertainty and sampling variance among studies. We also
recorded the significance of this effect.

Based on the vertebrate and invertebrate meta-analytical estimates, we then
estimated the marginalized mean under taxonomic representative sampling (“taxonomic-
representative”) using the metafor package in R (Nakagawa et al., 2023; Viechtbauer, 2010;
Viechtbauer & Lopez-Lopez, 2022). This process is also known as “poststrafication” and is
often used in recalibrating survey results (Gelman, Hill, & Vehtari, 2021). Using the predict
function of metafor, we estimated the marginalized taxonomic-representative value with an
assumption of 5% of estimates being from vertebrates and 95% of estimates being from
invertebrates. This representation is based on the known distribution of vertebrates and
invertebrates (Catalogue of Life, 2025). This also allowed us to estimate the uncertainty
around the taxonomic-representative mean (Viechtbauer & Lopez-Lopez, 2022).

Marginalized means are calculated as described in the above example of weighted
averaging but based instead on the meta-analytical group estimates. Specifically, the
estimated vertebrate and invertebrate means, and accompanying uncertainties, were
reweighted by the expected representation of invertebrates and vertebrates to calculate a
taxonomic-representative mean. Because uncertainty around this new mean can be
estimated, its statistical significance can also be determined.

For each meta-analysis we estimated the data-proportional (udp) and taxonomic-
representative (u) overall mean estimates and their uncertainties. We also determined the
statistical significances (a < 0.05) of pdp and per. Besides estimating magnitude of biasing,
this allowed us to determine if taxonomic bias may lead to different inferential conclusions.

Data analysis

For each meta-analytical estimate pair from a study, we compared the data-proportional
versus taxonomic-representative estimates to quantify the relative, proportional effect of
taxonomic misrepresentation on overall effects in meta-analysis. To do so, we calculated the
absolute value of the log ratio (Hedges, Gurevitch, & Curtis, 1999):

Her
log—
.udp

we used the absolute value as this allowed comparison across studies regardless of
whether data-proportional or taxonomic-representative estimates were larger, which might
vary by biological question. This also allowed us to compare estimates across meta-
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analyses even when those original meta-analyses used different effect sizes. The two
limitations of this approach are that it does not allow analysis in cases where the signs of
estimates change and the use of absolute values can result in over-estimation of
magnitudes (Morrissey, 2016, see below). Fortunately, sign changes only occurred for 3 of
the 43 pairs of estimates (see results).

As an additional analysis, we also calculated the magnitude difference between data-
proportional and taxonomic-representative estimates. Because the constituent meta-
analyses used different effect sizes themselves (i.e. Zr, log-odds ratios, and various
standardized mean differences), we first transformed all effect sizes to Zr following
equations in Borenstein, Hedges, Higgins, and Rothstein (2009). We then calculated the raw
value of the differences between data-proportional and taxonomic-representative Zr scores.

For both the relative and magnitude differences between pairs, the standard
deviation of the differences was estimated as:

\/sd(zip +sdf, — 25d g, X sdy. X T

where sddp and sd¢r are the estimate standard deviations of the overall meta-analytical
means (reported in the metafor outputs as standard errors) and r represents the
correlation between the uncertainties (because the uncertainties are based on the same
datasets). For the differences in Zr scores, we used the estimated uncertainties in the above
equation. For the absolute value of log ratios, sddp and sd«r were calculated as sdap/ pdp and
sder/ urr, respectively. r is not analytically known but is between 0 and 1 and should be
approaching one and so was set to 0.8. This did not substantively affect our conclusions or
estimation (Supplemental Materials).

To estimate the overall effect of taxonomically biased sampling on meta-analytical
inferences, we next fit a random effects meta-analysis with the study an estimate was
drawn from as a random effect to the estimates of relative differences. We also included
individual estimate identity as a random effect because each estimate was based on a
different sample size and often addressing a different question. The overall effect size was
estimated while weighting by the inverse of the standardized mean difference’s sampling
variance (Borenstein et al., 2009). We evaluated the magnitude and uncertainty of the
grand mean (xgm) from these analyses as indicative of taxonomic bias in meta-analytical
inferences. Consequently, a significant grand mean would indicate significant taxonomic
bias in meta-analytical estimates.

Importantly, calculating the grand mean of absolute values results in positive bias
(Morrissey, 2016). Therefore, we used an “analyze-then-transform” approach following
Morrissey (2016). To do so, based on the above analysis, we transformed the meta-analytic
grand means of the magnitude of taxonomic bias (xgm) and its uncertainty (segm) according
to a folded normal distribution as:
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where Xfoided is the transformed grand mean and sdfolded is its standard deviation. erf is the
Gauss error function. Uncertainties of parameters from linear models, like those provided
by the metafor package, are reported as standard errors but these values specifically refer
to the standard deviation of the parameter’s sampling distribution and so were used here in
lieu of standard deviations. We calculated the folded values for both the relative and
absolute analyses. To aid interpretation, these values were then converted to percent
differences as:

(e*folded — 1) x 100

We next conducted a heterogeneity analyses to determine the contributors to
variability in taxonomic bias. We determined whether there was significant heterogeneity
among estimates based on Cochran’s Q and its significance. We then calculated the
proportion of variation (I2) attributable to sampling error, to study differences, and to
estimate differences within studies (Nakagawa & Santos, 2012).

Because we were analyzing differences between marginal means, as opposed to
original findings, there are not clear expectations of publication bias or approaches to
testing for such bias. Moreover, because our estimates were constrained to be positive,
typical funnel plots and trim-and-fill analyses were not appropriate. Given the lack of both a
priori expectations regarding basis or methods, we did not conduct publication bias tests.

In addition, we conducted a series of post hoc analyses and comparisons. First, we
conducted a meta-regression of taxonomic bias versus the number of studies in the original
meta-analyses that were for invertebrates. A significant negative slope for this moderator
would suggest that apparent taxonomic bias is at least partially driven by poor sampling of
invertebrates. We then conducted a second post hoc meta-regression using the proportion
of studies in a meta-analysis that were for invertebrates. A significant negative slope would
be consistent with taxonomically biased sampling leading to misestimation (bias should
decrease toward zero with increasing invertebrate representation). In these analyses, the
number and proportion of studies were centered when used as covariates. These post hoc
analyses therefore allowed us to estimate bias at average sampling levels. As a final post
hoc addition, we compared the significance of the contrast between vertebrates and
invertebrates as a moderator in underlying meta-analyses to whether significance of the
overall means differed when estimated in a data-proportional versus taxonomic-
representative manner.
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Figure 3. (a) Data included in meta-analyses by taxa. Vertebrates are indicated in the same color
as in Figure 1a while Arthropods and other invertebrates are now pooled under a single
invertebrate category. Invertebrates are indicated in the same color as Arthropods in Figure 1a
as Arthropod species dominated this category. (b) Overall (large dot) and individual estimates
(small dots) of the percentage misestimation due to taxonomic misrepresentation (uncertainty
around this misestimation is smaller than the point).

273 Results

274  Taxonomic Representation of Data in Meta-Analyses

275  We found that the data used in behavioral meta-analyses was highly taxonomically biased
276  infavor of vertebrates (Figure 3a, Table 1). 65% of the estimates used in meta-analyses
277  were from vertebrates, slightly less than the bias observed more broadly in behavioral
278  research (Rosenthal et al., 2017), but far, far greater than the 5% expected according to
279  taxonomic representation.

280  Relative Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences

281  The meta-analytical mean, after transformation due to the folded distribution, of absolute
282  logratios was 0.30 (s.e. = 0.08, p << 0.01; Figure 4). Put another way, meta-analytical means
283  are, on average, misestimated by 35% (Figure 3b). Significance changed between the data-
284  proportional and taxonomic-representative estimates for 10 of 43 estimate pairs (Figure 4),
285  though the signs of effects only changed for 3 pairs. Of the significance changes, 8 instances
286  changed from significant to non-significant and two changed from non-significant to

287  significance. Moreover, while the vertebrate versus invertebrate contrast was significant in
288 19 of 43 constituent meta-analyses, it was significant for only 4 of the instances when

289  overall mean significance changed.

290 There was also significant heterogeneity among estimates (Qadf39 = 102.15, p <<
291  0.01). Of this heterogeneity, most was attributable to sampling variance (12 = 0.69). But
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there was also considerable heterogeneity among studies (12 = 0.13) and among estimates
within studies (I? = 0.19).

Absolute Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences

The meta-analytical mean of magnitude differences between Zr scores was 0.15 (s.e. = 0.06,
p = 0.01). However, one estimate pair differed by around 3 times more than the next largest
difference (Figure S1). When this estimate pair was excluded, the difference dropped to
0.098 (se = 0.026) and remained significant (p < 0.01). Whether with or without this
extreme data point, these effects translate to substantive differences in more conventional
effect sizes: a difference between Zr scores of 0.15 corresponds to a difference of 0.29
between correlations and a difference of 0.091 converts to a difference in correlations of
0.20. There was significant heterogeneity among estimates (Qdf.41 = 2.1x 103, p << 0.01) but
99% of this heterogeneity was attributable to sampling variance with no appreciable
heterogeneity among studies or estimates (I2 < 0.01).

Meta-regression for the effect of sampling on estimation

Both the number and proportion of invertebrate studies in a constituent meta-analysis had
a significant negative effect on the magnitude of taxonomic bias (p = 0.03 and <0.01,
respectively). The significant effect of number of studies suggests that some proportion of
the taxonomic bias is influenced by poor estimation at small sample sizes but the
magnitude of this effect was small ( = -0.0012). Interestingly, the estimated magnitude of
taxonomic bias was higher at the average invertebrate sample size than estimated in our
main analysis (39%). The magnitude of the effect of proportional invertebrate
representation was larger (§ = -0.684), consistent with taxonomic bias in sampling biasing
meta-analytical conclusions.
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Figure 4. Within-study estimates and standard errors of the relative magnitude of taxonomic bias on
meta-analytical estimates.

315 Discussion

316  We found that the impact of taxonomic bias on meta-analytical estimates in the study of
317 animal behavior was surprisingly large (Figure 3b). Specifically, our results demonstrate
318 that meta-analytical means from behavioral meta-analysis might be misestimated by

319 around 35%. While this degree of misestimation is dependent on the assumptions

320 necessary for calculating marginalized means, it suggests a major concern for conclusions
321 drawn from behavioral meta-analyses. The observed magnitude of misestimation also led
322  to changes in significance for around 25% of estimates. Interestingly, the significance of a
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moderator allowing for differences between invertebrates and vertebrates within
underlying meta-analyses was not particularly informative: In more than half of the
instances when significance changed under taxonomic representative estimation, a
moderator for taxonomic grouping was not significant. This estimated magnitude of
misestimation, 35%, and its impact on direction or significance of effects can lead to
incorrect inferences being drawn.

Our analysis of the magnitude of taxonomic bias on the raw effect of meta-analytical
estimates demonstrates a somewhat smaller impact. However, this is not entirely
unexpected because effect sizes estimated in meta-analyses are typically quite small (Low-
Décarie, Chivers, & Granados, 2014; Mgller & Jennions, 2002) and so differences in
magnitudes will necessarily be constrained to also be small. Even in terms of magnitude
differences, the observed bias still translates into substantial difference in the magnitudes
of effects, changing correlations by an average of 0.3.

As one example, consider the findings of Royauté, Berdal, Garrison, and
Dochtermann (2018). We use this example as one of us (NAD) was the senior author of that
study and so as to not single out other authors. In Royauté et al. (2018), the authors
concluded that correlations between behaviors and physiological or life-history traits were
not in the direction expected according to the “pace-of-life” syndrome (POLS) hypothesis
proposed by Reale et al. (2010). This was a novel and surprising finding given the intuitive
predictions of POLS and its dramatic impact on discussions of how behavior might be
integrated with physiology and life-history. The conclusion of Royauté et al. (2018) was
based on the meta-analytical mean, estimated as r = 0.06 (95% CI: -.01 : 0.14), which was
predicted to have been positive according to POLS. However, as reported by Royauté et al.
(2018), there was a significant difference between vertebrates and invertebrates regrading
support for POLS. There also was substantial taxonomic bias in the data that went into
Royauté et al.'s (2018) analysis. Here, via the estimation of marginal means adjusting for
taxonomic bias, we see that if the sampling of vertebrates and invertebrates was
taxonomically proportional, the meta-analytical mean would have been estimated asr =
0.22 and would have been significantly different than zero. While this is a relatively modest
absolute difference in estimates (0.16), it is a large relative difference (~2.4 times, Figure
4). This ends up resulting in a substantive reinterpretation of the evidence for POLS: If the
data going into the original analysis were consistent with actual taxonomic representation,
and the estimates of the original analysis hold, this would have been taken as meta-
analytical support for POLS. Many of the included meta-analyses also drew conclusions
based on overall mean effect sizes and so similar issues will arise across our dataset.
Consequently, major changes in inferences would likely be drawn from other meta-analyses
if taxonomic bias were to be similarly addressed, as demonstrated by the observed changes
in significance (Figure 4). Likewise, changes in the sign of three mean effect sizes would
also lead to inferential changes.
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This example, and our overall findings, confirm concerns raised by others. In
particular, Gurevitch and Hedges (1999) discussed how researcher biases and taxonomic
preferences in the generation of original data have the potential to affect subsequent meta-
analytical inferences. However, the degree to which this was an actual problem was not
clear until our analysis here. This is a concerning problem but not a new one: as discussed
by Rosenthal et al. (2017), taxonomic bias in the study of animal behavior is pervasive and
pronounced (their data are recreated in Figures 1a & 1b).

Importantly, changes in interpretation as discussed above are dependent on how
robust our marginal mean estimates are for invertebrates. This is not currently clear and,
across the included meta-analyses, the poor representation of invertebrates (Figure 3a,
Table 1) necessarily means that these estimates have greater uncertainties than do
estimates for vertebrates. Our post hoc meta-regressions suggest that this likely has only a
minor effect on our interpretation, as demonstrated by the magnitude of the regression
coefficient relating the number of invertebrate studies to the magnitude of bias. Moreover,
this post hoc analysis suggests that our primary analysis may be underestimating the
magnitude of taxonomic bias. Also, because of the poor representation of invertebrates in
behavioral studies, the diversity within invertebrates could not be captured in our analysis.
Because invertebrates are also not proportionally sampled (Zuk et al., 2014), our field’s
meta-analytical conclusions may be even more biased than could be revealed here.

While changes in interpretation due to taxonomic bias might be discouraging, they
also are of intrinsic interest. Sub-group analysis and stratification (Borenstein et al., 2009),
long-standing parts of meta-analyses in other fields, would allow the evaluation of when a
hypothesis like POLS holds in some taxonomic groups and not others. For example, it is
perhaps more interesting to ask why POLS holds in invertebrates but not vertebrates rather
than simply asking whether the hypothesis is supported in general. Such analyses may
allow for greater insight than currently provided by most behavioral meta-analyses. Indeed,
researchers in areas of ecology and evolution are often interested specifically in when and
why groups, like vertebrates and invertebrates, differ (Nakagawa, Noble, Senior, & Lagisz,
2017; Yang et al., 2025). Disentangling contributors to heterogeneity in effect sizes will
often be more informative than simple estimations of overall means. Our results therefore
suggest that greater efforts to control for, or examine explicitly, taxonomically specific
patterns in meta-analytical data.

It is also worth emphasizing that relatively few studies could be included in our
analyses and, as a result, the effects of taxonomic bias might therefore be even more severe.
Specifically, 53 meta-analyses published in Animal Behaviour, Behavioral Ecology, and
Behavioral Ecology and Sociobiology were taxonomically restricted (Figure 2). Put another
way, the taxonomic bias in the 15 studies included here necessarily underestimates the bias
present in the 53 studies for which bias could not even be estimated. Indeed, in examining
the taxonomically restricted meta-analyses, over 75% were restricted to vertebrates (Table
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S1). Echoing—and exaggerating—the biases within vertebrates identified by Rosenthal et
al. (2017 and Figure 1b), 87% of the constituent studies used in vertebrate restricted meta-
analyses were of birds (Table S1).

In some cases, taxonomic restriction may be because a specific hypothesis applies to,
for example, mammals but not reptiles. In such cases, the type of taxonomic restriction we
have identified is a requirement to ask a question and is to be expected. However, it is also
possible that this represents a secondary opportunity for researchers to express taxonomic
preferences (Gurevitch & Hedges, 1999). This is, potentially, reflected in the taxonomic
representation seen in the restricted studies. As mentioned above, most of these focused on
birds and mammals. Even if taxonomic restriction is justified, that most restricted meta-
analyses focus on birds and mammals results in research effort that does not reflect the
broader taxonomic representation. This, again, biases our understanding of animal
behavior. Most generally, taxonomically restricted meta-analyses, when not necessary, will
reduce the generality of conclusions.

If a broad goal of animal behavior research is to increase our general understanding of
behavior, our results demonstrate that taxonomic bias should be a major concern.
Moreover, this is a concern emerging from the data available in the field as a whole. If,
instead, we are primarily interested in examining personally interesting examples of
behavior, the bias is of less importance. Regardless, a primary aim of meta-analyses is to
draw generalizable inferences (Spake et al.,, 2022). Our results suggest that the taxonomic
bias inherent in the behavioral literature makes this generalization difficult. This may
profoundly affect how right and wrong we are about our understanding of behavior.
Addressing this bias will require individual researchers to consider whether their study
system choices will increase the generality of our field’s understanding.

Data availability

All data and analysis code are available at: link.
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Table 1. Behavioral meta-analyses included in the current analyses

Study
ID

K9
B11

T40

D44
Y46
S56

D64
D67
D85

c87

R89

D90

Number of included
analyses

[N

[ S S oV

10

Number of estimates
in each analysis

13

140

29

28

759

265
38
22
168

37
35
215
158
13
129
81
20
71
26
25
38
55
72
26
170
52

57
508
366
26
50
67
16

Number of estimates
for vertebrates

4

135

26

23

493

261
2

4
47

31
30
92
125
12
85
74
19
56
25
22
35
49
29
9
61
24
4
43
92
325
8
27
41
6

Number of estimates
for invertebrates

121

123

109
28

14
416
41
18
23
26
10

Author(s) (Year)

Kraaijeveld et al. (2007)

Bell, Hankison, and Laskowski (2009)
Takola, Krause, Muller, and Schielzeth
(2021)

Liam R Dougherty (2024)

Yan et al. (2024)

Allegra, Changaris, Miller, and Burnside
(1976)

Dochtermann and Dingemanse (2013)
L. R. Dougherty and Shuker (2015)
Davies, Lewis, and Dougherty (2020)

Church, Matte, and Grant (2022)

Richardson and Zuk (2023)

L. R. Dougherty (2023)
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32
183
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Royauté et al. (2018)
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Author(s) and Year k Estimate [95% CIl]
Kraaijeveld et al. 2007 (a) 13 jo4 0.67 [-0.02, 1.35]
Kraaijeveld et al. 2007 (b) 140 Ll 1.69[ 1.13, 2.25]
Kraaijeveld et al. 2007 (c) 29 ] 0.52[ 0.22, 0.81]
Kraaijeveld et al. 2007 (d) 28 H 0.15[-0.47, 0.77]
Bell et al. 2009 759 *® 0.14 [ 0.01, 0.27]
Dougherty 2024 (females) 38 . 0.00[-0.21, 0.21]
Dougherty 2024 (males) 22 : 1.38[-9.08, 11.84]
Yan et al. 2024 168 * 0.02[-0.17, 0.21]
Smith & Blumstein 2008 37 I 0.17[-0.38, 0.72]
Dochter. & Dingemanse 2013 35 Y] 0.09[-0.46, 0.63]
Dougherty & Shuker 2015 215 . 0.09[-0.15, 0.32]
Church et al. 2022 (a) 13 —— 0.32[-2.97, 3.62]
Church et al. 2022 (b) 129 ol 0.58 [ 0.18, 0.99]
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Richardson & Zuk 2023 (a) 26 o 0.71[-0.14, 1.56]
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Royauté et al. 2018 183 ‘Hed 1.21[ 0.46, 1.96]
Takola et al. 2021 265 i 3! 0.19[-0.46, 0.83]
Kelly 2008 (a) 253 » 0.05[-0.16, 0.25]
Kelly 2008 (b) 214 (] 0.08[-0.19, 0.34]
Kelly 2008 (c) 398 ® 0.12[-0.07, 0.32]
Graham et al. 2015 32 ™ 0.07[-0.19, 0.33]
Davies et al. 2020 158 ™ 0.49[-0.04, 1.02]
Zr (raw difference) 4 0.30 [ 0.15, 0.46]
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Table S1. Taxa included in taxonomically restricted meta-analyses.

Article Number of
ID Phylum Class included studies Reference
1 Arthropoda Insecta 122 Arnqvist & Nilsson (2000) Anim. Behav.
2 Chordata Mammalia 27 Schino (2001) Anim. Behav.
3 Chordata Mammalia 5 Roberts et al. (2004) Anim. Behav.
3 Chordata Reptilia 6 Roberts et al. (2004) Anim. Behav.
3 Chordata Aves 25 Roberts et al. (2004) Anim. Behav.
4 Arthropoda Insecta 7 Shuker et al. (2004) Anim. Behav.
Hirschenhauser & Oliveira (2006) Anim.
6 Chordata Reptilia 5 Behav.
Hirschenhauser & Oliveira (2006) Anim.
6 Chordata Amphibia 9 Behav.
Hirschenhauser & Oliveira (2006) Anim.
6 Chordata Pisces 26 Behav.
Hirschenhauser & Oliveira (2006) Anim.
6 Chordata Mammalia 38 Behav.
Hirschenhauser & Oliveira (2006) Anim.
6 Chordata Aves 65 Behav.
7 Chordata Aves 12 Griffith et al. (2006) Anim. Behav.
7 Chordata Aves 27 Griffith et al. (2006) Anim. Behav.
10 Chordata Mammalia 54 Majolo et al. (2008) Anim. Behav.
10 Chordata Mammalia 86 Majolo et al. (2008) Anim. Behav.
12 Chordata Aves 24 Sridhar et al. (2009) Anim. Behav.
12 Chordata Aves 27 Sridhar et al. (2009) Anim. Behav.
12 Chordata Aves 66 Sridhar et al. (2009) Anim. Behav.
15 Chordata Aves 127 Santos et al. (2011) Anim. Behav.
Hasselquist & Nilsson (2012) Anim.
16 Chordata Aves 11 Behav.
Hasselquist & Nilsson (2012) Anim.
16 Chordata Aves 14 Behav.
20 Arthropoda Insecta 1 Paterson et al. (2013) Anim. Behav.
20 Arthropoda Malacostraca 6 Paterson et al. (2013) Anim. Behav.
20 Arthropoda Insecta 6 Paterson et al. (2013) Anim. Behav.
20 Mollusca Gastropoda 12 Paterson et al. (2013) Anim. Behav.
20 Arthropoda Insecta 14 Paterson et al. (2013) Anim. Behav.
24 Chordata Mammalia 7 Street et al. (2016) Anim. Behav.
24 Chordata Mammalia 26 Street et al. (2016) Anim. Behav.
26 Chordata Aves 14 Kriengwatana et al. (2016) Anim. Behav.
28 Chordata Aves 555 Wood et al. (2017) Anim. Behav.
32 Chordata Aves 379 Parker et al. (2018) Anim. Behav.
34 Chordata Mammalia 14 Amici et al. (2019) Anim. Behav.
34 Chordata Aves 11 Amici et al. (2019) Anim. Behav.
34 Chordata Actinopterygii 1 Amici et al. (2019) Anim. Behav.
37 Chordata Reptilia 1 Penndorf & Aplin (2020) Anim. Behav.
37 Chordata Aves 5 Penndorf & Aplin (2020) Anim. Behav.
37 Chordata Mammalia 10 Penndorf & Aplin (2020) Anim. Behav.
43 Chordata Aves 142 Shuai et al. (2024) Anim. Behav.
45 Chordata Aves 1001 Petalas et al. (2024) Anim. Behav.
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Supplementary Analysis: Effect of r on sampling variance.

Because we estimated the standard deviation of estimates as:

\/sdép + sdf. — 2sd g, X sdy X1

it was possible that choices about the value of r might influence the ultimate meta-meta-
analytical results. We know that r is much greater than 0 since the same data were being
used for the data-proportional and taxonomic-representative estimates. However, we don’t
know if this value is exactly 1. We a priori decided to use a value of 0.8 since the value is
necessarily large but also calculated meta-analytical means over a range of values for r
(Figure S2). A higher r, corresponding to a more conservative estimte of the standard
deviation, led to an increase in the meta-analytical estimate but did not change significance
or our overall interpretation.
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Figure S2. Change in the estimated folded mean for a range of values for r. A and B differ
only in the scale of the y axes.



