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Abstract 1 

Meta-analysis is a powerful tool for synthesizing behavioral research and identifying 2 

general patterns. However, are the conclusions we draw from these analyses truly 3 

representative across animal groups? Alternatively, are our conclusions shaped by 4 

taxonomic biases in the underlying research? For example, in animal behavior, vertebrates 5 

are overrepresented in the research we conduct. This taxonomic imbalance raises concerns 6 

about the validity of generalizations drawn in the field. To examine this issue, we examined 7 

the meta-analyses published in Animal Behaviour, Behavioral Ecology, and Behavioral 8 

Ecology and Sociobiology from 2000 – 2024. We then conducted a “meta-meta-analysis” to 9 

calculate the degree to which overall effects in prior meta-analytical results may have been 10 

mis-estimated due to taxonomic bias. We found that taxonomic biases in the primary 11 

research strongly influence effect size estimates in meta-analyses and can lead to improper 12 

inferences and generalizations. On average, meta-analytical averages are significantly 13 

misestimated and taxonomic bias also results in apparent changes in statistical significance. 14 

Because meta-analyses aggregate data, they propagate the biases present in an area of 15 

research, leading to potentially incorrect generalizations. Addressing this taxonomic bias is 16 

critical to generalizations that describe the true richness of animal behavior. 17 
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Introduction 20 

A major goal of animal behavior research is to understand why animals behave the way 21 

they do from both proximate and ultimate perspectives (Tinbergen, 1963). Drawing general 22 

conclusions to answer such questions across species can be challenging and meta-analyses 23 

have emerged as the primary tool for doing so (Spake et al., 2022). However, the inferences 24 

drawn from any analysis, including meta-analyses, are reliant on whether the data being 25 

used are an appropriate sample (Gurevitch & Hedges, 1999; Michael D Jennions, Lortie, 26 

Rosenberg, & Rothstein, 2013; Konno et al., 2020). Put another way, if the data going into 27 
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behavioral meta-analyses are not representative of animal behavior broadly, then the 28 

resulting inferences may be incorrect. 29 

 Biases in the data used in meta-analyses is a topic that has been extensively explored 30 

previously (e.g. Dickersin, 2005; Rothstein, Sutton, & Borenstein, 2005). However, most of 31 

this discussion has focused on issues like the well-known “file drawer problem” and time-32 

lag bias. The file drawer problem concerns publication bias wherein “statistically 33 

significant” findings are more likely to be published (reviewed by Dickersin, 2005). This 34 

bias leads to the absolute magnitude of effect sizes being overestimated. Time-lag bias 35 

refers to the general observation that effect sizes tend to decrease over time (Trikalinos & 36 

Ioannidis, 2005), as has been found in ecology (M. D. Jennions & Moller, 2002), but which 37 

may not be particularly strong (Costello & Fox, 2022). Time-lag bias leads to the absolute 38 

magnitude of effect sizes being overestimated early in a field’s development. While not 39 

trivial, both types of biases can be at least partially addressed statistically within meta-40 

analyses (Nakagawa et al., 2022; Nakagawa & Santos, 2012).  41 

 More generally, and potentially more importantly, we do not have a good idea of how 42 

taxonomically biased the data going into meta-analyses might be (Gurevitch & Hedges, 43 

1999). However, for animal behavior research, we do know that individual research 44 

projects are conducted in a highly taxonomically biased manner. Rosenthal, Gertler, 45 

Hamilton, Prasad, and Andrade (2017) examined papers published in Animal Behaviour 46 

between 1953 and 2015 and found that vertebrates were strongly over-represented (Figure 47 

1a). At the coarsest level, vertebrates represent only 5% of animal species but were the 48 

focus of study in 71% of surveyed studies. Even within vertebrates there was considerable 49 

bias in what animals were studied (Rosenthal et al., 2017): endotherms were far more 50 

frequently studied than expected based on their taxonomic representation (Figure 1b) and 51 

well over 50% of all vertebrate studies were on birds or mammals (Figure 1b). Within 52 

invertebrates, most behavioral research was conducted in a single order (Hymenoptera, 53 

Rosenthal et al. 2017). Interestingly, this bias in favor of vertebrates is reduced in sexual 54 

selection and sexual conflict research. Zuk, Garcia-Gonzalez, Herberstein, and Simmons 55 

(2014), found that roughly 30 percent of sexual selection and 50 percent of sexual conflict 56 

research is conducted with insects. However, even in these areas of study, vertebrates 57 

remain over-represented and over 20 percent of the work done on insects was from a single 58 

genus (i.e. Drosophila, Zuk et al., 2014). Subsequent work examining meta-analyses of 59 

sexual selection research found similar bias, with most meta-analyses focused on bird 60 

species and with insects still poorly represented (Pollo, Lagisz, Yang, Culina, & Nakagawa, 61 

2024). 62 

This potential for biased inferences also has impacts beyond our basic 63 

understanding of behavior. From an applied perspective, as discussed by Rosenthal et al. 64 

(2017), taxonomic bias in the study of behavior can affect conservation and management 65 

efforts, understanding population dynamics, and understanding zoonotic disease risk. 66 



Consequently, evaluating the presence of taxonomic bias in animal behavior meta-analyses 67 

and considering how such bias may affect the inferences we draw is of considerable 68 

importance. Specifically, it is necessary to know whether the conclusions we draw from 69 

meta-analyses are representative and generalizable.  70 

We sought to address this concern by asking two questions: First, is the taxonomic 71 

bias identified by Rosenthal et al. (2017) also present in the data used in meta-analyses? 72 

Second, does taxonomic bias lead to misestimation and incorrect inferences in meta-73 

analytical results? We answered this second question by reanalyzing data and then 74 

conducting a meta-meta-analysis to allow estimation of effects under taxonomically 75 

representative sampling. 76 

Methods 77 

To answer these two questions, we identified the meta-analyses published in three leading 78 

behavioral journals. We then determined the taxonomic representation of the constituent 79 

studies used in these meta-analyses and how estimates from these meta-analyses would 80 

change if the data were sampled in a taxonomically representative manner. 81 

Identifying meta-analyses 82 

To identify meta-analyses in animal behavior, we searched the journals Animal Behaviour, 83 

Behavioral Ecology and Sociobiology, and Behavioral Ecology for meta-analyses published 84 

in 2000 – 2024 using Web of Science (Core Collection, Science Citation Index Expanded). 85 

While behavioral meta-analyses are published elsewhere, we assumed that meta-analyses 86 

published in these journals would be generally representative of the field, if not broader in 87 

 
Figure 1. Taxonomic bias in the animals used in the study of animal behavior as identified by 
Rosenthal et al. (2017) both in general (a) and just within vertebrates (b). 

 



scope. We used the topic 88 

terms meta-anal*, meta, 89 

meta anal*. This search 90 

returned 118 articles and 91 

was conducted on 4 92 

February 2025. We 93 

repeated this search on 94 

23 September 2025 and 95 

added the topic terms 96 

meta-analysis, metaanal*, 97 

metaregres*, meta-98 

regres*, quantitativ* 99 

review*, quantitative* 100 

synthe*, global* synthe*, 101 

and quantitativ* evidence 102 

synthe *, yielding a total 103 

of 136 articles. The titles 104 

and abstracts of these 105 

articles were then 106 

screened based on two 107 

search criteria: 1) the 108 

study had to have been 109 

identified by the authors 110 

as a meta-analysis, and 2) the study had to have been focused on non-human animals. We 111 

defined a meta-analysis as any analysis of effect sizes, even if standardized effect sizes were 112 

not analyzed. Based on these search criteria, we identified a total of 75 articles for 113 

secondary (full-text) screening (sensu Foo, O'Dea, Koricheva, Nakagawa, & Lagisz, 2021). 114 

During the secondary screening we double-checked whether the 75 articles met our 115 

inclusion criteria. Next, the additional inclusion criteria at this stage were that the meta-116 

analyses were not taxonomically restricted, defined here as including both vertebrates and 117 

invertebrates, with at least one invertebrate estimate, and that available data were 118 

sufficient to estimate effect size means for vertebrates and invertebrates. During secondary 119 

screening we also identified two articles that were meta-analyses but of research practices: 120 

reviews of publication biases and statistical power (M. D. Jennions & Moller, 2003; Møller, 121 

Thornhill, & Gangestad, 2005). These were excluded as they were not addressing questions 122 

of animal behavior per se. When data were not available from online sources, we requested 123 

the data directly from the authors. This ultimately led to a sample size of 15 articles and 43 124 

estimates (Figure 2, Table 1). Title and abstract screening and secondary screening was 125 

done by NAD and MAS.  126 

 
Figure 2. PRISMA diagram of included studies and included effect 
size estimates in the final analysis.  
 



The 15 included articles covered a wide-range of behavioral topics. These topics 127 

included ornamentation patterns (Kraaijeveld, Kraaijeveld-Smit, & Komdeur, 2007), 128 

selection on “personality” and behavioral syndromes (Smith & Blumstein, 2008), to winner-129 

loser effects (Yan, Smith, Filice, & Dukas, 2024). All included articles are listed in Table 1. 130 

Identifying taxonomic representation 131 

For each published meta-analysis, we examined the data used to determine whether 132 

specific effect sizes were from invertebrates or vertebrates. From this, we determined the 133 

relative representation of invertebrates to vertebrates in the meta-analysis. We then 134 

compared this representation of estimates to that expected based on known animal 135 

diversity. Because of the expected lack of non-vertebrate estimates (Figure 1a) and the 136 

large number of non-vertebrate phyla, we compared the representation of species in 137 

published meta-analysis to the expected representation just at the level of vertebrates and 138 

invertebrates. We compared this representation based on taxonomic diversity without 139 

accounting for differences in abundance.  140 

Estimating taxonomic misestimation of meta-analytical results 141 

To determine the degree to which taxonomic representation could lead to misestimation of 142 

meta-analytical results, we compared meta-analytic grand means to estimates of what 143 

those means would be if estimates were drawn proportionally from the diversity of 144 

Animalia. We did so by calculating the marginalized means for each included meta-analysis 145 

under the assumption of taxonomically representative sampling (sensu Nakagawa et al., 146 

2023).  147 

For example, consider a meta-analysis based on 100 estimates with 75 estimates 148 

coming from vertebrates and 25 from invertebrates. This degree of taxonomic mis-149 

representation is consistent with the findings of Rosenthal et al. (2017). Assuming 150 

estimates for vertebrates and invertebrates are equally precise despite different numbers of 151 

estimates, the grand mean effect size in this meta-analysis would be primarily driven by the 152 

mean for vertebrates: if the mean effect size for vertebrates were 0.5 and the mean for 153 

invertebrates was -0.5, the overall “grand mean” would be 0.25. However, this overall mean 154 

is taxonomically biased as vertebrates only represent around 5% of all animals 155 

(vertebrates: 4.74%; Catalogue of Life, 2025). If the estimates in this hypothetical example 156 

were drawn proportionally from the animal kingdom, the grand mean would instead have 157 

been estimated as -0.45. This grand mean is calculated by weighting by taxonomic 158 

representation rather than data representation. 159 

Here, we first calculated the overall meta-analytical mean for a particular meta-160 

analysis. Many of the constituent studies conducted multiple meta-analyses and we 161 

attempted to replicate as many of those as possible. In all cases we attempted to replicate 162 

the original analyses either using code originally provided by the authors or de novo code 163 



based on the described methods and for the effect sizes used or described by the authors. 164 

When possible, this included the inclusion of phylogenetic error structure. This provided an 165 

overall meta-analytical mean for the observed data (“data-proportional”). For each of these 166 

analyses we next added a moderator contrasting vertebrates and invertebrates. This 167 

provided separate meta-analytical estimates for vertebrates and invertebrates that 168 

incorporated the estimation uncertainty and sampling variance among studies. We also 169 

recorded the significance of this effect. 170 

Based on the vertebrate and invertebrate meta-analytical estimates, we then 171 

estimated the marginalized mean under taxonomic representative sampling (“taxonomic-172 

representative”) using the metafor package in R (Nakagawa et al., 2023; Viechtbauer, 2010; 173 

Viechtbauer & Lopez-Lopez, 2022). This process is also known as “poststrafication” and is 174 

often used in recalibrating survey results (Gelman, Hill, & Vehtari, 2021).  Using the predict 175 

function of metafor, we estimated the marginalized taxonomic-representative value with an 176 

assumption of 5% of estimates being from vertebrates and 95% of estimates being from 177 

invertebrates. This representation is based on the known distribution of vertebrates and 178 

invertebrates (Catalogue of Life, 2025). This also allowed us to estimate the uncertainty 179 

around the taxonomic-representative mean (Viechtbauer & Lopez-Lopez, 2022).  180 

Marginalized means are calculated as described in the above example of weighted 181 

averaging but based instead on the meta-analytical group estimates. Specifically, the 182 

estimated vertebrate and invertebrate means, and accompanying uncertainties, were 183 

reweighted by the expected representation of invertebrates and vertebrates to calculate a 184 

taxonomic-representative mean. Because uncertainty around this new mean can be 185 

estimated, its statistical significance can also be determined.    186 

For each meta-analysis we estimated the data-proportional (µdp) and taxonomic-187 

representative (µtr) overall mean estimates and their uncertainties. We also determined the 188 

statistical significances (⍺ < 0.05) of µdp and µtr. Besides estimating magnitude of biasing, 189 

this allowed us to determine if taxonomic bias may lead to different inferential conclusions. 190 

Data analysis 191 

For each meta-analytical estimate pair from a study, we compared the data-proportional 192 

versus taxonomic-representative estimates to quantify the relative, proportional effect of 193 

taxonomic misrepresentation on overall effects in meta-analysis. To do so, we calculated the 194 

absolute value of the log ratio (Hedges, Gurevitch, & Curtis, 1999): 195 

|𝑙𝑜𝑔
𝜇𝑡𝑟
𝜇𝑑𝑝

| 196 

we used the absolute value as this allowed comparison across studies regardless of 197 

whether data-proportional or taxonomic-representative estimates were larger, which might 198 

vary by biological question. This also allowed us to compare estimates across meta-199 



analyses even when those original meta-analyses used different effect sizes. The two 200 

limitations of this approach are that it does not allow analysis in cases where the signs of 201 

estimates change and the use of absolute values can result in over-estimation of 202 

magnitudes (Morrissey, 2016, see below). Fortunately, sign changes only occurred for 3 of 203 

the 43 pairs of estimates (see results). 204 

 As an additional analysis, we also calculated the magnitude difference between data-205 

proportional and taxonomic-representative estimates. Because the constituent meta-206 

analyses used different effect sizes themselves (i.e. Zr, log-odds ratios, and various 207 

standardized mean differences), we first transformed all effect sizes to Zr following 208 

equations in Borenstein, Hedges, Higgins, and Rothstein (2009). We then calculated the raw 209 

value of the differences between data-proportional and taxonomic-representative Zr scores. 210 

 For both the relative and magnitude differences between pairs, the standard 211 

deviation of the differences was estimated as: 212 

√𝑠𝑑𝑑𝑝
2 + 𝑠𝑑𝑡𝑟

2 − 2𝑠𝑑𝑑𝑝 × 𝑠𝑑𝑡𝑟 × 𝑟 213 

where sddp and sdtr are the estimate standard deviations of the overall meta-analytical 214 

means (reported in the metafor outputs as standard errors) and r represents the 215 

correlation between the uncertainties (because the uncertainties are based on the same 216 

datasets). For the differences in Zr scores, we used the estimated uncertainties in the above  217 

equation. For the absolute value of log ratios, sddp and sdtr were calculated as sddp/ µdp and 218 

sdtr/ µtr, respectively. r is not analytically known but is between 0 and 1 and should be 219 

approaching one and so was set to 0.8. This did not substantively affect our conclusions or 220 

estimation (Supplemental Materials). 221 

To estimate the overall effect of taxonomically biased sampling on meta-analytical 222 

inferences, we next fit a random effects meta-analysis with the study an estimate was 223 

drawn from as a random effect to the estimates of relative differences. We also included 224 

individual estimate identity as a random effect because each estimate was based on a 225 

different sample size and often addressing a different question. The overall effect size was 226 

estimated while weighting by the inverse of the standardized mean difference’s sampling 227 

variance (Borenstein et al., 2009). We evaluated the magnitude and uncertainty of the 228 

grand mean (xgm) from these analyses as indicative of taxonomic bias in meta-analytical 229 

inferences. Consequently, a significant grand mean would indicate significant taxonomic 230 

bias in meta-analytical estimates. 231 

Importantly, calculating the grand mean of absolute values results in positive bias 232 

(Morrissey, 2016). Therefore, we used an “analyze-then-transform” approach following 233 

Morrissey (2016). To do so, based on the above analysis, we transformed the meta-analytic 234 

grand means of the magnitude of taxonomic bias (xgm) and its uncertainty (segm) according 235 

to a folded normal distribution as:  236 



𝑥𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑠𝑒𝑔𝑚√
2

𝜋
× 𝑒

(
−𝑥𝑔𝑚

2

2𝑠𝑒𝑔𝑚
2 )

+ 𝑥𝑔𝑚 × 𝐞𝐫𝐟 (
𝑥𝑔𝑚

√2𝑠𝑒𝑔𝑚2
) 237 

and 238 

𝑠𝑑𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑥𝑔𝑚
2 + 𝑠𝑒𝑔𝑚

2 + 𝑥𝑓𝑜𝑙𝑑𝑒𝑑
2  239 

where xfolded is the transformed grand mean and sdfolded is its standard deviation. erf is the  240 

Gauss error function. Uncertainties of parameters from linear models, like those provided 241 

by the metafor package, are reported as standard errors but these values specifically refer 242 

to the standard deviation of the parameter’s sampling distribution and so were used here in 243 

lieu of standard deviations. We calculated the folded values for both the relative and 244 

absolute analyses. To aid interpretation, these values were then converted to percent 245 

differences as: 246 

(𝑒𝑥𝑓𝑜𝑙𝑑𝑒𝑑 − 1) × 100 247 

We next conducted a heterogeneity analyses to determine the contributors to 248 

variability in taxonomic bias. We determined whether there was significant heterogeneity 249 

among estimates based on Cochran’s Q and its significance. We then calculated the 250 

proportion of variation (I2) attributable to sampling error, to study differences, and to 251 

estimate differences within studies (Nakagawa & Santos, 2012). 252 

Because we were analyzing differences between marginal means, as opposed to 253 

original findings, there are not clear expectations of publication bias or approaches to 254 

testing for such bias. Moreover, because our estimates were constrained to be positive, 255 

typical funnel plots and trim-and-fill analyses were not appropriate. Given the lack of both a 256 

priori expectations regarding basis or methods, we did not conduct publication bias tests.  257 

In addition, we conducted a series of post hoc analyses and comparisons. First, we 258 

conducted a meta-regression of taxonomic bias versus the number of studies in the original 259 

meta-analyses that were for invertebrates. A significant negative slope for this moderator 260 

would suggest that apparent taxonomic bias is at least partially driven by poor sampling of 261 

invertebrates. We then conducted a second post hoc meta-regression using the proportion 262 

of studies in a meta-analysis that were for invertebrates. A significant negative slope would 263 

be consistent with taxonomically biased sampling leading to misestimation (bias should 264 

decrease toward zero with increasing invertebrate representation). In these analyses, the 265 

number and proportion of studies were centered when used as covariates. These post hoc 266 

analyses therefore allowed us to estimate bias at average sampling levels. As a final post 267 

hoc addition, we compared the significance of the contrast between vertebrates and 268 

invertebrates as a moderator in underlying meta-analyses to whether significance of the 269 

overall means differed when estimated in a data-proportional versus taxonomic-270 

representative manner.  271 



All analyses were conducted in the R statistical language (v4.5.0, R_Core_Team, 2025).  272 

 

Results 273 

Taxonomic Representation of Data in Meta-Analyses 274 

We found that the data used in behavioral meta-analyses was highly taxonomically biased 275 

in favor of vertebrates (Figure 3a, Table 1). 65% of the estimates used in meta-analyses 276 

were from vertebrates, slightly less than the bias observed more broadly in behavioral 277 

research (Rosenthal et al., 2017), but far, far greater than the 5% expected according to 278 

taxonomic representation.   279 

Relative Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 280 

The meta-analytical mean, after transformation due to the folded distribution, of absolute 281 

log ratios was 0.30 (s.e. = 0.08, p << 0.01; Figure 4). Put another way, meta-analytical means 282 

are, on average, misestimated by 35% (Figure 3b). Significance changed between the data-283 

proportional and taxonomic-representative estimates for 10 of 43 estimate pairs (Figure 4), 284 

though the signs of effects only changed for 3 pairs. Of the significance changes, 8 instances 285 

changed from significant to non-significant and two changed from non-significant to 286 

significance. Moreover, while the vertebrate versus invertebrate contrast was significant in 287 

19 of 43 constituent meta-analyses, it was significant for only 4 of the instances when 288 

overall mean significance changed.  289 

There was also significant heterogeneity among estimates (Qdf:39 = 102.15, p << 290 

0.01). Of this heterogeneity, most was attributable to sampling variance (I2 = 0.69). But 291 

 
Figure 3. (a) Data included in meta-analyses by taxa. Vertebrates are indicated in the same color 

as in Figure 1a while Arthropods and other invertebrates are now pooled under a single 

invertebrate category. Invertebrates are indicated in the same color as Arthropods in Figure 1a 

as Arthropod species dominated this category. (b) Overall (large dot) and individual estimates 

(small dots) of the percentage misestimation due to taxonomic misrepresentation (uncertainty 

around this misestimation is smaller than the point). 



there was also considerable heterogeneity among studies (I2 = 0.13) and among estimates 292 

within studies (I2 = 0.19).  293 

Absolute Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 294 

The meta-analytical mean of magnitude differences between Zr scores was 0.15 (s.e. = 0.06, 295 

p = 0.01). However, one estimate pair differed by around 3 times more than the next largest 296 

difference (Figure S1). When this estimate pair was excluded, the difference dropped to 297 

0.098 (se = 0.026) and remained significant (p < 0.01). Whether with or without this 298 

extreme data point, these effects translate to substantive differences in more conventional 299 

effect sizes: a difference between Zr scores of 0.15 corresponds to a difference of 0.29 300 

between correlations and a difference of 0.091 converts to a difference in correlations of 301 

0.20. There was significant heterogeneity among estimates (Qdf:41 = 2.1× 105, p << 0.01) but 302 

99% of this heterogeneity was attributable to sampling variance with no appreciable 303 

heterogeneity among studies or estimates (I2 < 0.01). 304 

Meta-regression for the effect of sampling on estimation 305 

Both the number and proportion of invertebrate studies in a constituent meta-analysis had 306 

a significant negative effect on the magnitude of taxonomic bias (p = 0.03 and <0.01, 307 

respectively). The significant effect of number of studies suggests that some proportion of 308 

the taxonomic bias is influenced by poor estimation at small sample sizes but the 309 

magnitude of this effect was small (β = -0.0012). Interestingly, the estimated magnitude of 310 

taxonomic bias was higher at the average invertebrate sample size than estimated in our 311 

main analysis (39%).  The magnitude of the effect of proportional invertebrate 312 

representation was larger (β = -0.684), consistent with taxonomic bias in sampling biasing 313 

meta-analytical conclusions.  314 



Discussion 315 

We found that the impact of taxonomic bias on meta-analytical estimates in the study of 316 

animal behavior was surprisingly large (Figure 3b). Specifically, our results demonstrate 317 

that meta-analytical means from behavioral meta-analysis might be misestimated by 318 

around 35%. While this degree of misestimation is dependent on the assumptions 319 

necessary for calculating marginalized means, it suggests a major concern for conclusions 320 

drawn from behavioral meta-analyses. The observed magnitude of misestimation also led 321 

to changes in significance for around 25% of estimates. Interestingly, the significance of a 322 

 
Figure 4. Within-study estimates and standard errors of the relative magnitude of taxonomic bias on 

meta-analytical estimates.     



moderator allowing for differences between invertebrates and vertebrates within 323 

underlying meta-analyses was not particularly informative: In more than half of the 324 

instances when significance changed under taxonomic representative estimation, a 325 

moderator for taxonomic grouping was not significant. This estimated magnitude of 326 

misestimation, 35%, and its impact on direction or significance of effects can lead to 327 

incorrect inferences being drawn.  328 

Our analysis of the magnitude of taxonomic bias on the raw effect of meta-analytical 329 

estimates demonstrates a somewhat smaller impact. However, this is not entirely 330 

unexpected because effect sizes estimated in meta-analyses are typically quite small (Low-331 

De carie, Chivers, & Granados, 2014; Møller & Jennions, 2002) and so differences in 332 

magnitudes will necessarily be constrained to also be small. Even in terms of magnitude 333 

differences, the observed bias still translates into substantial difference in the magnitudes 334 

of effects, changing correlations by an average of 0.3.  335 

 As one example, consider the findings of Royaute , Berdal, Garrison, and 336 

Dochtermann (2018). We use this example as one of us (NAD) was the senior author of that 337 

study and so as to not single out other authors. In Royaute  et al. (2018), the authors 338 

concluded that correlations between behaviors and physiological or life-history traits were 339 

not in the direction expected according to the “pace-of-life” syndrome (POLS) hypothesis 340 

proposed by Reale et al. (2010). This was a novel and surprising finding given the intuitive 341 

predictions of POLS and its dramatic impact on discussions of how behavior might be 342 

integrated with physiology and life-history. The conclusion of Royaute  et al. (2018) was 343 

based on the meta-analytical mean, estimated as r = 0.06 (95% CI: -.01 : 0.14), which was 344 

predicted to have been positive according to POLS. However, as reported by Royaute  et al. 345 

(2018), there was a significant difference between vertebrates and invertebrates regrading 346 

support for POLS. There also was substantial taxonomic bias in the data that went into 347 

Royaute  et al.'s (2018) analysis. Here, via the estimation of marginal means adjusting for 348 

taxonomic bias, we see that if the sampling of vertebrates and invertebrates was 349 

taxonomically proportional, the meta-analytical mean would have been estimated as r = 350 

0.22 and would have been significantly different than zero. While this is a relatively modest 351 

absolute difference in estimates (0.16), it is a large relative difference (~2.4 times, Figure 352 

4). This ends up resulting in a substantive reinterpretation of the evidence for POLS: If the 353 

data going into the original analysis were consistent with actual taxonomic representation, 354 

and the estimates of the original analysis hold, this would have been taken as meta-355 

analytical support for POLS. Many of the included meta-analyses also drew conclusions 356 

based on overall mean effect sizes and so similar issues will arise across our dataset. 357 

Consequently, major changes in inferences would likely be drawn from other meta-analyses 358 

if taxonomic bias were to be similarly addressed, as demonstrated by the observed changes 359 

in significance (Figure 4). Likewise, changes in the sign of three mean effect sizes would 360 

also lead to inferential changes. 361 



This example, and our overall findings, confirm concerns raised by others. In 362 

particular, Gurevitch and Hedges (1999) discussed how researcher biases and taxonomic 363 

preferences in the generation of original data have the potential to affect subsequent meta-364 

analytical inferences. However, the degree to which this was an actual problem was not 365 

clear until our analysis here. This is a concerning problem but not a new one: as discussed 366 

by Rosenthal et al. (2017), taxonomic bias in the study of animal behavior is pervasive and 367 

pronounced (their data are recreated in Figures 1a & 1b).  368 

Importantly, changes in interpretation as discussed above are dependent on how 369 

robust our marginal mean estimates are for invertebrates. This is not currently clear and, 370 

across the included meta-analyses, the poor representation of invertebrates (Figure 3a, 371 

Table 1) necessarily means that these estimates have greater uncertainties than do 372 

estimates for vertebrates. Our post hoc meta-regressions suggest that this likely has only a 373 

minor effect on our interpretation, as demonstrated by the magnitude of the regression 374 

coefficient relating the number of invertebrate studies to the magnitude of bias. Moreover, 375 

this post hoc analysis suggests that our primary analysis may be underestimating the 376 

magnitude of taxonomic bias. Also, because of the poor representation of invertebrates in 377 

behavioral studies, the diversity within invertebrates could not be captured in our analysis. 378 

Because invertebrates are also not proportionally sampled (Zuk et al., 2014), our field’s 379 

meta-analytical conclusions may be even more biased than could be revealed here. 380 

 While changes in interpretation due to taxonomic bias might be discouraging, they 381 

also are of intrinsic interest. Sub-group analysis and stratification (Borenstein et al., 2009), 382 

long-standing parts of meta-analyses in other fields, would allow the evaluation of when a 383 

hypothesis like POLS holds in some taxonomic groups and not others. For example, it is 384 

perhaps more interesting to ask why POLS holds in invertebrates but not vertebrates rather 385 

than simply asking whether the hypothesis is supported in general. Such analyses may 386 

allow for greater insight than currently provided by most behavioral meta-analyses. Indeed, 387 

researchers in areas of ecology and evolution are often interested specifically in when and 388 

why groups, like vertebrates and invertebrates, differ (Nakagawa, Noble, Senior, & Lagisz, 389 

2017; Yang et al., 2025). Disentangling contributors to heterogeneity in effect sizes will 390 

often be more informative than simple estimations of overall means. Our results therefore 391 

suggest that greater efforts to control for, or examine explicitly, taxonomically specific 392 

patterns in meta-analytical data. 393 

It is also worth emphasizing that relatively few studies could be included in our 394 

analyses and, as a result, the effects of taxonomic bias might therefore be even more severe. 395 

Specifically, 53 meta-analyses published in Animal Behaviour, Behavioral Ecology, and 396 

Behavioral Ecology and Sociobiology were taxonomically restricted (Figure 2). Put another 397 

way, the taxonomic bias in the 15 studies included here necessarily underestimates the bias 398 

present in the 53 studies for which bias could not even be estimated. Indeed, in examining 399 

the taxonomically restricted meta-analyses, over 75% were restricted to vertebrates (Table 400 



S1). Echoing—and exaggerating—the biases within vertebrates identified by Rosenthal et 401 

al. (2017 and Figure 1b), 87% of the constituent studies used in vertebrate restricted meta-402 

analyses were of birds (Table S1). 403 

In some cases, taxonomic restriction may be because a specific hypothesis applies to, 404 

for example, mammals but not reptiles. In such cases, the type of taxonomic restriction we 405 

have identified is a requirement to ask a question and is to be expected. However, it is also 406 

possible that this represents a secondary opportunity for researchers to express taxonomic 407 

preferences (Gurevitch & Hedges, 1999). This is, potentially, reflected in the taxonomic 408 

representation seen in the restricted studies. As mentioned above, most of these focused on 409 

birds and mammals. Even if taxonomic restriction is justified, that most restricted meta-410 

analyses focus on birds and mammals results in research effort that does not reflect the 411 

broader taxonomic representation. This, again, biases our understanding of animal 412 

behavior. Most generally, taxonomically restricted meta-analyses, when not necessary, will 413 

reduce the generality of conclusions. 414 

If a broad goal of animal behavior research is to increase our general understanding of 415 

behavior, our results demonstrate that taxonomic bias should be a major concern. 416 

Moreover, this is a concern emerging from the data available in the field as a whole. If, 417 

instead, we are primarily interested in examining personally interesting examples of 418 

behavior, the bias is of less importance. Regardless, a primary aim of meta-analyses is to 419 

draw generalizable inferences (Spake et al., 2022). Our results suggest that the taxonomic 420 

bias inherent in the behavioral literature makes this generalization difficult. This may 421 

profoundly affect how right and wrong we are about our understanding of behavior. 422 

Addressing this bias will require individual researchers to consider whether their study 423 

system choices will increase the generality of our field’s understanding. 424 

Data availability 425 

All data and analysis code are available at: link. 426 
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Table 1. Behavioral meta-analyses included in the current analyses 
Study 
ID 

Number of included 
analyses 

Number of estimates 
in each analysis 

Number of estimates 
for vertebrates 

Number of estimates 
for invertebrates 

Author(s) (Year) 

K9 4 

13 4 9 

Kraaijeveld et al. (2007) 
140 135 5 
29 26 3 
28 23 5 

B11 1 759 493 266 Bell, Hankison, and Laskowski (2009) 

T40 1 
265 261 4 

Takola, Krause, Muller, and Schielzeth 
(2021) 

D44 3 
38 2 36 

Liam R Dougherty (2024) 
22 4 18 

Y46 1 168 47 121 Yan et al. (2024) 

S56 1 
37 31 6 

Allegra, Changaris, Miller, and Burnside 
(1976) 

D64 1 35 30 5 Dochtermann and Dingemanse (2013) 
D67  1 215 92 123 L. R. Dougherty and Shuker (2015) 
D85 1 158 125 33 Davies, Lewis, and Dougherty (2020) 

C87 10 

13 12 1 

Church, Matte, and Grant (2022) 

129 85 44 
81 74 7 
20 19 1 
71 56 15 
26 25 1 
25 22 3 
38 35 3 
55 49 6 
72 29 43 

R89 7 

26 9 17 

Richardson and Zuk (2023) 

170 61 109 
52 24 28 
8 4 4 
57 43 14 
508 92 416 
366 325 41 

D90 8 

26 8 18 

L. R. Dougherty (2023) 
50 27 23 
67 41 26 
16 6 10 



13 13 3 
29 22 7 
14 5 9 
17 6 11 

K102 3 
253 187 66 

Kelly (2008) 214 168 46 
398 339 59 

G106 1 32 3 29 Graham et al. (2015) 
R110 1 183 145 38 Royaute  et al. (2018) 
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Supplementary Materials 568 

 569 
Figure S1. Within-study estimates and standard errors of the magnitude of taxonomic bias 570 
(magnitude differences) on meta-analytical estimates.  571 



Table S1. Taxa included in taxonomically restricted meta-analyses. 

Article 
ID Phylum Class 

Number of 
included studies Reference 

1 Arthropoda Insecta 122 Arnqvist &  Nilsson (2000) Anim. Behav. 

2 Chordata Mammalia 27 Schino (2001) Anim. Behav. 

3 Chordata Mammalia 5 Roberts et al. (2004) Anim. Behav. 

3 Chordata Reptilia 6 Roberts et al. (2004) Anim. Behav. 

3 Chordata Aves 25 Roberts et al. (2004) Anim. Behav. 

4 Arthropoda Insecta 7 Shuker et al. (2004) Anim. Behav. 

6 Chordata Reptilia 5 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Amphibia 9 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Pisces 26 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Mammalia 38 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Aves 65 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

7 Chordata Aves 12 Griffith et al. (2006) Anim. Behav. 

7 Chordata Aves 27 Griffith et al. (2006) Anim. Behav. 

10 Chordata Mammalia 54 Majolo et al. (2008) Anim. Behav. 

10 Chordata Mammalia 86 Majolo et al. (2008) Anim. Behav. 

12 Chordata Aves 24 Sridhar et al. (2009) Anim. Behav. 

12 Chordata Aves 27 Sridhar et al. (2009) Anim. Behav. 

12 Chordata Aves 66 Sridhar et al. (2009) Anim. Behav. 

15 Chordata Aves 127 Santos et al. (2011) Anim. Behav. 

16 Chordata Aves 11 
Hasselquist & Nilsson (2012) Anim. 
Behav. 

16 Chordata Aves 14 
Hasselquist & Nilsson (2012) Anim. 
Behav. 

20 Arthropoda Insecta 1 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Malacostraca 6 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Insecta 6 Paterson et al. (2013) Anim. Behav. 

20 Mollusca Gastropoda 12 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Insecta 14 Paterson et al. (2013) Anim. Behav. 

24 Chordata Mammalia 7 Street et al. (2016) Anim. Behav. 

24 Chordata Mammalia 26 Street et al. (2016) Anim. Behav. 

26 Chordata Aves 14 Kriengwatana et al. (2016) Anim. Behav. 

28 Chordata Aves 555 Wood et al. (2017) Anim. Behav. 

32 Chordata Aves 379 Parker et al. (2018) Anim. Behav. 

34 Chordata Mammalia 14 Amici et al. (2019) Anim. Behav. 

34 Chordata Aves 11 Amici et al. (2019) Anim. Behav. 

34 Chordata Actinopterygii 1 Amici et al. (2019) Anim. Behav. 

37 Chordata Reptilia 1 Penndorf &  Aplin (2020) Anim. Behav. 

37 Chordata Aves 5 Penndorf &  Aplin (2020) Anim. Behav. 

37 Chordata Mammalia 10 Penndorf &  Aplin (2020) Anim. Behav. 

43 Chordata Aves 142 Shuai et al. (2024) Anim. Behav. 

45 Chordata Aves 1001 Petalas et al. (2024) Anim. Behav. 



49 Chordata Aves 90 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 121 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 133 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 396 Garamszegi &  Moller (2004) Behav. Ecol. 

50 Chordata Mammalia 30 Schino (2004) Behav. Ecol. 

52 Chordata Aves 89 Parker et al. (2006) Behav. Ecol. 

53 Chordata Mammalia 31 Schino (2007) Behav. Ecol. 

53 Chordata Mammalia 36 Schino (2007) Behav. Ecol. 

54 Chordata Aves 149 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 182 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 216 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 246 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 331 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 473 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 602 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 1236 Nakagawa et al. (2007) Behav. Ecol. 

55 Arthropoda Insecta 7 Meunier et al. (2008) Behav. Ecol. 

55 Arthropoda Insecta 10 Meunier et al. (2008) Behav. Ecol. 

55 Arthropoda Insecta 15 Meunier et al. (2008) Behav. Ecol. 

57 Chordata Aves 11 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 18 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 20 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 25 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 29 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 35 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 43 Beauchamp (2008) Behav. Ecol. 

60 Chordata Aves 75 Soma &  Garamszegi (2011) Behav. Ecol. 

62 Chordata Aves 8 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 10 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 11 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 14 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 19 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 21 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 24 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 24 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 25 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 26 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 33 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 48 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 77 Simons &  Verhulst (2011) Behav. Ecol. 

65 Chordata Aves 32 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Actinopterygii 18 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Mammalia 14 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Reptilia 3 Garamszegi et al. (2013) Behav. Ecol.  

66 Chordata Aves 9 Ihle & Forstmeier (2013) Behav. Ecol.  

68 Chordata Aves 43 Arct et al. (2015) Behav. Ecol. 

70 Chordata Mammalia 8 Moore et al. (2016) Behav. Ecol. 

70 Chordata Amphibia 14 Moore et al. (2016) Behav. Ecol. 



70 Chordata Reptilia 21 Moore et al. (2016) Behav. Ecol. 

70 Chordata Aves 75 Moore et al. (2016) Behav. Ecol. 

73 Chordata Amphibia 22 Roca et al. (2016) Behav. Ecol. 

73 Chordata Aves 139 Roca et al. (2016) Behav. Ecol. 

77 Arthropoda Insecta 117 Holman (2018) Behav. Ecol. 

82 Chordata Aves 8 Santema et al. (2019) Behav. Ecol. 

82 Chordata Aves 8 Santema et al. (2019) Behav. Ecol. 

84 Arthropoda Arachnida 23 Ximenes et al. (2020) Behav. Ecol. 

86 Chordata Mammalia 296 Beauchamp et al. (2021) Behav. Ecol. 

88 Chordata Amphibia 10 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Mammalia 14 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Reptilia 18 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Pisces 50 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Aves 108 Stuber et al. (2022) Behav. Ecol. 

93 Chordata Mammalia 153 Huang et al. (2024) Behav. Ecol. 

94 Arthropoda Insecta 59 Kochensparger et al. (2024) Behav. Ecol. 

95 Chordata Aves 1333 
Dubois &  Cézilly (2002) Behav. Ecol. 
Socio. 

96 Chordata Amphibia 62 Rohr et al. (2002) Behav. Ecol. Socio. 

97 Arthropoda Insecta 60 
Torres-Vila et al. (2004) Behav. Ecol. 
Socio. 

98 Arthropoda Insecta 29 
Torres-Vila &  Jennions (2005) Behav. 
Ecol. Socio. 

99 Chordata Aves 87 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 102 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 140 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 240 Garamszegi (2005) Behav. Ecol. Socio. 

100 Chordata Aves 3 Verdolin (2006) Behav. Ecol. Socio. 

100 Chordata Mammalia 29 Verdolin (2006) Behav. Ecol. Socio. 

101 Chordata Aves 82 Thorup & Rabol (2007) Behav. Ecol. Socio. 

103 Chordata Aves 19 Meunier et al. (2011) Behav. Ecol. Socio. 

104 Chordata Mammalia 180 Spinka et al. (2011) Behav. Ecol. Socio. 

105 Arthropoda Insecta 68 Wilson-Rankin (2014) Behav. Ecol. Socio. 

108 Arthropoda Insecta 5 
Dougherty & Shuker (2016) Behav. Ecol. 
Socio. 

117 Chordata Amphibia 184 Lee et al. (2022) Behav. Ecol. Socio. 

131 Arthropoda Insecta 31 
Nieberding & Holveck (2017) Behav. Ecol. 
Socio 

  



Supplementary Analysis: Effect of r on sampling variance. 
 
Because we estimated the standard deviation of estimates as:  

√𝑠𝑑𝑑𝑝
2 + 𝑠𝑑𝑡𝑟

2 − 2𝑠𝑑𝑑𝑝 × 𝑠𝑑𝑡𝑟 × 𝑟 

it was possible that choices about the value of r might influence the ultimate meta-meta-
analytical results. We know that r is much greater than 0 since the same data were being 
used for the data-proportional and taxonomic-representative estimates. However, we don’t 
know if this value is exactly 1. We a priori decided to use a value of 0.8 since the value is 
necessarily large but also calculated meta-analytical means over a range of values for r 
(Figure S2). A higher r, corresponding to a more conservative estimte of the standard 
deviation, led to an increase in the meta-analytical estimate but did not change significance 
or our overall interpretation. 
 

 
Figure S2. Change in the estimated folded mean for a range of values for r. A and B differ 
only in the scale of the y axes. 
 

 


