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Abstract 1 

Meta-analysis is a powerful tool for synthesizing behavioral research and identifying 2 

general patterns. However, are the conclusions we draw from these analyses truly 3 

representative across animal groups? Alternatively, are our conclusions shaped by 4 

taxonomic biases in the underlying research? For example, in animal behavior, vertebrates 5 

are overrepresented in the research we conduct. This taxonomic imbalance raises concerns 6 

about the validity of generalizations drawn in the field. To examine this issue, we examined 7 

the meta-analyses published in Animal Behaviour, Behavioral Ecology, and Behavioral 8 

Ecology and Sociobiology from 2000 – 2024. We then conducted a “meta-meta-analysis” to 9 

calculate the degree to which overall effects in prior meta-analytical results may have been 10 

mis-estimated due to taxonomic bias. We found that taxonomic biases in the primary 11 

research strongly influence effect size estimates in meta-analyses and can lead to improper 12 

inferences and generalizations. On average, meta-analytical averages are mis-estimated by 13 

~35% (p << 0.01) and significance changes in about 25% of instances when sampling is 14 

taxonomically representative. Because meta-analyses aggregate data, they propagate the 15 

biases present in an area of research, leading to potentially incorrect generalizations. 16 

Addressing this taxonomic bias is critical to generalizations that describe the true richness 17 

of animal behavior. 18 

Introduction 19 

A major goal of animal behavior research is to understand why animals behave the way 20 

they do from both proximate and ultimate perspectives (Tinbergen 1963). Drawing general 21 

conclusions to answer such questions across species can be challenging and meta-analyses 22 

have emerged as the primary tool for doing so (Spake et al. 2022). However, the inferences 23 

drawn from any analysis, including meta-analyses, are reliant on whether the data being 24 

used are an appropriate sample (Gurevitch and Hedges 1999, Jennions et al. 2013, Konno et 25 

al. 2020). Put another way, if the data going into behavioral meta-analyses are not 26 

representative of animal behavior broadly, then the resulting inferences may be incorrect. 27 

 Biases in the data used in meta-analyses is a topic that has been extensively explored 28 

previously (e.g. Dickersin 2005, Rothstein et al. 2005). However, most of this discussion has 29 
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focused on issues like the well-known “file drawer problem” and time-lag bias. The file 30 

drawer problem concerns publication bias wherein “statistically significant” findings are 31 

more likely to be published (reviewed by Dickersin 2005). This bias leads to the absolute 32 

magnitude of effect sizes being overestimated. Time-lag bias refers to the general 33 

observation that effect sizes tend to decrease over time (Trikalinos and Ioannidis 2005), as 34 

has been found in ecology (Jennions and Møller 2002), but which may not be particularly 35 

strong (Costello and Fox 2022). Time-lag bias leads to the absolute magnitude of effect 36 

sizes being overestimated early in a field’s development. While not trivial, both types of 37 

biases can be at least partially addressed statistically within meta-analyses (Nakagawa and 38 

Santos 2012, Nakagawa et al. 2022).  39 

 More generally, and potentially more importantly, we do not have a good idea of how 40 

taxonomically biased the data going into meta-analyses might be (Gurevitch and Hedges 41 

1999). However, for animal behavior research, we do know that individual research 42 

projects are conducted in a highly taxonomically biased manner. Rosenthal et al. (2017) 43 

examined papers published in Animal Behaviour between 1953 and 2015 and found that 44 

vertebrates were strongly over-represented (Figure 1A). At the coarsest level, vertebrates 45 

represent only 5% of animal species but were the focus of study in 71% of surveyed 46 

studies. Even within vertebrates there was considerable bias in what animals were studied 47 

(Rosenthal et al. 2017): endotherms were far more frequently studied than expected based 48 

on their taxonomic representation (Figure 1B) and well over 50% of all vertebrate studies 49 

were on birds or mammals (Figure 1B). Within invertebrates, most behavioral research was 50 

conducted in a single order (Hymenoptera, Rosenthal et al. 2017). Interestingly, this bias in 51 

favor of vertebrates is reduced in sexual selection and sexual conflict research. Zuk et al. 52 

(2014), found that roughly 30 percent of sexual selection and 50 percent of sexual conflict 53 

research is conducted with insects. However, even in these areas of study, vertebrates 54 

remain over-represented and over 20 percent of the work done on insects was from a single 55 

genus (i.e. Drosophila, Zuk et al. 2014). Subsequent work examining meta-analyses of 56 

sexual selection research found similar bias, with most meta-analyses focused on bird 57 

species and with insects still poorly represented (Pollo et al. 2024). 58 

This potential for biased inferences also has impacts beyond our basic 59 

understanding of behavior. From an applied perspective, as discussed by Rosenthal et al. 60 

(2017), taxonomic bias in the study of behavior can affect conservation and management 61 

efforts, understanding population dynamics, and understanding zoonotic disease risk. 62 

Consequently, evaluating the presence of taxonomic bias in animal behavior meta-analyses 63 

and considering how such bias may affect the inferences we draw is of considerable 64 

importance. Specifically, it is necessary to know whether the conclusions we draw from 65 

meta-analyses are representative and generalizable.  66 

We sought to address this concern by asking two questions: First, is the taxonomic 67 

bias identified by Rosenthal et al. (2017) also present in the data used in meta-analyses? 68 



Second, does taxonomic bias lead to misestimation and incorrect inferences in meta-69 

analytical results? We answered this second question by reanalyzing data and then 70 

conducting a meta-meta-analysis to allow estimation of effects under taxonomically 71 

representative sampling. 72 

Methods 73 

To answer these two questions, we identified the meta-analyses published in three leading 74 

behavioral journals. We then determined the taxonomic representation of the constituent 75 

studies used in these meta-analyses and how estimates from these meta-analyses would 76 

change if the data were sampled in a taxonomically representative manner. 77 

Identifying meta-analyses 78 

To identify meta-analyses in animal behavior, we searched the journals Animal Behaviour, 79 

Behavioral Ecology and Sociobiology, and Behavioral Ecology for meta-analyses published 80 

in 2000 – 2024 using Web of Science (Core Collection, Science Citation Index Expanded). 81 

While behavioral meta-analyses are published elsewhere, we assumed that meta-analyses 82 

published in these journals would be generally representative of the field, if not broader in 83 

scope. We used the topic terms meta-anal*, meta, meta anal*. This search returned 118 84 

articles and was conducted on 4 February 2025. We repeated this search on 23 September 85 

2025 and added the topic terms meta-analysis, metaanal*, metaregres*, meta-regres*, 86 

quantitativ* review*, quantitative* synthe*, global* synthe*, and quantitativ* evidence 87 

synthe *, yielding a total of 136 articles. The titles and abstracts of these articles were then 88 

screened based on two search criteria: 1) the study had to have been identified by the 89 

authors as a meta-analysis, and 2) the study had to have been focused on non-human 90 

 
Figure 1. Taxonomic bias in the animals used in the study of animal behavior as identified by 
Rosenthal et al. (2017) both in general (a) and just within vertebrates (b). 

 



animals. We defined a 91 

meta-analysis as any 92 

analysis of effect sizes, 93 

even if standardized 94 

effect sizes were not 95 

analyzed. Based on these 96 

search criteria, we 97 

identified a total of 75 98 

articles for secondary 99 

(full-text) screening 100 

(sensu Foo et al. 2021). 101 

During the 102 

secondary screening we 103 

double-checked whether 104 

the 75 articles met our 105 

inclusion criteria. Next, 106 

the additional inclusion 107 

criteria at this stage were 108 

that the meta-analyses 109 

were not taxonomically 110 

restricted, defined here 111 

as including both 112 

vertebrates and 113 

invertebrates, with at least one invertebrate estimate, and that available data were 114 

sufficient to estimate effect size means for vertebrates and invertebrates. During secondary 115 

screening we also identified two articles that were meta-analyses but of research practices: 116 

reviews of publication biases and statistical power (Jennions and Møller 2003, Moller et al. 117 

2005). These were excluded as they were not addressing questions of animal behavior per 118 

se. When data were not available from online sources, we requested the data directly from 119 

the authors. This ultimately led to a sample size of 15 articles and 43 estimates (Figure 2, 120 

Table 1). Title and abstract screening and secondary screening was done by NAD and MAS.  121 

The 15 included articles covered a wide-range of behavioral topics. These topics 122 

included ornamentation patterns (Kraaijeveld et al. 2007), selection on “personality” and 123 

behavioral syndromes (Smith and Blumstein 2008), to winner-loser effects (Yan et al. 124 

2024). All included articles are listed in Table 1. 125 

Identifying taxonomic representation 126 

For each published meta-analysis, we examined the data used to determine whether 127 

specific effect sizes were from invertebrates or vertebrates. From this, we determined the 128 

 
Figure 2. PRISMA diagram of included studies and included effect 
size estimates in the final analysis.  
 



relative representation of invertebrates to vertebrates in the meta-analysis. We then 129 

compared this representation of estimates to that expected based on known animal 130 

diversity. Because of the expected lack of non-vertebrate estimates (Figure 1a) and the 131 

large number of non-vertebrate phyla, we compared the representation of species in 132 

published meta-analysis to the expected representation just at the level of vertebrates and 133 

invertebrates. We compared this representation based on taxonomic diversity without 134 

accounting for differences in abundance.  135 

Estimating taxonomic misestimation of meta-analytical results 136 

To determine the degree to which taxonomic representation could lead to misestimation of 137 

meta-analytical results, we compared meta-analytic grand means to estimates of what 138 

those means would be if estimates were drawn proportionally from the diversity of 139 

Animalia. We did so by calculating the marginalized means for each included meta-analysis 140 

under the assumption of taxonomically representative sampling (sensu Nakagawa et al. 141 

2023).  142 

For example, consider a meta-analysis based on 100 estimates with 75 estimates 143 

coming from vertebrates and 25 from invertebrates. This degree of taxonomic mis-144 

representation is consistent with the findings of Rosenthal et al. (2017). Assuming 145 

estimates for vertebrates and invertebrates are equally precise despite different numbers of 146 

estimates, the grand mean effect size in this meta-analysis would be primarily driven by the 147 

mean for vertebrates: if the mean effect size for vertebrates were 0.5 and the mean for 148 

invertebrates was -0.5, the overall “grand mean” would be 0.25. However, this overall mean 149 

is taxonomically biased as vertebrates only represent around 5% of all animals 150 

(vertebrates: 4.74%; Catalogue of Life, 2025). If the estimates in this hypothetical example 151 

were drawn proportionally from the animal kingdom, the grand mean would instead have 152 

been estimated as -0.45. This grand mean is calculated by weighting by taxonomic 153 

representation rather than data representation. 154 

Here, we first calculated the overall meta-analytical mean for a particular meta-155 

analysis. Many of the constituent studies conducted multiple meta-analyses and we 156 

attempted to replicate as many of those as possible. In all cases we attempted to replicate 157 

the original analyses either using code originally provided by the authors or de novo code 158 

based on the described methods and for the effect sizes used or described by the authors. 159 

When possible, this included the inclusion of phylogenetic error structure. This provided an 160 

overall meta-analytical mean for the observed data (“data-proportional”). For each of these 161 

analyses we next added a moderator contrasting vertebrates and invertebrates. This 162 

provided separate meta-analytical estimates for vertebrates and invertebrates that 163 

incorporated the estimation uncertainty and sampling variance among studies. We also 164 

recorded the significance of this effect. 165 



Based on the vertebrate and invertebrate meta-analytical estimates, we then 166 

estimated the marginalized mean under taxonomic representative sampling (“taxonomic-167 

representative”) using the metafor package in R (Viechtbauer 2010, Viechtbauer and 168 

Lo pez-Lo pez 2022, Nakagawa et al. 2023). This process is also known as “poststrafication” 169 

and is often used in recalibrating survey results (Gelman et al. 2021).  Using the predict 170 

function of metafor, we estimated the marginalized taxonomic-representative value with an 171 

assumption of 5% of estimates being from vertebrates and 95% of estimates being from 172 

invertebrates. This representation is based on the known distribution of vertebrates and 173 

invertebrates (Catalogue of Life, 2025). This also allowed us to estimate the uncertainty 174 

around the taxonomic-representative mean (Viechtbauer and Lo pez-Lo pez 2022).  175 

Marginalized means are calculated as described in the above example of weighted 176 

averaging but based instead on the meta-analytical group estimates. Specifically, the 177 

estimated vertebrate and invertebrate means, and accompanying uncertainties, were 178 

reweighted by the expected representation of invertebrates and vertebrates to calculate a 179 

taxonomic-representative mean. Because uncertainty around this new mean can be 180 

estimated, its statistical significance can also be determined.    181 

For each meta-analysis we estimated the data-proportional (µdp) and taxonomic-182 

representative (µtr) overall mean estimates and their uncertainties. We also determined the 183 

statistical significances (⍺ < 0.05) of µdp and µtr. Besides estimating magnitude of biasing, 184 

this allowed us to determine if taxonomic bias may lead to different inferential conclusions. 185 

Data analysis 186 

For each meta-analytical estimate pair from a study, we compared the data-proportional 187 

versus taxonomic-representative estimates to quantify the relative, proportional effect of 188 

taxonomic misrepresentation on overall effects in meta-analysis. To do so, we calculated the 189 

absolute value of the log ratio (Hedges et al. 1999): 190 

|𝑙𝑜𝑔
𝜇𝑡𝑟
𝜇𝑑𝑝

| 191 

we used the absolute value as this allowed comparison across studies regardless of 192 

whether data-proportional or taxonomic-representative estimates were larger, which might 193 

vary by biological question. This also allowed us to compare estimates across meta-194 

analyses even when those original meta-analyses used different effect sizes. The two 195 

limitations of this approach are that it does not allow analysis in cases where the signs of 196 

estimates change and the use of absolute values can result in over-estimation of 197 

magnitudes (Morrissey 2016, see below). Fortunately, sign changes only occurred for 3 of 198 

the 43 pairs of estimates (see results). 199 

 As an additional analysis, we also calculated the magnitude difference between data-200 

proportional and taxonomic-representative estimates. Because the constituent meta-201 



analyses used different effect sizes themselves (i.e. Zr, log-odds ratios, and various 202 

standardized mean differences), we first transformed all effect sizes to Zr following 203 

equations in Borenstein et al. (2009). We then calculated the raw value of the differences 204 

between data-proportional and taxonomic-representative Zr scores. 205 

 For both the relative and magnitude differences between pairs, the standard 206 

deviation of the differences was estimated as: 207 

√𝑠𝑑𝑑𝑝
2 + 𝑠𝑑𝑡𝑟

2 − 2𝑠𝑑𝑑𝑝 × 𝑠𝑑𝑡𝑟 × 𝑟 208 

where sddp and sdtr are the estimate standard deviations of the overall meta-analytical 209 

means (reported in the metafor outputs as standard errors) and r represents the 210 

correlation between the uncertainties (because the uncertainties are based on the same 211 

datasets). For the differences in Zr scores, we used the estimated uncertainties in the above  212 

equation. For the absolute value of log ratios, sddp and sdtr were calculated as sddp/ µdp and 213 

sdtr/ µtr, respectively. r is not analytically known but is between 0 and 1 and should be 214 

approaching one and so was set to 0.8. This did not substantively affect our conclusions or 215 

estimation (Supplemental Materials). 216 

To estimate the overall effect of taxonomically biased sampling on meta-analytical 217 

inferences, we next fit a random effects meta-analysis with the study an estimate was 218 

drawn from as a random effect to the estimates of relative differences. We also included 219 

individual estimate identity as a random effect because each estimate was based on a 220 

different sample size and often addressing a different question. The overall effect size was 221 

estimated while weighting by the inverse of the standardized mean difference’s sampling 222 

variance (Borenstein et al. 2009). We evaluated the magnitude and uncertainty of the grand 223 

mean (xgm) from these analyses as indicative of taxonomic bias in meta-analytical 224 

inferences. Consequently, a significant grand mean would indicate significant taxonomic 225 

bias in meta-analytical estimates. 226 

Importantly, calculating the grand mean of absolute values results in positive bias 227 

(Morrissey 2016). Therefore, we used an “analyze-then-transform” approach following 228 

Morrissey (2016). To do so, based on the above analysis, we transformed the meta-analytic 229 

grand means of the magnitude of taxonomic bias (xgm) and its uncertainty (segm) according 230 

to a folded normal distribution as:  231 

𝑥𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑠𝑒𝑔𝑚√
2

𝜋
× 𝑒

(
−𝑥𝑔𝑚

2

2𝑠𝑒𝑔𝑚
2 )

+ 𝑥𝑔𝑚 × 𝐞𝐫𝐟 (
𝑥𝑔𝑚

√2𝑠𝑒𝑔𝑚2
) 232 

and 233 

𝑠𝑑𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑥𝑔𝑚
2 + 𝑠𝑒𝑔𝑚

2 + 𝑥𝑓𝑜𝑙𝑑𝑒𝑑
2  234 



where xfolded is the transformed grand mean and sdfolded is its standard deviation. erf is the  235 

Gauss error function. Uncertainties of parameters from linear models, like those provided 236 

by the metafor package, are reported as standard errors but these values specifically refer 237 

to the standard deviation of the parameter’s sampling distribution and so were used here in 238 

lieu of standard deviations. We calculated the folded values for both the relative and 239 

absolute analyses. To aid interpretation, these values were then converted to percent 240 

differences as: 241 

(𝑒𝑥𝑓𝑜𝑙𝑑𝑒𝑑 − 1) × 100 242 

We next conducted a heterogeneity analyses to determine the contributors to 243 

variability in taxonomic bias. We determined whether there was significant heterogeneity 244 

among estimates based on Cochran’s Q and its significance. We then calculated the 245 

proportion of variation (I2) attributable to sampling error, to study differences, and to 246 

estimate differences within studies (Nakagawa and Santos 2012). 247 

Because we were analyzing differences between marginal means, as opposed to 248 

original findings, there are not clear expectations of publication bias or approaches to 249 

testing for such bias. Moreover, because our estimates were constrained to be positive, 250 

typical funnel plots and trim-and-fill analyses were not appropriate. Given the lack of both a 251 

priori expectations regarding basis or methods, we did not conduct publication bias tests.  252 

In addition, we conducted a series of post hoc analyses and comparisons. First, we 253 

conducted a meta-regression of taxonomic bias versus the number of studies in the original 254 

meta-analyses that were for invertebrates. A significant negative slope for this moderator 255 

would suggest that apparent taxonomic bias is at least partially driven by poor sampling of 256 

invertebrates. We then conducted a second post hoc meta-regression using the proportion 257 

of studies in a meta-analysis that were for invertebrates. A significant negative slope would 258 

be consistent with taxonomically biased sampling leading to misestimation (bias should 259 

decrease toward zero with increasing invertebrate representation). In these analyses, the 260 

number and proportion of studies were centered when used as covariates. These post hoc 261 

analyses therefore allowed us to estimate bias at average sampling levels. As a final post 262 

hoc addition, we compared the significance of the contrast between vertebrates and 263 

invertebrates as a moderator in underlying meta-analyses to whether significance of the 264 

overall means differed when estimated in a data-proportional versus taxonomic-265 

representative manner.  266 

All analyses were conducted in the R statistical language (v4.5.0, R_Core_Team 2025).  267 

Data availability 268 

All data and analysis code are available at: link. 269 

https://osf.io/4m6vj/?view_only=a09c38ecd17340b2a938c176687f3ded


 

Results 270 
Taxonomic Representation of Data in Meta-Analyses 271 

We found that the data used in behavioral meta-analyses was highly taxonomically biased 272 

in favor of vertebrates (Figure 3a, Table 1). 65% of the estimates used in meta-analyses 273 

were from vertebrates, slightly less than the bias observed more broadly in behavioral 274 

research (Rosenthal et al. 2017), but far, far greater than the 5% expected according to 275 

taxonomic representation.   276 

Relative Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 277 

The meta-analytical mean, after transformation due to the folded distribution, of absolute 278 

log ratios was 0.30 (s.e. = 0.08, p << 0.01; Figure 4). Put another way, meta-analytical means 279 

are, on average, misestimated by 35% (Figure 3b). Significance changed between the data-280 

proportional and taxonomic-representative estimates for 10 of 43 estimate pairs (Figure 4), 281 

though the signs of effects only changed for 3 pairs. Of the significance changes, 8 instances 282 

changed from significant to non-significant and two changed from non-significant to 283 

significance. Moreover, while the vertebrate versus invertebrate contrast was significant in 284 

19 of 43 constituent meta-analyses, it was significant for only 4 of the instances when 285 

overall mean significance changed.  286 

There was also significant heterogeneity among estimates (Qdf:39 = 102.15, p << 287 

0.01). Of this heterogeneity, most was attributable to sampling variance (I2 = 0.69). But 288 

there was also considerable heterogeneity among studies (I2 = 0.13) and among estimates 289 

within studies (I2 = 0.19).  290 

Figure 3. a) Data included in meta-analyses by taxa. Vertebrates are indicated in the same color 

as in Figure 1a while Arthropods and other invertebrates are now pooled under a single 

invertebrate category. Invertebrates are indicated in the same color as Arthropods in Figure 1a 

as Arthropod species dominated this category. b) Overall (large dot) and individual estimates 

(small dots) of the percentage misestimation due to taxonomic misrepresentation (uncertainty 

around this misestimation is smaller than the point). 



Absolute Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 291 

The meta-analytical mean of magnitude differences between Zr scores was 0.15 (s.e. = 0.06, 292 

p = 0.01). However, one estimate pair differed by around 3 times more than the next largest 293 

difference (Figure S1). When this estimate pair was excluded, the difference dropped to 294 

0.098 (se = 0.026) and remained significant (p < 0.01). Whether with or without this 295 

extreme data point, these effects translate to substantive differences in more conventional 296 

effect sizes: a difference between Zr scores of 0.15 corresponds to a difference of 0.29 297 

between correlations and a difference of 0.091 converts to a difference in correlations of 298 

0.20. There was significant heterogeneity among estimates (Qdf:41 = 2.1× 105, p << 0.01) but 299 

99% of this heterogeneity was attributable to sampling variance with no appreciable 300 

heterogeneity among studies or estimates (I2 < 0.01). 301 

Meta-regression for the effect of sampling on estimation 302 

Both the number and proportion of invertebrate studies in a constituent meta-analysis had 303 

a significant negative effect on the magnitude of taxonomic bias (p = 0.03 and <0.01, 304 

respectively). The significant effect of number of studies suggests that some proportion of 305 

the taxonomic bias is influenced by poor estimation at small sample sizes but the 306 

magnitude of this effect was small (β = -0.0012). Interestingly, the estimated magnitude of 307 

taxonomic bias was higher at the average invertebrate sample size than estimated in our 308 

main analysis (39%).  The magnitude of the effect of proportional invertebrate 309 

representation was larger (β = -0.684), consistent with taxonomic bias in sampling biasing 310 

meta-analytical conclusions.  311 



Discussion 312 

We found that the impact of taxonomic bias on meta-analytical estimates in the study of 313 

animal behavior was surprisingly large (Figure 3b). Specifically, our results demonstrate 314 

that meta-analytical means from behavioral meta-analysis are misestimated by around 315 

35%. The observed magnitude of misestimation also led to changes in significance for 316 

around 25% of estimates. Interestingly, the significance of a moderator allowing for 317 

differences between invertebrates and vertebrates within underlying meta-analyses was 318 

not particularly informative: In more than half of the instances when significance changed 319 

 
Figure 4. Within-study estimates and standard errors of the relative magnitude of taxonomic bias on 

meta-analytical estimates.     



under taxonomic representative estimation, a moderator for taxonomic grouping was not 320 

significant. This estimated magnitude of misestimation, 35%, and its impact on direction or 321 

significance of effects can lead to incorrect inferences being drawn.  322 

Our analysis of the magnitude of taxonomic bias on the raw effect of meta-analytical 323 

estimates demonstrates a somewhat smaller impact. However, this is not entirely 324 

unexpected because effect sizes estimated in meta-analyses are typically quite small 325 

(Møller and Jennions 2002, Low-De carie et al. 2014) and so differences in magnitudes will 326 

necessarily be constrained to also be small. Even in terms of magnitude differences, the 327 

observed bias still translates into substantial difference in the magnitudes of effects, 328 

changing correlations by an average of 0.3.  329 

 As one example, consider the findings of Royaute  et al. (2018). We use this example 330 

as one of us (NAD) was the senior author of that study and so as to not single out other 331 

authors. In Royaute  et al. (2018), the authors concluded that correlations between 332 

behaviors and physiological or life-history traits were not in the direction expected 333 

according to the “pace-of-life” syndrome (POLS) hypothesis proposed by Re ale et al. (2010). 334 

This was a novel and surprising finding given the intuitive predictions of POLS and its 335 

dramatic impact on discussions of how behavior might be integrated with physiology and 336 

life-history. The conclusion of Royaute  et al. (2018) was based on the meta-analytical mean, 337 

estimated as r = 0.06 (95% CI: -.01 : 0.14), which was predicted to have been positive 338 

according to POLS. However, as reported by Royaute  et al. (2018), there was a significant 339 

difference between vertebrates and invertebrates regrading support for POLS. There also 340 

was substantial taxonomic bias in the data that went into Royaute  et al.'s (2018) analysis. 341 

Here, via the estimation of marginal means adjusting for taxonomic bias, we see that if the 342 

sampling of vertebrates and invertebrates was taxonomically proportional, the meta-343 

analytical mean would have been estimated as r = 0.22 and would have been significantly 344 

different than zero. While this is a relatively modest absolute difference in estimates (0.16), 345 

it is a large relative difference (~2.4 times, Figure 4). This ends up resulting in a substantive 346 

reinterpretation of the evidence for POLS: If the data going into the original analysis were 347 

consistent with actual taxonomic representation, and the estimates of the original analysis 348 

hold, this would have been taken as meta-analytical support for POLS. Many of the included 349 

meta-analyses also drew conclusions based on overall mean effect sizes and so similar 350 

issues will arise across our dataset. Consequently, major changes in inferences would likely 351 

be drawn from other meta-analyses if taxonomic bias were to be similarly addressed, as 352 

demonstrated by the observed changes in significance (Figure 4). Likewise, changes in the 353 

sign of three mean effect sizes would also lead to inferential changes. 354 

This example, and our overall finding, confirms concerns raised by others. In 355 

particular, Gurevitch and Hedges (1999) discussed how researcher biases and taxonomic 356 

preferences in the generation of original data have the potential to affect subsequent meta-357 

analytical inferences. However, the degree to which this was an actual problem was not 358 



clear until our analysis here. This is a concerning problem but not a new one: as discussed 359 

by Rosenthal et al. (2017), taxonomic bias in the study of animal behavior is pervasive and 360 

pronounced (their data are recreated in Figures 1a & 1b).  361 

Importantly, changes in interpretation as discussed above are dependent on how 362 

robust our marginal mean estimates are for invertebrates. This is not currently clear and, 363 

across the included meta-analyses, the poor representation of invertebrates (Figure 3a, 364 

Table 1) necessarily means that these estimates have greater uncertainties than do 365 

estimates for vertebrates. Our post hoc meta-regressions suggest that this likely has only a 366 

minor effect on our interpretation, as demonstrated by the magnitude of the regression 367 

coefficient relating the number of invertebrate studies to the magnitude of bias. Moreover, 368 

this post hoc analysis suggests that our primary analysis may be underestimating the 369 

magnitude of taxonomic bias. Also, because of the poor representation of invertebrates in 370 

behavioral studies, the diversity within invertebrates could not be captured in our analysis. 371 

Because invertebrates are also not proportionally sampled (Zuk et al. 2014), our field’s 372 

meta-analytical conclusions may be even more biased than could be revealed here. 373 

 While changes in interpretation due to taxonomic bias might be discouraging, they 374 

also are of intrinsic interest. Sub-group analysis and stratification (Borenstein et al. 2009), 375 

long-standing parts of meta-analyses in other fields, would allow the evaluation of when a 376 

hypothesis like POLS holds in some taxonomic groups and not others. For example, it is 377 

perhaps more interesting to ask why POLS holds in invertebrates but not vertebrates rather 378 

than simply asking whether the hypothesis is supported in general. Such analyses may 379 

allow for greater insight than currently provided by most behavioral meta-analyses. Indeed, 380 

researchers in areas of ecology and evolution are often interested specifically in when and 381 

why groups, like vertebrates and invertebrates, differ (Nakagawa et al. 2017, Yang et al. 382 

2025). Disentangling contributors to heterogeneity in effect sizes will often be more 383 

informative than simple estimations of overall means. 384 

It is also worth emphasizing that relatively few studies could be included in our 385 

analyses and, as a result, the effects of taxonomic bias might therefore be even more severe. 386 

Specifically, 53 meta-analyses published in Animal Behaviour, Behavioral Ecology, and 387 

Behavioral Ecology and Sociobiology were taxonomically restricted (Figure 2). Put another 388 

way, the taxonomic bias in the 15 studies included here necessarily underestimates the bias 389 

present in the 53 studies for which bias could not even be estimated. Indeed, in examining 390 

the taxonomically restricted meta-analyses, over 75% were restricted to vertebrates (Table 391 

S1). Echoing—and exaggerating—the biases within vertebrates identified by Rosenthal et 392 

al. (2017 and Figure 1b), 87% of the constituent studies used in vertebrate restricted meta-393 

analyses were of birds (Table S1). 394 

In some cases, taxonomic restriction may be because a specific hypothesis applies to, 395 

for example, mammals but not reptiles. In such cases, the type of taxonomic restriction we 396 



have identified is a requirement to ask a question and is to be expected. However, it is also 397 

possible that this represents a secondary opportunity for researchers to express taxonomic 398 

preferences (Gurevitch and Hedges 1999). This is, potentially, reflected in the taxonomic 399 

representation seen in the restricted studies. As mentioned above, most of these focused on 400 

birds and mammals. Even if taxonomic restriction is justified, that most restricted meta-401 

analyses focus on birds and mammals results in research effort that does not reflect the 402 

broader taxonomic representation. This, again, biases our understanding of animal 403 

behavior. Most generally, taxonomically restricted meta-analyses, when not necessary, will 404 

reduce the generality of conclusions. 405 

If a broad goal of animal behavior research is to increase our general understanding 406 

of behavior, our results demonstrate that taxonomic bias should be a major concern. If, 407 

instead, we are primarily interested in examining personally interesting examples of 408 

behavior, the bias is of less importance. Regardless, a primary aim of meta-analyses is to 409 

draw generalizable inferences (Spake et al. 2022). Our results suggest that the taxonomic 410 

bias inherent in the behavioral literature makes this generalization difficult. This may 411 

profoundly affect how right and wrong we are about our understanding of behavior. 412 

Addressing this bias will require individual researchers to consider whether their study 413 

system choices will increase the generality of our field’s understanding.  414 

Acknowledgements 415 

We thank the authors of behavioral meta-analyses for providing data either via public 416 

repositories or upon request. MAS was supported by the Department of Biological Sciences 417 

and the Environmental and Conservation Sciences Program at North Dakota State 418 

University. NAD was supported during this work by the National Science Foundation (IOS-419 

2222929). SN was supported by the Canada Excellence Research Chair Program (CERC-420 

2022-00074). 421 

 422 

References 423 

 424 

Bell, A. M., S. J. Hankson, and K. L. Laskowski. 2009. The repeatability of behaviour: a meta-425 
analysis. Animal Behaviour 77:771-783. 426 

Borenstein, M., L. V. Hedges, J. P. Higgins, and H. R. Rothstein. 2009. Introduction to meta-427 
analysis. John wiley & sons. 428 

Church, K. D., J.-M. Matte, and J. W. Grant. 2022. Territoriality modifies the effects of habitat 429 
complexity on animal behavior: a meta-analysis. Behavioral Ecology 33:455-466. 430 

Costello, L., and J. W. Fox. 2022. Decline effects are rare in ecology. Ecology 103:e3680. 431 
Davies, A. D., Z. Lewis, and L. R. Dougherty. 2020. A meta-analysis of factors influencing the 432 

strength of mate-choice copying in animals. Behavioral Ecology 31:1279-1290. 433 



Dickersin, K. 2005. Publication bias: Recognizing the problem, understanding its origins 434 

and scope, and preventing harm. Publication bias in meta‐analysis: Prevention, 435 

assessment and adjustments:9-33. 436 
Dochtermann, N. A., and N. J. Dingemanse. 2013. Behavioral syndromes as evolutionary 437 

constraints. Behavioral Ecology 24:806-811. 438 
Dougherty, L. R. 2023. The effect of individual state on the strength of mate choice in 439 

females and males. Behavioral Ecology 34:197-209. 440 
Dougherty, L. R. 2024. Mating reduces responsiveness to sexual stimuli in females but not in 441 

males. Animal Behaviour 214:87-94. 442 
Dougherty, L. R., and D. M. Shuker. 2015. The effect of experimental design on the 443 

measurement of mate choice: a meta-analysis. Behavioral Ecology 26:311-319. 444 
Foo, Y. Z., R. E. O'Dea, J. Koricheva, S. Nakagawa, and M. Lagisz. 2021. A practical guide to 445 

question formation, systematic searching and study screening for literature reviews 446 
in ecology and evolution. Methods in Ecology and Evolution 12:1705-1720. 447 

Gelman, A., J. Hill, and A. Vehtari. 2021. Regression and other stories. Cambridge University 448 
Press. 449 

Graham, S., E. Chapuis, S. Meconcelli, N. Bonel, K. Sartori, A. Christophe, P. Alda, P. David, and 450 
T. Janicke. 2015. Size-assortative mating in simultaneous hermaphrodites: an 451 
experimental test and a meta-analysis. Behavioral Ecology and Sociobiology 452 
69:1867-1878. 453 

Gurevitch, J., and L. V. Hedges. 1999. Statistical issues in ecological meta‐analyses. Ecology 454 

80:1142-1149. 455 

Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta‐analysis of response ratios in 456 

experimental ecology. Ecology 80:1150-1156. 457 
Jennions, M. D., C. J. Lortie, M. S. Rosenberg, and H. R. Rothstein. 2013. Publication and 458 

related biases. Handbook of meta-analysis in ecology and evolution:207-236. 459 
Jennions, M. D., and A. P. Møller. 2002. Relationships fade with time: a meta-analysis of 460 

temporal trends in publication in ecology and evolution. Proceedings of the Royal 461 
Society of London. Series B: Biological Sciences 269:43-48. 462 

Jennions, M. D., and A. P. Møller. 2003. A survey of the statistical power of research in 463 
behavioral ecology and animal behavior. Behavioral Ecology 14:438-445. 464 

Kelly, C. D. 2008. The interrelationships between resource-holding potential, resource-value 465 
and reproductive success in territorial males: how much variation can we explain? 466 
Behavioral Ecology and Sociobiology 62:855-871. 467 

Konno, K., M. Akasaka, C. Koshida, N. Katayama, N. Osada, R. Spake, and T. Amano. 2020. 468 

Ignoring non‐English‐language studies may bias ecological meta‐analyses. 469 

Ecology and Evolution 10:6373-6384. 470 
Kraaijeveld, K., F. J. Kraaijeveld-Smit, and J. Komdeur. 2007. The evolution of mutual 471 

ornamentation. Animal Behaviour 74:657-677. 472 
Low-De carie, E., C. Chivers, and M. Granados. 2014. Rising complexity and falling 473 

explanatory power in ecology. Frontiers in Ecology and the Environment 12:412-474 
418. 475 

Møller, A., and M. D. Jennions. 2002. How much variance can be explained by ecologists and 476 
evolutionary biologists? Oecologia 132:492-500. 477 



Moller, A. P., R. Thornhill, and S. W. Gangestad. 2005. Direct and indirect tests for publication 478 
bias: asymmetry and sexual selection. Animal Behaviour 70:497-506. 479 

Morrissey, M. B. 2016. Meta‐analysis of magnitudes, differences and variation in 480 

evolutionary parameters. Journal of Evolutionary Biology 29:1882-1904. 481 

Nakagawa, S., M. Lagisz, M. D. Jennions, J. Koricheva, D. W. Noble, T. H. Parker, A. Sa nchez‐482 

To jar, Y. Yang, and R. E. O'Dea. 2022. Methods for testing publication bias in 483 

ecological and evolutionary meta‐analyses. Methods in Ecology and Evolution 484 

13:4-21. 485 
Nakagawa, S., M. Lagisz, R. E. O'Dea, P. Pottier, J. Rutkowska, A. M. Senior, Y. Yang, and D. W. 486 

Noble. 2023. orchaRd 2.0: An R package for visualising meta-analyses with orchard 487 
plots. 488 

Nakagawa, S., D. W. Noble, A. M. Senior, and M. Lagisz. 2017. Meta-evaluation of meta-489 
analysis: ten appraisal questions for biologists. Bmc Biology 15:18. 490 

Nakagawa, S., and E. S. Santos. 2012. Methodological issues and advances in biological 491 
meta-analysis. Evolutionary Ecology 26:1253-1274. 492 

Pollo, P., M. Lagisz, Y. Yang, A. Culina, and S. Nakagawa. 2024. Synthesis of sexual selection: a 493 

systematic map of meta‐analyses with bibliometric analysis. Biological Reviews 494 

99:2134-2175. 495 
R_Core_Team. 2025. R: A language and environment for statistical computing. R Foundation 496 

for Statistical Computing. 497 
Re ale, D., D. Garant, M. M. Humphries, P. Bergeron, V. Careau, and P. O. Montiglio. 2010. 498 

Personality and the emergence of the pace-of-life syndrome concept at the 499 
population level. Philosophical Transactions of the Royal Society B-Biological 500 
Sciences 365:4051-4063. 501 

Richardson, J., and M. Zuk. 2023. Unlike a virgin: a meta-analytical review of female mating 502 
status in studies of female mate choice. Behavioral Ecology 34:165-182. 503 

Rosenthal, M. F., M. Gertler, A. D. Hamilton, S. Prasad, and M. C. Andrade. 2017. Taxonomic 504 
bias in animal behaviour publications. Animal Behaviour 127:83-89. 505 

Rothstein, H. R., A. J. Sutton, and M. Borenstein. 2005. Publication bias in meta‐analysis. 506 

Publication bias in meta‐analysis: Prevention, assessment and adjustments:1-7. 507 

Royaute , R., M. A. Berdal, C. R. Garrison, and N. A. Dochtermann. 2018. Paceless life? A meta-508 
analysis of the pace-of-life syndrome hypothesis. Behavioral Ecology and 509 
Sociobiology 72:64. 510 

Smith, B. R., and D. T. Blumstein. 2008. Fitness consequences of personality: a meta-511 
analysis. Behavioral Ecology 19:448-455. 512 

Spake, R., R. E. O’dea, S. Nakagawa, C. P. Doncaster, M. Ryo, C. T. Callaghan, and J. M. Bullock. 513 
2022. Improving quantitative synthesis to achieve generality in ecology. Nature 514 
ecology & evolution 6:1818-1828. 515 

Takola, E., E. T. Krause, C. Mu ller, and H. Schielzeth. 2021. Novelty at second glance: a critical 516 
appraisal of the novel object paradigm based on meta-analysis. Animal Behaviour 517 
180:123-142. 518 

Tinbergen, N. 1963. On aims and methods of ethology. Zeitschrift fur Tierpsychologie 519 
20:410-433. 520 



Trikalinos, T. A., and J. P. Ioannidis. 2005. Assessing the evolution of effect sizes over time. 521 

Publication bias in meta‐analysis: Prevention, assessment and adjustments:241-522 

259. 523 
Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of 524 

Statistical Software 36. 525 

Viechtbauer, W., and J. A. Lo pez‐Lo pez. 2022. Location‐scale models for meta‐analysis. 526 

Research Synthesis Methods 13:697-715. 527 
Yan, J. L., N. M. Smith, D. C. Filice, and R. Dukas. 2024. Winner and loser effects: a meta-528 

analysis. Animal Behaviour 216:15-22. 529 
Yang, Y., D. W. Noble, R. Spake, A. M. Senior, M. Lagisz, and S. Nakagawa. 2025. A pluralistic 530 

framework for measuring, interpreting and decomposing heterogeneity in meta‐531 

analysis. Methods in Ecology and Evolution. 532 
Zuk, M., F. Garcia-Gonzalez, M. E. Herberstein, and L. W. Simmons. 2014. Model systems, 533 

taxonomic bias, and sexual selection: beyond Drosophila. Annual Review of 534 
Entomology 59:321-338. 535 

  536 



Table 1. Behavioral meta-analyses included in the current analyses 
Study 
ID 

Number of included 
analyses 

Number of estimates 
in each analysis 

Number of estimates 
for vertebrates 

Number of estimates 
for invertebrates 

Author(s) (Year) 

K9 4 

13 4 9 

Kraaijeveld et al. (2007) 
140 135 5 
29 26 3 
28 23 5 

B11 1 759 493 266 Bell et al. (2009) 
T40 1 265 261 4 Takola et al. (2021) 

D44 3 
38 2 36 

Dougherty (2024) 
22 4 18 

Y46 1 168 47 121 Yan et al. (2024) 
S56 1 37 31 6 Smith and Blumstein (2008) 
D64 1 35 30 5 Dochtermann and Dingemanse (2013) 
D67  1 215 92 123 Dougherty and Shuker (2015) 
D85 1 158 125 33 Davies et al. (2020) 

C87 10 

13 12 1 

Church et al. (2022) 

129 85 44 
81 74 7 
20 19 1 
71 56 15 
26 25 1 
25 22 3 
38 35 3 
55 49 6 
72 29 43 

R89 7 

26 9 17 

Richardson and Zuk (2023) 

170 61 109 
52 24 28 
8 4 4 
57 43 14 
508 92 416 
366 325 41 

D90 8 

26 8 18 

Dougherty (2023) 

50 27 23 
67 41 26 
16 6 10 
13 13 3 
29 22 7 



14 5 9 
17 6 11 

K102 3 
253 187 66 

Kelly (2008) 214 168 46 
398 339 59 

G106 1 32 3 29 Graham et al. (2015) 
R110 1 183 145 38 Royaute  et al. (2018) 

 



Supplementary Materials 537 

 538 
Figure S1. Within-study estimates and standard errors of the magnitude of taxonomic bias 539 
(magnitude differences) on meta-analytical estimates.  540 



Table S1. Taxa included in taxonomically restricted meta-analyses. 541 

Article 
ID Phylum Class 

Number of 
included studies Reference 

1 Arthropoda Insecta 122 Arnqvist &  Nilsson (2000) Anim. Behav. 

2 Chordata Mammalia 27 Schino (2001) Anim. Behav. 

3 Chordata Mammalia 5 Roberts et al. (2004) Anim. Behav. 

3 Chordata Reptilia 6 Roberts et al. (2004) Anim. Behav. 

3 Chordata Aves 25 Roberts et al. (2004) Anim. Behav. 

4 Arthropoda Insecta 7 Shuker et al. (2004) Anim. Behav. 

6 Chordata Reptilia 5 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Amphibia 9 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Pisces 26 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Mammalia 38 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

6 Chordata Aves 65 
Hirschenhauser &  Oliveira (2006) Anim. 
Behav. 

7 Chordata Aves 12 Griffith et al. (2006) Anim. Behav. 

7 Chordata Aves 27 Griffith et al. (2006) Anim. Behav. 

10 Chordata Mammalia 54 Majolo et al. (2008) Anim. Behav. 

10 Chordata Mammalia 86 Majolo et al. (2008) Anim. Behav. 

12 Chordata Aves 24 Sridhar et al. (2009) Anim. Behav. 

12 Chordata Aves 27 Sridhar et al. (2009) Anim. Behav. 

12 Chordata Aves 66 Sridhar et al. (2009) Anim. Behav. 

15 Chordata Aves 127 Santos et al. (2011) Anim. Behav. 

16 Chordata Aves 11 
Hasselquist & Nilsson (2012) Anim. 
Behav. 

16 Chordata Aves 14 
Hasselquist & Nilsson (2012) Anim. 
Behav. 

20 Arthropoda Insecta 1 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Malacostraca 6 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Insecta 6 Paterson et al. (2013) Anim. Behav. 

20 Mollusca Gastropoda 12 Paterson et al. (2013) Anim. Behav. 

20 Arthropoda Insecta 14 Paterson et al. (2013) Anim. Behav. 

24 Chordata Mammalia 7 Street et al. (2016) Anim. Behav. 

24 Chordata Mammalia 26 Street et al. (2016) Anim. Behav. 

26 Chordata Aves 14 Kriengwatana et al. (2016) Anim. Behav. 

28 Chordata Aves 555 Wood et al. (2017) Anim. Behav. 

32 Chordata Aves 379 Parker et al. (2018) Anim. Behav. 

34 Chordata Mammalia 14 Amici et al. (2019) Anim. Behav. 

34 Chordata Aves 11 Amici et al. (2019) Anim. Behav. 

34 Chordata Actinopterygii 1 Amici et al. (2019) Anim. Behav. 

37 Chordata Reptilia 1 Penndorf &  Aplin (2020) Anim. Behav. 

37 Chordata Aves 5 Penndorf &  Aplin (2020) Anim. Behav. 

37 Chordata Mammalia 10 Penndorf &  Aplin (2020) Anim. Behav. 

43 Chordata Aves 142 Shuai et al. (2024) Anim. Behav. 

45 Chordata Aves 1001 Petalas et al. (2024) Anim. Behav. 



49 Chordata Aves 90 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 121 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 133 Garamszegi &  Moller (2004) Behav. Ecol. 

49 Chordata Aves 396 Garamszegi &  Moller (2004) Behav. Ecol. 

50 Chordata Mammalia 30 Schino (2004) Behav. Ecol. 

52 Chordata Aves 89 Parker et al. (2006) Behav. Ecol. 

53 Chordata Mammalia 31 Schino (2007) Behav. Ecol. 

53 Chordata Mammalia 36 Schino (2007) Behav. Ecol. 

54 Chordata Aves 149 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 182 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 216 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 246 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 331 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 473 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 602 Nakagawa et al. (2007) Behav. Ecol. 

54 Chordata Aves 1236 Nakagawa et al. (2007) Behav. Ecol. 

55 Arthropoda Insecta 7 Meunier et al. (2008) Behav. Ecol. 

55 Arthropoda Insecta 10 Meunier et al. (2008) Behav. Ecol. 

55 Arthropoda Insecta 15 Meunier et al. (2008) Behav. Ecol. 

57 Chordata Aves 11 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 18 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 20 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 25 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 29 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 35 Beauchamp (2008) Behav. Ecol. 

57 Chordata Aves 43 Beauchamp (2008) Behav. Ecol. 

60 Chordata Aves 75 Soma &  Garamszegi (2011) Behav. Ecol. 

62 Chordata Aves 8 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 10 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 11 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 14 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 19 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 21 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 24 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 24 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 25 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 26 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 33 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 48 Simons &  Verhulst (2011) Behav. Ecol. 

62 Chordata Aves 77 Simons &  Verhulst (2011) Behav. Ecol. 

65 Chordata Aves 32 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Actinopterygii 18 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Mammalia 14 Garamszegi et al. (2013) Behav. Ecol.  

65 Chordata Reptilia 3 Garamszegi et al. (2013) Behav. Ecol.  

66 Chordata Aves 9 Ihle & Forstmeier (2013) Behav. Ecol.  

68 Chordata Aves 43 Arct et al. (2015) Behav. Ecol. 

70 Chordata Mammalia 8 Moore et al. (2016) Behav. Ecol. 

70 Chordata Amphibia 14 Moore et al. (2016) Behav. Ecol. 



70 Chordata Reptilia 21 Moore et al. (2016) Behav. Ecol. 

70 Chordata Aves 75 Moore et al. (2016) Behav. Ecol. 

73 Chordata Amphibia 22 Roca et al. (2016) Behav. Ecol. 

73 Chordata Aves 139 Roca et al. (2016) Behav. Ecol. 

77 Arthropoda Insecta 117 Holman (2018) Behav. Ecol. 

82 Chordata Aves 8 Santema et al. (2019) Behav. Ecol. 

82 Chordata Aves 8 Santema et al. (2019) Behav. Ecol. 

84 Arthropoda Arachnida 23 Ximenes et al. (2020) Behav. Ecol. 

86 Chordata Mammalia 296 Beauchamp et al. (2021) Behav. Ecol. 

88 Chordata Amphibia 10 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Mammalia 14 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Reptilia 18 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Pisces 50 Stuber et al. (2022) Behav. Ecol. 

88 Chordata Aves 108 Stuber et al. (2022) Behav. Ecol. 

93 Chordata Mammalia 153 Huang et al. (2024) Behav. Ecol. 

94 Arthropoda Insecta 59 Kochensparger et al. (2024) Behav. Ecol. 

95 Chordata Aves 1333 
Dubois &  Cézilly (2002) Behav. Ecol. 
Socio. 

96 Chordata Amphibia 62 Rohr et al. (2002) Behav. Ecol. Socio. 

97 Arthropoda Insecta 60 
Torres-Vila et al. (2004) Behav. Ecol. 
Socio. 

98 Arthropoda Insecta 29 
Torres-Vila &  Jennions (2005) Behav. 
Ecol. Socio. 

99 Chordata Aves 87 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 102 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 140 Garamszegi (2005) Behav. Ecol. Socio. 

99 Chordata Aves 240 Garamszegi (2005) Behav. Ecol. Socio. 

100 Chordata Aves 3 Verdolin (2006) Behav. Ecol. Socio. 

100 Chordata Mammalia 29 Verdolin (2006) Behav. Ecol. Socio. 

101 Chordata Aves 82 Thorup & Rabol (2007) Behav. Ecol. Socio. 

103 Chordata Aves 19 Meunier et al. (2011) Behav. Ecol. Socio. 

104 Chordata Mammalia 180 Spinka et al. (2011) Behav. Ecol. Socio. 

105 Arthropoda Insecta 68 Wilson-Rankin (2014) Behav. Ecol. Socio. 

108 Arthropoda Insecta 5 
Dougherty & Shuker (2016) Behav. Ecol. 
Socio. 

117 Chordata Amphibia 184 Lee et al. (2022) Behav. Ecol. Socio. 

131 Arthropoda Insecta 31 
Nieberding & Holveck (2017) Behav. Ecol. 
Socio 
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Supplementary Analysis: Effect of r on sampling variance. 543 
 544 
Because we estimated the standard deviation of estimates as:  545 

√𝑠𝑑𝑑𝑝
2 + 𝑠𝑑𝑡𝑟

2 − 2𝑠𝑑𝑑𝑝 × 𝑠𝑑𝑡𝑟 × 𝑟 546 

it was possible that choices about the value of r might influence the ultimate meta-meta-547 
analytical results. We know that r is much greater than 0 since the same data were being 548 
used for the data-proportional and taxonomic-representative estimates. However, we don’t 549 
know if this value is exactly 1. We a priori decided to use a value of 0.8 since the value is 550 
necessarily large but also calculated meta-analytical means over a range of values for r 551 
(Figure S2). A higher r, corresponding to a more conservative estimte of the standard 552 
deviation, led to an increase in the meta-analytical estimate but did not change significance 553 
or our overall interpretation. 554 

 555 
Figure S2. Change in the estimated folded mean for a range of values for r. A and B differ 556 
only in the scale of the y axes. 557 


